blob: 4ee5b23eb90209c400c72d98bb4ef5bcde41e6b7 [file] [log] [blame]
/*
* Copyright (C) 2012 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "codegen_mips.h"
#include "dex/compiler_internals.h"
#include "dex/quick/mir_to_lir-inl.h"
#include "mips_lir.h"
#include <string>
namespace art {
static int core_regs[] = {r_ZERO, r_AT, r_V0, r_V1, r_A0, r_A1, r_A2, r_A3,
r_T0, r_T1, r_T2, r_T3, r_T4, r_T5, r_T6, r_T7,
r_S0, r_S1, r_S2, r_S3, r_S4, r_S5, r_S6, r_S7, r_T8,
r_T9, r_K0, r_K1, r_GP, r_SP, r_FP, r_RA};
static int ReservedRegs[] = {r_ZERO, r_AT, r_S0, r_S1, r_K0, r_K1, r_GP, r_SP,
r_RA};
static int core_temps[] = {r_V0, r_V1, r_A0, r_A1, r_A2, r_A3, r_T0, r_T1, r_T2,
r_T3, r_T4, r_T5, r_T6, r_T7, r_T8};
static int FpRegs[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7,
r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15};
static int fp_temps[] = {r_F0, r_F1, r_F2, r_F3, r_F4, r_F5, r_F6, r_F7,
r_F8, r_F9, r_F10, r_F11, r_F12, r_F13, r_F14, r_F15};
RegLocation MipsMir2Lir::LocCReturn() {
RegLocation res = MIPS_LOC_C_RETURN;
return res;
}
RegLocation MipsMir2Lir::LocCReturnWide() {
RegLocation res = MIPS_LOC_C_RETURN_WIDE;
return res;
}
RegLocation MipsMir2Lir::LocCReturnFloat() {
RegLocation res = MIPS_LOC_C_RETURN_FLOAT;
return res;
}
RegLocation MipsMir2Lir::LocCReturnDouble() {
RegLocation res = MIPS_LOC_C_RETURN_DOUBLE;
return res;
}
// Return a target-dependent special register.
int MipsMir2Lir::TargetReg(SpecialTargetRegister reg) {
int res = INVALID_REG;
switch (reg) {
case kSelf: res = rMIPS_SELF; break;
case kSuspend: res = rMIPS_SUSPEND; break;
case kLr: res = rMIPS_LR; break;
case kPc: res = rMIPS_PC; break;
case kSp: res = rMIPS_SP; break;
case kArg0: res = rMIPS_ARG0; break;
case kArg1: res = rMIPS_ARG1; break;
case kArg2: res = rMIPS_ARG2; break;
case kArg3: res = rMIPS_ARG3; break;
case kFArg0: res = rMIPS_FARG0; break;
case kFArg1: res = rMIPS_FARG1; break;
case kFArg2: res = rMIPS_FARG2; break;
case kFArg3: res = rMIPS_FARG3; break;
case kRet0: res = rMIPS_RET0; break;
case kRet1: res = rMIPS_RET1; break;
case kInvokeTgt: res = rMIPS_INVOKE_TGT; break;
case kCount: res = rMIPS_COUNT; break;
}
return res;
}
// Create a double from a pair of singles.
int MipsMir2Lir::S2d(int low_reg, int high_reg) {
return MIPS_S2D(low_reg, high_reg);
}
// Return mask to strip off fp reg flags and bias.
uint32_t MipsMir2Lir::FpRegMask() {
return MIPS_FP_REG_MASK;
}
// True if both regs single, both core or both double.
bool MipsMir2Lir::SameRegType(int reg1, int reg2) {
return (MIPS_REGTYPE(reg1) == MIPS_REGTYPE(reg2));
}
/*
* Decode the register id.
