blob: 3cc573b9c93950af6385fdd42d933d8306fb7fc6 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "base/bit_vector-inl.h"
#include "compiler_internals.h"
#include "dataflow_iterator-inl.h"
#include "utils/scoped_arena_containers.h"
#define NOTVISITED (-1)
namespace art {
void MIRGraph::ClearAllVisitedFlags() {
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
bb->visited = false;
}
}
BasicBlock* MIRGraph::NeedsVisit(BasicBlock* bb) {
if (bb != NULL) {
if (bb->visited || bb->hidden) {
bb = NULL;
}
}
return bb;
}
BasicBlock* MIRGraph::NextUnvisitedSuccessor(BasicBlock* bb) {
BasicBlock* res = NeedsVisit(GetBasicBlock(bb->fall_through));
if (res == NULL) {
res = NeedsVisit(GetBasicBlock(bb->taken));
if (res == NULL) {
if (bb->successor_block_list_type != kNotUsed) {
for (SuccessorBlockInfo* sbi : bb->successor_blocks) {
res = NeedsVisit(GetBasicBlock(sbi->block));
if (res != NULL) {
break;
}
}
}
}
}
return res;
}
void MIRGraph::MarkPreOrder(BasicBlock* block) {
block->visited = true;
/* Enqueue the pre_order block id */
if (block->id != NullBasicBlockId) {
dfs_order_.push_back(block->id);
}
}
void MIRGraph::RecordDFSOrders(BasicBlock* block) {
DCHECK(temp_scoped_alloc_.get() != nullptr);
ScopedArenaVector<BasicBlock*> succ(temp_scoped_alloc_->Adapter());
MarkPreOrder(block);
succ.push_back(block);
while (!succ.empty()) {
BasicBlock* curr = succ.back();
BasicBlock* next_successor = NextUnvisitedSuccessor(curr);
if (next_successor != NULL) {
MarkPreOrder(next_successor);
succ.push_back(next_successor);
continue;
}
curr->dfs_id = dfs_post_order_.size();
if (curr->id != NullBasicBlockId) {
dfs_post_order_.push_back(curr->id);
}
succ.pop_back();
}
}
/* Sort the blocks by the Depth-First-Search */
void MIRGraph::ComputeDFSOrders() {
/* Clear the DFS pre-order and post-order lists. */
dfs_order_.clear();
dfs_order_.reserve(GetNumBlocks());
dfs_post_order_.clear();
dfs_post_order_.reserve(GetNumBlocks());
// Reset visited flags from all nodes
ClearAllVisitedFlags();
// Record dfs orders
RecordDFSOrders(GetEntryBlock());
num_reachable_blocks_ = dfs_order_.size();
if (num_reachable_blocks_ != num_blocks_) {
// Hide all unreachable blocks.
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
if (!bb->visited) {
bb->Hide(cu_);
}
}
}
}
/*
* Mark block bit on the per-Dalvik register vector to denote that Dalvik
* register idx is defined in BasicBlock bb.
*/
bool MIRGraph::FillDefBlockMatrix(BasicBlock* bb) {
if (bb->data_flow_info == NULL) {
return false;
}
for (uint32_t idx : bb->data_flow_info->def_v->Indexes()) {
/* Block bb defines register idx */
def_block_matrix_[idx]->SetBit(bb->id);
}
return true;
}
void MIRGraph::ComputeDefBlockMatrix() {
int num_registers = GetNumOfCodeAndTempVRs();
/* Allocate num_registers bit vector pointers */
def_block_matrix_ = static_cast<ArenaBitVector**>
(arena_->Alloc(sizeof(ArenaBitVector *) * num_registers,
kArenaAllocDFInfo));
int i;
/* Initialize num_register vectors with num_blocks bits each */
for (i = 0; i < num_registers; i++) {
def_block_matrix_[i] =
new (arena_) ArenaBitVector(arena_, GetNumBlocks(), false, kBitMapBMatrix);
}
AllNodesIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
FindLocalLiveIn(bb);
}
AllNodesIterator iter2(this);
for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
FillDefBlockMatrix(bb);
}
/*
* Also set the incoming parameters as defs in the entry block.
* Only need to handle the parameters for the outer method.
