| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "base/logging.h" |
| #include "base/mutex.h" |
| #include "dex_file-inl.h" |
| #include "dex_instruction-inl.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/dex_compilation_unit.h" |
| #include "mirror/art_field-inl.h" |
| #include "mirror/art_method-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/dex_cache.h" |
| |
| namespace art { |
| namespace optimizer { |
| |
| // Controls quickening activation. |
| const bool kEnableQuickening = true; |
| // Control check-cast elision. |
| const bool kEnableCheckCastEllision = true; |
| |
| class DexCompiler { |
| public: |
| DexCompiler(art::CompilerDriver& compiler, |
| const DexCompilationUnit& unit, |
| DexToDexCompilationLevel dex_to_dex_compilation_level) |
| : driver_(compiler), |
| unit_(unit), |
| dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {} |
| |
| ~DexCompiler() {} |
| |
| void Compile(); |
| |
| private: |
| const DexFile& GetDexFile() const { |
| return *unit_.GetDexFile(); |
| } |
| |
| // TODO: since the whole compilation pipeline uses a "const DexFile", we need |
| // to "unconst" here. The DEX-to-DEX compiler should work on a non-const DexFile. |
| DexFile& GetModifiableDexFile() { |
| return *const_cast<DexFile*>(unit_.GetDexFile()); |
| } |
| |
| bool PerformOptimizations() const { |
| return dex_to_dex_compilation_level_ >= kOptimize; |
| } |
| |
| // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where |
| // a barrier is required. |
| void CompileReturnVoid(Instruction* inst, uint32_t dex_pc); |
| |
| // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In |
| // this case, returns the second NOP instruction pointer. Otherwise, returns |
| // the given "inst". |
| Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc); |
| |
| // Compiles a field access into a quick field access. |
| // The field index is replaced by an offset within an Object where we can read |
| // from / write to this field. Therefore, this does not involve any resolution |
| // at runtime. |
| // Since the field index is encoded with 16 bits, we can replace it only if the |
| // field offset can be encoded with 16 bits too. |
| void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc, |
| Instruction::Code new_opcode, bool is_put); |
| |
| // Compiles a virtual method invocation into a quick virtual method invocation. |
| // The method index is replaced by the vtable index where the corresponding |
| // AbstractMethod can be found. Therefore, this does not involve any resolution |
| // at runtime. |
| // Since the method index is encoded with 16 bits, we can replace it only if the |
| // vtable index can be encoded with 16 bits too. |
| void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc, |
| Instruction::Code new_opcode, bool is_range); |
| |
| CompilerDriver& driver_; |
| const DexCompilationUnit& unit_; |
| const DexToDexCompilationLevel dex_to_dex_compilation_level_; |
| |
| DISALLOW_COPY_AND_ASSIGN(DexCompiler); |
| }; |
| |
| void DexCompiler::Compile() { |
| DCHECK_GE(dex_to_dex_compilation_level_, kRequired); |
| const DexFile::CodeItem* code_item = unit_.GetCodeItem(); |
| const uint16_t* insns = code_item->insns_; |
| const uint32_t insns_size = code_item->insns_size_in_code_units_; |
| Instruction* inst = const_cast<Instruction*>(Instruction::At(insns)); |
| |
| for (uint32_t dex_pc = 0; dex_pc < insns_size; |
| inst = const_cast<Instruction*>(inst->Next()), dex_pc = inst->GetDexPc(insns)) { |
| switch (inst->Opcode()) { |
| case Instruction::RETURN_VOID: |
| CompileReturnVoid(inst, dex_pc); |
| break; |
| |
| case Instruction::CHECK_CAST: |
| inst = CompileCheckCast(inst, dex_pc); |
| break; |
| |
| case Instruction::IGET: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false); |
| break; |
| |
| case Instruction::IGET_WIDE: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false); |
| break; |
| |
| case Instruction::IGET_OBJECT: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false); |
| break; |
| |
| case Instruction::IPUT: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_SHORT: |
| // These opcodes have the same implementation in interpreter so group |
| // them under IPUT_QUICK. |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_WIDE: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true); |
| break; |
| |
| case Instruction::IPUT_OBJECT: |
| CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL: |
| CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true); |
| break; |
| |
| default: |
| // Nothing to do. |
| break; |
| } |
| } |
| } |
| |
| void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) { |
| DCHECK(inst->Opcode() == Instruction::RETURN_VOID); |
| // Are we compiling a non-clinit constructor? |
| if (!unit_.IsConstructor() || unit_.IsStatic()) { |
| return; |
| } |
| // Do we need a constructor barrier ? |
