| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "bounds_check_elimination.h" |
| |
| #include <limits> |
| |
| #include "base/scoped_arena_allocator.h" |
| #include "base/scoped_arena_containers.h" |
| #include "induction_var_range.h" |
| #include "nodes.h" |
| #include "side_effects_analysis.h" |
| |
| namespace art { |
| |
| class MonotonicValueRange; |
| |
| /** |
| * A value bound is represented as a pair of value and constant, |
| * e.g. array.length - 1. |
| */ |
| class ValueBound : public ValueObject { |
| public: |
| ValueBound(HInstruction* instruction, int32_t constant) { |
| if (instruction != nullptr && instruction->IsIntConstant()) { |
| // Normalize ValueBound with constant instruction. |
| int32_t instr_const = instruction->AsIntConstant()->GetValue(); |
| if (!WouldAddOverflowOrUnderflow(instr_const, constant)) { |
| instruction_ = nullptr; |
| constant_ = instr_const + constant; |
| return; |
| } |
| } |
| instruction_ = instruction; |
| constant_ = constant; |
| } |
| |
| // Return whether (left + right) overflows or underflows. |
| static bool WouldAddOverflowOrUnderflow(int32_t left, int32_t right) { |
| if (right == 0) { |
| return false; |
| } |
| if ((right > 0) && (left <= (std::numeric_limits<int32_t>::max() - right))) { |
| // No overflow. |
| return false; |
| } |
| if ((right < 0) && (left >= (std::numeric_limits<int32_t>::min() - right))) { |
| // No underflow. |
| return false; |
| } |
| return true; |
| } |
| |
| // Return true if instruction can be expressed as "left_instruction + right_constant". |
| static bool IsAddOrSubAConstant(HInstruction* instruction, |
| /* out */ HInstruction** left_instruction, |
| /* out */ int32_t* right_constant) { |
| HInstruction* left_so_far = nullptr; |
| int32_t right_so_far = 0; |
| while (instruction->IsAdd() || instruction->IsSub()) { |
| HBinaryOperation* bin_op = instruction->AsBinaryOperation(); |
| HInstruction* left = bin_op->GetLeft(); |
| HInstruction* right = bin_op->GetRight(); |
| if (right->IsIntConstant()) { |
| int32_t v = right->AsIntConstant()->GetValue(); |
| int32_t c = instruction->IsAdd() ? v : -v; |
| if (!WouldAddOverflowOrUnderflow(right_so_far, c)) { |
| instruction = left; |
| left_so_far = left; |
| right_so_far += c; |
| continue; |
| } |
| } |
| break; |
| } |
| // Return result: either false and "null+0" or true and "instr+constant". |
| *left_instruction = left_so_far; |
| *right_constant = right_so_far; |
| return left_so_far != nullptr; |
| } |
| |
| // Expresses any instruction as a value bound. |
| static ValueBound AsValueBound(HInstruction* instruction) { |
| if (instruction->IsIntConstant()) { |
| return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); |
| } |
| HInstruction *left; |
| int32_t right; |
| if (IsAddOrSubAConstant(instruction, &left, &right)) { |
| return ValueBound(left, right); |
| } |
| return ValueBound(instruction, 0); |
| } |
| |
| // Try to detect useful value bound format from an instruction, e.g. |
| // a constant or array length related value. |
| static ValueBound DetectValueBoundFromValue(HInstruction* instruction, /* out */ bool* found) { |
| DCHECK(instruction != nullptr); |
| if (instruction->IsIntConstant()) { |
| *found = true; |
| return ValueBound(nullptr, instruction->AsIntConstant()->GetValue()); |
| } |
| |
| if (instruction->IsArrayLength()) { |
| *found = true; |
| return ValueBound(instruction, 0); |
| } |
| // Try to detect (array.length + c) format. |
| HInstruction *left; |
| int32_t right; |
| if (IsAddOrSubAConstant(instruction, &left, &right)) { |
| if (left->IsArrayLength()) { |
| *found = true; |
| return ValueBound(left, right); |
| } |
| } |
| |
| // No useful bound detected. |
| *found = false; |
| return ValueBound::Max(); |
| } |
| |
| HInstruction* GetInstruction() const { return instruction_; } |
| int32_t GetConstant() const { return constant_; } |
| |
| bool IsRelatedToArrayLength() const { |
| // Some bounds are created with HNewArray* as the instruction instead |
| // of HArrayLength*. They are treated the same. |
| return (instruction_ != nullptr) && |
| (instruction_->IsArrayLength() || instruction_->IsNewArray()); |
| } |
| |
| bool IsConstant() const { |
| return instruction_ == nullptr; |
| } |
| |
| static ValueBound Min() { return ValueBound(nullptr, std::numeric_limits<int32_t>::min()); } |
| static ValueBound Max() { return ValueBound(nullptr, std::numeric_limits<int32_t>::max()); } |
| |
| bool Equals(ValueBound bound) const { |
| return instruction_ == bound.instruction_ && constant_ == bound.constant_; |
| } |
| |
| static bool Equal(HInstruction* instruction1, HInstruction* instruction2) { |
| if (instruction1 == instruction2) { |
| return true; |
| } |
| if (instruction1 == nullptr || instruction2 == nullptr) { |
| return false; |
| } |
| instruction1 = HuntForDeclaration(instruction1); |
| instruction2 = HuntForDeclaration(instruction2); |
| return instruction1 == instruction2; |
| } |
| |
| // Returns if it's certain this->bound >= `bound`. |
| bool GreaterThanOrEqualTo(ValueBound bound) const { |
| if (Equal(instruction_, bound.instruction_)) { |
| return constant_ >= bound.constant_; |
| } |
| // Not comparable. Just return false. |
| return false; |
| } |
| |
| // Returns if it's certain this->bound <= `bound`. |
| bool LessThanOrEqualTo(ValueBound bound) const { |
| if (Equal(instruction_, bound.instruction_)) { |
| return constant_ <= bound.constant_; |
| } |
| // Not comparable. Just return false. |
| return false; |
| } |
| |
| // Returns if it's certain this->bound > `bound`. |
| bool GreaterThan(ValueBound bound) const { |
| if (Equal(instruction_, bound.instruction_)) { |
| return constant_ > bound.constant_; |
| } |
| // Not comparable. Just return false. |
| return false; |
| } |
| |
| // Returns if it's certain this->bound < `bound`. |
| bool LessThan(ValueBound bound) const { |
| if (Equal(instruction_, bound.instruction_)) { |
| return constant_ < bound.constant_; |
| } |
| // Not comparable. Just return false. |
| return false; |
| } |
| |
| // Try to narrow lower bound. Returns the greatest of the two if possible. |
| // Pick one if they are not comparable. |
| static ValueBound NarrowLowerBound(ValueBound bound1, ValueBound bound2) { |
| if (bound1.GreaterThanOrEqualTo(bound2)) { |
| return bound1; |
| } |
| if (bound2.GreaterThanOrEqualTo(bound1)) { |
| return bound2; |
| } |
| |
| // Not comparable. Just pick one. We may lose some info, but that's ok. |
| // Favor constant as lower bound. |
| return bound1.IsConstant() ? bound1 : bound2; |
| } |
| |
| // Try to narrow upper bound. Returns the lowest of the two if possible. |
| // Pick one if they are not comparable. |
| static ValueBound NarrowUpperBound(ValueBound bound1, ValueBound bound2) { |
| if (bound1.LessThanOrEqualTo(bound2)) { |
| return bound1; |
| } |
| if (bound2.LessThanOrEqualTo(bound1)) { |
| return bound2; |
| } |
| |
| // Not comparable. Just pick one. We may lose some info, but that's ok. |
| // Favor array length as upper bound. |
| return bound1.IsRelatedToArrayLength() ? bound1 : bound2; |
| } |
| |
| // Add a constant to a ValueBound. |
| // `overflow` or `underflow` will return whether the resulting bound may |
| // overflow or underflow an int. |
| ValueBound Add(int32_t c, /* out */ bool* overflow, /* out */ bool* underflow) const { |
| *overflow = *underflow = false; |
| if (c == 0) { |
| return *this; |
| } |
| |
| int32_t new_constant; |
| if (c > 0) { |
| if (constant_ > (std::numeric_limits<int32_t>::max() - c)) { |
| *overflow = true; |
| return Max(); |
| } |
| |
| new_constant = constant_ + c; |
| // (array.length + non-positive-constant) won't overflow an int. |
| if (IsConstant() || (IsRelatedToArrayLength() && new_constant <= 0)) { |
| return ValueBound(instruction_, new_constant); |
| } |
| // Be conservative. |
| *overflow = true; |
| return Max(); |
| } else { |
| if (constant_ < (std::numeric_limits<int32_t>::min() - c)) { |
| *underflow = true; |
| return Min(); |
| } |
| |
| new_constant = constant_ + c; |
| // Regardless of the value new_constant, (array.length+new_constant) will |
| // never underflow since array.length is no less than 0. |
| if (IsConstant() || IsRelatedToArrayLength()) { |
| return ValueBound(instruction_, new_constant); |
| } |
| // Be conservative. |
| *underflow = true; |
| return Min(); |
| } |
| } |
| |
| private: |
| HInstruction* instruction_; |
| int32_t constant_; |
| }; |
| |
| /** |
| * Represent a range of lower bound and upper bound, both being inclusive. |
| * Currently a ValueRange may be generated as a result of the following: |
| * comparisons related to array bounds, array bounds check, add/sub on top |
| * of an existing value range, NewArray or a loop phi corresponding to an |
| * incrementing/decrementing array index (MonotonicValueRange). |
| */ |
| class ValueRange : public ArenaObject<kArenaAllocBoundsCheckElimination> { |
| public: |
| ValueRange(ScopedArenaAllocator* allocator, ValueBound lower, ValueBound upper) |
| : allocator_(allocator), lower_(lower), upper_(upper) {} |
| |
| virtual ~ValueRange() {} |
| |
| virtual MonotonicValueRange* AsMonotonicValueRange() { return nullptr; } |
| bool IsMonotonicValueRange() { |
| return AsMonotonicValueRange() != nullptr; |
| } |
| |
| ScopedArenaAllocator* GetAllocator() const { return allocator_; } |
| ValueBound GetLower() const { return lower_; } |
| ValueBound GetUpper() const { return upper_; } |
| |
