blob: 152a59c2081f2fa42ae093821730d92bc934f6f7 [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_arm64.h"
#include "mirror/array-inl.h"
#include "mirror/string.h"
using namespace vixl::aarch64; // NOLINT(build/namespaces)
namespace art {
namespace arm64 {
using helpers::ARM64EncodableConstantOrRegister;
using helpers::Arm64CanEncodeConstantAsImmediate;
using helpers::DRegisterFrom;
using helpers::HeapOperand;
using helpers::InputRegisterAt;
using helpers::Int64ConstantFrom;
using helpers::OutputRegister;
using helpers::VRegisterFrom;
using helpers::WRegisterFrom;
using helpers::XRegisterFrom;
#define __ GetVIXLAssembler()->
void LocationsBuilderARM64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
HInstruction* input = instruction->InputAt(0);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, ARM64EncodableConstantOrRegister(input, instruction));
locations->SetOut(Location::RequiresFpuRegister());
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
if (input->IsConstant() &&
Arm64CanEncodeConstantAsImmediate(input->AsConstant(), instruction)) {
locations->SetInAt(0, Location::ConstantLocation(input->AsConstant()));
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void InstructionCodeGeneratorARM64::VisitVecReplicateScalar(HVecReplicateScalar* instruction) {
LocationSummary* locations = instruction->GetLocations();
Location src_loc = locations->InAt(0);
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
if (src_loc.IsConstant()) {
__ Movi(dst.V16B(), Int64ConstantFrom(src_loc));
} else {
__ Dup(dst.V16B(), InputRegisterAt(instruction, 0));
}
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
if (src_loc.IsConstant()) {
__ Movi(dst.V8H(), Int64ConstantFrom(src_loc));
} else {
__ Dup(dst.V8H(), InputRegisterAt(instruction, 0));
}
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
if (src_loc.IsConstant()) {
__ Movi(dst.V4S(), Int64ConstantFrom(src_loc));
} else {
__ Dup(dst.V4S(), InputRegisterAt(instruction, 0));
}
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
if (src_loc.IsConstant()) {
__ Movi(dst.V2D(), Int64ConstantFrom(src_loc));
} else {
__ Dup(dst.V2D(), XRegisterFrom(src_loc));
}
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
if (src_loc.IsConstant()) {
__ Fmov(dst.V4S(), src_loc.GetConstant()->AsFloatConstant()->GetValue());
} else {
__ Dup(dst.V4S(), VRegisterFrom(src_loc).V4S(), 0);
}
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
if (src_loc.IsConstant()) {
__ Fmov(dst.V2D(), src_loc.GetConstant()->AsDoubleConstant()->GetValue());
} else {
__ Dup(dst.V2D(), VRegisterFrom(src_loc).V2D(), 0);
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecExtractScalar(HVecExtractScalar* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister());
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void InstructionCodeGeneratorARM64::VisitVecExtractScalar(HVecExtractScalar* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
switch (instruction->GetPackedType()) {
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Umov(OutputRegister(instruction), src.V4S(), 0);
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Umov(OutputRegister(instruction), src.V2D(), 0);
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 4u);
DCHECK(locations->InAt(0).Equals(locations->Out())); // no code required
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector unary operations.
