blob: ccdcb3532d204dc410ebd5c12ee05bf9f3e3a970 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "instruction_simplifier_shared.h"
#include "mirror/array-inl.h"
namespace art {
namespace {
bool TrySimpleMultiplyAccumulatePatterns(HMul* mul,
HBinaryOperation* input_binop,
HInstruction* input_other) {
DCHECK(DataType::IsIntOrLongType(mul->GetType()));
DCHECK(input_binop->IsAdd() || input_binop->IsSub());
DCHECK_NE(input_binop, input_other);
if (!input_binop->HasOnlyOneNonEnvironmentUse()) {
return false;
}
// Try to interpret patterns like
// a * (b <+/-> 1)
// as
// (a * b) <+/-> a
HInstruction* input_a = input_other;
HInstruction* input_b = nullptr; // Set to a non-null value if we found a pattern to optimize.
HInstruction::InstructionKind op_kind;
if (input_binop->IsAdd()) {
if ((input_binop->GetConstantRight() != nullptr) && input_binop->GetConstantRight()->IsOne()) {
// Interpret
// a * (b + 1)
// as
// (a * b) + a
input_b = input_binop->GetLeastConstantLeft();
op_kind = HInstruction::kAdd;
}
} else {
DCHECK(input_binop->IsSub());
if (input_binop->GetRight()->IsConstant() &&
input_binop->GetRight()->AsConstant()->IsMinusOne()) {
// Interpret
// a * (b - (-1))
// as
// a + (a * b)
input_b = input_binop->GetLeft();
op_kind = HInstruction::kAdd;
} else if (input_binop->GetLeft()->IsConstant() &&
input_binop->GetLeft()->AsConstant()->IsOne()) {
// Interpret
// a * (1 - b)
// as
// a - (a * b)
input_b = input_binop->GetRight();
op_kind = HInstruction::kSub;
}
}
if (input_b == nullptr) {
// We did not find a pattern we can optimize.
return false;
}
ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
HMultiplyAccumulate* mulacc = new (allocator) HMultiplyAccumulate(
mul->GetType(), op_kind, input_a, input_a, input_b, mul->GetDexPc());
mul->GetBlock()->ReplaceAndRemoveInstructionWith(mul, mulacc);
input_binop->GetBlock()->RemoveInstruction(input_binop);
return true;
}
} // namespace
bool TryCombineMultiplyAccumulate(HMul* mul, InstructionSet isa) {
DataType::Type type = mul->GetType();
switch (isa) {
case InstructionSet::kArm:
case InstructionSet::kThumb2:
if (type != DataType::Type::kInt32) {
return false;
}
break;
case InstructionSet::kArm64:
if (!DataType::IsIntOrLongType(type)) {
return false;
}
break;
default:
return false;
}
ArenaAllocator* allocator = mul->GetBlock()->GetGraph()->GetAllocator();
if (mul->HasOnlyOneNonEnvironmentUse()) {
HInstruction* use = mul->GetUses().front().GetUser();
if (use->IsAdd() || use->IsSub()) {
// Replace code looking like
// MUL tmp, x, y
// SUB dst, acc, tmp
// with
// MULSUB dst, acc, x, y
// Note that we do not want to (unconditionally) perform the merge when the
// multiplication has multiple uses and it can be merged in all of them.
// Multiple uses could happen on the same control-flow path, and we would
// then increase the amount of work. In the future we could try to evaluate
// whether all uses are on different control-flow paths (using dominance and
// reverse-dominance information) and only perform the merge when they are.
HInstruction* accumulator = nullptr;
HBinaryOperation* binop = use->AsBinaryOperation();
HInstruction* binop_left = binop->GetLeft();
HInstruction* binop_right = binop->GetRight();
// Be careful after GVN. This should not happen since the `HMul` has only
// one use.
