blob: 6dd8b8e1f5632be231088ce17e61a26401b6fbc8 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "intrinsics_x86_64.h"
#include <limits>
#include "arch/x86_64/instruction_set_features_x86_64.h"
#include "art_method.h"
#include "base/bit_utils.h"
#include "code_generator_x86_64.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "heap_poisoning.h"
#include "intrinsics.h"
#include "intrinsics_utils.h"
#include "lock_word.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/reference.h"
#include "mirror/string.h"
#include "scoped_thread_state_change-inl.h"
#include "thread-current-inl.h"
#include "utils/x86_64/assembler_x86_64.h"
#include "utils/x86_64/constants_x86_64.h"
namespace art {
namespace x86_64 {
IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen)
: allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) {
}
X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() {
return down_cast<X86_64Assembler*>(codegen_->GetAssembler());
}
ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() {
return codegen_->GetGraph()->GetAllocator();
}
bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) {
Dispatch(invoke);
LocationSummary* res = invoke->GetLocations();
if (res == nullptr) {
return false;
}
return res->Intrinsified();
}
static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) {
InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor;
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
}
using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>;
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> // NOLINT
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode {
public:
explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction)
: SlowPathCode(instruction) {
DCHECK(kEmitCompilerReadBarrier);
DCHECK(kUseBakerReadBarrier);
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen);
LocationSummary* locations = instruction_->GetLocations();
DCHECK(locations->CanCall());
DCHECK(instruction_->IsInvokeStaticOrDirect())
<< "Unexpected instruction in read barrier arraycopy slow path: "
<< instruction_->DebugName();
DCHECK(instruction_->GetLocations()->Intrinsified());
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
int32_t element_size = DataType::Size(DataType::Type::kReference);
CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister<CpuRegister>();
CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister<CpuRegister>();
__ Bind(GetEntryLabel());
NearLabel loop;
__ Bind(&loop);
__ movl(CpuRegister(TMP), Address(src_curr_addr, 0));
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
// TODO: Inline the mark bit check before calling the runtime?
// TMP = ReadBarrier::Mark(TMP);
// No need to save live registers; it's taken care of by the
// entrypoint. Also, there is no need to update the stack mask,
// as this runtime call will not trigger a garbage collection.
int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(TMP);
// This runtime call does not require a stack map.
x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
__ MaybePoisonHeapReference(CpuRegister(TMP));
__ movl(Address(dst_curr_addr, 0), CpuRegister(TMP));
__ addl(src_curr_addr, Immediate(element_size));
__ addl(dst_curr_addr, Immediate(element_size));
__ cmpl(src_curr_addr, src_stop_addr);
__ j(kNotEqual, &loop);
__ jmp(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathX86_64"; }
private:
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64);
};
#undef __
#define __ assembler->
static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
}
static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit);
}
static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location input = locations->InAt(0);
Location output = locations->Out();
__ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit);
}
void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
CreateFPToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
CreateIntToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
static void GenReverseBytes(LocationSummary* locations,
DataType::Type size,
X86_64Assembler* assembler) {
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
switch (size) {
case DataType::Type::kInt16:
// TODO: Can be done with an xchg of 8b registers. This is straight from Quick.
__ bswapl(out);
__ sarl(out, Immediate(16));
break;
case DataType::Type::kInt32:
__ bswapl(out);
break;
case DataType::Type::kInt64:
__ bswapq(out);
break;
default:
LOG(FATAL) << "Unexpected size for reverse-bytes: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) {
GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
// TODO: Consider Quick's way of doing Double abs through integer operations, as the immediate we
// need is 64b.
static void CreateFloatToFloatPlusTemps(ArenaAllocator* allocator, HInvoke* invoke) {
// TODO: Enable memory operations when the assembler supports them.
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresFpuRegister()); // FP reg to hold mask.
}
static void MathAbsFP(LocationSummary* locations,
bool is64bit,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen) {
Location output = locations->Out();
DCHECK(output.IsFpuRegister());
XmmRegister xmm_temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
// TODO: Can mask directly with constant area using pand if we can guarantee
// that the literal is aligned on a 16 byte boundary. This will avoid a
// temporary.
if (is64bit) {
__ movsd(xmm_temp, codegen->LiteralInt64Address(INT64_C(0x7FFFFFFFFFFFFFFF)));
__ andpd(output.AsFpuRegister<XmmRegister>(), xmm_temp);
} else {
__ movss(xmm_temp, codegen->LiteralInt32Address(INT32_C(0x7FFFFFFF)));
__ andps(output.AsFpuRegister<XmmRegister>(), xmm_temp);
}
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsDouble(HInvoke* invoke) {
CreateFloatToFloatPlusTemps(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsDouble(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsFloat(HInvoke* invoke) {
CreateFloatToFloatPlusTemps(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsFloat(HInvoke* invoke) {
MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler(), codegen_);
}
static void CreateIntToIntPlusTemp(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
static void GenAbsInteger(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) {
Location output = locations->Out();
CpuRegister out = output.AsRegister<CpuRegister>();
CpuRegister mask = locations->GetTemp(0).AsRegister<CpuRegister>();
if (is64bit) {
// Create mask.
__ movq(mask, out);
__ sarq(mask, Immediate(63));
// Add mask.
__ addq(out, mask);
__ xorq(out, mask);
} else {
// Create mask.
__ movl(mask, out);
__ sarl(mask, Immediate(31));
// Add mask.
__ addl(out, mask);
__ xorl(out, mask);
}
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsInt(HInvoke* invoke) {
CreateIntToIntPlusTemp(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsInt(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathAbsLong(HInvoke* invoke) {
CreateIntToIntPlusTemp(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAbsLong(HInvoke* invoke) {
GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
}
static void GenMinMaxFP(LocationSummary* locations,
bool is_min,
bool is_double,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen) {
Location op1_loc = locations->InAt(0);
Location op2_loc = locations->InAt(1);
Location out_loc = locations->Out();
XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
// Shortcut for same input locations.
if (op1_loc.Equals(op2_loc)) {
DCHECK(out_loc.Equals(op1_loc));
return;
}
// (out := op1)
// out <=? op2
// if Nan jmp Nan_label
// if out is min jmp done
// if op2 is min jmp op2_label
// handle -0/+0
// jmp done
// Nan_label:
// out := NaN
// op2_label:
// out := op2
// done:
//
// This removes one jmp, but needs to copy one input (op1) to out.
//
// TODO: This is straight from Quick. Make NaN an out-of-line slowpath?
XmmRegister op2 = op2_loc.AsFpuRegister<XmmRegister>();
NearLabel nan, done, op2_label;
if (is_double) {
__ ucomisd(out, op2);
} else {
__ ucomiss(out, op2);
}
__ j(Condition::kParityEven, &nan);
__ j(is_min ? Condition::kAbove : Condition::kBelow, &op2_label);
__ j(is_min ? Condition::kBelow : Condition::kAbove, &done);
// Handle 0.0/-0.0.
if (is_min) {
if (is_double) {
__ orpd(out, op2);
} else {
__ orps(out, op2);
}
} else {
if (is_double) {
__ andpd(out, op2);
} else {
__ andps(out, op2);
}
}
__ jmp(&done);
// NaN handling.
