blob: c94b6666950c72f60cd205c8d9439e065186550d [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
#define ART_RUNTIME_GC_SPACE_SPACE_TEST_H_
#include <stdint.h>
#include <memory>
#include "base/globals.h"
#include "common_runtime_test.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "scoped_thread_state_change-inl.h"
#include "thread_list.h"
#include "zygote_space.h"
namespace art {
namespace gc {
namespace space {
template <class Super>
class SpaceTest : public Super {
public:
jobject byte_array_class_ = nullptr;
void AddSpace(ContinuousSpace* space, bool revoke = true) {
Heap* heap = Runtime::Current()->GetHeap();
if (revoke) {
heap->RevokeAllThreadLocalBuffers();
}
{
ScopedThreadStateChange sts(Thread::Current(), kSuspended);
ScopedSuspendAll ssa("Add image space");
heap->AddSpace(space);
}
heap->SetSpaceAsDefault(space);
}
mirror::Class* GetByteArrayClass(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_) {
if (byte_array_class_ == nullptr) {
ObjPtr<mirror::Class> byte_array_class =
Runtime::Current()->GetClassLinker()->FindSystemClass(self, "[B");
EXPECT_TRUE(byte_array_class != nullptr);
byte_array_class_ = self->GetJniEnv()->NewLocalRef(byte_array_class.Ptr());
EXPECT_TRUE(byte_array_class_ != nullptr);
}
return self->DecodeJObject(byte_array_class_)->AsClass();
}
mirror::Object* Alloc(space::MallocSpace* alloc_space,
Thread* self,
size_t bytes,
size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
mirror::Object* obj = alloc_space->Alloc(self,
bytes,
bytes_allocated,
usable_size,
bytes_tl_bulk_allocated);
if (obj != nullptr) {
InstallClass(obj, byte_array_class.Get(), bytes);
}
return obj;
}
mirror::Object* AllocWithGrowth(space::MallocSpace* alloc_space,
Thread* self,
size_t bytes,
size_t* bytes_allocated,
size_t* usable_size,
size_t* bytes_tl_bulk_allocated)
REQUIRES_SHARED(Locks::mutator_lock_) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> byte_array_class(hs.NewHandle(GetByteArrayClass(self)));
mirror::Object* obj = alloc_space->AllocWithGrowth(self, bytes, bytes_allocated, usable_size,
bytes_tl_bulk_allocated);
if (obj != nullptr) {
InstallClass(obj, byte_array_class.Get(), bytes);
}
return obj;
}
void InstallClass(mirror::Object* o, mirror::Class* byte_array_class, size_t size)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Note the minimum size, which is the size of a zero-length byte array.
EXPECT_GE(size, SizeOfZeroLengthByteArray());
EXPECT_TRUE(byte_array_class != nullptr);
o->SetClass(byte_array_class);
if (kUseBakerReadBarrier) {
// Like the proper heap object allocation, install and verify
// the correct read barrier state.
o->AssertReadBarrierState();
}
mirror::Array* arr = o->AsArray<kVerifyNone>();
size_t header_size = SizeOfZeroLengthByteArray();
int32_t length = size - header_size;
arr->SetLength(length);
EXPECT_EQ(arr->SizeOf<kVerifyNone>(), size);
}
static size_t SizeOfZeroLengthByteArray() {
return mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimByte)).Uint32Value();
}
typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
size_t capacity, uint8_t* requested_begin);
void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
int round, size_t growth_limit);
void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
};
static inline size_t test_rand(size_t* seed) {
*seed = *seed * 1103515245 + 12345;
return *seed;
}
template <class Super>
void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space,
intptr_t object_size,
int round,
size_t growth_limit) {
if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
// No allocation can succeed
return;
}
// The space's footprint equals amount of resources requested from system
size_t footprint = space->GetFootprint();
// The space must at least have its book keeping allocated
EXPECT_GT(footprint, 0u);
// But it shouldn't exceed the initial size
EXPECT_LE(footprint, growth_limit);
// space's size shouldn't exceed the initial size
EXPECT_LE(space->Size(), growth_limit);
// this invariant should always hold or else the space has grown to be larger than what the
// space believes its size is (which will break invariants)
EXPECT_GE(space->Size(), footprint);
// Fill the space with lots of small objects up to the growth limit
size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
std::unique_ptr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
size_t last_object = 0; // last object for which allocation succeeded
size_t amount_allocated = 0; // amount of space allocated
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
size_t rand_seed = 123456789;
for (size_t i = 0; i < max_objects; i++) {
size_t alloc_fails = 0; // number of failed allocations
size_t max_fails = 30; // number of times we fail allocation before giving up
for (; alloc_fails < max_fails; alloc_fails++) {
size_t alloc_size;
if (object_size > 0) {
alloc_size = object_size;
} else {
alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
// Note the minimum size, which is the size of a zero-length byte array.