| bool IsConstantValueRange() { return lower_.IsConstant() && upper_.IsConstant(); } |
| |
| // If it's certain that this value range fits in other_range. |
| virtual bool FitsIn(ValueRange* other_range) const { |
| if (other_range == nullptr) { |
| return true; |
| } |
| DCHECK(!other_range->IsMonotonicValueRange()); |
| return lower_.GreaterThanOrEqualTo(other_range->lower_) && |
| upper_.LessThanOrEqualTo(other_range->upper_); |
| } |
| |
| // Returns the intersection of this and range. |
| // If it's not possible to do intersection because some |
| // bounds are not comparable, it's ok to pick either bound. |
| virtual ValueRange* Narrow(ValueRange* range) { |
| if (range == nullptr) { |
| return this; |
| } |
| |
| if (range->IsMonotonicValueRange()) { |
| return this; |
| } |
| |
| return new (allocator_) ValueRange( |
| allocator_, |
| ValueBound::NarrowLowerBound(lower_, range->lower_), |
| ValueBound::NarrowUpperBound(upper_, range->upper_)); |
| } |
| |
| // Shift a range by a constant. |
| ValueRange* Add(int32_t constant) const { |
| bool overflow, underflow; |
| ValueBound lower = lower_.Add(constant, &overflow, &underflow); |
| if (underflow) { |
| // Lower bound underflow will wrap around to positive values |
| // and invalidate the upper bound. |
| return nullptr; |
| } |
| ValueBound upper = upper_.Add(constant, &overflow, &underflow); |
| if (overflow) { |
| // Upper bound overflow will wrap around to negative values |
| // and invalidate the lower bound. |
| return nullptr; |
| } |
| return new (allocator_) ValueRange(allocator_, lower, upper); |
| } |
| |
| private: |
| ScopedArenaAllocator* const allocator_; |
| const ValueBound lower_; // inclusive |
| const ValueBound upper_; // inclusive |
| |
| DISALLOW_COPY_AND_ASSIGN(ValueRange); |
| }; |
| |
| /** |
| * A monotonically incrementing/decrementing value range, e.g. |
| * the variable i in "for (int i=0; i<array.length; i++)". |
| * Special care needs to be taken to account for overflow/underflow |
| * of such value ranges. |
| */ |
| class MonotonicValueRange : public ValueRange { |
| public: |
| MonotonicValueRange(ScopedArenaAllocator* allocator, |
| HPhi* induction_variable, |
| HInstruction* initial, |
| int32_t increment, |
| ValueBound bound) |
| // To be conservative, give it full range [Min(), Max()] in case it's |
| // used as a regular value range, due to possible overflow/underflow. |
| : ValueRange(allocator, ValueBound::Min(), ValueBound::Max()), |
| induction_variable_(induction_variable), |
| initial_(initial), |
| increment_(increment), |
| bound_(bound) {} |
| |
| virtual ~MonotonicValueRange() {} |
| |
| int32_t GetIncrement() const { return increment_; } |
| ValueBound GetBound() const { return bound_; } |
| HBasicBlock* GetLoopHeader() const { |
| DCHECK(induction_variable_->GetBlock()->IsLoopHeader()); |
| return induction_variable_->GetBlock(); |
| } |
| |
| MonotonicValueRange* AsMonotonicValueRange() OVERRIDE { return this; } |
| |
| // If it's certain that this value range fits in other_range. |
| bool FitsIn(ValueRange* other_range) const OVERRIDE { |
| if (other_range == nullptr) { |
| return true; |
| } |
| DCHECK(!other_range->IsMonotonicValueRange()); |
| return false; |
| } |
| |
| // Try to narrow this MonotonicValueRange given another range. |
| // Ideally it will return a normal ValueRange. But due to |
| // possible overflow/underflow, that may not be possible. |
| ValueRange* Narrow(ValueRange* range) OVERRIDE { |
| if (range == nullptr) { |
| return this; |
| } |
| DCHECK(!range->IsMonotonicValueRange()); |
| |
| if (increment_ > 0) { |
| // Monotonically increasing. |
| ValueBound lower = ValueBound::NarrowLowerBound(bound_, range->GetLower()); |
| if (!lower.IsConstant() || lower.GetConstant() == std::numeric_limits<int32_t>::min()) { |
| // Lower bound isn't useful. Leave it to deoptimization. |
| return this; |
| } |
| |
| // We currently conservatively assume max array length is Max(). |
| // If we can make assumptions about the max array length, e.g. due to the max heap size, |
| // divided by the element size (such as 4 bytes for each integer array), we can |
| // lower this number and rule out some possible overflows. |
| int32_t max_array_len = std::numeric_limits<int32_t>::max(); |
| |
| // max possible integer value of range's upper value. |
| int32_t upper = std::numeric_limits<int32_t>::max(); |
| // Try to lower upper. |
| ValueBound upper_bound = range->GetUpper(); |
| if (upper_bound.IsConstant()) { |
| upper = upper_bound.GetConstant(); |
| } else if (upper_bound.IsRelatedToArrayLength() && upper_bound.GetConstant() <= 0) { |
| // Normal case. e.g. <= array.length - 1. |
| upper = max_array_len + upper_bound.GetConstant(); |
| } |
| |
| // If we can prove for the last number in sequence of initial_, |
| // initial_ + increment_, initial_ + 2 x increment_, ... |
| // that's <= upper, (last_num_in_sequence + increment_) doesn't trigger overflow, |
| // then this MonoticValueRange is narrowed to a normal value range. |
| |
| // Be conservative first, assume last number in the sequence hits upper. |
| int32_t last_num_in_sequence = upper; |
| if (initial_->IsIntConstant()) { |
| int32_t initial_constant = initial_->AsIntConstant()->GetValue(); |
| if (upper <= initial_constant) { |
| last_num_in_sequence = upper; |
| } else { |
| // Cast to int64_t for the substraction part to avoid int32_t overflow. |
| last_num_in_sequence = initial_constant + |
| ((int64_t)upper - (int64_t)initial_constant) / increment_ * increment_; |
| } |
| } |
| if (last_num_in_sequence <= (std::numeric_limits<int32_t>::max() - increment_)) { |
| // No overflow. The sequence will be stopped by the upper bound test as expected. |
| return new (GetAllocator()) ValueRange(GetAllocator(), lower, range->GetUpper()); |
| } |
| |
| // There might be overflow. Give up narrowing. |
| return this; |
| } else { |
| DCHECK_NE(increment_, 0); |
| // Monotonically decreasing. |
| ValueBound upper = ValueBound::NarrowUpperBound(bound_, range->GetUpper()); |
| if ((!upper.IsConstant() || upper.GetConstant() == std::numeric_limits<int32_t>::max()) && |
| !upper.IsRelatedToArrayLength()) { |
| // Upper bound isn't useful. Leave it to deoptimization. |
| return this; |
| } |
| |
| // Need to take care of underflow. Try to prove underflow won't happen |
| // for common cases. |
| if (range->GetLower().IsConstant()) { |
| int32_t constant = range->GetLower().GetConstant(); |
| if (constant >= (std::numeric_limits<int32_t>::min() - increment_)) { |
| return new (GetAllocator()) ValueRange(GetAllocator(), range->GetLower(), upper); |
| } |
| } |
| |
| // For non-constant lower bound, just assume might be underflow. Give up narrowing. |
| return this; |
| } |
| } |
| |
| private: |
| HPhi* const induction_variable_; // Induction variable for this monotonic value range. |
| HInstruction* const initial_; // Initial value. |
| const int32_t increment_; // Increment for each loop iteration. |
| const ValueBound bound_; // Additional value bound info for initial_. |
| |
| DISALLOW_COPY_AND_ASSIGN(MonotonicValueRange); |
| }; |
| |
| class BCEVisitor : public HGraphVisitor { |
| public: |
| // The least number of bounds checks that should be eliminated by triggering |
| // the deoptimization technique. |
| static constexpr size_t kThresholdForAddingDeoptimize = 2; |
| |
| // Very large lengths are considered an anomaly. This is a threshold beyond which we don't |
| // bother to apply the deoptimization technique since it's likely, or sometimes certain, |
| // an AIOOBE will be thrown. |
| static constexpr uint32_t kMaxLengthForAddingDeoptimize = |
| std::numeric_limits<int32_t>::max() - 1024 * 1024; |
| |
| // Added blocks for loop body entry test. |
| bool IsAddedBlock(HBasicBlock* block) const { |
| return block->GetBlockId() >= initial_block_size_; |
| } |
| |
| BCEVisitor(HGraph* graph, |
| const SideEffectsAnalysis& side_effects, |
| HInductionVarAnalysis* induction_analysis) |
| : HGraphVisitor(graph), |
| allocator_(graph->GetArenaStack()), |
| maps_(graph->GetBlocks().size(), |
| ScopedArenaSafeMap<int, ValueRange*>( |
| std::less<int>(), |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)), |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)), |
| first_index_bounds_check_map_(std::less<int>(), |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)), |
| early_exit_loop_(std::less<uint32_t>(), |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)), |
| taken_test_loop_(std::less<uint32_t>(), |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)), |
| finite_loop_(allocator_.Adapter(kArenaAllocBoundsCheckElimination)), |
| has_dom_based_dynamic_bce_(false), |
| initial_block_size_(graph->GetBlocks().size()), |
| side_effects_(side_effects), |
| induction_range_(induction_analysis), |
| next_(nullptr) {} |
| |
| void VisitBasicBlock(HBasicBlock* block) OVERRIDE { |
| DCHECK(!IsAddedBlock(block)); |
| first_index_bounds_check_map_.clear(); |
| // Visit phis and instructions using a safe iterator. The iteration protects |
| // against deleting the current instruction during iteration. However, it |
| // must advance next_ if that instruction is deleted during iteration. |
| for (HInstruction* instruction = block->GetFirstPhi(); instruction != nullptr;) { |
| DCHECK(instruction->IsInBlock()); |
| next_ = instruction->GetNext(); |
| instruction->Accept(this); |
| instruction = next_; |
| } |
| for (HInstruction* instruction = block->GetFirstInstruction(); instruction != nullptr;) { |