*/
uint64_t MipsMir2Lir::GetRegMaskCommon(int reg) {
uint64_t seed;
int shift;
int reg_id;
reg_id = reg & 0x1f;
/* Each double register is equal to a pair of single-precision FP registers */
seed = MIPS_DOUBLEREG(reg) ? 3 : 1;
/* FP register starts at bit position 16 */
shift = MIPS_FPREG(reg) ? kMipsFPReg0 : 0;
/* Expand the double register id into single offset */
shift += reg_id;
return (seed << shift);
}
uint64_t MipsMir2Lir::GetPCUseDefEncoding() {
return ENCODE_MIPS_REG_PC;
}
void MipsMir2Lir::SetupTargetResourceMasks(LIR* lir) {
DCHECK_EQ(cu_->instruction_set, kMips);
// Mips-specific resource map setup here.
uint64_t flags = MipsMir2Lir::EncodingMap[lir->opcode].flags;
if (flags & REG_DEF_SP) {
lir->def_mask |= ENCODE_MIPS_REG_SP;
}
if (flags & REG_USE_SP) {
lir->use_mask |= ENCODE_MIPS_REG_SP;
}
if (flags & REG_DEF_LR) {
lir->def_mask |= ENCODE_MIPS_REG_LR;
}
}
/* For dumping instructions */
#define MIPS_REG_COUNT 32
static const char *mips_reg_name[MIPS_REG_COUNT] = {
"zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
"t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
"s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
"t8", "t9", "k0", "k1", "gp", "sp", "fp", "ra"
};
/*
* Interpret a format string and build a string no longer than size
* See format key in Assemble.c.
*/
std::string MipsMir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
std::string buf;
int i;
const char *fmt_end = &fmt[strlen(fmt)];
char tbuf[256];
char nc;
while (fmt < fmt_end) {
int operand;
if (*fmt == '!') {
fmt++;
DCHECK_LT(fmt, fmt_end);
nc = *fmt++;
if (nc == '!') {
strcpy(tbuf, "!");
} else {
DCHECK_LT(fmt, fmt_end);
DCHECK_LT(static_cast<unsigned>(nc-'0'), 4u);
operand = lir->operands[nc-'0'];
switch (*fmt++) {
case 'b':
strcpy(tbuf, "0000");
for (i = 3; i >= 0; i--) {
tbuf[i] += operand & 1;
operand >>= 1;
}
break;
case 's':
sprintf(tbuf, "$f%d", operand & MIPS_FP_REG_MASK);
break;
case 'S':
DCHECK_EQ(((operand & MIPS_FP_REG_MASK) & 1), 0);
sprintf(tbuf, "$f%d", operand & MIPS_FP_REG_MASK);
break;
case 'h':
sprintf(tbuf, "%04x", operand);
break;
case 'M':
case 'd':
sprintf(tbuf, "%d", operand);
break;
case 'D':
sprintf(tbuf, "%d", operand+1);
break;
case 'E':
sprintf(tbuf, "%d", operand*4);
break;
case 'F':
sprintf(tbuf, "%d", operand*2);
break;
case 't':
sprintf(tbuf, "0x%08x (L%p)", reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4 +
(operand << 2), lir->target);
break;
case 'T':
sprintf(tbuf, "0x%08x", operand << 2);
break;
case 'u': {
int offset_1 = lir->operands[0];
int offset_2 = NEXT_LIR(lir)->operands[0];
uintptr_t target =
(((reinterpret_cast<uintptr_t>(base_addr) + lir->offset + 4) & ~3) +
(offset_1 << 21 >> 9) + (offset_2 << 1)) & 0xfffffffc;
sprintf(tbuf, "%p", reinterpret_cast<void*>(target));
break;
}
/* Nothing to print for BLX_2 */
case 'v':
strcpy(tbuf, "see above");
break;
case 'r':
DCHECK(operand >= 0 && operand < MIPS_REG_COUNT);