DCHECK_NE(binop_left, binop_right);
if (binop_right == mul) {
accumulator = binop_left;
} else if (use->IsAdd()) {
DCHECK_EQ(binop_left, mul);
accumulator = binop_right;
}
if (accumulator != nullptr) {
HMultiplyAccumulate* mulacc =
new (allocator) HMultiplyAccumulate(type,
binop->GetKind(),
accumulator,
mul->GetLeft(),
mul->GetRight());
binop->GetBlock()->ReplaceAndRemoveInstructionWith(binop, mulacc);
DCHECK(!mul->HasUses());
mul->GetBlock()->RemoveInstruction(mul);
return true;
}
} else if (use->IsNeg() && isa != InstructionSet::kArm) {
HMultiplyAccumulate* mulacc =
new (allocator) HMultiplyAccumulate(type,
HInstruction::kSub,
mul->GetBlock()->GetGraph()->GetConstant(type, 0),
mul->GetLeft(),
mul->GetRight());
use->GetBlock()->ReplaceAndRemoveInstructionWith(use, mulacc);
DCHECK(!mul->HasUses());
mul->GetBlock()->RemoveInstruction(mul);
return true;
}
}
// Use multiply accumulate instruction for a few simple patterns.
// We prefer not applying the following transformations if the left and
// right inputs perform the same operation.
// We rely on GVN having squashed the inputs if appropriate. However the
// results are still correct even if that did not happen.
if (mul->GetLeft() == mul->GetRight()) {
return false;
}
HInstruction* left = mul->GetLeft();
HInstruction* right = mul->GetRight();
if ((right->IsAdd() || right->IsSub()) &&
TrySimpleMultiplyAccumulatePatterns(mul, right->AsBinaryOperation(), left)) {
return true;
}
if ((left->IsAdd() || left->IsSub()) &&
TrySimpleMultiplyAccumulatePatterns(mul, left->AsBinaryOperation(), right)) {
return true;
}
return false;
}
bool TryMergeNegatedInput(HBinaryOperation* op) {
DCHECK(op->IsAnd() || op->IsOr() || op->IsXor()) << op->DebugName();
HInstruction* left = op->GetLeft();
HInstruction* right = op->GetRight();
// Only consider the case where there is exactly one Not, with 2 Not's De
// Morgan's laws should be applied instead.
if (left->IsNot() ^ right->IsNot()) {
HInstruction* hnot = (left->IsNot() ? left : right);
HInstruction* hother = (left->IsNot() ? right : left);
// Only do the simplification if the Not has only one use and can thus be
// safely removed. Even though ARM64 negated bitwise operations do not have
// an immediate variant (only register), we still do the simplification when
// `hother` is a constant, because it removes an instruction if the constant
// cannot be encoded as an immediate:
// mov r0, #large_constant
// neg r2, r1
// and r0, r0, r2
// becomes:
// mov r0, #large_constant
// bic r0, r0, r1
if (hnot->HasOnlyOneNonEnvironmentUse()) {
// Replace code looking like
// NOT tmp, mask
// AND dst, src, tmp (respectively ORR, EOR)
// with
// BIC dst, src, mask (respectively ORN, EON)
HInstruction* src = hnot->AsNot()->GetInput();
HBitwiseNegatedRight* neg_op = new (hnot->GetBlock()->GetGraph()->GetAllocator())
HBitwiseNegatedRight(op->GetType(), op->GetKind(), hother, src, op->GetDexPc());
op->GetBlock()->ReplaceAndRemoveInstructionWith(op, neg_op);
hnot->GetBlock()->RemoveInstruction(hnot);
return true;
}
}
return false;
}
bool TryExtractArrayAccessAddress(HInstruction* access,
HInstruction* array,
HInstruction* index,
size_t data_offset) {
if (index->IsConstant() ||
(index->IsBoundsCheck() && index->AsBoundsCheck()->GetIndex()->IsConstant())) {
// When the index is a constant all the addressing can be fitted in the
// memory access instruction, so do not split the access.
return false;
}
if (access->IsArraySet() &&
access->AsArraySet()->GetValue()->GetType() == DataType::Type::kReference) {
// The access may require a runtime call or the original array pointer.
return false;
}
if (kEmitCompilerReadBarrier &&
access->IsArrayGet() &&
access->GetType() == DataType::Type::kReference) {
// For object arrays, the read barrier instrumentation requires
// the original array pointer.