*/
int num_regs = GetNumOfCodeVRs();
int in_reg = GetFirstInVR();
for (; in_reg < num_regs; in_reg++) {
def_block_matrix_[in_reg]->SetBit(GetEntryBlock()->id);
}
}
void MIRGraph::ComputeDomPostOrderTraversal(BasicBlock* bb) {
// Clear the dominator post-order list.
dom_post_order_traversal_.clear();
dom_post_order_traversal_.reserve(num_reachable_blocks_);
ClearAllVisitedFlags();
DCHECK(temp_scoped_alloc_.get() != nullptr);
ScopedArenaVector<std::pair<BasicBlock*, ArenaBitVector::IndexIterator>> work_stack(
temp_scoped_alloc_->Adapter());
bb->visited = true;
work_stack.push_back(std::make_pair(bb, bb->i_dominated->Indexes().begin()));
while (!work_stack.empty()) {
std::pair<BasicBlock*, ArenaBitVector::IndexIterator>* curr = &work_stack.back();
BasicBlock* curr_bb = curr->first;
ArenaBitVector::IndexIterator* curr_idom_iter = &curr->second;
while (!curr_idom_iter->Done() && (NeedsVisit(GetBasicBlock(**curr_idom_iter)) == nullptr)) {
++*curr_idom_iter;
}
// NOTE: work_stack.push_back()/pop_back() invalidate curr and curr_idom_iter.
if (!curr_idom_iter->Done()) {
BasicBlock* new_bb = GetBasicBlock(**curr_idom_iter);
++*curr_idom_iter;
new_bb->visited = true;
work_stack.push_back(std::make_pair(new_bb, new_bb->i_dominated->Indexes().begin()));
} else {
// no successor/next
if (curr_bb->id != NullBasicBlockId) {
dom_post_order_traversal_.push_back(curr_bb->id);
}
work_stack.pop_back();
/* hacky loop detection */
if ((curr_bb->taken != NullBasicBlockId) && curr_bb->dominators->IsBitSet(curr_bb->taken)) {
curr_bb->nesting_depth++;
attributes_ |= METHOD_HAS_LOOP;
}
}
}
}
void MIRGraph::CheckForDominanceFrontier(BasicBlock* dom_bb,
const BasicBlock* succ_bb) {
/*
* TODO - evaluate whether phi will ever need to be inserted into exit
* blocks.
*/
if (succ_bb->i_dom != dom_bb->id &&
succ_bb->block_type == kDalvikByteCode &&
succ_bb->hidden == false) {
dom_bb->dom_frontier->SetBit(succ_bb->id);
}
}
/* Worker function to compute the dominance frontier */
bool MIRGraph::ComputeDominanceFrontier(BasicBlock* bb) {
/* Calculate DF_local */
if (bb->taken != NullBasicBlockId) {
CheckForDominanceFrontier(bb, GetBasicBlock(bb->taken));
}
if (bb->fall_through != NullBasicBlockId) {
CheckForDominanceFrontier(bb, GetBasicBlock(bb->fall_through));
}
if (bb->successor_block_list_type != kNotUsed) {
for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
BasicBlock* succ_bb = GetBasicBlock(successor_block_info->block);
CheckForDominanceFrontier(bb, succ_bb);
}
}
/* Calculate DF_up */
for (uint32_t dominated_idx : bb->i_dominated->Indexes()) {
BasicBlock* dominated_bb = GetBasicBlock(dominated_idx);
for (uint32_t df_up_block_idx : dominated_bb->dom_frontier->Indexes()) {
BasicBlock* df_up_block = GetBasicBlock(df_up_block_idx);
CheckForDominanceFrontier(bb, df_up_block);
}
}
return true;
}
/* Worker function for initializing domination-related data structures */
void MIRGraph::InitializeDominationInfo(BasicBlock* bb) {
int num_total_blocks = GetBasicBlockListCount();
if (bb->dominators == NULL) {
bb->dominators = new (arena_) ArenaBitVector(arena_, num_total_blocks,
true /* expandable */, kBitMapDominators);
bb->i_dominated = new (arena_) ArenaBitVector(arena_, num_total_blocks,
true /* expandable */, kBitMapIDominated);
bb->dom_frontier = new (arena_) ArenaBitVector(arena_, num_total_blocks,
true /* expandable */, kBitMapDomFrontier);
} else {
bb->dominators->ClearAllBits();
bb->i_dominated->ClearAllBits();
bb->dom_frontier->ClearAllBits();
}
/* Set all bits in the dominator vector */
bb->dominators->SetInitialBits(num_total_blocks);
return;
}
/*
* Walk through the ordered i_dom list until we reach common parent.