static void CreateVecUnOpLocations(ArenaAllocator* allocator, HVecUnaryOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(),
instruction->IsVecNot() ? Location::kOutputOverlap
: Location::kNoOutputOverlap);
break;
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecReduce(HVecReduce* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecReduce(HVecReduce* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = DRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
switch (instruction->GetKind()) {
case HVecReduce::kSum:
__ Addv(dst.S(), src.V4S());
break;
case HVecReduce::kMin:
__ Sminv(dst.S(), src.V4S());
break;
case HVecReduce::kMax:
__ Smaxv(dst.S(), src.V4S());
break;
}
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
switch (instruction->GetKind()) {
case HVecReduce::kSum:
__ Addp(dst.D(), src.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD min/max";
UNREACHABLE();
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecCnv(HVecCnv* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecCnv(HVecCnv* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
DataType::Type from = instruction->GetInputType();
DataType::Type to = instruction->GetResultType();
if (from == DataType::Type::kInt32 && to == DataType::Type::kFloat32) {
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Scvtf(dst.V4S(), src.V4S());
} else {
LOG(FATAL) << "Unsupported SIMD type";
}
}
void LocationsBuilderARM64::VisitVecNeg(HVecNeg* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecNeg(HVecNeg* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Neg(dst.V16B(), src.V16B());
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Neg(dst.V8H(), src.V8H());
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Neg(dst.V4S(), src.V4S());
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Neg(dst.V2D(), src.V2D());
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fneg(dst.V4S(), src.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fneg(dst.V2D(), src.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecAbs(HVecAbs* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecAbs(HVecAbs* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Abs(dst.V16B(), src.V16B());
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Abs(dst.V8H(), src.V8H());
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Abs(dst.V4S(), src.V4S());
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Abs(dst.V2D(), src.V2D());
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fabs(dst.V4S(), src.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fabs(dst.V2D(), src.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecNot(HVecNot* instruction) {
CreateVecUnOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecNot(HVecNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister src = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kBool: // special case boolean-not
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Movi(dst.V16B(), 1);
__ Eor(dst.V16B(), dst.V16B(), src.V16B());
break;
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
__ Not(dst.V16B(), src.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector binary operations.
static void CreateVecBinOpLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecAdd(HVecAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecAdd(HVecAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Add(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Add(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Add(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Add(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fadd(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fadd(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecHalvingAdd(HVecHalvingAdd* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
instruction->IsRounded()
? __ Urhadd(dst.V16B(), lhs.V16B(), rhs.V16B())
: __ Uhadd(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
instruction->IsRounded()
? __ Srhadd(dst.V16B(), lhs.V16B(), rhs.V16B())
: __ Shadd(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
instruction->IsRounded()
? __ Urhadd(dst.V8H(), lhs.V8H(), rhs.V8H())
: __ Uhadd(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
instruction->IsRounded()
? __ Srhadd(dst.V8H(), lhs.V8H(), rhs.V8H())
: __ Shadd(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecSub(HVecSub* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecSub(HVecSub* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Sub(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Sub(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Sub(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Sub(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fsub(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fsub(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecMul(HVecMul* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecMul(HVecMul* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Mul(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Mul(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Mul(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fmul(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fmul(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecDiv(HVecDiv* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecDiv(HVecDiv* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Fdiv(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Fdiv(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecMin(HVecMin* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecMin(HVecMin* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Umin(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Smin(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Umin(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Smin(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
if (instruction->IsUnsigned()) {
__ Umin(dst.V4S(), lhs.V4S(), rhs.V4S());
} else {
__ Smin(dst.V4S(), lhs.V4S(), rhs.V4S());
}
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
DCHECK(!instruction->IsUnsigned());
__ Fmin(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
DCHECK(!instruction->IsUnsigned());
__ Fmin(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecMax(HVecMax* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecMax(HVecMax* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Umax(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Smax(dst.V16B(), lhs.V16B(), rhs.V16B());
break;
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Umax(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Smax(dst.V8H(), lhs.V8H(), rhs.V8H());
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
if (instruction->IsUnsigned()) {
__ Umax(dst.V4S(), lhs.V4S(), rhs.V4S());
} else {
__ Smax(dst.V4S(), lhs.V4S(), rhs.V4S());
}
break;
case DataType::Type::kFloat32:
DCHECK_EQ(4u, instruction->GetVectorLength());
DCHECK(!instruction->IsUnsigned());
__ Fmax(dst.V4S(), lhs.V4S(), rhs.V4S());
break;
case DataType::Type::kFloat64:
DCHECK_EQ(2u, instruction->GetVectorLength());
DCHECK(!instruction->IsUnsigned());
__ Fmax(dst.V2D(), lhs.V2D(), rhs.V2D());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecAnd(HVecAnd* instruction) {
// TODO: Allow constants supported by BIC (vector, immediate).
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecAnd(HVecAnd* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
__ And(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecAndNot(HVecAndNot* instruction) {
LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId();
}
void InstructionCodeGeneratorARM64::VisitVecAndNot(HVecAndNot* instruction) {
// TODO: Use BIC (vector, register).