| DCHECK(instruction->IsInBlock()); |
| next_ = instruction->GetNext(); |
| instruction->Accept(this); |
| instruction = next_; |
| } |
| // We should never deoptimize from an osr method, otherwise we might wrongly optimize |
| // code dominated by the deoptimization. |
| if (!GetGraph()->IsCompilingOsr()) { |
| AddComparesWithDeoptimization(block); |
| } |
| } |
| |
| void Finish() { |
| // Preserve SSA structure which may have been broken by adding one or more |
| // new taken-test structures (see TransformLoopForDeoptimizationIfNeeded()). |
| InsertPhiNodes(); |
| |
| // Clear the loop data structures. |
| early_exit_loop_.clear(); |
| taken_test_loop_.clear(); |
| finite_loop_.clear(); |
| } |
| |
| private: |
| // Return the map of proven value ranges at the beginning of a basic block. |
| ScopedArenaSafeMap<int, ValueRange*>* GetValueRangeMap(HBasicBlock* basic_block) { |
| if (IsAddedBlock(basic_block)) { |
| // Added blocks don't keep value ranges. |
| return nullptr; |
| } |
| return &maps_[basic_block->GetBlockId()]; |
| } |
| |
| // Traverse up the dominator tree to look for value range info. |
| ValueRange* LookupValueRange(HInstruction* instruction, HBasicBlock* basic_block) { |
| while (basic_block != nullptr) { |
| ScopedArenaSafeMap<int, ValueRange*>* map = GetValueRangeMap(basic_block); |
| if (map != nullptr) { |
| if (map->find(instruction->GetId()) != map->end()) { |
| return map->Get(instruction->GetId()); |
| } |
| } else { |
| DCHECK(IsAddedBlock(basic_block)); |
| } |
| basic_block = basic_block->GetDominator(); |
| } |
| // Didn't find any. |
| return nullptr; |
| } |
| |
| // Helper method to assign a new range to an instruction in given basic block. |
| void AssignRange(HBasicBlock* basic_block, HInstruction* instruction, ValueRange* range) { |
| DCHECK(!range->IsMonotonicValueRange() || instruction->IsLoopHeaderPhi()); |
| GetValueRangeMap(basic_block)->Overwrite(instruction->GetId(), range); |
| } |
| |
| // Narrow the value range of `instruction` at the end of `basic_block` with `range`, |
| // and push the narrowed value range to `successor`. |
| void ApplyRangeFromComparison(HInstruction* instruction, HBasicBlock* basic_block, |
| HBasicBlock* successor, ValueRange* range) { |
| ValueRange* existing_range = LookupValueRange(instruction, basic_block); |
| if (existing_range == nullptr) { |
| if (range != nullptr) { |
| AssignRange(successor, instruction, range); |
| } |
| return; |
| } |
| if (existing_range->IsMonotonicValueRange()) { |
| DCHECK(instruction->IsLoopHeaderPhi()); |
| // Make sure the comparison is in the loop header so each increment is |
| // checked with a comparison. |
| if (instruction->GetBlock() != basic_block) { |
| return; |
| } |
| } |
| AssignRange(successor, instruction, existing_range->Narrow(range)); |
| } |
| |
| // Special case that we may simultaneously narrow two MonotonicValueRange's to |
| // regular value ranges. |
| void HandleIfBetweenTwoMonotonicValueRanges(HIf* instruction, |
| HInstruction* left, |
| HInstruction* right, |
| IfCondition cond, |
| MonotonicValueRange* left_range, |
| MonotonicValueRange* right_range) { |
| DCHECK(left->IsLoopHeaderPhi()); |
| DCHECK(right->IsLoopHeaderPhi()); |
| if (instruction->GetBlock() != left->GetBlock()) { |
| // Comparison needs to be in loop header to make sure it's done after each |
| // increment/decrement. |
| return; |
| } |
| |
| // Handle common cases which also don't have overflow/underflow concerns. |
| if (left_range->GetIncrement() == 1 && |
| left_range->GetBound().IsConstant() && |
| right_range->GetIncrement() == -1 && |
| right_range->GetBound().IsRelatedToArrayLength() && |
| right_range->GetBound().GetConstant() < 0) { |
| HBasicBlock* successor = nullptr; |
| int32_t left_compensation = 0; |
| int32_t right_compensation = 0; |
| if (cond == kCondLT) { |
| left_compensation = -1; |
| right_compensation = 1; |
| successor = instruction->IfTrueSuccessor(); |
| } else if (cond == kCondLE) { |
| successor = instruction->IfTrueSuccessor(); |
| } else if (cond == kCondGT) { |
| successor = instruction->IfFalseSuccessor(); |
| } else if (cond == kCondGE) { |
| left_compensation = -1; |
| right_compensation = 1; |
| successor = instruction->IfFalseSuccessor(); |
| } else { |
| // We don't handle '=='/'!=' test in case left and right can cross and |
| // miss each other. |
| return; |
| } |
| |
| if (successor != nullptr) { |
| bool overflow; |
| bool underflow; |
| ValueRange* new_left_range = new (&allocator_) ValueRange( |
| &allocator_, |
| left_range->GetBound(), |
| right_range->GetBound().Add(left_compensation, &overflow, &underflow)); |
| if (!overflow && !underflow) { |
| ApplyRangeFromComparison(left, instruction->GetBlock(), successor, |
| new_left_range); |
| } |
| |
| ValueRange* new_right_range = new (&allocator_) ValueRange( |
| &allocator_, |
| left_range->GetBound().Add(right_compensation, &overflow, &underflow), |
| right_range->GetBound()); |
| if (!overflow && !underflow) { |
| ApplyRangeFromComparison(right, instruction->GetBlock(), successor, |
| new_right_range); |
| } |
| } |
| } |
| } |
| |
| // Handle "if (left cmp_cond right)". |
| void HandleIf(HIf* instruction, HInstruction* left, HInstruction* right, IfCondition cond) { |
| HBasicBlock* block = instruction->GetBlock(); |
| |
| HBasicBlock* true_successor = instruction->IfTrueSuccessor(); |
| // There should be no critical edge at this point. |
| DCHECK_EQ(true_successor->GetPredecessors().size(), 1u); |
| |
| HBasicBlock* false_successor = instruction->IfFalseSuccessor(); |
| // There should be no critical edge at this point. |
| DCHECK_EQ(false_successor->GetPredecessors().size(), 1u); |
| |
| ValueRange* left_range = LookupValueRange(left, block); |
| MonotonicValueRange* left_monotonic_range = nullptr; |
| if (left_range != nullptr) { |
| left_monotonic_range = left_range->AsMonotonicValueRange(); |
| if (left_monotonic_range != nullptr) { |
| HBasicBlock* loop_head = left_monotonic_range->GetLoopHeader(); |
| if (instruction->GetBlock() != loop_head) { |
| // For monotonic value range, don't handle `instruction` |
| // if it's not defined in the loop header. |
| return; |
| } |
| } |
| } |
| |
| bool found; |
| ValueBound bound = ValueBound::DetectValueBoundFromValue(right, &found); |
| // Each comparison can establish a lower bound and an upper bound |
| // for the left hand side. |
| ValueBound lower = bound; |
| ValueBound upper = bound; |
| if (!found) { |
| // No constant or array.length+c format bound found. |
| // For i<j, we can still use j's upper bound as i's upper bound. Same for lower. |
| ValueRange* right_range = LookupValueRange(right, block); |
| if (right_range != nullptr) { |
| if (right_range->IsMonotonicValueRange()) { |
| if (left_range != nullptr && left_range->IsMonotonicValueRange()) { |
| HandleIfBetweenTwoMonotonicValueRanges(instruction, left, right, cond, |
| left_range->AsMonotonicValueRange(), |
| right_range->AsMonotonicValueRange()); |
| return; |
| } |
| } |
| lower = right_range->GetLower(); |
| upper = right_range->GetUpper(); |
| } else { |
| lower = ValueBound::Min(); |
| upper = ValueBound::Max(); |
| } |
| } |
| |
| bool overflow, underflow; |
| if (cond == kCondLT || cond == kCondLE) { |
| if (!upper.Equals(ValueBound::Max())) { |
| int32_t compensation = (cond == kCondLT) ? -1 : 0; // upper bound is inclusive |
| ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (&allocator_) ValueRange( |
| &allocator_, ValueBound::Min(), new_upper); |
| ApplyRangeFromComparison(left, block, true_successor, new_range); |
| } |
| |
| // array.length as a lower bound isn't considered useful. |
| if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { |
| int32_t compensation = (cond == kCondLE) ? 1 : 0; // lower bound is inclusive |
| ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (&allocator_) ValueRange( |
| &allocator_, new_lower, ValueBound::Max()); |
| ApplyRangeFromComparison(left, block, false_successor, new_range); |
| } |
| } else if (cond == kCondGT || cond == kCondGE) { |
| // array.length as a lower bound isn't considered useful. |
| if (!lower.Equals(ValueBound::Min()) && !lower.IsRelatedToArrayLength()) { |
| int32_t compensation = (cond == kCondGT) ? 1 : 0; // lower bound is inclusive |
| ValueBound new_lower = lower.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (&allocator_) ValueRange( |
| &allocator_, new_lower, ValueBound::Max()); |
| ApplyRangeFromComparison(left, block, true_successor, new_range); |
| } |
| |
| if (!upper.Equals(ValueBound::Max())) { |
| int32_t compensation = (cond == kCondGE) ? -1 : 0; // upper bound is inclusive |
| ValueBound new_upper = upper.Add(compensation, &overflow, &underflow); |
| if (overflow || underflow) { |
| return; |
| } |
| ValueRange* new_range = new (&allocator_) ValueRange( |
| &allocator_, ValueBound::Min(), new_upper); |
| ApplyRangeFromComparison(left, block, false_successor, new_range); |
| } |
| } else if (cond == kCondNE || cond == kCondEQ) { |
| if (left->IsArrayLength() && lower.IsConstant() && upper.IsConstant()) { |
| // Special case: |
| // length == [c,d] yields [c, d] along true |
| // length != [c,d] yields [c, d] along false |
| if (!lower.Equals(ValueBound::Min()) || !upper.Equals(ValueBound::Max())) { |
| ValueRange* new_range = new (&allocator_) ValueRange(&allocator_, lower, upper); |
| ApplyRangeFromComparison( |
| left, block, cond == kCondEQ ? true_successor : false_successor, new_range); |