__ Bind(&nan);
if (is_double) {
__ movsd(out, codegen->LiteralInt64Address(INT64_C(0x7FF8000000000000)));
} else {
__ movss(out, codegen->LiteralInt32Address(INT32_C(0x7FC00000)));
}
__ jmp(&done);
// out := op2;
__ Bind(&op2_label);
if (is_double) {
__ movsd(out, op2);
} else {
__ movss(out, op2);
}
// Done.
__ Bind(&done);
}
static void CreateFPFPToFP(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
// The following is sub-optimal, but all we can do for now. It would be fine to also accept
// the second input to be the output (we can simply swap inputs).
locations->SetOut(Location::SameAsFirstInput());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
CreateFPFPToFP(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinDoubleDouble(HInvoke* invoke) {
GenMinMaxFP(
invoke->GetLocations(), /* is_min */ true, /* is_double */ true, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
CreateFPFPToFP(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinFloatFloat(HInvoke* invoke) {
GenMinMaxFP(
invoke->GetLocations(), /* is_min */ true, /* is_double */ false, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
CreateFPFPToFP(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
GenMinMaxFP(
invoke->GetLocations(), /* is_min */ false, /* is_double */ true, GetAssembler(), codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
CreateFPFPToFP(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxFloatFloat(HInvoke* invoke) {
GenMinMaxFP(
invoke->GetLocations(), /* is_min */ false, /* is_double */ false, GetAssembler(), codegen_);
}
static void GenMinMax(LocationSummary* locations, bool is_min, bool is_long,
X86_64Assembler* assembler) {
Location op1_loc = locations->InAt(0);
Location op2_loc = locations->InAt(1);
// Shortcut for same input locations.
if (op1_loc.Equals(op2_loc)) {
// Can return immediately, as op1_loc == out_loc.
// Note: if we ever support separate registers, e.g., output into memory, we need to check for
// a copy here.
DCHECK(locations->Out().Equals(op1_loc));
return;
}
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
CpuRegister op2 = op2_loc.AsRegister<CpuRegister>();
// (out := op1)
// out <=? op2
// if out is min jmp done
// out := op2
// done:
if (is_long) {
__ cmpq(out, op2);
} else {
__ cmpl(out, op2);
}
__ cmov(is_min ? Condition::kGreater : Condition::kLess, out, op2, is_long);
}
static void CreateIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMinLongLong(HInvoke* invoke) {
CreateIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMinLongLong(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
CreateIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxIntInt(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
CreateIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathMaxLongLong(HInvoke* invoke) {
GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetAssembler());
}
static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
}
void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) {
CreateFPToFPLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
GetAssembler()->sqrtsd(out, in);
}
static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) {
MoveArguments(invoke, codegen);
DCHECK(invoke->IsInvokeStaticOrDirect());
codegen->GenerateStaticOrDirectCall(
invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(RDI));
// Copy the result back to the expected output.
Location out = invoke->GetLocations()->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister());
codegen->MoveFromReturnRegister(out, invoke->GetType());
}
}
static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorX86_64* codegen) {
// Do we have instruction support?
if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
CreateFPToFPLocations(allocator, invoke);
return;
}
// We have to fall back to a call to the intrinsic.
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
// Needs to be RDI for the invoke.
locations->AddTemp(Location::RegisterLocation(RDI));
}
static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen,
HInvoke* invoke,
X86_64Assembler* assembler,
int round_mode) {
LocationSummary* locations = invoke->GetLocations();
if (locations->WillCall()) {
InvokeOutOfLineIntrinsic(codegen, invoke);
} else {
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>();
__ roundsd(out, in, Immediate(round_mode));
}
}
void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2);
}
void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1);
}
void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) {
CreateSSE41FPToFPLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) {
GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0);
}
static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator,
HInvoke* invoke,
CodeGeneratorX86_64* codegen) {
// Do we have instruction support?
if (codegen->GetInstructionSetFeatures().HasSSE4_1()) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
return;
}
// We have to fall back to a call to the intrinsic.
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(RAX));
// Needs to be RDI for the invoke.
locations->AddTemp(Location::RegisterLocation(RDI));
}
void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) {
CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
if (locations->WillCall()) {
InvokeOutOfLineIntrinsic(codegen_, invoke);
return;
}
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
NearLabel skip_incr, done;
X86_64Assembler* assembler = GetAssembler();
// Since no direct x86 rounding instruction matches the required semantics,
// this intrinsic is implemented as follows:
// result = floor(in);
// if (in - result >= 0.5f)
// result = result + 1.0f;
__ movss(t2, in);
__ roundss(t1, in, Immediate(1));
__ subss(t2, t1);
__ comiss(t2, codegen_->LiteralFloatAddress(0.5f));
__ j(kBelow, &skip_incr);
__ addss(t1, codegen_->LiteralFloatAddress(1.0f));
__ Bind(&skip_incr);
// Final conversion to an integer. Unfortunately this also does not have a
// direct x86 instruction, since NaN should map to 0 and large positive
// values need to be clipped to the extreme value.
codegen_->Load32BitValue(out, kPrimIntMax);
__ cvtsi2ss(t2, out);
__ comiss(t1, t2);
__ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
__ movl(out, Immediate(0)); // does not change flags
__ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
__ cvttss2si(out, t1);
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) {
CreateSSE41FPToIntLocations(allocator_, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) {
LocationSummary* locations = invoke->GetLocations();
if (locations->WillCall()) {
InvokeOutOfLineIntrinsic(codegen_, invoke);
return;
}
XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
NearLabel skip_incr, done;
X86_64Assembler* assembler = GetAssembler();
// Since no direct x86 rounding instruction matches the required semantics,
// this intrinsic is implemented as follows:
// result = floor(in);
// if (in - result >= 0.5)
// result = result + 1.0f;
__ movsd(t2, in);
__ roundsd(t1, in, Immediate(1));
__ subsd(t2, t1);
__ comisd(t2, codegen_->LiteralDoubleAddress(0.5));
__ j(kBelow, &skip_incr);
__ addsd(t1, codegen_->LiteralDoubleAddress(1.0f));
__ Bind(&skip_incr);
// Final conversion to an integer. Unfortunately this also does not have a
// direct x86 instruction, since NaN should map to 0 and large positive
// values need to be clipped to the extreme value.
codegen_->Load64BitValue(out, kPrimLongMax);
__ cvtsi2sd(t2, out, /* is64bit */ true);
__ comisd(t1, t2);
__ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered
__ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit
__ j(kUnordered, &done); // NaN mapped to 0 (just moved in out)
__ cvttsd2si(out, t1, /* is64bit */ true);
__ Bind(&done);
}
static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
// We have to ensure that the native code doesn't clobber the XMM registers which are
// non-volatile for ART, but volatile for Native calls. This will ensure that they are
// saved in the prologue and properly restored.
for (FloatRegister fp_reg : non_volatile_xmm_regs) {
locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
}
}
static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen,
QuickEntrypointEnum entry) {
LocationSummary* locations = invoke->GetLocations();
DCHECK(locations->WillCall());
DCHECK(invoke->IsInvokeStaticOrDirect());
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
}
void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCos);
}
void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSin);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAcos);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAsin);
}
void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan);
}
void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
}
void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickCosh);
}
void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExp);
}
void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
}
void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog);
}
void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickLog10);
}
void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickSinh);
}
void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTan);
}
void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) {
CreateFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickTanh);
}
static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(Location::FpuRegisterLocation(XMM0));
// We have to ensure that the native code doesn't clobber the XMM registers which are
// non-volatile for ART, but volatile for Native calls. This will ensure that they are
// saved in the prologue and properly restored.
for (FloatRegister fp_reg : non_volatile_xmm_regs) {
locations->AddTemp(Location::FpuRegisterLocation(fp_reg));
}
}
void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickAtan2);
}
void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickHypot);
}
void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) {
CreateFPFPToFPCallLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) {
GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
}
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
// Check to see if we have known failures that will cause us to have to bail out
// to the runtime, and just generate the runtime call directly.