* Given the ordering of i_dom_list, this common parent represents the
* last element of the intersection of block1 and block2 dominators.
*/
int MIRGraph::FindCommonParent(int block1, int block2) {
while (block1 != block2) {
while (block1 < block2) {
block1 = i_dom_list_[block1];
DCHECK_NE(block1, NOTVISITED);
}
while (block2 < block1) {
block2 = i_dom_list_[block2];
DCHECK_NE(block2, NOTVISITED);
}
}
return block1;
}
/* Worker function to compute each block's immediate dominator */
bool MIRGraph::ComputeblockIDom(BasicBlock* bb) {
/* Special-case entry block */
if ((bb->id == NullBasicBlockId) || (bb == GetEntryBlock())) {
return false;
}
/* Iterate through the predecessors */
auto it = bb->predecessors.begin(), end = bb->predecessors.end();
/* Find the first processed predecessor */
int idom = -1;
for ( ; ; ++it) {
CHECK(it != end);
BasicBlock* pred_bb = GetBasicBlock(*it);
DCHECK(pred_bb != nullptr);
if (i_dom_list_[pred_bb->dfs_id] != NOTVISITED) {
idom = pred_bb->dfs_id;
break;
}
}
/* Scan the rest of the predecessors */
for ( ; it != end; ++it) {
BasicBlock* pred_bb = GetBasicBlock(*it);
DCHECK(pred_bb != nullptr);
if (i_dom_list_[pred_bb->dfs_id] == NOTVISITED) {
continue;
} else {
idom = FindCommonParent(pred_bb->dfs_id, idom);
}
}
DCHECK_NE(idom, NOTVISITED);
/* Did something change? */
if (i_dom_list_[bb->dfs_id] != idom) {
i_dom_list_[bb->dfs_id] = idom;
return true;
}
return false;
}
/* Worker function to compute each block's domintors */
bool MIRGraph::ComputeBlockDominators(BasicBlock* bb) {
if (bb == GetEntryBlock()) {
bb->dominators->ClearAllBits();
} else {
bb->dominators->Copy(GetBasicBlock(bb->i_dom)->dominators);
}
bb->dominators->SetBit(bb->id);
return false;
}
bool MIRGraph::SetDominators(BasicBlock* bb) {
if (bb != GetEntryBlock()) {
int idom_dfs_idx = i_dom_list_[bb->dfs_id];
DCHECK_NE(idom_dfs_idx, NOTVISITED);
int i_dom_idx = dfs_post_order_[idom_dfs_idx];
BasicBlock* i_dom = GetBasicBlock(i_dom_idx);
bb->i_dom = i_dom->id;
/* Add bb to the i_dominated set of the immediate dominator block */
i_dom->i_dominated->SetBit(bb->id);
}
return false;
}
/* Compute dominators, immediate dominator, and dominance fronter */
void MIRGraph::ComputeDominators() {
int num_reachable_blocks = num_reachable_blocks_;
/* Initialize domination-related data structures */
PreOrderDfsIterator iter(this);
for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
InitializeDominationInfo(bb);
}
/* Initialize & Clear i_dom_list */
if (max_num_reachable_blocks_ < num_reachable_blocks_) {
i_dom_list_ = static_cast<int*>(arena_->Alloc(sizeof(int) * num_reachable_blocks,
kArenaAllocDFInfo));
}
for (int i = 0; i < num_reachable_blocks; i++) {
i_dom_list_[i] = NOTVISITED;
}
/* For post-order, last block is entry block. Set its i_dom to istelf */
DCHECK_EQ(GetEntryBlock()->dfs_id, num_reachable_blocks-1);
i_dom_list_[GetEntryBlock()->dfs_id] = GetEntryBlock()->dfs_id;
/* Compute the immediate dominators */
RepeatingReversePostOrderDfsIterator iter2(this);
bool change = false;
for (BasicBlock* bb = iter2.Next(false); bb != NULL; bb = iter2.Next(change)) {
change = ComputeblockIDom(bb);
}
/* Set the dominator for the root node */
GetEntryBlock()->dominators->ClearAllBits();
GetEntryBlock()->dominators->SetBit(GetEntryBlock()->id);
GetEntryBlock()->i_dom = 0;
PreOrderDfsIterator iter3(this);
for (BasicBlock* bb = iter3.Next(); bb != NULL; bb = iter3.Next()) {
SetDominators(bb);
}
ReversePostOrderDfsIterator iter4(this);
for (BasicBlock* bb = iter4.Next(); bb != NULL; bb = iter4.Next()) {
ComputeBlockDominators(bb);
}
// Compute the dominance frontier for each block.