LOG(FATAL) << "Unsupported SIMD instruction " << instruction->GetId();
}
void LocationsBuilderARM64::VisitVecOr(HVecOr* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecOr(HVecOr* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
__ Orr(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecXor(HVecXor* instruction) {
CreateVecBinOpLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecXor(HVecXor* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister rhs = VRegisterFrom(locations->InAt(1));
VRegister dst = VRegisterFrom(locations->Out());
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
__ Eor(dst.V16B(), lhs.V16B(), rhs.V16B()); // lanes do not matter
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector shift operations.
static void CreateVecShiftLocations(ArenaAllocator* allocator, HVecBinaryOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant()));
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecShl(HVecShl* instruction) {
CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecShl(HVecShl* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Shl(dst.V16B(), lhs.V16B(), value);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Shl(dst.V8H(), lhs.V8H(), value);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Shl(dst.V4S(), lhs.V4S(), value);
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Shl(dst.V2D(), lhs.V2D(), value);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecShr(HVecShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecShr(HVecShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Sshr(dst.V16B(), lhs.V16B(), value);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Sshr(dst.V8H(), lhs.V8H(), value);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Sshr(dst.V4S(), lhs.V4S(), value);
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Sshr(dst.V2D(), lhs.V2D(), value);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecUShr(HVecUShr* instruction) {
CreateVecShiftLocations(GetGraph()->GetAllocator(), instruction);
}
void InstructionCodeGeneratorARM64::VisitVecUShr(HVecUShr* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister lhs = VRegisterFrom(locations->InAt(0));
VRegister dst = VRegisterFrom(locations->Out());
int32_t value = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Ushr(dst.V16B(), lhs.V16B(), value);
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Ushr(dst.V8H(), lhs.V8H(), value);
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Ushr(dst.V4S(), lhs.V4S(), value);
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Ushr(dst.V2D(), lhs.V2D(), value);
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecSetScalars(HVecSetScalars* instruction) {
LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented
HInstruction* input = instruction->InputAt(0);
bool is_zero = IsZeroBitPattern(input);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant())
: Location::RequiresRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, is_zero ? Location::ConstantLocation(input->AsConstant())
: Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void InstructionCodeGeneratorARM64::VisitVecSetScalars(HVecSetScalars* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister dst = VRegisterFrom(locations->Out());
DCHECK_EQ(1u, instruction->InputCount()); // only one input currently implemented
// Zero out all other elements first.
__ Movi(dst.V16B(), 0);
// Shorthand for any type of zero.
if (IsZeroBitPattern(instruction->InputAt(0))) {
return;
}
// Set required elements.
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
__ Mov(dst.V16B(), 0, InputRegisterAt(instruction, 0));
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Mov(dst.V8H(), 0, InputRegisterAt(instruction, 0));
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Mov(dst.V4S(), 0, InputRegisterAt(instruction, 0));
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Mov(dst.V2D(), 0, InputRegisterAt(instruction, 0));
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector accumulations.
static void CreateVecAccumLocations(ArenaAllocator* allocator, HVecOperation* instruction) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetInAt(2, Location::RequiresFpuRegister());
locations->SetOut(Location::SameAsFirstInput());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) {
CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction);
}
// Some early revisions of the Cortex-A53 have an erratum (835769) whereby it is possible for a
// 64-bit scalar multiply-accumulate instruction in AArch64 state to generate an incorrect result.
// However vector MultiplyAccumulate instruction is not affected.
void InstructionCodeGeneratorARM64::VisitVecMultiplyAccumulate(HVecMultiplyAccumulate* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister acc = VRegisterFrom(locations->InAt(0));
VRegister left = VRegisterFrom(locations->InAt(1));
VRegister right = VRegisterFrom(locations->InAt(2));
DCHECK(locations->InAt(0).Equals(locations->Out()));
switch (instruction->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, instruction->GetVectorLength());
if (instruction->GetOpKind() == HInstruction::kAdd) {
__ Mla(acc.V16B(), left.V16B(), right.V16B());
} else {
__ Mls(acc.V16B(), left.V16B(), right.V16B());
}
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
if (instruction->GetOpKind() == HInstruction::kAdd) {
__ Mla(acc.V8H(), left.V8H(), right.V8H());
} else {
__ Mls(acc.V8H(), left.V8H(), right.V8H());
}
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
if (instruction->GetOpKind() == HInstruction::kAdd) {
__ Mla(acc.V4S(), left.V4S(), right.V4S());
} else {
__ Mls(acc.V4S(), left.V4S(), right.V4S());
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
CreateVecAccumLocations(GetGraph()->GetAllocator(), instruction);
// Some conversions require temporary registers.