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
// The positions must be non-negative.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// The length must be > 0.
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0) {
// Just call as normal.
return;
}
}
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
// arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
locations->AddTemp(Location::RegisterLocation(RSI));
locations->AddTemp(Location::RegisterLocation(RDI));
locations->AddTemp(Location::RegisterLocation(RCX));
}
static void CheckPosition(X86_64Assembler* assembler,
Location pos,
CpuRegister input,
Location length,
SlowPathCode* slow_path,
CpuRegister temp,
bool length_is_input_length = false) {
// Where is the length in the Array?
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
if (pos.IsConstant()) {
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
if (pos_const == 0) {
if (!length_is_input_length) {
// Check that length(input) >= length.
if (length.IsConstant()) {
__ cmpl(Address(input, length_offset),
Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
} else {
// Check that length(input) >= pos.
__ movl(temp, Address(input, length_offset));
__ subl(temp, Immediate(pos_const));
__ j(kLess, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= length.
if (length.IsConstant()) {
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(temp, length.AsRegister<CpuRegister>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
} else if (length_is_input_length) {
// The only way the copy can succeed is if pos is zero.
CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
__ testl(pos_reg, pos_reg);
__ j(kNotEqual, slow_path->GetEntryLabel());
} else {
// Check that pos >= 0.
CpuRegister pos_reg = pos.AsRegister<CpuRegister>();
__ testl(pos_reg, pos_reg);
__ j(kLess, slow_path->GetEntryLabel());
// Check that pos <= length(input).
__ cmpl(Address(input, length_offset), pos_reg);
__ j(kLess, slow_path->GetEntryLabel());
// Check that (length(input) - pos) >= length.
__ movl(temp, Address(input, length_offset));
__ subl(temp, pos_reg);
if (length.IsConstant()) {
__ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ cmpl(temp, length.AsRegister<CpuRegister>());
}
__ j(kLess, slow_path->GetEntryLabel());
}
}
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
Location src_pos = locations->InAt(1);
CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
// Temporaries that we need for MOVSW.
CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>();
DCHECK_EQ(src_base.AsRegister(), RSI);
CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>();
DCHECK_EQ(dest_base.AsRegister(), RDI);
CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>();
DCHECK_EQ(count.AsRegister(), RCX);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
// Bail out if the source and destination are the same.
__ cmpl(src, dest);
__ j(kEqual, slow_path->GetEntryLabel());
// Bail out if the source is null.
__ testl(src, src);
__ j(kEqual, slow_path->GetEntryLabel());
// Bail out if the destination is null.
__ testl(dest, dest);
__ j(kEqual, slow_path->GetEntryLabel());
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant()) {
__ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
__ j(kLess, slow_path->GetEntryLabel());
}
// Validity checks: source. Use src_base as a temporary register.
CheckPosition(assembler, src_pos, src, length, slow_path, src_base);
// Validity checks: dest. Use src_base as a temporary register.
CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base);
// We need the count in RCX.
if (length.IsConstant()) {
__ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue()));
} else {
__ movl(count, length.AsRegister<CpuRegister>());
}
// Okay, everything checks out. Finally time to do the copy.
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
if (src_pos.IsConstant()) {
int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(src_base, Address(src, char_size * src_pos_const + data_offset));
} else {
__ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(),
ScaleFactor::TIMES_2, data_offset));
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset));
} else {
__ leal(dest_base, Address(dest, dest_pos.AsRegister<CpuRegister>(),
ScaleFactor::TIMES_2, data_offset));
}
// Do the move.
__ rep_movsw();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke);
}
// Compute base source address, base destination address, and end
// source address for the System.arraycopy intrinsic in `src_base`,
// `dst_base` and `src_end` respectively.
static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler,
DataType::Type type,
const CpuRegister& src,
const Location& src_pos,
const CpuRegister& dst,
const Location& dst_pos,
const Location& copy_length,
const CpuRegister& src_base,
const CpuRegister& dst_base,
const CpuRegister& src_end) {
// This routine is only used by the SystemArrayCopy intrinsic.
DCHECK_EQ(type, DataType::Type::kReference);
const int32_t element_size = DataType::Size(type);
const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type));
const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
if (src_pos.IsConstant()) {
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(src_base, Address(src, element_size * constant + data_offset));
} else {
__ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
}
if (dst_pos.IsConstant()) {
int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue();
__ leal(dst_base, Address(dst, element_size * constant + data_offset));
} else {
__ leal(dst_base, Address(dst, dst_pos.AsRegister<CpuRegister>(), scale_factor, data_offset));
}
if (copy_length.IsConstant()) {
int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue();
__ leal(src_end, Address(src_base, element_size * constant));
} else {
__ leal(src_end, Address(src_base, copy_length.AsRegister<CpuRegister>(), scale_factor, 0));
}
}
void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) {
// The only read barrier implementation supporting the
// SystemArrayCopy intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>();
Location src_pos = locations->InAt(1);
CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>();
Location dest_pos = locations->InAt(3);
Location length = locations->InAt(4);
Location temp1_loc = locations->GetTemp(0);
CpuRegister temp1 = temp1_loc.AsRegister<CpuRegister>();
Location temp2_loc = locations->GetTemp(1);
CpuRegister temp2 = temp2_loc.AsRegister<CpuRegister>();
Location temp3_loc = locations->GetTemp(2);
CpuRegister temp3 = temp3_loc.AsRegister<CpuRegister>();
Location TMP_loc = Location::RegisterLocation(TMP);
SlowPathCode* intrinsic_slow_path =
new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(intrinsic_slow_path);
NearLabel conditions_on_positions_validated;
SystemArrayCopyOptimizations optimizations(invoke);
// If source and destination are the same, we go to slow path if we need to do
// forward copying.
if (src_pos.IsConstant()) {
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
if (optimizations.GetDestinationIsSource()) {
// Checked when building locations.
DCHECK_GE(src_pos_constant, dest_pos_constant);
} else if (src_pos_constant < dest_pos_constant) {
__ cmpl(src, dest);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmpl(src, dest);
__ j(kNotEqual, &conditions_on_positions_validated);
}
__ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant));
__ j(kGreater, intrinsic_slow_path->GetEntryLabel());
}
} else {
if (!optimizations.GetDestinationIsSource()) {
__ cmpl(src, dest);
__ j(kNotEqual, &conditions_on_positions_validated);
}
if (dest_pos.IsConstant()) {
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
__ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant));
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
} else {
__ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>());
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
}
}
__ Bind(&conditions_on_positions_validated);
if (!optimizations.GetSourceIsNotNull()) {
// Bail out if the source is null.
__ testl(src, src);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
// Bail out if the destination is null.
__ testl(dest, dest);
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
}
// If the length is negative, bail out.