size_t size_of_zero_length_byte_array = SizeOfZeroLengthByteArray();
if (alloc_size < size_of_zero_length_byte_array) {
alloc_size = size_of_zero_length_byte_array;
}
}
StackHandleScope<1> hs(soa.Self());
auto object(hs.NewHandle<mirror::Object>(nullptr));
size_t bytes_allocated = 0;
size_t bytes_tl_bulk_allocated;
if (round <= 1) {
object.Assign(Alloc(space, self, alloc_size, &bytes_allocated, nullptr,
&bytes_tl_bulk_allocated));
} else {
object.Assign(AllocWithGrowth(space, self, alloc_size, &bytes_allocated, nullptr,
&bytes_tl_bulk_allocated));
}
footprint = space->GetFootprint();
EXPECT_GE(space->Size(), footprint); // invariant
if (object != nullptr) { // allocation succeeded
lots_of_objects[i] = object.Get();
size_t allocation_size = space->AllocationSize(object.Get(), nullptr);
EXPECT_EQ(bytes_allocated, allocation_size);
if (object_size > 0) {
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
} else {
EXPECT_GE(allocation_size, 8u);
}
EXPECT_TRUE(bytes_tl_bulk_allocated == 0 ||
bytes_tl_bulk_allocated >= allocation_size);
amount_allocated += allocation_size;
break;
}
}
if (alloc_fails == max_fails) {
last_object = i;
break;
}
}
CHECK_NE(last_object, 0u); // we should have filled the space
EXPECT_GT(amount_allocated, 0u);
// We shouldn't have gone past the growth_limit
EXPECT_LE(amount_allocated, growth_limit);
EXPECT_LE(footprint, growth_limit);
EXPECT_LE(space->Size(), growth_limit);
// footprint and size should agree with amount allocated
EXPECT_GE(footprint, amount_allocated);
EXPECT_GE(space->Size(), amount_allocated);
// Release storage in a semi-adhoc manner
size_t free_increment = 96;
while (true) {
{
ScopedThreadStateChange tsc(self, kNative);
// Give the space a haircut.
space->Trim();
}
// Bounds sanity
footprint = space->GetFootprint();
EXPECT_LE(amount_allocated, growth_limit);
EXPECT_GE(footprint, amount_allocated);
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), amount_allocated);
EXPECT_LE(space->Size(), growth_limit);
if (free_increment == 0) {
break;
}
// Free some objects
for (size_t i = 0; i < last_object; i += free_increment) {
mirror::Object* object = lots_of_objects.get()[i];
if (object == nullptr) {
continue;
}
size_t allocation_size = space->AllocationSize(object, nullptr);
if (object_size > 0) {
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
} else {
EXPECT_GE(allocation_size, 8u);
}
space->Free(self, object);
lots_of_objects.get()[i] = nullptr;
amount_allocated -= allocation_size;
footprint = space->GetFootprint();
EXPECT_GE(space->Size(), footprint); // invariant
}
free_increment >>= 1;
}
// The space has become empty here before allocating a large object
// below. For RosAlloc, revoke thread-local runs, which are kept
// even when empty for a performance reason, so that they won't
// cause the following large object allocation to fail due to
// potential fragmentation. Note they are normally revoked at each
// GC (but no GC here.)