LocationSummary* locations = instruction->GetLocations();
HVecOperation* a = instruction->InputAt(1)->AsVecOperation();
HVecOperation* b = instruction->InputAt(2)->AsVecOperation();
DCHECK_EQ(HVecOperation::ToSignedType(a->GetPackedType()),
HVecOperation::ToSignedType(b->GetPackedType()));
switch (a->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
switch (instruction->GetPackedType()) {
case DataType::Type::kInt64:
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
FALLTHROUGH_INTENDED;
case DataType::Type::kInt32:
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
break;
default:
break;
}
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
if (instruction->GetPackedType() == DataType::Type::kInt64) {
locations->AddTemp(Location::RequiresFpuRegister());
locations->AddTemp(Location::RequiresFpuRegister());
}
break;
case DataType::Type::kInt32:
case DataType::Type::kInt64:
if (instruction->GetPackedType() == a->GetPackedType()) {
locations->AddTemp(Location::RequiresFpuRegister());
}
break;
default:
break;
}
}
void InstructionCodeGeneratorARM64::VisitVecSADAccumulate(HVecSADAccumulate* instruction) {
LocationSummary* locations = instruction->GetLocations();
VRegister acc = VRegisterFrom(locations->InAt(0));
VRegister left = VRegisterFrom(locations->InAt(1));
VRegister right = VRegisterFrom(locations->InAt(2));
DCHECK(locations->InAt(0).Equals(locations->Out()));
// Handle all feasible acc_T += sad(a_S, b_S) type combinations (T x S).
HVecOperation* a = instruction->InputAt(1)->AsVecOperation();
HVecOperation* b = instruction->InputAt(2)->AsVecOperation();
DCHECK_EQ(HVecOperation::ToSignedType(a->GetPackedType()),
HVecOperation::ToSignedType(b->GetPackedType()));
switch (a->GetPackedType()) {
case DataType::Type::kUint8:
case DataType::Type::kInt8:
DCHECK_EQ(16u, a->GetVectorLength());
switch (instruction->GetPackedType()) {
case DataType::Type::kInt16:
DCHECK_EQ(8u, instruction->GetVectorLength());
__ Sabal(acc.V8H(), left.V8B(), right.V8B());
__ Sabal2(acc.V8H(), left.V16B(), right.V16B());
break;
case DataType::Type::kInt32: {
DCHECK_EQ(4u, instruction->GetVectorLength());
VRegister tmp1 = VRegisterFrom(locations->GetTemp(0));
VRegister tmp2 = VRegisterFrom(locations->GetTemp(1));
__ Sxtl(tmp1.V8H(), left.V8B());
__ Sxtl(tmp2.V8H(), right.V8B());
__ Sabal(acc.V4S(), tmp1.V4H(), tmp2.V4H());
__ Sabal2(acc.V4S(), tmp1.V8H(), tmp2.V8H());
__ Sxtl2(tmp1.V8H(), left.V16B());
__ Sxtl2(tmp2.V8H(), right.V16B());
__ Sabal(acc.V4S(), tmp1.V4H(), tmp2.V4H());
__ Sabal2(acc.V4S(), tmp1.V8H(), tmp2.V8H());
break;
}
case DataType::Type::kInt64: {
DCHECK_EQ(2u, instruction->GetVectorLength());
VRegister tmp1 = VRegisterFrom(locations->GetTemp(0));
VRegister tmp2 = VRegisterFrom(locations->GetTemp(1));
VRegister tmp3 = VRegisterFrom(locations->GetTemp(2));
VRegister tmp4 = VRegisterFrom(locations->GetTemp(3));