// We have already checked in the LocationsBuilder for the constant case.
if (!length.IsConstant() &&
!optimizations.GetCountIsSourceLength() &&
!optimizations.GetCountIsDestinationLength()) {
__ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>());
__ j(kLess, intrinsic_slow_path->GetEntryLabel());
}
// Validity checks: source.
CheckPosition(assembler,
src_pos,
src,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsSourceLength());
// Validity checks: dest.
CheckPosition(assembler,
dest_pos,
dest,
length,
intrinsic_slow_path,
temp1,
optimizations.GetCountIsDestinationLength());
if (!optimizations.GetDoesNotNeedTypeCheck()) {
// Check whether all elements of the source array are assignable to the component
// type of the destination array. We do two checks: the classes are the same,
// or the destination is Object[]. If none of these checks succeed, we go to the
// slow path.
bool did_unpoison = false;
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = dest->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, dest, class_offset, /* needs_null_check */ false);
// Register `temp1` is not trashed by the read barrier emitted
// by GenerateFieldLoadWithBakerReadBarrier below, as that
// method produces a call to a ReadBarrierMarkRegX entry point,
// which saves all potentially live registers, including
// temporaries such a `temp1`.
// /* HeapReference<Class> */ temp2 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp2_loc, src, class_offset, /* needs_null_check */ false);
// If heap poisoning is enabled, `temp1` and `temp2` have been
// unpoisoned by the the previous calls to
// GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ temp1 = dest->klass_
__ movl(temp1, Address(dest, class_offset));
// /* HeapReference<Class> */ temp2 = src->klass_
__ movl(temp2, Address(src, class_offset));
if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
!optimizations.GetSourceIsNonPrimitiveArray()) {
// One or two of the references need to be unpoisoned. Unpoison them
// both to make the identity check valid.
__ MaybeUnpoisonHeapReference(temp1);
__ MaybeUnpoisonHeapReference(temp2);
did_unpoison = true;
}
}
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
// Bail out if the destination is not a non primitive array.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ TMP = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, TMP_loc, temp1, component_offset, /* needs_null_check */ false);
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `TMP` has been unpoisoned by
// the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ TMP = temp1->component_type_
__ movl(CpuRegister(TMP), Address(temp1, component_offset));
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
}
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
// Bail out if the source is not a non primitive array.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// For the same reason given earlier, `temp1` is not trashed by the
// read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
// /* HeapReference<Class> */ TMP = temp2->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, TMP_loc, temp2, component_offset, /* needs_null_check */ false);
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
// If heap poisoning is enabled, `TMP` has been unpoisoned by
// the the previous call to GenerateFieldLoadWithBakerReadBarrier.
} else {
// /* HeapReference<Class> */ TMP = temp2->component_type_
__ movl(CpuRegister(TMP), Address(temp2, component_offset));
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
}
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
__ cmpl(temp1, temp2);
if (optimizations.GetDestinationIsTypedObjectArray()) {
NearLabel do_copy;
__ j(kEqual, &do_copy);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, temp1, component_offset, /* needs_null_check */ false);
// We do not need to emit a read barrier for the following
// heap reference load, as `temp1` is only used in a
// comparison with null below, and this reference is not
// kept afterwards.
__ cmpl(Address(temp1, super_offset), Immediate(0));
} else {
if (!did_unpoison) {
__ MaybeUnpoisonHeapReference(temp1);
}
// /* HeapReference<Class> */ temp1 = temp1->component_type_
__ movl(temp1, Address(temp1, component_offset));
__ MaybeUnpoisonHeapReference(temp1);
// No need to unpoison the following heap reference load, as
// we're comparing against null.
__ cmpl(Address(temp1, super_offset), Immediate(0));
}
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
__ Bind(&do_copy);
} else {
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
// Bail out if the source is not a non primitive array.
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// /* HeapReference<Class> */ temp1 = src->klass_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, temp1_loc, src, class_offset, /* needs_null_check */ false);
// /* HeapReference<Class> */ TMP = temp1->component_type_
codegen_->GenerateFieldLoadWithBakerReadBarrier(
invoke, TMP_loc, temp1, component_offset, /* needs_null_check */ false);
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
} else {
// /* HeapReference<Class> */ temp1 = src->klass_
__ movl(temp1, Address(src, class_offset));
__ MaybeUnpoisonHeapReference(temp1);
// /* HeapReference<Class> */ TMP = temp1->component_type_
__ movl(CpuRegister(TMP), Address(temp1, component_offset));
// No need to unpoison `TMP` now, as we're comparing against null.
__ testl(CpuRegister(TMP), CpuRegister(TMP));
__ j(kEqual, intrinsic_slow_path->GetEntryLabel());
__ MaybeUnpoisonHeapReference(CpuRegister(TMP));
}
__ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot));
__ j(kNotEqual, intrinsic_slow_path->GetEntryLabel());
}
const DataType::Type type = DataType::Type::kReference;
const int32_t element_size = DataType::Size(type);
// Compute base source address, base destination address, and end
// source address in `temp1`, `temp2` and `temp3` respectively.
GenSystemArrayCopyAddresses(
GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// SystemArrayCopy implementation for Baker read barriers (see
// also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier):
//
// if (src_ptr != end_ptr) {
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
// bool is_gray = (rb_state == ReadBarrier::GrayState());
// if (is_gray) {
// // Slow-path copy.
// do {
// *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
// } while (src_ptr != end_ptr)
// } else {
// // Fast-path copy.
// do {
// *dest_ptr++ = *src_ptr++;
// } while (src_ptr != end_ptr)
// }
// }
NearLabel loop, done;
// Don't enter copy loop if `length == 0`.
__ cmpl(temp1, temp3);
__ j(kEqual, &done);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte;
constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte;
constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position);
// if (rb_state == ReadBarrier::GrayState())
// goto slow_path;
// At this point, just do the "if" and make sure that flags are preserved until the branch.
__ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value));
// Load fence to prevent load-load reordering.
// Note that this is a no-op, thanks to the x86-64 memory model.
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
// Slow path used to copy array when `src` is gray.
SlowPathCode* read_barrier_slow_path =
new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke);
codegen_->AddSlowPath(read_barrier_slow_path);
// We have done the "if" of the gray bit check above, now branch based on the flags.
__ j(kNotZero, read_barrier_slow_path->GetEntryLabel());
// Fast-path copy.
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
__ Bind(&loop);
__ movl(CpuRegister(TMP), Address(temp1, 0));
__ movl(Address(temp2, 0), CpuRegister(TMP));
__ addl(temp1, Immediate(element_size));
__ addl(temp2, Immediate(element_size));
__ cmpl(temp1, temp3);
__ j(kNotEqual, &loop);
__ Bind(read_barrier_slow_path->GetExitLabel());
__ Bind(&done);
} else {
// Non read barrier code.
// Iterate over the arrays and do a raw copy of the objects. We don't need to
// poison/unpoison.