| } |
| // In addition: |
| // length == 0 yields [1, max] along false |
| // length != 0 yields [1, max] along true |
| if (lower.GetConstant() == 0 && upper.GetConstant() == 0) { |
| ValueRange* new_range = new (&allocator_) ValueRange( |
| &allocator_, ValueBound(nullptr, 1), ValueBound::Max()); |
| ApplyRangeFromComparison( |
| left, block, cond == kCondEQ ? false_successor : true_successor, new_range); |
| } |
| } |
| } |
| } |
| |
| void VisitBoundsCheck(HBoundsCheck* bounds_check) OVERRIDE { |
| HBasicBlock* block = bounds_check->GetBlock(); |
| HInstruction* index = bounds_check->InputAt(0); |
| HInstruction* array_length = bounds_check->InputAt(1); |
| DCHECK(array_length->IsIntConstant() || |
| array_length->IsArrayLength() || |
| array_length->IsPhi()); |
| bool try_dynamic_bce = true; |
| // Analyze index range. |
| if (!index->IsIntConstant()) { |
| // Non-constant index. |
| ValueBound lower = ValueBound(nullptr, 0); // constant 0 |
| ValueBound upper = ValueBound(array_length, -1); // array_length - 1 |
| ValueRange array_range(&allocator_, lower, upper); |
| // Try index range obtained by dominator-based analysis. |
| ValueRange* index_range = LookupValueRange(index, block); |
| if (index_range != nullptr && index_range->FitsIn(&array_range)) { |
| ReplaceInstruction(bounds_check, index); |
| return; |
| } |
| // Try index range obtained by induction variable analysis. |
| // Disables dynamic bce if OOB is certain. |
| if (InductionRangeFitsIn(&array_range, bounds_check, &try_dynamic_bce)) { |
| ReplaceInstruction(bounds_check, index); |
| return; |
| } |
| } else { |
| // Constant index. |
| int32_t constant = index->AsIntConstant()->GetValue(); |
| if (constant < 0) { |
| // Will always throw exception. |
| return; |
| } else if (array_length->IsIntConstant()) { |
| if (constant < array_length->AsIntConstant()->GetValue()) { |
| ReplaceInstruction(bounds_check, index); |
| } |
| return; |
| } |
| // Analyze array length range. |
| DCHECK(array_length->IsArrayLength()); |
| ValueRange* existing_range = LookupValueRange(array_length, block); |
| if (existing_range != nullptr) { |
| ValueBound lower = existing_range->GetLower(); |
| DCHECK(lower.IsConstant()); |
| if (constant < lower.GetConstant()) { |
| ReplaceInstruction(bounds_check, index); |
| return; |
| } else { |
| // Existing range isn't strong enough to eliminate the bounds check. |
| // Fall through to update the array_length range with info from this |
| // bounds check. |
| } |
| } |
| // Once we have an array access like 'array[5] = 1', we record array.length >= 6. |
| // We currently don't do it for non-constant index since a valid array[i] can't prove |
| // a valid array[i-1] yet due to the lower bound side. |
| if (constant == std::numeric_limits<int32_t>::max()) { |
| // Max() as an index will definitely throw AIOOBE. |
| return; |
| } else { |
| ValueBound lower = ValueBound(nullptr, constant + 1); |
| ValueBound upper = ValueBound::Max(); |
| ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper); |
| AssignRange(block, array_length, range); |
| } |
| } |
| |
| // If static analysis fails, and OOB is not certain, try dynamic elimination. |
| if (try_dynamic_bce) { |
| // Try loop-based dynamic elimination. |
| HLoopInformation* loop = bounds_check->GetBlock()->GetLoopInformation(); |
| bool needs_finite_test = false; |
| bool needs_taken_test = false; |
| if (DynamicBCESeemsProfitable(loop, bounds_check->GetBlock()) && |
| induction_range_.CanGenerateRange( |
| bounds_check, index, &needs_finite_test, &needs_taken_test) && |
| CanHandleInfiniteLoop(loop, index, needs_finite_test) && |
| // Do this test last, since it may generate code. |
| CanHandleLength(loop, array_length, needs_taken_test)) { |
| TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); |
| TransformLoopForDynamicBCE(loop, bounds_check); |
| return; |
| } |
| // Otherwise, prepare dominator-based dynamic elimination. |
| if (first_index_bounds_check_map_.find(array_length->GetId()) == |
| first_index_bounds_check_map_.end()) { |
| // Remember the first bounds check against each array_length. That bounds check |
| // instruction has an associated HEnvironment where we may add an HDeoptimize |
| // to eliminate subsequent bounds checks against the same array_length. |
| first_index_bounds_check_map_.Put(array_length->GetId(), bounds_check); |
| } |
| } |
| } |
| |
| static bool HasSameInputAtBackEdges(HPhi* phi) { |
| DCHECK(phi->IsLoopHeaderPhi()); |
| HConstInputsRef inputs = phi->GetInputs(); |
| // Start with input 1. Input 0 is from the incoming block. |
| const HInstruction* input1 = inputs[1]; |
| DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( |
| *phi->GetBlock()->GetPredecessors()[1])); |
| for (size_t i = 2; i < inputs.size(); ++i) { |
| DCHECK(phi->GetBlock()->GetLoopInformation()->IsBackEdge( |
| *phi->GetBlock()->GetPredecessors()[i])); |
| if (input1 != inputs[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void VisitPhi(HPhi* phi) OVERRIDE { |
| if (phi->IsLoopHeaderPhi() |
| && (phi->GetType() == DataType::Type::kInt32) |
| && HasSameInputAtBackEdges(phi)) { |
| HInstruction* instruction = phi->InputAt(1); |
| HInstruction *left; |
| int32_t increment; |
| if (ValueBound::IsAddOrSubAConstant(instruction, &left, &increment)) { |
| if (left == phi) { |
| HInstruction* initial_value = phi->InputAt(0); |
| ValueRange* range = nullptr; |
| if (increment == 0) { |
| // Add constant 0. It's really a fixed value. |
| range = new (&allocator_) ValueRange( |
| &allocator_, |
| ValueBound(initial_value, 0), |
| ValueBound(initial_value, 0)); |
| } else { |
| // Monotonically increasing/decreasing. |
| bool found; |
| ValueBound bound = ValueBound::DetectValueBoundFromValue( |
| initial_value, &found); |
| if (!found) { |
| // No constant or array.length+c bound found. |
| // For i=j, we can still use j's upper bound as i's upper bound. |
| // Same for lower. |
| ValueRange* initial_range = LookupValueRange(initial_value, phi->GetBlock()); |
| if (initial_range != nullptr) { |
| bound = increment > 0 ? initial_range->GetLower() : |
| initial_range->GetUpper(); |
| } else { |
| bound = increment > 0 ? ValueBound::Min() : ValueBound::Max(); |
| } |
| } |
| range = new (&allocator_) MonotonicValueRange( |
| &allocator_, |
| phi, |
| initial_value, |
| increment, |
| bound); |
| } |
| AssignRange(phi->GetBlock(), phi, range); |
| } |
| } |
| } |
| } |
| |
| void VisitIf(HIf* instruction) OVERRIDE { |
| if (instruction->InputAt(0)->IsCondition()) { |
| HCondition* cond = instruction->InputAt(0)->AsCondition(); |
| HandleIf(instruction, cond->GetLeft(), cond->GetRight(), cond->GetCondition()); |
| } |
| } |
| |
| void VisitAdd(HAdd* add) OVERRIDE { |
| HInstruction* right = add->GetRight(); |
| if (right->IsIntConstant()) { |
| ValueRange* left_range = LookupValueRange(add->GetLeft(), add->GetBlock()); |
| if (left_range == nullptr) { |
| return; |
| } |
| ValueRange* range = left_range->Add(right->AsIntConstant()->GetValue()); |
| if (range != nullptr) { |
| AssignRange(add->GetBlock(), add, range); |
| } |
| } |
| } |
| |
| void VisitSub(HSub* sub) OVERRIDE { |
| HInstruction* left = sub->GetLeft(); |
| HInstruction* right = sub->GetRight(); |
| if (right->IsIntConstant()) { |
| ValueRange* left_range = LookupValueRange(left, sub->GetBlock()); |
| if (left_range == nullptr) { |
| return; |
| } |
| ValueRange* range = left_range->Add(-right->AsIntConstant()->GetValue()); |
| if (range != nullptr) { |
| AssignRange(sub->GetBlock(), sub, range); |
| return; |
| } |
| } |
| |
| // Here we are interested in the typical triangular case of nested loops, |
| // such as the inner loop 'for (int j=0; j<array.length-i; j++)' where i |
| // is the index for outer loop. In this case, we know j is bounded by array.length-1. |
| |
| // Try to handle (array.length - i) or (array.length + c - i) format. |
| HInstruction* left_of_left; // left input of left. |
| int32_t right_const = 0; |
| if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &right_const)) { |
| left = left_of_left; |
| } |
| // The value of left input of the sub equals (left + right_const). |
| |
| if (left->IsArrayLength()) { |
| HInstruction* array_length = left->AsArrayLength(); |
| ValueRange* right_range = LookupValueRange(right, sub->GetBlock()); |
| if (right_range != nullptr) { |
| ValueBound lower = right_range->GetLower(); |
| ValueBound upper = right_range->GetUpper(); |
| if (lower.IsConstant() && upper.IsRelatedToArrayLength()) { |
| HInstruction* upper_inst = upper.GetInstruction(); |
| // Make sure it's the same array. |
| if (ValueBound::Equal(array_length, upper_inst)) { |
| int32_t c0 = right_const; |
| int32_t c1 = lower.GetConstant(); |
| int32_t c2 = upper.GetConstant(); |
| // (array.length + c0 - v) where v is in [c1, array.length + c2] |
| // gets [c0 - c2, array.length + c0 - c1] as its value range. |
| if (!ValueBound::WouldAddOverflowOrUnderflow(c0, -c2) && |
| !ValueBound::WouldAddOverflowOrUnderflow(c0, -c1)) { |
| if ((c0 - c1) <= 0) { |
| // array.length + (c0 - c1) won't overflow/underflow. |
| ValueRange* range = new (&allocator_) ValueRange( |
| &allocator_, |
| ValueBound(nullptr, right_const - upper.GetConstant()), |
| ValueBound(array_length, right_const - lower.GetConstant())); |
| AssignRange(sub->GetBlock(), sub, range); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void FindAndHandlePartialArrayLength(HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsShr() || instruction->IsUShr()); |