strcpy(tbuf, mips_reg_name[operand]);
break;
case 'N':
// Placeholder for delay slot handling
strcpy(tbuf, "; nop");
break;
default:
strcpy(tbuf, "DecodeError");
break;
}
buf += tbuf;
}
} else {
buf += *fmt++;
}
}
return buf;
}
// FIXME: need to redo resource maps for MIPS - fix this at that time
void MipsMir2Lir::DumpResourceMask(LIR *mips_lir, uint64_t mask, const char *prefix) {
char buf[256];
buf[0] = 0;
if (mask == ENCODE_ALL) {
strcpy(buf, "all");
} else {
char num[8];
int i;
for (i = 0; i < kMipsRegEnd; i++) {
if (mask & (1ULL << i)) {
sprintf(num, "%d ", i);
strcat(buf, num);
}
}
if (mask & ENCODE_CCODE) {
strcat(buf, "cc ");
}
if (mask & ENCODE_FP_STATUS) {
strcat(buf, "fpcc ");
}
/* Memory bits */
if (mips_lir && (mask & ENCODE_DALVIK_REG)) {
sprintf(buf + strlen(buf), "dr%d%s", mips_lir->alias_info & 0xffff,
(mips_lir->alias_info & 0x80000000) ? "(+1)" : "");
}
if (mask & ENCODE_LITERAL) {
strcat(buf, "lit ");
}
if (mask & ENCODE_HEAP_REF) {
strcat(buf, "heap ");
}
if (mask & ENCODE_MUST_NOT_ALIAS) {
strcat(buf, "noalias ");
}
}
if (buf[0]) {
LOG(INFO) << prefix << ": " << buf;
}
}
/*
* TUNING: is true leaf? Can't just use METHOD_IS_LEAF to determine as some
* instructions might call out to C/assembly helper functions. Until
* machinery is in place, always spill lr.
*/
void MipsMir2Lir::AdjustSpillMask() {
core_spill_mask_ |= (1 << r_RA);
num_core_spills_++;
}
/*
* Mark a callee-save fp register as promoted. Note that
* vpush/vpop uses contiguous register lists so we must
* include any holes in the mask. Associate holes with
* Dalvik register INVALID_VREG (0xFFFFU).
*/
void MipsMir2Lir::MarkPreservedSingle(int s_reg, int reg) {
LOG(FATAL) << "No support yet for promoted FP regs";
}
void MipsMir2Lir::FlushRegWide(int reg1, int reg2) {
RegisterInfo* info1 = GetRegInfo(reg1);
RegisterInfo* info2 = GetRegInfo(reg2);
DCHECK(info1 && info2 && info1->pair && info2->pair &&
(info1->partner == info2->reg) &&
(info2->partner == info1->reg));
if ((info1->live && info1->dirty) || (info2->live && info2->dirty)) {
if (!(info1->is_temp && info2->is_temp)) {
/* Should not happen. If it does, there's a problem in eval_loc */
LOG(FATAL) << "Long half-temp, half-promoted";
}
info1->dirty = false;
info2->dirty = false;
if (mir_graph_->SRegToVReg(info2->s_reg) < mir_graph_->SRegToVReg(info1->s_reg))
info1 = info2;
int v_reg = mir_graph_->SRegToVReg(info1->s_reg);
StoreBaseDispWide(rMIPS_SP, VRegOffset(v_reg), info1->reg, info1->partner);
}
}
void MipsMir2Lir::FlushReg(int reg) {
RegisterInfo* info = GetRegInfo(reg);
if (info->live && info->dirty) {
info->dirty = false;
int v_reg = mir_graph_->SRegToVReg(info->s_reg);
StoreBaseDisp(rMIPS_SP, VRegOffset(v_reg), reg, kWord);
}
}
/* Give access to the target-dependent FP register encoding to common code */
bool MipsMir2Lir::IsFpReg(int reg) {
return MIPS_FPREG(reg);
}
/* Clobber all regs that might be used by an external C call */