space->RevokeAllThreadLocalBuffers();
// All memory was released, try a large allocation to check freed memory is being coalesced
StackHandleScope<1> hs(soa.Self());
auto large_object(hs.NewHandle<mirror::Object>(nullptr));
size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
size_t bytes_allocated = 0;
size_t bytes_tl_bulk_allocated;
if (round <= 1) {
large_object.Assign(Alloc(space, self, three_quarters_space, &bytes_allocated, nullptr,
&bytes_tl_bulk_allocated));
} else {
large_object.Assign(AllocWithGrowth(space, self, three_quarters_space, &bytes_allocated,
nullptr, &bytes_tl_bulk_allocated));
}
EXPECT_TRUE(large_object != nullptr);
// Sanity check footprint
footprint = space->GetFootprint();
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), footprint);
EXPECT_LE(space->Size(), growth_limit);
// Clean up
space->Free(self, large_object.Assign(nullptr));
// Sanity check footprint
footprint = space->GetFootprint();
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), footprint);
EXPECT_LE(space->Size(), growth_limit);
}
template <class Super>
void SpaceTest<Super>::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size,
CreateSpaceFn create_space) {
if (object_size < SizeOfZeroLengthByteArray()) {
// Too small for the object layout/model.
return;
}
size_t initial_size = 4 * MB;
size_t growth_limit = 8 * MB;
size_t capacity = 16 * MB;
MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, nullptr));
ASSERT_TRUE(space != nullptr);
// Basic sanity
EXPECT_EQ(space->Capacity(), growth_limit);
EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
// In this round we don't allocate with growth and therefore can't grow past the initial size.
// This effectively makes the growth_limit the initial_size, so assert this.
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
// Remove growth limit
space->ClearGrowthLimit();
EXPECT_EQ(space->Capacity(), capacity);
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
}
#define TEST_SizeFootPrintGrowthLimitAndTrimStatic(name, spaceName, spaceFn, size) \
TEST_F(spaceName##StaticTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name) { \
SizeFootPrintGrowthLimitAndTrimDriver(size, spaceFn); \
}
#define TEST_SizeFootPrintGrowthLimitAndTrimRandom(name, spaceName, spaceFn, size) \
TEST_F(spaceName##RandomTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name) { \
SizeFootPrintGrowthLimitAndTrimDriver(-(size), spaceFn); \
}
#define TEST_SPACE_CREATE_FN_STATIC(spaceName, spaceFn) \
class spaceName##StaticTest : public SpaceTest<CommonRuntimeTest> { \
}; \
\
TEST_SizeFootPrintGrowthLimitAndTrimStatic(12B, spaceName, spaceFn, 12) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(16B, spaceName, spaceFn, 16) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(24B, spaceName, spaceFn, 24) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(32B, spaceName, spaceFn, 32) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(64B, spaceName, spaceFn, 64) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(128B, spaceName, spaceFn, 128) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(1KB, spaceName, spaceFn, 1 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(4KB, spaceName, spaceFn, 4 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(1MB, spaceName, spaceFn, 1 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(4MB, spaceName, spaceFn, 4 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimStatic(8MB, spaceName, spaceFn, 8 * MB)
#define TEST_SPACE_CREATE_FN_RANDOM(spaceName, spaceFn) \
class spaceName##RandomTest : public SpaceTest<CommonRuntimeTest> { \
}; \
\
TEST_SizeFootPrintGrowthLimitAndTrimRandom(16B, spaceName, spaceFn, 16) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(24B, spaceName, spaceFn, 24) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(32B, spaceName, spaceFn, 32) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(64B, spaceName, spaceFn, 64) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(128B, spaceName, spaceFn, 128) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(1KB, spaceName, spaceFn, 1 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(4KB, spaceName, spaceFn, 4 * KB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(1MB, spaceName, spaceFn, 1 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(4MB, spaceName, spaceFn, 4 * MB) \
TEST_SizeFootPrintGrowthLimitAndTrimRandom(8MB, spaceName, spaceFn, 8 * MB)
} // namespace space
} // namespace gc
} // namespace art
#endif // ART_RUNTIME_GC_SPACE_SPACE_TEST_H_