| HInstruction* right = instruction->GetRight(); |
| int32_t right_const; |
| if (right->IsIntConstant()) { |
| right_const = right->AsIntConstant()->GetValue(); |
| // Detect division by two or more. |
| if ((instruction->IsDiv() && right_const <= 1) || |
| (instruction->IsShr() && right_const < 1) || |
| (instruction->IsUShr() && right_const < 1)) { |
| return; |
| } |
| } else { |
| return; |
| } |
| |
| // Try to handle array.length/2 or (array.length-1)/2 format. |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* left_of_left; // left input of left. |
| int32_t c = 0; |
| if (ValueBound::IsAddOrSubAConstant(left, &left_of_left, &c)) { |
| left = left_of_left; |
| } |
| // The value of left input of instruction equals (left + c). |
| |
| // (array_length + 1) or smaller divided by two or more |
| // always generate a value in [Min(), array_length]. |
| // This is true even if array_length is Max(). |
| if (left->IsArrayLength() && c <= 1) { |
| if (instruction->IsUShr() && c < 0) { |
| // Make sure for unsigned shift, left side is not negative. |
| // e.g. if array_length is 2, ((array_length - 3) >>> 2) is way bigger |
| // than array_length. |
| return; |
| } |
| ValueRange* range = new (&allocator_) ValueRange( |
| &allocator_, |
| ValueBound(nullptr, std::numeric_limits<int32_t>::min()), |
| ValueBound(left, 0)); |
| AssignRange(instruction->GetBlock(), instruction, range); |
| } |
| } |
| |
| void VisitDiv(HDiv* div) OVERRIDE { |
| FindAndHandlePartialArrayLength(div); |
| } |
| |
| void VisitShr(HShr* shr) OVERRIDE { |
| FindAndHandlePartialArrayLength(shr); |
| } |
| |
| void VisitUShr(HUShr* ushr) OVERRIDE { |
| FindAndHandlePartialArrayLength(ushr); |
| } |
| |
| void VisitAnd(HAnd* instruction) OVERRIDE { |
| if (instruction->GetRight()->IsIntConstant()) { |
| int32_t constant = instruction->GetRight()->AsIntConstant()->GetValue(); |
| if (constant > 0) { |
| // constant serves as a mask so any number masked with it |
| // gets a [0, constant] value range. |
| ValueRange* range = new (&allocator_) ValueRange( |
| &allocator_, |
| ValueBound(nullptr, 0), |
| ValueBound(nullptr, constant)); |
| AssignRange(instruction->GetBlock(), instruction, range); |
| } |
| } |
| } |
| |
| void VisitRem(HRem* instruction) OVERRIDE { |
| HInstruction* left = instruction->GetLeft(); |
| HInstruction* right = instruction->GetRight(); |
| |
| // Handle 'i % CONST' format expression in array index, e.g: |
| // array[i % 20]; |
| if (right->IsIntConstant()) { |
| int32_t right_const = std::abs(right->AsIntConstant()->GetValue()); |
| if (right_const == 0) { |
| return; |
| } |
| // The sign of divisor CONST doesn't affect the sign final value range. |
| // For example: |
| // if (i > 0) { |
| // array[i % 10]; // index value range [0, 9] |
| // array[i % -10]; // index value range [0, 9] |
| // } |
| ValueRange* right_range = new (&allocator_) ValueRange( |
| &allocator_, |
| ValueBound(nullptr, 1 - right_const), |
| ValueBound(nullptr, right_const - 1)); |
| |
| ValueRange* left_range = LookupValueRange(left, instruction->GetBlock()); |
| if (left_range != nullptr) { |
| right_range = right_range->Narrow(left_range); |
| } |
| AssignRange(instruction->GetBlock(), instruction, right_range); |
| return; |
| } |
| |
| // Handle following pattern: |
| // i0 NullCheck |
| // i1 ArrayLength[i0] |
| // i2 DivByZeroCheck [i1] <-- right |
| // i3 Rem [i5, i2] <-- we are here. |
| // i4 BoundsCheck [i3,i1] |
| if (right->IsDivZeroCheck()) { |
| // if array_length can pass div-by-zero check, |
| // array_length must be > 0. |
| right = right->AsDivZeroCheck()->InputAt(0); |
| } |
| |
| // Handle 'i % array.length' format expression in array index, e.g: |
| // array[(i+7) % array.length]; |
| if (right->IsArrayLength()) { |
| ValueBound lower = ValueBound::Min(); // ideally, lower should be '1-array_length'. |
| ValueBound upper = ValueBound(right, -1); // array_length - 1 |
| ValueRange* right_range = new (&allocator_) ValueRange( |
| &allocator_, |
| lower, |
| upper); |
| ValueRange* left_range = LookupValueRange(left, instruction->GetBlock()); |
| if (left_range != nullptr) { |
| right_range = right_range->Narrow(left_range); |
| } |
| AssignRange(instruction->GetBlock(), instruction, right_range); |
| return; |
| } |
| } |
| |
| void VisitNewArray(HNewArray* new_array) OVERRIDE { |
| HInstruction* len = new_array->GetLength(); |
| if (!len->IsIntConstant()) { |
| HInstruction *left; |
| int32_t right_const; |
| if (ValueBound::IsAddOrSubAConstant(len, &left, &right_const)) { |
| // (left + right_const) is used as size to new the array. |
| // We record "-right_const <= left <= new_array - right_const"; |
| ValueBound lower = ValueBound(nullptr, -right_const); |
| // We use new_array for the bound instead of new_array.length, |
| // which isn't available as an instruction yet. new_array will |
| // be treated the same as new_array.length when it's used in a ValueBound. |
| ValueBound upper = ValueBound(new_array, -right_const); |
| ValueRange* range = new (&allocator_) ValueRange(&allocator_, lower, upper); |
| ValueRange* existing_range = LookupValueRange(left, new_array->GetBlock()); |
| if (existing_range != nullptr) { |
| range = existing_range->Narrow(range); |
| } |
| AssignRange(new_array->GetBlock(), left, range); |
| } |
| } |
| } |
| |
| /** |
| * After null/bounds checks are eliminated, some invariant array references |
| * may be exposed underneath which can be hoisted out of the loop to the |
| * preheader or, in combination with dynamic bce, the deoptimization block. |
| * |
| * for (int i = 0; i < n; i++) { |
| * <-------+ |
| * for (int j = 0; j < n; j++) | |
| * a[i][j] = 0; --a[i]--+ |
| * } |
| * |
| * Note: this optimization is no longer applied after dominator-based dynamic deoptimization |
| * has occurred (see AddCompareWithDeoptimization()), since in those cases it would be |
| * unsafe to hoist array references across their deoptimization instruction inside a loop. |
| */ |
| void VisitArrayGet(HArrayGet* array_get) OVERRIDE { |
| if (!has_dom_based_dynamic_bce_ && array_get->IsInLoop()) { |
| HLoopInformation* loop = array_get->GetBlock()->GetLoopInformation(); |
| if (loop->IsDefinedOutOfTheLoop(array_get->InputAt(0)) && |
| loop->IsDefinedOutOfTheLoop(array_get->InputAt(1))) { |
| SideEffects loop_effects = side_effects_.GetLoopEffects(loop->GetHeader()); |
| if (!array_get->GetSideEffects().MayDependOn(loop_effects)) { |
| // We can hoist ArrayGet only if its execution is guaranteed on every iteration. |
| // In other words only if array_get_bb dominates all back branches. |
| if (loop->DominatesAllBackEdges(array_get->GetBlock())) { |
| HoistToPreHeaderOrDeoptBlock(loop, array_get); |
| } |
| } |
| } |
| } |
| } |
| |
| /** Performs dominator-based dynamic elimination on suitable set of bounds checks. */ |
| void AddCompareWithDeoptimization(HBasicBlock* block, |
| HInstruction* array_length, |
| HInstruction* base, |
| int32_t min_c, int32_t max_c) { |
| HBoundsCheck* bounds_check = |
| first_index_bounds_check_map_.Get(array_length->GetId())->AsBoundsCheck(); |
| // Construct deoptimization on single or double bounds on range [base-min_c,base+max_c], |
| // for example either for a[0]..a[3] just 3 or for a[base-1]..a[base+3] both base-1 |
| // and base+3, since we made the assumption any in between value may occur too. |
| // In code, using unsigned comparisons: |
| // (1) constants only |
| // if (max_c >= a.length) deoptimize; |
| // (2) general case |
| // if (base-min_c > base+max_c) deoptimize; |
| // if (base+max_c >= a.length ) deoptimize; |
| static_assert(kMaxLengthForAddingDeoptimize < std::numeric_limits<int32_t>::max(), |
| "Incorrect max length may be subject to arithmetic wrap-around"); |
| HInstruction* upper = GetGraph()->GetIntConstant(max_c); |
| if (base == nullptr) { |
| DCHECK_GE(min_c, 0); |
| } else { |
| HInstruction* lower = new (GetGraph()->GetAllocator()) |
| HAdd(DataType::Type::kInt32, base, GetGraph()->GetIntConstant(min_c)); |
| upper = new (GetGraph()->GetAllocator()) HAdd(DataType::Type::kInt32, base, upper); |
| block->InsertInstructionBefore(lower, bounds_check); |
| block->InsertInstructionBefore(upper, bounds_check); |
| InsertDeoptInBlock(bounds_check, new (GetGraph()->GetAllocator()) HAbove(lower, upper)); |
| } |
| InsertDeoptInBlock( |
| bounds_check, new (GetGraph()->GetAllocator()) HAboveOrEqual(upper, array_length)); |
| // Flag that this kind of deoptimization has occurred. |
| has_dom_based_dynamic_bce_ = true; |
| } |
| |
| /** Attempts dominator-based dynamic elimination on remaining candidates. */ |
| void AddComparesWithDeoptimization(HBasicBlock* block) { |
| for (const auto& entry : first_index_bounds_check_map_) { |
| HBoundsCheck* bounds_check = entry.second; |
| HInstruction* index = bounds_check->InputAt(0); |
| HInstruction* array_length = bounds_check->InputAt(1); |
| if (!array_length->IsArrayLength()) { |
| continue; // disregard phis and constants |
| } |
| // Collect all bounds checks that are still there and that are related as "a[base + constant]" |
| // for a base instruction (possibly absent) and various constants. Note that no attempt |
| // is made to partition the set into matching subsets (viz. a[0], a[1] and a[base+1] and |
| // a[base+2] are considered as one set). |
| // TODO: would such a partitioning be worthwhile? |
| ValueBound value = ValueBound::AsValueBound(index); |