ComputeDomPostOrderTraversal(GetEntryBlock());
PostOrderDOMIterator iter5(this);
for (BasicBlock* bb = iter5.Next(); bb != NULL; bb = iter5.Next()) {
ComputeDominanceFrontier(bb);
}
}
/*
* Perform dest U= src1 ^ ~src2
* This is probably not general enough to be placed in BitVector.[ch].
*/
void MIRGraph::ComputeSuccLineIn(ArenaBitVector* dest, const ArenaBitVector* src1,
const ArenaBitVector* src2) {
if (dest->GetStorageSize() != src1->GetStorageSize() ||
dest->GetStorageSize() != src2->GetStorageSize() ||
dest->IsExpandable() != src1->IsExpandable() ||
dest->IsExpandable() != src2->IsExpandable()) {
LOG(FATAL) << "Incompatible set properties";
}
unsigned int idx;
for (idx = 0; idx < dest->GetStorageSize(); idx++) {
dest->GetRawStorage()[idx] |= src1->GetRawStorageWord(idx) & ~(src2->GetRawStorageWord(idx));
}
}
/*
* Iterate through all successor blocks and propagate up the live-in sets.
* The calculated result is used for phi-node pruning - where we only need to
* insert a phi node if the variable is live-in to the block.
*/
bool MIRGraph::ComputeBlockLiveIns(BasicBlock* bb) {
DCHECK_EQ(temp_bit_vector_size_, cu_->mir_graph.get()->GetNumOfCodeAndTempVRs());
ArenaBitVector* temp_dalvik_register_v = temp_bit_vector_;
if (bb->data_flow_info == NULL) {
return false;
}
temp_dalvik_register_v->Copy(bb->data_flow_info->live_in_v);
BasicBlock* bb_taken = GetBasicBlock(bb->taken);
BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
if (bb_taken && bb_taken->data_flow_info)
ComputeSuccLineIn(temp_dalvik_register_v, bb_taken->data_flow_info->live_in_v,
bb->data_flow_info->def_v);
if (bb_fall_through && bb_fall_through->data_flow_info)
ComputeSuccLineIn(temp_dalvik_register_v, bb_fall_through->data_flow_info->live_in_v,
bb->data_flow_info->def_v);
if (bb->successor_block_list_type != kNotUsed) {
for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
BasicBlock* succ_bb = GetBasicBlock(successor_block_info->block);
if (succ_bb->data_flow_info) {
ComputeSuccLineIn(temp_dalvik_register_v, succ_bb->data_flow_info->live_in_v,
bb->data_flow_info->def_v);
}
}
}
if (!temp_dalvik_register_v->Equal(bb->data_flow_info->live_in_v)) {
bb->data_flow_info->live_in_v->Copy(temp_dalvik_register_v);
return true;
}
return false;
}
/* Insert phi nodes to for each variable to the dominance frontiers */
void MIRGraph::InsertPhiNodes() {
int dalvik_reg;
ArenaBitVector* phi_blocks = new (temp_scoped_alloc_.get()) ArenaBitVector(
temp_scoped_alloc_.get(), GetNumBlocks(), false, kBitMapPhi);
ArenaBitVector* input_blocks = new (temp_scoped_alloc_.get()) ArenaBitVector(
temp_scoped_alloc_.get(), GetNumBlocks(), false, kBitMapInputBlocks);
RepeatingPostOrderDfsIterator iter(this);
bool change = false;
for (BasicBlock* bb = iter.Next(false); bb != NULL; bb = iter.Next(change)) {
change = ComputeBlockLiveIns(bb);
}
/* Iterate through each Dalvik register */
for (dalvik_reg = GetNumOfCodeAndTempVRs() - 1; dalvik_reg >= 0; dalvik_reg--) {
input_blocks->Copy(def_block_matrix_[dalvik_reg]);
phi_blocks->ClearAllBits();
do {
// TUNING: When we repeat this, we could skip indexes from the previous pass.