NearLabel loop, done;
__ cmpl(temp1, temp3);
__ j(kEqual, &done);
__ Bind(&loop);
__ movl(CpuRegister(TMP), Address(temp1, 0));
__ movl(Address(temp2, 0), CpuRegister(TMP));
__ addl(temp1, Immediate(element_size));
__ addl(temp2, Immediate(element_size));
__ cmpl(temp1, temp3);
__ j(kNotEqual, &loop);
__ Bind(&done);
}
// We only need one card marking on the destination array.
codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* value_can_be_null */ false);
__ Bind(intrinsic_slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>();
__ testl(argument, argument);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) {
if (kEmitCompilerReadBarrier &&
!StringEqualsOptimizations(invoke).GetArgumentIsString() &&
!StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) {
// No support for this odd case (String class is moveable, not in the boot image).
return;
}
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Request temporary registers, RCX and RDI needed for repe_cmpsq instruction.
locations->AddTemp(Location::RegisterLocation(RCX));
locations->AddTemp(Location::RegisterLocation(RDI));
// Set output, RSI needed for repe_cmpsq instruction anyways.
locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap);
}
void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>();
CpuRegister rsi = locations->Out().AsRegister<CpuRegister>();
NearLabel end, return_true, return_false;
// Get offsets of count, value, and class fields within a string object.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
StringEqualsOptimizations optimizations(invoke);
if (!optimizations.GetArgumentNotNull()) {
// Check if input is null, return false if it is.
__ testl(arg, arg);
__ j(kEqual, &return_false);
}
if (!optimizations.GetArgumentIsString()) {
// Instanceof check for the argument by comparing class fields.
// All string objects must have the same type since String cannot be subclassed.
// Receiver must be a string object, so its class field is equal to all strings' class fields.
// If the argument is a string object, its class field must be equal to receiver's class field.
__ movl(rcx, Address(str, class_offset));
__ cmpl(rcx, Address(arg, class_offset));
__ j(kNotEqual, &return_false);
}
// Reference equality check, return true if same reference.
__ cmpl(str, arg);
__ j(kEqual, &return_true);
// Load length and compression flag of receiver string.
__ movl(rcx, Address(str, count_offset));
// Check if lengths and compressiond flags are equal, return false if they're not.
// Two identical strings will always have same compression style since
// compression style is decided on alloc.
__ cmpl(rcx, Address(arg, count_offset));
__ j(kNotEqual, &return_false);
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ jrcxz(&return_true);
if (mirror::kUseStringCompression) {
NearLabel string_uncompressed;
// Extract length and differentiate between both compressed or both uncompressed.
// Different compression style is cut above.
__ shrl(rcx, Immediate(1));
__ j(kCarrySet, &string_uncompressed);
// Divide string length by 2, rounding up, and continue as if uncompressed.
// Merge clearing the compression flag with +1 for rounding.
__ addl(rcx, Immediate(1));
__ shrl(rcx, Immediate(1));
__ Bind(&string_uncompressed);
}
// Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction.
__ leal(rsi, Address(str, value_offset));
__ leal(rdi, Address(arg, value_offset));
// Divide string length by 4 and adjust for lengths not divisible by 4.
__ addl(rcx, Immediate(3));
__ shrl(rcx, Immediate(2));
// Assertions that must hold in order to compare strings 4 characters (uncompressed)
// or 8 characters (compressed) at a time.
DCHECK_ALIGNED(value_offset, 8);
static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded");
// Loop to compare strings four characters at a time starting at the beginning of the string.
__ repe_cmpsq();
// If strings are not equal, zero flag will be cleared.
__ j(kNotEqual, &return_false);
// Return true and exit the function.
// If loop does not result in returning false, we return true.
__ Bind(&return_true);
__ movl(rsi, Immediate(1));
__ jmp(&end);
// Return false and exit the function.
__ Bind(&return_false);
__ xorl(rsi, rsi);
__ Bind(&end);
}
static void CreateStringIndexOfLocations(HInvoke* invoke,
ArenaAllocator* allocator,
bool start_at_zero) {
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
// The data needs to be in RDI for scasw. So request that the string is there, anyways.
locations->SetInAt(0, Location::RegisterLocation(RDI));
// If we look for a constant char, we'll still have to copy it into RAX. So just request the
// allocator to do that, anyways. We can still do the constant check by checking the parameter
// of the instruction explicitly.
// Note: This works as we don't clobber RAX anywhere.
locations->SetInAt(1, Location::RegisterLocation(RAX));
if (!start_at_zero) {
locations->SetInAt(2, Location::RequiresRegister()); // The starting index.
}
// As we clobber RDI during execution anyways, also use it as the output.
locations->SetOut(Location::SameAsFirstInput());
// repne scasw uses RCX as the counter.
locations->AddTemp(Location::RegisterLocation(RCX));
// Need another temporary to be able to compute the result.
locations->AddTemp(Location::RequiresRegister());
}
static void GenerateStringIndexOf(HInvoke* invoke,
X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
bool start_at_zero) {
LocationSummary* locations = invoke->GetLocations();
// Note that the null check must have been done earlier.
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
// Check our assumptions for registers.
DCHECK_EQ(string_obj.AsRegister(), RDI);
DCHECK_EQ(search_value.AsRegister(), RAX);
DCHECK_EQ(counter.AsRegister(), RCX);
DCHECK_EQ(out.AsRegister(), RDI);
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
SlowPathCode* slow_path = nullptr;
HInstruction* code_point = invoke->InputAt(1);
if (code_point->IsIntConstant()) {
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) >
std::numeric_limits<uint16_t>::max()) {
// Always needs the slow-path. We could directly dispatch to it, but this case should be
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
__ jmp(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
return;
}
} else if (code_point->GetType() != DataType::Type::kUint16) {
__ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max()));
slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen->AddSlowPath(slow_path);
__ j(kAbove, slow_path->GetEntryLabel());
}
// From here down, we know that we are looking for a char that fits in
// 16 bits (uncompressed) or 8 bits (compressed).
// Location of reference to data array within the String object.
int32_t value_offset = mirror::String::ValueOffset().Int32Value();
// Location of count within the String object.
int32_t count_offset = mirror::String::CountOffset().Int32Value();
// Load the count field of the string containing the length and compression flag.
__ movl(string_length, Address(string_obj, count_offset));
// Do a zero-length check. Even with string compression `count == 0` means empty.
// TODO: Support jecxz.
NearLabel not_found_label;
__ testl(string_length, string_length);
__ j(kEqual, &not_found_label);
if (mirror::kUseStringCompression) {
// Use TMP to keep string_length_flagged.
__ movl(CpuRegister(TMP), string_length);
// Mask out first bit used as compression flag.
__ shrl(string_length, Immediate(1));
}
if (start_at_zero) {
// Number of chars to scan is the same as the string length.
__ movl(counter, string_length);
// Move to the start of the string.
__ addq(string_obj, Immediate(value_offset));
} else {
CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>();
// Do a start_index check.
__ cmpl(start_index, string_length);
__ j(kGreaterEqual, &not_found_label);
// Ensure we have a start index >= 0;
__ xorl(counter, counter);
__ cmpl(start_index, Immediate(0));
__ cmov(kGreater, counter, start_index, /* is64bit */ false); // 32-bit copy is enough.
if (mirror::kUseStringCompression) {
NearLabel modify_counter, offset_uncompressed_label;
__ testl(CpuRegister(TMP), Immediate(1));
__ j(kNotZero, &offset_uncompressed_label);
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset));
__ jmp(&modify_counter);
// Move to the start of the string: string_obj + value_offset + 2 * start_index.
__ Bind(&offset_uncompressed_label);
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
__ Bind(&modify_counter);
} else {
__ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset));
}
// Now update ecx, the work counter: it's gonna be string.length - start_index.
__ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit.
__ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0));
}
if (mirror::kUseStringCompression) {
NearLabel uncompressed_string_comparison;
NearLabel comparison_done;
__ testl(CpuRegister(TMP), Immediate(1));
__ j(kNotZero, &uncompressed_string_comparison);
// Check if RAX (search_value) is ASCII.