| HInstruction* base = value.GetInstruction(); |
| int32_t min_c = base == nullptr ? 0 : value.GetConstant(); |
| int32_t max_c = value.GetConstant(); |
| ScopedArenaVector<HBoundsCheck*> candidates( |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)); |
| ScopedArenaVector<HBoundsCheck*> standby( |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)); |
| for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) { |
| // Another bounds check in same or dominated block? |
| HInstruction* user = use.GetUser(); |
| HBasicBlock* other_block = user->GetBlock(); |
| if (user->IsBoundsCheck() && block->Dominates(other_block)) { |
| HBoundsCheck* other_bounds_check = user->AsBoundsCheck(); |
| HInstruction* other_index = other_bounds_check->InputAt(0); |
| HInstruction* other_array_length = other_bounds_check->InputAt(1); |
| ValueBound other_value = ValueBound::AsValueBound(other_index); |
| if (array_length == other_array_length && base == other_value.GetInstruction()) { |
| // Reject certain OOB if BoundsCheck(l, l) occurs on considered subset. |
| if (array_length == other_index) { |
| candidates.clear(); |
| standby.clear(); |
| break; |
| } |
| // Since a subsequent dominated block could be under a conditional, only accept |
| // the other bounds check if it is in same block or both blocks dominate the exit. |
| // TODO: we could improve this by testing proper post-dominance, or even if this |
| // constant is seen along *all* conditional paths that follow. |
| HBasicBlock* exit = GetGraph()->GetExitBlock(); |
| if (block == user->GetBlock() || |
| (block->Dominates(exit) && other_block->Dominates(exit))) { |
| int32_t other_c = other_value.GetConstant(); |
| min_c = std::min(min_c, other_c); |
| max_c = std::max(max_c, other_c); |
| candidates.push_back(other_bounds_check); |
| } else { |
| // Add this candidate later only if it falls into the range. |
| standby.push_back(other_bounds_check); |
| } |
| } |
| } |
| } |
| // Add standby candidates that fall in selected range. |
| for (HBoundsCheck* other_bounds_check : standby) { |
| HInstruction* other_index = other_bounds_check->InputAt(0); |
| int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); |
| if (min_c <= other_c && other_c <= max_c) { |
| candidates.push_back(other_bounds_check); |
| } |
| } |
| // Perform dominator-based deoptimization if it seems profitable, where we eliminate |
| // bounds checks and replace these with deopt checks that guard against any possible |
| // OOB. Note that we reject cases where the distance min_c:max_c range gets close to |
| // the maximum possible array length, since those cases are likely to always deopt |
| // (such situations do not necessarily go OOB, though, since the array could be really |
| // large, or the programmer could rely on arithmetic wrap-around from max to min). |
| size_t threshold = kThresholdForAddingDeoptimize + (base == nullptr ? 0 : 1); // extra test? |
| uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c); |
| if (candidates.size() >= threshold && |
| (base != nullptr || min_c >= 0) && // reject certain OOB |
| distance <= kMaxLengthForAddingDeoptimize) { // reject likely/certain deopt |
| AddCompareWithDeoptimization(block, array_length, base, min_c, max_c); |
| for (HBoundsCheck* other_bounds_check : candidates) { |
| // Only replace if still in the graph. This avoids visiting the same |
| // bounds check twice if it occurred multiple times in the use list. |
| if (other_bounds_check->IsInBlock()) { |
| ReplaceInstruction(other_bounds_check, other_bounds_check->InputAt(0)); |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Returns true if static range analysis based on induction variables can determine the bounds |
| * check on the given array range is always satisfied with the computed index range. The output |
| * parameter try_dynamic_bce is set to false if OOB is certain. |
| */ |
| bool InductionRangeFitsIn(ValueRange* array_range, |
| HBoundsCheck* context, |
| bool* try_dynamic_bce) { |
| InductionVarRange::Value v1; |
| InductionVarRange::Value v2; |
| bool needs_finite_test = false; |
| HInstruction* index = context->InputAt(0); |
| HInstruction* hint = HuntForDeclaration(context->InputAt(1)); |
| if (induction_range_.GetInductionRange(context, index, hint, &v1, &v2, &needs_finite_test)) { |
| if (v1.is_known && (v1.a_constant == 0 || v1.a_constant == 1) && |
| v2.is_known && (v2.a_constant == 0 || v2.a_constant == 1)) { |
| DCHECK(v1.a_constant == 1 || v1.instruction == nullptr); |
| DCHECK(v2.a_constant == 1 || v2.instruction == nullptr); |
| ValueRange index_range(&allocator_, |
| ValueBound(v1.instruction, v1.b_constant), |
| ValueBound(v2.instruction, v2.b_constant)); |
| // If analysis reveals a certain OOB, disable dynamic BCE. Otherwise, |
| // use analysis for static bce only if loop is finite. |
| if (index_range.GetLower().LessThan(array_range->GetLower()) || |
| index_range.GetUpper().GreaterThan(array_range->GetUpper())) { |
| *try_dynamic_bce = false; |
| } else if (!needs_finite_test && index_range.FitsIn(array_range)) { |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| /** |
| * Performs loop-based dynamic elimination on a bounds check. In order to minimize the |
| * number of eventually generated tests, related bounds checks with tests that can be |
| * combined with tests for the given bounds check are collected first. |
| */ |
| void TransformLoopForDynamicBCE(HLoopInformation* loop, HBoundsCheck* bounds_check) { |
| HInstruction* index = bounds_check->InputAt(0); |
| HInstruction* array_length = bounds_check->InputAt(1); |
| DCHECK(loop->IsDefinedOutOfTheLoop(array_length)); // pre-checked |
| DCHECK(loop->DominatesAllBackEdges(bounds_check->GetBlock())); |
| // Collect all bounds checks in the same loop that are related as "a[base + constant]" |
| // for a base instruction (possibly absent) and various constants. |
| ValueBound value = ValueBound::AsValueBound(index); |
| HInstruction* base = value.GetInstruction(); |
| int32_t min_c = base == nullptr ? 0 : value.GetConstant(); |
| int32_t max_c = value.GetConstant(); |
| ScopedArenaVector<HBoundsCheck*> candidates( |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)); |
| ScopedArenaVector<HBoundsCheck*> standby( |
| allocator_.Adapter(kArenaAllocBoundsCheckElimination)); |
| for (const HUseListNode<HInstruction*>& use : array_length->GetUses()) { |
| HInstruction* user = use.GetUser(); |
| if (user->IsBoundsCheck() && loop == user->GetBlock()->GetLoopInformation()) { |
| HBoundsCheck* other_bounds_check = user->AsBoundsCheck(); |
| HInstruction* other_index = other_bounds_check->InputAt(0); |
| HInstruction* other_array_length = other_bounds_check->InputAt(1); |
| ValueBound other_value = ValueBound::AsValueBound(other_index); |
| int32_t other_c = other_value.GetConstant(); |
| if (array_length == other_array_length && base == other_value.GetInstruction()) { |
| // Ensure every candidate could be picked for code generation. |
| bool b1 = false, b2 = false; |
| if (!induction_range_.CanGenerateRange(other_bounds_check, other_index, &b1, &b2)) { |
| continue; |
| } |
| // Does the current basic block dominate all back edges? If not, |
| // add this candidate later only if it falls into the range. |
| if (!loop->DominatesAllBackEdges(user->GetBlock())) { |
| standby.push_back(other_bounds_check); |
| continue; |
| } |
| min_c = std::min(min_c, other_c); |
| max_c = std::max(max_c, other_c); |
| candidates.push_back(other_bounds_check); |
| } |
| } |
| } |
| // Add standby candidates that fall in selected range. |
| for (HBoundsCheck* other_bounds_check : standby) { |
| HInstruction* other_index = other_bounds_check->InputAt(0); |
| int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); |
| if (min_c <= other_c && other_c <= max_c) { |
| candidates.push_back(other_bounds_check); |
| } |
| } |
| // Perform loop-based deoptimization if it seems profitable, where we eliminate bounds |
| // checks and replace these with deopt checks that guard against any possible OOB. |
| DCHECK_LT(0u, candidates.size()); |
| uint32_t distance = static_cast<uint32_t>(max_c) - static_cast<uint32_t>(min_c); |
| if ((base != nullptr || min_c >= 0) && // reject certain OOB |
| distance <= kMaxLengthForAddingDeoptimize) { // reject likely/certain deopt |
| HBasicBlock* block = GetPreHeader(loop, bounds_check); |
| HInstruction* min_lower = nullptr; |
| HInstruction* min_upper = nullptr; |
| HInstruction* max_lower = nullptr; |
| HInstruction* max_upper = nullptr; |
| // Iterate over all bounds checks. |
| for (HBoundsCheck* other_bounds_check : candidates) { |
| // Only handle if still in the graph. This avoids visiting the same |
| // bounds check twice if it occurred multiple times in the use list. |
| if (other_bounds_check->IsInBlock()) { |
| HInstruction* other_index = other_bounds_check->InputAt(0); |
| int32_t other_c = ValueBound::AsValueBound(other_index).GetConstant(); |
| // Generate code for either the maximum or minimum. Range analysis already was queried |
| // whether code generation on the original and, thus, related bounds check was possible. |
| // It handles either loop invariants (lower is not set) or unit strides. |
| if (other_c == max_c) { |
| induction_range_.GenerateRange( |
| other_bounds_check, other_index, GetGraph(), block, &max_lower, &max_upper); |
| } else if (other_c == min_c && base != nullptr) { |
| induction_range_.GenerateRange( |
| other_bounds_check, other_index, GetGraph(), block, &min_lower, &min_upper); |