for (uint32_t idx : input_blocks->Indexes()) {
BasicBlock* def_bb = GetBasicBlock(idx);
if (def_bb->dom_frontier != nullptr) {
phi_blocks->Union(def_bb->dom_frontier);
}
}
} while (input_blocks->Union(phi_blocks));
/*
* Insert a phi node for dalvik_reg in the phi_blocks if the Dalvik
* register is in the live-in set.
*/
for (uint32_t idx : phi_blocks->Indexes()) {
BasicBlock* phi_bb = GetBasicBlock(idx);
/* Variable will be clobbered before being used - no need for phi */
if (!phi_bb->data_flow_info->live_in_v->IsBitSet(dalvik_reg)) {
continue;
}
MIR *phi = NewMIR();
phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpPhi);
phi->dalvikInsn.vA = dalvik_reg;
phi->offset = phi_bb->start_offset;
phi->m_unit_index = 0; // Arbitrarily assign all Phi nodes to outermost method.
phi_bb->PrependMIR(phi);
}
}
}
/*
* Worker function to insert phi-operands with latest SSA names from
* predecessor blocks
*/
bool MIRGraph::InsertPhiNodeOperands(BasicBlock* bb) {
/* Phi nodes are at the beginning of each block */
for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
if (mir->dalvikInsn.opcode != static_cast<Instruction::Code>(kMirOpPhi))
return true;
int ssa_reg = mir->ssa_rep->defs[0];
DCHECK_GE(ssa_reg, 0); // Shouldn't see compiler temps here
int v_reg = SRegToVReg(ssa_reg);
/* Iterate through the predecessors */
size_t num_uses = bb->predecessors.size();
AllocateSSAUseData(mir, num_uses);
int* uses = mir->ssa_rep->uses;
BasicBlockId* incoming =
static_cast<BasicBlockId*>(arena_->Alloc(sizeof(BasicBlockId) * num_uses,
kArenaAllocDFInfo));
mir->meta.phi_incoming = incoming;
int idx = 0;
for (BasicBlockId pred_id : bb->predecessors) {
BasicBlock* pred_bb = GetBasicBlock(pred_id);
DCHECK(pred_bb != nullptr);
int ssa_reg = pred_bb->data_flow_info->vreg_to_ssa_map_exit[v_reg];
uses[idx] = ssa_reg;
incoming[idx] = pred_id;
idx++;
}
}
return true;
}
void MIRGraph::DoDFSPreOrderSSARename(BasicBlock* block) {
if (block->visited || block->hidden) {
return;
}
block->visited = true;
/* Process this block */
DoSSAConversion(block);
int map_size = sizeof(int) * GetNumOfCodeAndTempVRs();
/* Save SSA map snapshot */
ScopedArenaAllocator allocator(&cu_->arena_stack);
int* saved_ssa_map =
static_cast<int*>(allocator.Alloc(map_size, kArenaAllocDalvikToSSAMap));
memcpy(saved_ssa_map, vreg_to_ssa_map_, map_size);
if (block->fall_through != NullBasicBlockId) {
DoDFSPreOrderSSARename(GetBasicBlock(block->fall_through));
/* Restore SSA map snapshot */
memcpy(vreg_to_ssa_map_, saved_ssa_map, map_size);
}
if (block->taken != NullBasicBlockId) {
DoDFSPreOrderSSARename(GetBasicBlock(block->taken));
/* Restore SSA map snapshot */
memcpy(vreg_to_ssa_map_, saved_ssa_map, map_size);
}
if (block->successor_block_list_type != kNotUsed) {
for (SuccessorBlockInfo* successor_block_info : block->successor_blocks) {
BasicBlock* succ_bb = GetBasicBlock(successor_block_info->block);
DoDFSPreOrderSSARename(succ_bb);
/* Restore SSA map snapshot */
memcpy(vreg_to_ssa_map_, saved_ssa_map, map_size);
}
}
return;
}
} // namespace art