// TODO: This can be relaxed for Baker CC.
return false;
}
// Proceed to extract the base address computation.
HGraph* graph = access->GetBlock()->GetGraph();
ArenaAllocator* allocator = graph->GetAllocator();
HIntConstant* offset = graph->GetIntConstant(data_offset);
HIntermediateAddress* address = new (allocator) HIntermediateAddress(array, offset, kNoDexPc);
// TODO: Is it ok to not have this on the intermediate address?
// address->SetReferenceTypeInfo(array->GetReferenceTypeInfo());
access->GetBlock()->InsertInstructionBefore(address, access);
access->ReplaceInput(address, 0);
// Both instructions must depend on GC to prevent any instruction that can
// trigger GC to be inserted between the two.
access->AddSideEffects(SideEffects::DependsOnGC());
DCHECK(address->GetSideEffects().Includes(SideEffects::DependsOnGC()));
DCHECK(access->GetSideEffects().Includes(SideEffects::DependsOnGC()));
// TODO: Code generation for HArrayGet and HArraySet will check whether the input address
// is an HIntermediateAddress and generate appropriate code.
// We would like to replace the `HArrayGet` and `HArraySet` with custom instructions (maybe
// `HArm64Load` and `HArm64Store`,`HArmLoad` and `HArmStore`). We defer these changes
// because these new instructions would not bring any advantages yet.
// Also see the comments in
// `InstructionCodeGeneratorARMVIXL::VisitArrayGet()`
// `InstructionCodeGeneratorARMVIXL::VisitArraySet()`
// `InstructionCodeGeneratorARM64::VisitArrayGet()`
// `InstructionCodeGeneratorARM64::VisitArraySet()`.
return true;
}
bool TryExtractVecArrayAccessAddress(HVecMemoryOperation* access, HInstruction* index) {
if (index->IsConstant()) {
// If index is constant the whole address calculation often can be done by LDR/STR themselves.
// TODO: Treat the case with not-embedable constant.
return false;
}
HGraph* graph = access->GetBlock()->GetGraph();
ArenaAllocator* allocator = graph->GetAllocator();
DataType::Type packed_type = access->GetPackedType();
uint32_t data_offset = mirror::Array::DataOffset(
DataType::Size(packed_type)).Uint32Value();
size_t component_shift = DataType::SizeShift(packed_type);
bool is_extracting_beneficial = false;
// It is beneficial to extract index intermediate address only if there are at least 2 users.
for (const HUseListNode<HInstruction*>& use : index->GetUses()) {
HInstruction* user = use.GetUser();
if (user->IsVecMemoryOperation() && user != access) {
HVecMemoryOperation* another_access = user->AsVecMemoryOperation();
DataType::Type another_packed_type = another_access->GetPackedType();
uint32_t another_data_offset = mirror::Array::DataOffset(
DataType::Size(another_packed_type)).Uint32Value();
size_t another_component_shift = DataType::SizeShift(another_packed_type);
if (another_data_offset == data_offset && another_component_shift == component_shift) {
is_extracting_beneficial = true;
break;
}
} else if (user->IsIntermediateAddressIndex()) {
HIntermediateAddressIndex* another_access = user->AsIntermediateAddressIndex();
uint32_t another_data_offset = another_access->GetOffset()->AsIntConstant()->GetValue();
size_t another_component_shift = another_access->GetShift()->AsIntConstant()->GetValue();
if (another_data_offset == data_offset && another_component_shift == component_shift) {
is_extracting_beneficial = true;
break;
}
}
}
if (!is_extracting_beneficial) {
return false;
}
// Proceed to extract the index + data_offset address computation.
HIntConstant* offset = graph->GetIntConstant(data_offset);
HIntConstant* shift = graph->GetIntConstant(component_shift);
HIntermediateAddressIndex* address =
new (allocator) HIntermediateAddressIndex(index, offset, shift, kNoDexPc);
access->GetBlock()->InsertInstructionBefore(address, access);
access->ReplaceInput(address, 1);
return true;
}
} // namespace art