__ cmpl(search_value, Immediate(127));
__ j(kGreater, &not_found_label);
// Comparing byte-per-byte.
__ repne_scasb();
__ jmp(&comparison_done);
// Everything is set up for repne scasw:
// * Comparison address in RDI.
// * Counter in ECX.
__ Bind(&uncompressed_string_comparison);
__ repne_scasw();
__ Bind(&comparison_done);
} else {
__ repne_scasw();
}
// Did we find a match?
__ j(kNotEqual, &not_found_label);
// Yes, we matched. Compute the index of the result.
__ subl(string_length, counter);
__ leal(out, Address(string_length, -1));
NearLabel done;
__ jmp(&done);
// Failed to match; return -1.
__ Bind(&not_found_label);
__ movl(out, Immediate(-1));
// And join up at the end.
__ Bind(&done);
if (slow_path != nullptr) {
__ Bind(slow_path->GetExitLabel());
}
}
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ true);
}
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ true);
}
void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ false);
}
void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) {
GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>();
__ testl(byte_array, byte_array);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) {
// No need to emit code checking whether `locations->InAt(2)` is a null
// pointer, as callers of the native method
//
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
//
// all include a null check on `data` before calling that method.
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
}
void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
LocationSummary* locations = new (allocator_) LocationSummary(
invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetOut(Location::RegisterLocation(RAX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>();
__ testl(string_to_copy, string_to_copy);
SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke);
codegen_->AddSlowPath(slow_path);
__ j(kEqual, slow_path->GetEntryLabel());
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
__ Bind(slow_path->GetExitLabel());
}
void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
locations->SetInAt(4, Location::RequiresRegister());
// And we need some temporaries. We will use REP MOVSW, so we need fixed registers.
locations->AddTemp(Location::RegisterLocation(RSI));
locations->AddTemp(Location::RegisterLocation(RDI));
locations->AddTemp(Location::RegisterLocation(RCX));
}
void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
size_t char_component_size = DataType::Size(DataType::Type::kUint16);
// Location of data in char array buffer.
const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value();
// Location of char array data in string.
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
// public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin);
CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>();
Location srcBegin = locations->InAt(1);
int srcBegin_value =
srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0;
CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>();
CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>();
// Check assumption that sizeof(Char) is 2 (used in scaling below).
const size_t char_size = DataType::Size(DataType::Type::kUint16);
DCHECK_EQ(char_size, 2u);
NearLabel done;
// Compute the number of chars (words) to move.
__ movl(CpuRegister(RCX), srcEnd);
if (srcBegin.IsConstant()) {
__ subl(CpuRegister(RCX), Immediate(srcBegin_value));
} else {
DCHECK(srcBegin.IsRegister());
__ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>());
}
if (mirror::kUseStringCompression) {
NearLabel copy_uncompressed, copy_loop;
const size_t c_char_size = DataType::Size(DataType::Type::kInt8);
DCHECK_EQ(c_char_size, 1u);
// Location of count in string.
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
__ testl(Address(obj, count_offset), Immediate(1));
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
__ j(kNotZero, &copy_uncompressed);
// Compute the address of the source string by adding the number of chars from
// the source beginning to the value offset of a string.
__ leaq(CpuRegister(RSI),
CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset));
// Start the loop to copy String's value to Array of Char.
__ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
__ Bind(&copy_loop);
__ jrcxz(&done);
// Use TMP as temporary (convert byte from RSI to word).
// TODO: Selecting RAX as the temporary and using LODSB/STOSW.
__ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0));
__ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP));
__ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size));
__ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size));
// TODO: Add support for LOOP to X86_64Assembler.
__ subl(CpuRegister(RCX), Immediate(1));
__ jmp(&copy_loop);
__ Bind(&copy_uncompressed);
}
__ leaq(CpuRegister(RSI),
CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset));
// Compute the address of the destination buffer.
__ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset));
// Do the move.
__ rep_movsw();
__ Bind(&done);
}
static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity.
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case DataType::Type::kInt8:
__ movsxb(out, Address(address, 0));
break;
case DataType::Type::kInt16:
__ movsxw(out, Address(address, 0));
break;
case DataType::Type::kInt32:
__ movl(out, Address(address, 0));
break;
case DataType::Type::kInt64:
__ movq(out, Address(address, 0));
break;
default:
LOG(FATAL) << "Type not recognized for peek: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
CreateIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) {
GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1)));
}
static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) {
CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>();
Location value = locations->InAt(1);
// x86 allows unaligned access. We do not have to check the input or use specific instructions
// to avoid a SIGBUS.
switch (size) {
case DataType::Type::kInt8:
if (value.IsConstant()) {
__ movb(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movb(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case DataType::Type::kInt16:
if (value.IsConstant()) {
__ movw(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movw(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case DataType::Type::kInt32:
if (value.IsConstant()) {
__ movl(Address(address, 0),
Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant())));
} else {
__ movl(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
case DataType::Type::kInt64:
if (value.IsConstant()) {
int64_t v = value.GetConstant()->AsLongConstant()->GetValue();
DCHECK(IsInt<32>(v));
int32_t v_32 = v;
__ movq(Address(address, 0), Immediate(v_32));
} else {
__ movq(Address(address, 0), value.AsRegister<CpuRegister>());
}
break;
default:
LOG(FATAL) << "Type not recognized for poke: " << size;
UNREACHABLE();
}
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
CreateIntIntToVoidLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) {
GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler());
}
void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) {
CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64PointerSize>(),
/* no_rip */ true));
}
static void GenUnsafeGet(HInvoke* invoke,
DataType::Type type,
bool is_volatile ATTRIBUTE_UNUSED,
CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
Location base_loc = locations->InAt(1);
CpuRegister base = base_loc.AsRegister<CpuRegister>();
Location offset_loc = locations->InAt(2);
CpuRegister offset = offset_loc.AsRegister<CpuRegister>();
Location output_loc = locations->Out();
CpuRegister output = output_loc.AsRegister<CpuRegister>();
switch (type) {
case DataType::Type::kInt32:
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
case DataType::Type::kReference: {
if (kEmitCompilerReadBarrier) {
if (kUseBakerReadBarrier) {
Address src(base, offset, ScaleFactor::TIMES_1, 0);
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke, output_loc, base, src, /* needs_null_check */ false);
} else {
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
codegen->GenerateReadBarrierSlow(
invoke, output_loc, output_loc, base_loc, 0U, offset_loc);
}
} else {
__ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
__ MaybeUnpoisonHeapReference(output);
}
break;
}
case DataType::Type::kInt64:
__ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0));
break;
default:
LOG(FATAL) << "Unsupported op size " << type;
UNREACHABLE();
}
}
static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) {
bool can_call = kEmitCompilerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
if (can_call && kUseBakerReadBarrier) {
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
}
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(),
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
CreateIntIntIntToIntLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, codegen_);
}
static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator,
DataType::Type type,
HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RequiresRegister());
if (type == DataType::Type::kReference) {
// Need temp registers for card-marking.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke);
}
// We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86
// memory model.