void MipsMir2Lir::ClobberCalleeSave() {
Clobber(r_ZERO);
Clobber(r_AT);
Clobber(r_V0);
Clobber(r_V1);
Clobber(r_A0);
Clobber(r_A1);
Clobber(r_A2);
Clobber(r_A3);
Clobber(r_T0);
Clobber(r_T1);
Clobber(r_T2);
Clobber(r_T3);
Clobber(r_T4);
Clobber(r_T5);
Clobber(r_T6);
Clobber(r_T7);
Clobber(r_T8);
Clobber(r_T9);
Clobber(r_K0);
Clobber(r_K1);
Clobber(r_GP);
Clobber(r_FP);
Clobber(r_RA);
Clobber(r_F0);
Clobber(r_F1);
Clobber(r_F2);
Clobber(r_F3);
Clobber(r_F4);
Clobber(r_F5);
Clobber(r_F6);
Clobber(r_F7);
Clobber(r_F8);
Clobber(r_F9);
Clobber(r_F10);
Clobber(r_F11);
Clobber(r_F12);
Clobber(r_F13);
Clobber(r_F14);
Clobber(r_F15);
}
RegLocation MipsMir2Lir::GetReturnWideAlt() {
UNIMPLEMENTED(FATAL) << "No GetReturnWideAlt for MIPS";
RegLocation res = LocCReturnWide();
return res;
}
RegLocation MipsMir2Lir::GetReturnAlt() {
UNIMPLEMENTED(FATAL) << "No GetReturnAlt for MIPS";
RegLocation res = LocCReturn();
return res;
}
MipsMir2Lir::RegisterInfo* MipsMir2Lir::GetRegInfo(int reg) {
return MIPS_FPREG(reg) ? &reg_pool_->FPRegs[reg & MIPS_FP_REG_MASK]
: &reg_pool_->core_regs[reg];
}
/* To be used when explicitly managing register use */
void MipsMir2Lir::LockCallTemps() {
LockTemp(rMIPS_ARG0);
LockTemp(rMIPS_ARG1);
LockTemp(rMIPS_ARG2);
LockTemp(rMIPS_ARG3);
}
/* To be used when explicitly managing register use */
void MipsMir2Lir::FreeCallTemps() {
FreeTemp(rMIPS_ARG0);
FreeTemp(rMIPS_ARG1);
FreeTemp(rMIPS_ARG2);
FreeTemp(rMIPS_ARG3);
}
void MipsMir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
#if ANDROID_SMP != 0
NewLIR1(kMipsSync, 0 /* Only stype currently supported */);
#endif
}
/*
* Alloc a pair of core registers, or a double. Low reg in low byte,
* high reg in next byte.
*/
int MipsMir2Lir::AllocTypedTempPair(bool fp_hint,
int reg_class) {
int high_reg;
int low_reg;
int res = 0;
if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
low_reg = AllocTempDouble();
high_reg = low_reg + 1;
res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
return res;
}
low_reg = AllocTemp();
high_reg = AllocTemp();
res = (low_reg & 0xff) | ((high_reg & 0xff) << 8);
return res;
}
int MipsMir2Lir::AllocTypedTemp(bool fp_hint, int reg_class) {
if (((reg_class == kAnyReg) && fp_hint) || (reg_class == kFPReg)) {
return AllocTempFloat();
}
return AllocTemp();
}
void MipsMir2Lir::CompilerInitializeRegAlloc() {
int num_regs = sizeof(core_regs)/sizeof(*core_regs);
int num_reserved = sizeof(ReservedRegs)/sizeof(*ReservedRegs);
int num_temps = sizeof(core_temps)/sizeof(*core_temps);
int num_fp_regs = sizeof(FpRegs)/sizeof(*FpRegs);
int num_fp_temps = sizeof(fp_temps)/sizeof(*fp_temps);
reg_pool_ = static_cast<RegisterPool*>(arena_->Alloc(sizeof(*reg_pool_),
ArenaAllocator::kAllocRegAlloc));
reg_pool_->num_core_regs = num_regs;
reg_pool_->core_regs = static_cast<RegisterInfo*>
(arena_->Alloc(num_regs * sizeof(*reg_pool_->core_regs), ArenaAllocator::kAllocRegAlloc));
reg_pool_->num_fp_regs = num_fp_regs;