| if (!driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(), |
| unit_.GetClassDefIndex())) { |
| return; |
| } |
| // Replace RETURN_VOID by RETURN_VOID_BARRIER. |
| VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode()) |
| << " by " << Instruction::Name(Instruction::RETURN_VOID_BARRIER) |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); |
| inst->SetOpcode(Instruction::RETURN_VOID_BARRIER); |
| } |
| |
| Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) { |
| if (!kEnableCheckCastEllision || !PerformOptimizations()) { |
| return inst; |
| } |
| MethodReference referrer(&GetDexFile(), unit_.GetDexMethodIndex()); |
| if (!driver_.IsSafeCast(referrer, dex_pc)) { |
| return inst; |
| } |
| // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code |
| // units and a "nop" instruction size is 1 code unit, we need to replace it by |
| // 2 consecutive NOP instructions. |
| // Because the caller loops over instructions by calling Instruction::Next onto |
| // the current instruction, we need to return the 2nd NOP instruction. Indeed, |
| // its next instruction is the former check-cast's next instruction. |
| VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode()) |
| << " by replacing it with 2 NOPs at dex pc " |
| << StringPrintf("0x%x", dex_pc) << " in method " |
| << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(Instruction::NOP); |
| inst->SetVRegA_10x(0u); // keep compliant with verifier. |
| // Get to next instruction which is the second half of check-cast and replace |
| // it by a NOP. |
| inst = const_cast<Instruction*>(inst->Next()); |
| inst->SetOpcode(Instruction::NOP); |
| inst->SetVRegA_10x(0u); // keep compliant with verifier. |
| return inst; |
| } |
| |
| void DexCompiler::CompileInstanceFieldAccess(Instruction* inst, |
| uint32_t dex_pc, |
| Instruction::Code new_opcode, |
| bool is_put) { |
| if (!kEnableQuickening || !PerformOptimizations()) { |
| return; |
| } |
| uint32_t field_idx = inst->VRegC_22c(); |
| int field_offset; |
| bool is_volatile; |
| bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, field_offset, |
| is_volatile, is_put); |
| if (fast_path && !is_volatile && IsUint(16, field_offset)) { |
| VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) |
| << " to " << Instruction::Name(new_opcode) |
| << " by replacing field index " << field_idx |
| << " by field offset " << field_offset |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(new_opcode); |
| // Replace field index by field offset. |
| inst->SetVRegC_22c(static_cast<uint16_t>(field_offset)); |
| } |
| } |
| |
| void DexCompiler::CompileInvokeVirtual(Instruction* inst, |
| uint32_t dex_pc, |
| Instruction::Code new_opcode, |
| bool is_range) { |
| if (!kEnableQuickening || !PerformOptimizations()) { |
| return; |
| } |
| uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c(); |
| MethodReference target_method(&GetDexFile(), method_idx); |
| InvokeType invoke_type = kVirtual; |
| InvokeType original_invoke_type = invoke_type; |
| int vtable_idx; |
| uintptr_t direct_code; |
| uintptr_t direct_method; |
| bool fast_path = driver_.ComputeInvokeInfo(&unit_, dex_pc, invoke_type, |
| target_method, vtable_idx, |
| direct_code, direct_method, |
| false); |
| // TODO: support devirtualization. |
| if (fast_path && original_invoke_type == invoke_type) { |
| if (vtable_idx >= 0 && IsUint(16, vtable_idx)) { |
| VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode()) |
| << "(" << PrettyMethod(method_idx, GetDexFile(), true) << ")" |
| << " to " << Instruction::Name(new_opcode) |
| << " by replacing method index " << method_idx |
| << " by vtable index " << vtable_idx |
| << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method " |
| << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true); |
| // We are modifying 4 consecutive bytes. |
| inst->SetOpcode(new_opcode); |
| // Replace method index by vtable index. |
| if (is_range) { |
| inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx)); |
| } else { |
| inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx)); |
| } |
| } |
| } |
| } |
| |
| } // namespace optimizer |
| } // namespace art |
| |
| extern "C" void ArtCompileDEX(art::CompilerDriver& compiler, const art::DexFile::CodeItem* code_item, |
| uint32_t access_flags, art::InvokeType invoke_type, |
| uint32_t class_def_idx, uint32_t method_idx, jobject class_loader, |
| const art::DexFile& dex_file, |
| art::DexToDexCompilationLevel dex_to_dex_compilation_level) { |
| if (dex_to_dex_compilation_level != art::kDontDexToDexCompile) { |
| art::DexCompilationUnit unit(NULL, class_loader, art::Runtime::Current()->GetClassLinker(), |
| dex_file, code_item, class_def_idx, method_idx, access_flags); |
| art::optimizer::DexCompiler dex_compiler(compiler, unit, dex_to_dex_compilation_level); |
| dex_compiler.Compile(); |
| } |
| } |