| } |
| ReplaceInstruction(other_bounds_check, other_index); |
| } |
| } |
| // In code, using unsigned comparisons: |
| // (1) constants only |
| // if (max_upper >= a.length ) deoptimize; |
| // (2) two symbolic invariants |
| // if (min_upper > max_upper) deoptimize; unless min_c == max_c |
| // if (max_upper >= a.length ) deoptimize; |
| // (3) general case, unit strides (where lower would exceed upper for arithmetic wrap-around) |
| // if (min_lower > max_lower) deoptimize; unless min_c == max_c |
| // if (max_lower > max_upper) deoptimize; |
| // if (max_upper >= a.length ) deoptimize; |
| if (base == nullptr) { |
| // Constants only. |
| DCHECK_GE(min_c, 0); |
| DCHECK(min_lower == nullptr && min_upper == nullptr && |
| max_lower == nullptr && max_upper != nullptr); |
| } else if (max_lower == nullptr) { |
| // Two symbolic invariants. |
| if (min_c != max_c) { |
| DCHECK(min_lower == nullptr && min_upper != nullptr && |
| max_lower == nullptr && max_upper != nullptr); |
| InsertDeoptInLoop( |
| loop, block, new (GetGraph()->GetAllocator()) HAbove(min_upper, max_upper)); |
| } else { |
| DCHECK(min_lower == nullptr && min_upper == nullptr && |
| max_lower == nullptr && max_upper != nullptr); |
| } |
| } else { |
| // General case, unit strides. |
| if (min_c != max_c) { |
| DCHECK(min_lower != nullptr && min_upper != nullptr && |
| max_lower != nullptr && max_upper != nullptr); |
| InsertDeoptInLoop( |
| loop, block, new (GetGraph()->GetAllocator()) HAbove(min_lower, max_lower)); |
| } else { |
| DCHECK(min_lower == nullptr && min_upper == nullptr && |
| max_lower != nullptr && max_upper != nullptr); |
| } |
| InsertDeoptInLoop( |
| loop, block, new (GetGraph()->GetAllocator()) HAbove(max_lower, max_upper)); |
| } |
| InsertDeoptInLoop( |
| loop, block, new (GetGraph()->GetAllocator()) HAboveOrEqual(max_upper, array_length)); |
| } else { |
| // TODO: if rejected, avoid doing this again for subsequent instructions in this set? |
| } |
| } |
| |
| /** |
| * Returns true if heuristics indicate that dynamic bce may be profitable. |
| */ |
| bool DynamicBCESeemsProfitable(HLoopInformation* loop, HBasicBlock* block) { |
| if (loop != nullptr) { |
| // The loop preheader of an irreducible loop does not dominate all the blocks in |
| // the loop. We would need to find the common dominator of all blocks in the loop. |
| if (loop->IsIrreducible()) { |
| return false; |
| } |
| // We should never deoptimize from an osr method, otherwise we might wrongly optimize |
| // code dominated by the deoptimization. |
| if (GetGraph()->IsCompilingOsr()) { |
| return false; |
| } |
| // A try boundary preheader is hard to handle. |
| // TODO: remove this restriction. |
| if (loop->GetPreHeader()->GetLastInstruction()->IsTryBoundary()) { |
| return false; |
| } |
| // Does loop have early-exits? If so, the full range may not be covered by the loop |
| // at runtime and testing the range may apply deoptimization unnecessarily. |
| if (IsEarlyExitLoop(loop)) { |
| return false; |
| } |
| // Does the current basic block dominate all back edges? If not, |
| // don't apply dynamic bce to something that may not be executed. |
| return loop->DominatesAllBackEdges(block); |
| } |
| return false; |
| } |
| |
| /** |
| * Returns true if the loop has early exits, which implies it may not cover |
| * the full range computed by range analysis based on induction variables. |
| */ |
| bool IsEarlyExitLoop(HLoopInformation* loop) { |
| const uint32_t loop_id = loop->GetHeader()->GetBlockId(); |
| // If loop has been analyzed earlier for early-exit, don't repeat the analysis. |
| auto it = early_exit_loop_.find(loop_id); |
| if (it != early_exit_loop_.end()) { |
| return it->second; |
| } |
| // First time early-exit analysis for this loop. Since analysis requires scanning |
| // the full loop-body, results of the analysis is stored for subsequent queries. |
| HBlocksInLoopReversePostOrderIterator it_loop(*loop); |
| for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) { |
| for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) { |
| if (!loop->Contains(*successor)) { |
| early_exit_loop_.Put(loop_id, true); |
| return true; |
| } |
| } |
| } |
| early_exit_loop_.Put(loop_id, false); |
| return false; |
| } |
| |
| /** |
| * Returns true if the array length is already loop invariant, or can be made so |
| * by handling the null check under the hood of the array length operation. |
| */ |
| bool CanHandleLength(HLoopInformation* loop, HInstruction* length, bool needs_taken_test) { |
| if (loop->IsDefinedOutOfTheLoop(length)) { |
| return true; |
| } else if (length->IsArrayLength() && length->GetBlock()->GetLoopInformation() == loop) { |
| if (CanHandleNullCheck(loop, length->InputAt(0), needs_taken_test)) { |
| HoistToPreHeaderOrDeoptBlock(loop, length); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /** |
| * Returns true if the null check is already loop invariant, or can be made so |
| * by generating a deoptimization test. |
| */ |
| bool CanHandleNullCheck(HLoopInformation* loop, HInstruction* check, bool needs_taken_test) { |
| if (loop->IsDefinedOutOfTheLoop(check)) { |
| return true; |
| } else if (check->IsNullCheck() && check->GetBlock()->GetLoopInformation() == loop) { |
| HInstruction* array = check->InputAt(0); |
| if (loop->IsDefinedOutOfTheLoop(array)) { |
| // Generate: if (array == null) deoptimize; |
| TransformLoopForDeoptimizationIfNeeded(loop, needs_taken_test); |
| HBasicBlock* block = GetPreHeader(loop, check); |
| HInstruction* cond = |
| new (GetGraph()->GetAllocator()) HEqual(array, GetGraph()->GetNullConstant()); |
| InsertDeoptInLoop(loop, block, cond, /* is_null_check */ true); |
| ReplaceInstruction(check, array); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /** |
| * Returns true if compiler can apply dynamic bce to loops that may be infinite |
| * (e.g. for (int i = 0; i <= U; i++) with U = MAX_INT), which would invalidate |
| * the range analysis evaluation code by "overshooting" the computed range. |
| * Since deoptimization would be a bad choice, and there is no other version |
| * of the loop to use, dynamic bce in such cases is only allowed if other tests |
| * ensure the loop is finite. |
| */ |
| bool CanHandleInfiniteLoop(HLoopInformation* loop, HInstruction* index, bool needs_infinite_test) { |
| if (needs_infinite_test) { |
| // If we already forced the loop to be finite, allow directly. |
| const uint32_t loop_id = loop->GetHeader()->GetBlockId(); |
| if (finite_loop_.find(loop_id) != finite_loop_.end()) { |
| return true; |
| } |
| // Otherwise, allow dynamic bce if the index (which is necessarily an induction at |
| // this point) is the direct loop index (viz. a[i]), since then the runtime tests |
| // ensure upper bound cannot cause an infinite loop. |
| HInstruction* control = loop->GetHeader()->GetLastInstruction(); |
| if (control->IsIf()) { |
| HInstruction* if_expr = control->AsIf()->InputAt(0); |
| if (if_expr->IsCondition()) { |
| HCondition* condition = if_expr->AsCondition(); |
| if (index == condition->InputAt(0) || |
| index == condition->InputAt(1)) { |
| finite_loop_.insert(loop_id); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| /** |
| * Returns appropriate preheader for the loop, depending on whether the |
| * instruction appears in the loop header or proper loop-body. |
| */ |
| HBasicBlock* GetPreHeader(HLoopInformation* loop, HInstruction* instruction) { |
| // Use preheader unless there is an earlier generated deoptimization block since |
| // hoisted expressions may depend on and/or used by the deoptimization tests. |
| HBasicBlock* header = loop->GetHeader(); |
| const uint32_t loop_id = header->GetBlockId(); |
| auto it = taken_test_loop_.find(loop_id); |
| if (it != taken_test_loop_.end()) { |
| HBasicBlock* block = it->second; |
| // If always taken, keep it that way by returning the original preheader, |
| // which can be found by following the predecessor of the true-block twice. |
| if (instruction->GetBlock() == header) { |
| return block->GetSinglePredecessor()->GetSinglePredecessor(); |
| } |
| return block; |
| } |
| return loop->GetPreHeader(); |
| } |
| |
| /** Inserts a deoptimization test in a loop preheader. */ |
| void InsertDeoptInLoop(HLoopInformation* loop, |
| HBasicBlock* block, |
| HInstruction* condition, |
| bool is_null_check = false) { |
| HInstruction* suspend = loop->GetSuspendCheck(); |
| block->InsertInstructionBefore(condition, block->GetLastInstruction()); |
| DeoptimizationKind kind = |
| is_null_check ? DeoptimizationKind::kLoopNullBCE : DeoptimizationKind::kLoopBoundsBCE; |
| HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize( |
| GetGraph()->GetAllocator(), condition, kind, suspend->GetDexPc()); |
| block->InsertInstructionBefore(deoptimize, block->GetLastInstruction()); |
| if (suspend->HasEnvironment()) { |
| deoptimize->CopyEnvironmentFromWithLoopPhiAdjustment( |
| suspend->GetEnvironment(), loop->GetHeader()); |
| } |
| } |
| |
| /** Inserts a deoptimization test right before a bounds check. */ |
| void InsertDeoptInBlock(HBoundsCheck* bounds_check, HInstruction* condition) { |
| HBasicBlock* block = bounds_check->GetBlock(); |
| block->InsertInstructionBefore(condition, bounds_check); |
| HDeoptimize* deoptimize = new (GetGraph()->GetAllocator()) HDeoptimize( |
| GetGraph()->GetAllocator(), |
| condition, |
| DeoptimizationKind::kBlockBCE, |
| bounds_check->GetDexPc()); |