reg_pool_->FPRegs = static_cast<RegisterInfo*>
(arena_->Alloc(num_fp_regs * sizeof(*reg_pool_->FPRegs), ArenaAllocator::kAllocRegAlloc));
CompilerInitPool(reg_pool_->core_regs, core_regs, reg_pool_->num_core_regs);
CompilerInitPool(reg_pool_->FPRegs, FpRegs, reg_pool_->num_fp_regs);
// Keep special registers from being allocated
for (int i = 0; i < num_reserved; i++) {
if (NO_SUSPEND && (ReservedRegs[i] == rMIPS_SUSPEND)) {
// To measure cost of suspend check
continue;
}
MarkInUse(ReservedRegs[i]);
}
// Mark temp regs - all others not in use can be used for promotion
for (int i = 0; i < num_temps; i++) {
MarkTemp(core_temps[i]);
}
for (int i = 0; i < num_fp_temps; i++) {
MarkTemp(fp_temps[i]);
}
}
void MipsMir2Lir::FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free) {
if ((rl_free.low_reg != rl_keep.low_reg) && (rl_free.low_reg != rl_keep.high_reg) &&
(rl_free.high_reg != rl_keep.low_reg) && (rl_free.high_reg != rl_keep.high_reg)) {
// No overlap, free both
FreeTemp(rl_free.low_reg);
FreeTemp(rl_free.high_reg);
}
}
/*
* In the Arm code a it is typical to use the link register
* to hold the target address. However, for Mips we must
* ensure that all branch instructions can be restarted if
* there is a trap in the shadow. Allocate a temp register.
*/
int MipsMir2Lir::LoadHelper(ThreadOffset offset) {
LoadWordDisp(rMIPS_SELF, offset.Int32Value(), r_T9);
return r_T9;
}
void MipsMir2Lir::SpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
uint32_t mask = core_spill_mask_;
int offset = num_core_spills_ * 4;
OpRegImm(kOpSub, rMIPS_SP, offset);
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= 4;
StoreWordDisp(rMIPS_SP, offset, reg);
}
}
}
void MipsMir2Lir::UnSpillCoreRegs() {
if (num_core_spills_ == 0) {
return;
}
uint32_t mask = core_spill_mask_;
int offset = frame_size_;
for (int reg = 0; mask; mask >>= 1, reg++) {
if (mask & 0x1) {
offset -= 4;
LoadWordDisp(rMIPS_SP, offset, reg);
}
}
OpRegImm(kOpAdd, rMIPS_SP, frame_size_);
}
bool MipsMir2Lir::IsUnconditionalBranch(LIR* lir) {
return (lir->opcode == kMipsB);
}
MipsMir2Lir::MipsMir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
: Mir2Lir(cu, mir_graph, arena) {
for (int i = 0; i < kMipsLast; i++) {
if (MipsMir2Lir::EncodingMap[i].opcode != i) {
LOG(FATAL) << "Encoding order for " << MipsMir2Lir::EncodingMap[i].name
<< " is wrong: expecting " << i << ", seeing "
<< static_cast<int>(MipsMir2Lir::EncodingMap[i].opcode);
}
}
}
Mir2Lir* MipsCodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
ArenaAllocator* const arena) {
return new MipsMir2Lir(cu, mir_graph, arena);
}
uint64_t MipsMir2Lir::GetTargetInstFlags(int opcode) {
return MipsMir2Lir::EncodingMap[opcode].flags;
}
const char* MipsMir2Lir::GetTargetInstName(int opcode) {
return MipsMir2Lir::EncodingMap[opcode].name;
}
const char* MipsMir2Lir::GetTargetInstFmt(int opcode) {
return MipsMir2Lir::EncodingMap[opcode].fmt;
}
} // namespace art