__ Sxtl(tmp1.V8H(), left.V8B());
__ Sxtl(tmp2.V8H(), right.V8B());
__ Sxtl(tmp3.V4S(), tmp1.V4H());
__ Sxtl(tmp4.V4S(), tmp2.V4H());
__ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S());
__ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S());
__ Sxtl2(tmp3.V4S(), tmp1.V8H());
__ Sxtl2(tmp4.V4S(), tmp2.V8H());
__ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S());
__ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S());
__ Sxtl2(tmp1.V8H(), left.V16B());
__ Sxtl2(tmp2.V8H(), right.V16B());
__ Sxtl(tmp3.V4S(), tmp1.V4H());
__ Sxtl(tmp4.V4S(), tmp2.V4H());
__ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S());
__ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S());
__ Sxtl2(tmp3.V4S(), tmp1.V8H());
__ Sxtl2(tmp4.V4S(), tmp2.V8H());
__ Sabal(acc.V2D(), tmp3.V2S(), tmp4.V2S());
__ Sabal2(acc.V2D(), tmp3.V4S(), tmp4.V4S());
break;
}
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
break;
case DataType::Type::kUint16:
case DataType::Type::kInt16:
DCHECK_EQ(8u, a->GetVectorLength());
switch (instruction->GetPackedType()) {
case DataType::Type::kInt32:
DCHECK_EQ(4u, instruction->GetVectorLength());
__ Sabal(acc.V4S(), left.V4H(), right.V4H());
__ Sabal2(acc.V4S(), left.V8H(), right.V8H());
break;
case DataType::Type::kInt64: {
DCHECK_EQ(2u, instruction->GetVectorLength());
VRegister tmp1 = VRegisterFrom(locations->GetTemp(0));
VRegister tmp2 = VRegisterFrom(locations->GetTemp(1));
__ Sxtl(tmp1.V4S(), left.V4H());
__ Sxtl(tmp2.V4S(), right.V4H());
__ Sabal(acc.V2D(), tmp1.V2S(), tmp2.V2S());
__ Sabal2(acc.V2D(), tmp1.V4S(), tmp2.V4S());
__ Sxtl2(tmp1.V4S(), left.V8H());
__ Sxtl2(tmp2.V4S(), right.V8H());
__ Sabal(acc.V2D(), tmp1.V2S(), tmp2.V2S());
__ Sabal2(acc.V2D(), tmp1.V4S(), tmp2.V4S());
break;
}
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
break;
case DataType::Type::kInt32:
DCHECK_EQ(4u, a->GetVectorLength());
switch (instruction->GetPackedType()) {
case DataType::Type::kInt32: {
DCHECK_EQ(4u, instruction->GetVectorLength());
VRegister tmp = VRegisterFrom(locations->GetTemp(0));
__ Sub(tmp.V4S(), left.V4S(), right.V4S());
__ Abs(tmp.V4S(), tmp.V4S());
__ Add(acc.V4S(), acc.V4S(), tmp.V4S());
break;
}
case DataType::Type::kInt64:
DCHECK_EQ(2u, instruction->GetVectorLength());
__ Sabal(acc.V2D(), left.V2S(), right.V2S());
__ Sabal2(acc.V2D(), left.V4S(), right.V4S());
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
break;
case DataType::Type::kInt64:
DCHECK_EQ(2u, a->GetVectorLength());
switch (instruction->GetPackedType()) {
case DataType::Type::kInt64: {
DCHECK_EQ(2u, instruction->GetVectorLength());
VRegister tmp = VRegisterFrom(locations->GetTemp(0));
__ Sub(tmp.V2D(), left.V2D(), right.V2D());
__ Abs(tmp.V2D(), tmp.V2D());
__ Add(acc.V2D(), acc.V2D(), tmp.V2D());
break;
}
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
}
}
// Helper to set up locations for vector memory operations.
static void CreateVecMemLocations(ArenaAllocator* allocator,
HVecMemoryOperation* instruction,
bool is_load) {
LocationSummary* locations = new (allocator) LocationSummary(instruction);
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kInt64:
case DataType::Type::kFloat32:
case DataType::Type::kFloat64:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (is_load) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresFpuRegister());
}
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
// Helper to set up locations for vector memory operations. Returns the memory operand and,
// if used, sets the output parameter scratch to a temporary register used in this operand,
// so that the client can release it right after the memory operand use.