static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile,
CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>();
if (type == DataType::Type::kInt64) {
__ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
} else if (kPoisonHeapReferences && type == DataType::Type::kReference) {
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
__ movl(temp, value);
__ PoisonHeapReference(temp);
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp);
} else {
__ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value);
}
if (is_volatile) {
codegen->MemoryFence();
}
if (type == DataType::Type::kReference) {
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(),
locations->GetTemp(1).AsRegister<CpuRegister>(),
base,
value,
value_can_be_null);
}
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
GenUnsafePut(
invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ true, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ true, codegen_);
}
static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator,
DataType::Type type,
HInvoke* invoke) {
bool can_call = kEmitCompilerReadBarrier &&
kUseBakerReadBarrier &&
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
LocationSummary* locations =
new (allocator) LocationSummary(invoke,
can_call
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall,
kIntrinsified);
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
locations->SetInAt(1, Location::RequiresRegister());
locations->SetInAt(2, Location::RequiresRegister());
// expected value must be in EAX/RAX.
locations->SetInAt(3, Location::RegisterLocation(RAX));
locations->SetInAt(4, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
if (type == DataType::Type::kReference) {
// Need temporary registers for card-marking, and possibly for
// (Baker) read barrier.
locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too.
locations->AddTemp(Location::RequiresRegister());
}
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke);
}
void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
return;
}
CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke);
}
static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) {
X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler());
LocationSummary* locations = invoke->GetLocations();
CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>();
CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>();
CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>();
// Ensure `expected` is in RAX (required by the CMPXCHG instruction).
DCHECK_EQ(expected.AsRegister(), RAX);
CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>();
Location out_loc = locations->Out();
CpuRegister out = out_loc.AsRegister<CpuRegister>();
if (type == DataType::Type::kReference) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
// Mark card for object assuming new value is stored.
bool value_can_be_null = true; // TODO: Worth finding out this information?
codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null);
// The address of the field within the holding object.
Address field_addr(base, offset, ScaleFactor::TIMES_1, 0);
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
// Need to make sure the reference stored in the field is a to-space
// one before attempting the CAS or the CAS could fail incorrectly.
codegen->GenerateReferenceLoadWithBakerReadBarrier(
invoke,
out_loc, // Unused, used only as a "temporary" within the read barrier.
base,
field_addr,
/* needs_null_check */ false,
/* always_update_field */ true,
&temp1,
&temp2);
}
bool base_equals_value = (base.AsRegister() == value.AsRegister());
Register value_reg = value.AsRegister();
if (kPoisonHeapReferences) {
if (base_equals_value) {
// If `base` and `value` are the same register location, move
// `value_reg` to a temporary register. This way, poisoning
// `value_reg` won't invalidate `base`.
value_reg = temp1.AsRegister();
__ movl(CpuRegister(value_reg), base);
}
// Check that the register allocator did not assign the location
// of `expected` (RAX) to `value` nor to `base`, so that heap
// poisoning (when enabled) works as intended below.
// - If `value` were equal to `expected`, both references would
// be poisoned twice, meaning they would not be poisoned at
// all, as heap poisoning uses address negation.
// - If `base` were equal to `expected`, poisoning `expected`
// would invalidate `base`.
DCHECK_NE(value_reg, expected.AsRegister());
DCHECK_NE(base.AsRegister(), expected.AsRegister());
__ PoisonHeapReference(expected);
__ PoisonHeapReference(CpuRegister(value_reg));
}
__ LockCmpxchgl(field_addr, CpuRegister(value_reg));
// LOCK CMPXCHG has full barrier semantics, and we don't need
// scheduling barriers at this time.
// Convert ZF into the Boolean result.
__ setcc(kZero, out);
__ movzxb(out, out);
// If heap poisoning is enabled, we need to unpoison the values
// that were poisoned earlier.
if (kPoisonHeapReferences) {
if (base_equals_value) {
// `value_reg` has been moved to a temporary register, no need
// to unpoison it.
} else {
// Ensure `value` is different from `out`, so that unpoisoning
// the former does not invalidate the latter.
DCHECK_NE(value_reg, out.AsRegister());
__ UnpoisonHeapReference(CpuRegister(value_reg));
}
// Ensure `expected` is different from `out`, so that unpoisoning
// the former does not invalidate the latter.
DCHECK_NE(expected.AsRegister(), out.AsRegister());
__ UnpoisonHeapReference(expected);
}
} else {
if (type == DataType::Type::kInt32) {
__ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value);
} else if (type == DataType::Type::kInt64) {
__ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value);
} else {
LOG(FATAL) << "Unexpected CAS type " << type;
}
// LOCK CMPXCHG has full barrier semantics, and we don't need
// scheduling barriers at this time.
// Convert ZF into the Boolean result.
__ setcc(kZero, out);
__ movzxb(out, out);
}
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) {
GenCAS(DataType::Type::kInt32, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) {
GenCAS(DataType::Type::kInt64, invoke, codegen_);
}
void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) {
// The only read barrier implementation supporting the
// UnsafeCASObject intrinsic is the Baker-style read barriers.
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
GenCAS(DataType::Type::kReference, invoke, codegen_);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
}
static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask,
X86_64Assembler* assembler) {
Immediate imm_shift(shift);
Immediate imm_mask(mask);
__ movl(temp, reg);
__ shrl(reg, imm_shift);
__ andl(temp, imm_mask);
__ andl(reg, imm_mask);
__ shll(temp, imm_shift);
__ orl(reg, temp);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>();
/*
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
* swapping bits to reverse bits in a number x. Using bswap to save instructions
* compared to generic luni implementation which has 5 rounds of swapping bits.
* x = bswap x
* x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555;
* x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333;
* x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F;
*/
__ bswapl(reg);
SwapBits(reg, temp, 1, 0x55555555, assembler);
SwapBits(reg, temp, 2, 0x33333333, assembler);
SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler);
}
void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::SameAsFirstInput());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask,
int32_t shift, int64_t mask, X86_64Assembler* assembler) {
Immediate imm_shift(shift);
__ movq(temp_mask, Immediate(mask));
__ movq(temp, reg);
__ shrq(reg, imm_shift);
__ andq(temp, temp_mask);
__ andq(reg, temp_mask);
__ shlq(temp, imm_shift);
__ orq(reg, temp);
}
void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
LocationSummary* locations = invoke->GetLocations();
CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>();
CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>();
CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>();
/*
* Use one bswap instruction to reverse byte order first and then use 3 rounds of
* swapping bits to reverse bits in a long number x. Using bswap to save instructions
* compared to generic luni implementation which has 5 rounds of swapping bits.
* x = bswap x
* x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555;
* x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333;
* x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F;
*/
__ bswapq(reg);
SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler);
SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler);
SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler);
}
static void CreateBitCountLocations(
ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) {
if (!codegen->GetInstructionSetFeatures().HasPopCnt()) {
// Do nothing if there is no popcnt support. This results in generating
// a call for the intrinsic rather than direct code.
return;
}
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
static void GenBitCount(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke,
bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
int32_t result = is_long
? POPCOUNT(static_cast<uint64_t>(value))
: POPCOUNT(static_cast<uint32_t>(value));
codegen->Load32BitValue(out, result);
return;
}
if (src.IsRegister()) {
if (is_long) {
__ popcntq(out, src.AsRegister<CpuRegister>());
} else {
__ popcntl(out, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
}
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) {
CreateBitCountLocations(allocator_, codegen_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) {
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) {
CreateBitCountLocations(allocator_, codegen_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) {
GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true);
}
static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL
: Location::RequiresRegister()); // any will do
}
static void GenOneBit(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke,
bool is_high, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
__ xorl(out, out); // Clears upper bits too.
return;
}
// Nonzero value.
if (is_high) {
value = is_long ? 63 - CLZ(static_cast<uint64_t>(value))
: 31 - CLZ(static_cast<uint32_t>(value));
} else {
value = is_long ? CTZ(static_cast<uint64_t>(value))
: CTZ(static_cast<uint32_t>(value));
}
if (is_long) {
codegen->Load64BitValue(out, 1ULL << value);
} else {
codegen->Load32BitValue(out, 1 << value);
}
return;
}
// Handle the non-constant cases.
CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>();
if (is_high) {
// Use architectural support: basically 1 << bsr.
if (src.IsRegister()) {
if (is_long) {
__ bsrq(tmp, src.AsRegister<CpuRegister>());
} else {
__ bsrl(tmp, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// BSR sets ZF if the input was zero.
NearLabel is_zero, done;
__ j(kEqual, &is_zero);
__ movl(out, Immediate(1)); // Clears upper bits too.
if (is_long) {
__ shlq(out, tmp);
} else {
__ shll(out, tmp);
}
__ jmp(&done);
__ Bind(&is_zero);
__ xorl(out, out); // Clears upper bits too.
__ Bind(&done);
} else {
// Copy input into temporary.
if (src.IsRegister()) {
if (is_long) {
__ movq(tmp, src.AsRegister<CpuRegister>());
} else {
__ movl(tmp, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// Do the bit twiddling: basically tmp & -tmp;
if (is_long) {
__ movq(out, tmp);
__ negq(tmp);
__ andq(out, tmp);
} else {
__ movl(out, tmp);
__ negl(tmp);
__ andl(out, tmp);
}
}
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high */ true);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high */ true);
}
void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ true);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high */ false);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
CreateOneBitLocations(allocator_, invoke, /* is_high */ false);
}
void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) {
GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ true);
}
static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
static void GenLeadingZeros(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
int zero_value_result = is_long ? 64 : 32;
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
value = zero_value_result;
} else {
value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value));
}
codegen->Load32BitValue(out, value);
return;
}
// Handle the non-constant cases.
if (src.IsRegister()) {
if (is_long) {
__ bsrq(out, src.AsRegister<CpuRegister>());
} else {
__ bsrl(out, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// BSR sets ZF if the input was zero, and the output is undefined.
NearLabel is_zero, done;
__ j(kEqual, &is_zero);
// Correct the result from BSR to get the CLZ result.
__ xorl(out, Immediate(zero_value_result - 1));
__ jmp(&done);
// Fix the zero case with the expected result.
__ Bind(&is_zero);
__ movl(out, Immediate(zero_value_result));
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
CreateLeadingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
CreateLeadingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
}
static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) {
LocationSummary* locations =
new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetInAt(0, Location::Any());
locations->SetOut(Location::RequiresRegister());
}
static void GenTrailingZeros(X86_64Assembler* assembler,
CodeGeneratorX86_64* codegen,
HInvoke* invoke, bool is_long) {
LocationSummary* locations = invoke->GetLocations();
Location src = locations->InAt(0);
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
int zero_value_result = is_long ? 64 : 32;
if (invoke->InputAt(0)->IsConstant()) {
// Evaluate this at compile time.
int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant());
if (value == 0) {
value = zero_value_result;
} else {
value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value));
}
codegen->Load32BitValue(out, value);
return;
}
// Handle the non-constant cases.
if (src.IsRegister()) {
if (is_long) {
__ bsfq(out, src.AsRegister<CpuRegister>());
} else {
__ bsfl(out, src.AsRegister<CpuRegister>());
}
} else if (is_long) {
DCHECK(src.IsDoubleStackSlot());
__ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex()));
} else {
DCHECK(src.IsStackSlot());
__ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex()));
}
// BSF sets ZF if the input was zero, and the output is undefined.
NearLabel done;
__ j(kNotEqual, &done);
// Fix the zero case with the expected result.
__ movl(out, Immediate(zero_value_result));
__ Bind(&done);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
CreateTrailingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false);
}
void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
CreateTrailingZeroLocations(allocator_, invoke);
}
void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true);
}
void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) {
InvokeRuntimeCallingConvention calling_convention;
IntrinsicVisitor::ComputeIntegerValueOfLocations(
invoke,
codegen_,
Location::RegisterLocation(RAX),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) {
IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo();
LocationSummary* locations = invoke->GetLocations();
X86_64Assembler* assembler = GetAssembler();
CpuRegister out = locations->Out().AsRegister<CpuRegister>();
InvokeRuntimeCallingConvention calling_convention;
if (invoke->InputAt(0)->IsConstant()) {
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
if (value >= info.low && value <= info.high) {
// Just embed the j.l.Integer in the code.
ScopedObjectAccess soa(Thread::Current());
mirror::Object* boxed = info.cache->Get(value + (-info.low));
DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed));
uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed));
__ movl(out, Immediate(static_cast<int32_t>(address)));
} else {
// Allocate and initialize a new j.l.Integer.
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
// JIT object table.
CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0));
uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
__ movl(argument, Immediate(static_cast<int32_t>(address)));
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
__ movl(Address(out, info.value_offset), Immediate(value));
}
} else {
CpuRegister in = locations->InAt(0).AsRegister<CpuRegister>();
// Check bounds of our cache.
__ leal(out, Address(in, -info.low));
__ cmpl(out, Immediate(info.high - info.low + 1));
NearLabel allocate, done;
__ j(kAboveEqual, &allocate);
// If the value is within the bounds, load the j.l.Integer directly from the array.
uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache));
if (data_offset + address <= std::numeric_limits<int32_t>::max()) {
__ movl(out, Address(out, TIMES_4, data_offset + address));
} else {
CpuRegister temp = CpuRegister(calling_convention.GetRegisterAt(0));
__ movl(temp, Immediate(static_cast<int32_t>(data_offset + address)));
__ movl(out, Address(temp, out, TIMES_4, 0));
}
__ MaybeUnpoisonHeapReference(out);
__ jmp(&done);
__ Bind(&allocate);
// Otherwise allocate and initialize a new j.l.Integer.
CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0));
address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
__ movl(argument, Immediate(static_cast<int32_t>(address)));
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
__ movl(Address(out, info.value_offset), in);
__ Bind(&done);
}
}
void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) {
LocationSummary* locations =
new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified);
locations->SetOut(Location::RequiresRegister());
}
void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) {
X86_64Assembler* assembler = GetAssembler();
CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>();
Address address = Address::Absolute
(Thread::InterruptedOffset<kX86_64PointerSize>().Int32Value(), /* no_rip */ true);
NearLabel done;
__ gs()->movl(out, address);
__ testl(out, out);
__ j(kEqual, &done);
__ gs()->movl(address, Immediate(0));
codegen_->MemoryFence();
__ Bind(&done);
}
UNIMPLEMENTED_INTRINSIC(X86_64, ReferenceGetReferent)
UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite)
UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite)
UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOf);
UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOfAfter);
UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferAppend);
UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferLength);
UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferToString);
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppend);
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderLength);
UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderToString);
// 1.8.
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt)
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong)
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt)
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong)
UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject)
UNREACHABLE_INTRINSICS(X86_64)
#undef __
} // namespace x86_64
} // namespace art