| block->InsertInstructionBefore(deoptimize, bounds_check); |
| deoptimize->CopyEnvironmentFrom(bounds_check->GetEnvironment()); |
| } |
| |
| /** Hoists instruction out of the loop to preheader or deoptimization block. */ |
| void HoistToPreHeaderOrDeoptBlock(HLoopInformation* loop, HInstruction* instruction) { |
| HBasicBlock* block = GetPreHeader(loop, instruction); |
| DCHECK(!instruction->HasEnvironment()); |
| instruction->MoveBefore(block->GetLastInstruction()); |
| } |
| |
| /** |
| * Adds a new taken-test structure to a loop if needed and not already done. |
| * The taken-test protects range analysis evaluation code to avoid any |
| * deoptimization caused by incorrect trip-count evaluation in non-taken loops. |
| * |
| * old_preheader |
| * | |
| * if_block <- taken-test protects deoptimization block |
| * / \ |
| * true_block false_block <- deoptimizations/invariants are placed in true_block |
| * \ / |
| * new_preheader <- may require phi nodes to preserve SSA structure |
| * | |
| * header |
| * |
| * For example, this loop: |
| * |
| * for (int i = lower; i < upper; i++) { |
| * array[i] = 0; |
| * } |
| * |
| * will be transformed to: |
| * |
| * if (lower < upper) { |
| * if (array == null) deoptimize; |
| * array_length = array.length; |
| * if (lower > upper) deoptimize; // unsigned |
| * if (upper >= array_length) deoptimize; // unsigned |
| * } else { |
| * array_length = 0; |
| * } |
| * for (int i = lower; i < upper; i++) { |
| * // Loop without null check and bounds check, and any array.length replaced with array_length. |
| * array[i] = 0; |
| * } |
| */ |
| void TransformLoopForDeoptimizationIfNeeded(HLoopInformation* loop, bool needs_taken_test) { |
| // Not needed (can use preheader) or already done (can reuse)? |
| const uint32_t loop_id = loop->GetHeader()->GetBlockId(); |
| if (!needs_taken_test || taken_test_loop_.find(loop_id) != taken_test_loop_.end()) { |
| return; |
| } |
| |
| // Generate top test structure. |
| HBasicBlock* header = loop->GetHeader(); |
| GetGraph()->TransformLoopHeaderForBCE(header); |
| HBasicBlock* new_preheader = loop->GetPreHeader(); |
| HBasicBlock* if_block = new_preheader->GetDominator(); |
| HBasicBlock* true_block = if_block->GetSuccessors()[0]; // True successor. |
| HBasicBlock* false_block = if_block->GetSuccessors()[1]; // False successor. |
| |
| // Goto instructions. |
| true_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); |
| false_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); |
| new_preheader->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); |
| |
| // Insert the taken-test to see if the loop body is entered. If the |
| // loop isn't entered at all, it jumps around the deoptimization block. |
| if_block->AddInstruction(new (GetGraph()->GetAllocator()) HGoto()); // placeholder |
| HInstruction* condition = induction_range_.GenerateTakenTest( |
| header->GetLastInstruction(), GetGraph(), if_block); |
| DCHECK(condition != nullptr); |
| if_block->RemoveInstruction(if_block->GetLastInstruction()); |
| if_block->AddInstruction(new (GetGraph()->GetAllocator()) HIf(condition)); |
| |
| taken_test_loop_.Put(loop_id, true_block); |
| } |
| |
| /** |
| * Inserts phi nodes that preserve SSA structure in generated top test structures. |
| * All uses of instructions in the deoptimization block that reach the loop need |
| * a phi node in the new loop preheader to fix the dominance relation. |
| * |
| * Example: |
| * if_block |
| * / \ |
| * x_0 = .. false_block |
| * \ / |
| * x_1 = phi(x_0, null) <- synthetic phi |
| * | |
| * new_preheader |
| */ |
| void InsertPhiNodes() { |
| // Scan all new deoptimization blocks. |
| for (const auto& entry : taken_test_loop_) { |
| HBasicBlock* true_block = entry.second; |
| HBasicBlock* new_preheader = true_block->GetSingleSuccessor(); |
| // Scan all instructions in a new deoptimization block. |
| for (HInstructionIterator it(true_block->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* instruction = it.Current(); |
| DataType::Type type = instruction->GetType(); |
| HPhi* phi = nullptr; |
| // Scan all uses of an instruction and replace each later use with a phi node. |
| const HUseList<HInstruction*>& uses = instruction->GetUses(); |
| for (auto it2 = uses.begin(), end2 = uses.end(); it2 != end2; /* ++it2 below */) { |
| HInstruction* user = it2->GetUser(); |
| size_t index = it2->GetIndex(); |
| // Increment `it2` now because `*it2` may disappear thanks to user->ReplaceInput(). |
| ++it2; |
| if (user->GetBlock() != true_block) { |
| if (phi == nullptr) { |
| phi = NewPhi(new_preheader, instruction, type); |
| } |
| user->ReplaceInput(phi, index); // Removes the use node from the list. |
| induction_range_.Replace(user, instruction, phi); // update induction |
| } |
| } |
| // Scan all environment uses of an instruction and replace each later use with a phi node. |
| const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses(); |
| for (auto it2 = env_uses.begin(), end2 = env_uses.end(); it2 != end2; /* ++it2 below */) { |
| HEnvironment* user = it2->GetUser(); |
| size_t index = it2->GetIndex(); |
| // Increment `it2` now because `*it2` may disappear thanks to user->RemoveAsUserOfInput(). |
| ++it2; |
| if (user->GetHolder()->GetBlock() != true_block) { |
| if (phi == nullptr) { |
| phi = NewPhi(new_preheader, instruction, type); |
| } |
| user->RemoveAsUserOfInput(index); |
| user->SetRawEnvAt(index, phi); |
| phi->AddEnvUseAt(user, index); |
| } |
| } |
| } |
| } |
| } |
| |
| /** |
| * Construct a phi(instruction, 0) in the new preheader to fix the dominance relation. |
| * These are synthetic phi nodes without a virtual register. |
| */ |
| HPhi* NewPhi(HBasicBlock* new_preheader, |
| HInstruction* instruction, |
| DataType::Type type) { |
| HGraph* graph = GetGraph(); |
| HInstruction* zero; |
| switch (type) { |
| case DataType::Type::kReference: zero = graph->GetNullConstant(); break; |
| case DataType::Type::kFloat32: zero = graph->GetFloatConstant(0); break; |
| case DataType::Type::kFloat64: zero = graph->GetDoubleConstant(0); break; |
| default: zero = graph->GetConstant(type, 0); break; |
| } |
| HPhi* phi = new (graph->GetAllocator()) |
| HPhi(graph->GetAllocator(), kNoRegNumber, /*number_of_inputs*/ 2, HPhi::ToPhiType(type)); |
| phi->SetRawInputAt(0, instruction); |
| phi->SetRawInputAt(1, zero); |
| if (type == DataType::Type::kReference) { |
| phi->SetReferenceTypeInfo(instruction->GetReferenceTypeInfo()); |
| } |
| new_preheader->AddPhi(phi); |
| return phi; |
| } |
| |
| /** Helper method to replace an instruction with another instruction. */ |
| void ReplaceInstruction(HInstruction* instruction, HInstruction* replacement) { |
| // Safe iteration. |
| if (instruction == next_) { |
| next_ = next_->GetNext(); |
| } |
| // Replace and remove. |
| instruction->ReplaceWith(replacement); |
| instruction->GetBlock()->RemoveInstruction(instruction); |
| } |
| |
| // Use local allocator for allocating memory. |
| ScopedArenaAllocator allocator_; |
| |
| // A set of maps, one per basic block, from instruction to range. |
| ScopedArenaVector<ScopedArenaSafeMap<int, ValueRange*>> maps_; |
| |
| // Map an HArrayLength instruction's id to the first HBoundsCheck instruction |
| // in a block that checks an index against that HArrayLength. |
| ScopedArenaSafeMap<int, HBoundsCheck*> first_index_bounds_check_map_; |
| |
| // Early-exit loop bookkeeping. |
| ScopedArenaSafeMap<uint32_t, bool> early_exit_loop_; |
| |
| // Taken-test loop bookkeeping. |
| ScopedArenaSafeMap<uint32_t, HBasicBlock*> taken_test_loop_; |
| |
| // Finite loop bookkeeping. |
| ScopedArenaSet<uint32_t> finite_loop_; |
| |
| // Flag that denotes whether dominator-based dynamic elimination has occurred. |
| bool has_dom_based_dynamic_bce_; |
| |
| // Initial number of blocks. |
| uint32_t initial_block_size_; |
| |
| // Side effects. |
| const SideEffectsAnalysis& side_effects_; |
| |
| // Range analysis based on induction variables. |
| InductionVarRange induction_range_; |
| |
| // Safe iteration. |
| HInstruction* next_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BCEVisitor); |
| }; |
| |
| void BoundsCheckElimination::Run() { |
| if (!graph_->HasBoundsChecks()) { |
| return; |
| } |
| |
| // Reverse post order guarantees a node's dominators are visited first. |
| // We want to visit in the dominator-based order since if a value is known to |
| // be bounded by a range at one instruction, it must be true that all uses of |
| // that value dominated by that instruction fits in that range. Range of that |
| // value can be narrowed further down in the dominator tree. |
| BCEVisitor visitor(graph_, side_effects_, induction_analysis_); |
| for (size_t i = 0, size = graph_->GetReversePostOrder().size(); i != size; ++i) { |
| HBasicBlock* current = graph_->GetReversePostOrder()[i]; |
| if (visitor.IsAddedBlock(current)) { |
| // Skip added blocks. Their effects are already taken care of. |
| continue; |
| } |
| visitor.VisitBasicBlock(current); |
| // Skip forward to the current block in case new basic blocks were inserted |
| // (which always appear earlier in reverse post order) to avoid visiting the |
| // same basic block twice. |
| size_t new_size = graph_->GetReversePostOrder().size(); |
| DCHECK_GE(new_size, size); |
| i += new_size - size; |
| DCHECK_EQ(current, graph_->GetReversePostOrder()[i]); |
| size = new_size; |
| } |
| |
| // Perform cleanup. |
| visitor.Finish(); |
| } |
| |
| } // namespace art |