MemOperand InstructionCodeGeneratorARM64::VecAddress(
HVecMemoryOperation* instruction,
UseScratchRegisterScope* temps_scope,
size_t size,
bool is_string_char_at,
/*out*/ Register* scratch) {
LocationSummary* locations = instruction->GetLocations();
Register base = InputRegisterAt(instruction, 0);
if (instruction->InputAt(1)->IsIntermediateAddressIndex()) {
DCHECK(!is_string_char_at);
return MemOperand(base.X(), InputRegisterAt(instruction, 1).X());
}
Location index = locations->InAt(1);
uint32_t offset = is_string_char_at
? mirror::String::ValueOffset().Uint32Value()
: mirror::Array::DataOffset(size).Uint32Value();
size_t shift = ComponentSizeShiftWidth(size);
// HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
if (index.IsConstant()) {
offset += Int64ConstantFrom(index) << shift;
return HeapOperand(base, offset);
} else {
*scratch = temps_scope->AcquireSameSizeAs(base);
__ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift));
return HeapOperand(*scratch, offset);
}
}
void LocationsBuilderARM64::VisitVecLoad(HVecLoad* instruction) {
CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ true);
}
void InstructionCodeGeneratorARM64::VisitVecLoad(HVecLoad* instruction) {
LocationSummary* locations = instruction->GetLocations();
size_t size = DataType::Size(instruction->GetPackedType());
VRegister reg = VRegisterFrom(locations->Out());
UseScratchRegisterScope temps(GetVIXLAssembler());
Register scratch;
switch (instruction->GetPackedType()) {
case DataType::Type::kUint16:
DCHECK_EQ(8u, instruction->GetVectorLength());
// Special handling of compressed/uncompressed string load.
if (mirror::kUseStringCompression && instruction->IsStringCharAt()) {
vixl::aarch64::Label uncompressed_load, done;
// Test compression bit.
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
"Expecting 0=compressed, 1=uncompressed");
uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
Register length = temps.AcquireW();
__ Ldr(length, HeapOperand(InputRegisterAt(instruction, 0), count_offset));
__ Tbnz(length.W(), 0, &uncompressed_load);
temps.Release(length); // no longer needed
// Zero extend 8 compressed bytes into 8 chars.
__ Ldr(DRegisterFrom(locations->Out()).V8B(),
VecAddress(instruction, &temps, 1, /*is_string_char_at*/ true, &scratch));
__ Uxtl(reg.V8H(), reg.V8B());
__ B(&done);
if (scratch.IsValid()) {
temps.Release(scratch); // if used, no longer needed
}
// Load 8 direct uncompressed chars.
__ Bind(&uncompressed_load);
__ Ldr(reg, VecAddress(instruction, &temps, size, /*is_string_char_at*/ true, &scratch));
__ Bind(&done);
return;
}
FALLTHROUGH_INTENDED;
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kFloat32:
case DataType::Type::kInt64:
case DataType::Type::kFloat64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ Ldr(reg, VecAddress(instruction, &temps, size, instruction->IsStringCharAt(), &scratch));
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
void LocationsBuilderARM64::VisitVecStore(HVecStore* instruction) {
CreateVecMemLocations(GetGraph()->GetAllocator(), instruction, /*is_load*/ false);
}
void InstructionCodeGeneratorARM64::VisitVecStore(HVecStore* instruction) {
LocationSummary* locations = instruction->GetLocations();
size_t size = DataType::Size(instruction->GetPackedType());
VRegister reg = VRegisterFrom(locations->InAt(2));
UseScratchRegisterScope temps(GetVIXLAssembler());
Register scratch;
switch (instruction->GetPackedType()) {
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
case DataType::Type::kFloat32:
case DataType::Type::kInt64:
case DataType::Type::kFloat64:
DCHECK_LE(2u, instruction->GetVectorLength());
DCHECK_LE(instruction->GetVectorLength(), 16u);
__ Str(reg, VecAddress(instruction, &temps, size, /*is_string_char_at*/ false, &scratch));
break;
default:
LOG(FATAL) << "Unsupported SIMD type";
UNREACHABLE();
}
}
#undef __
} // namespace arm64
} // namespace art