blob: 65049f150087aa0aa09a6ed32c4a9d5c07b2e85c [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_THREAD_INL_H_
#define ART_RUNTIME_THREAD_INL_H_
#include "arch/instruction_set.h"
#include "base/aborting.h"
#include "base/casts.h"
#include "base/mutex-inl.h"
#include "base/time_utils.h"
#include "indirect_reference_table.h"
#include "jni/jni_env_ext.h"
#include "managed_stack-inl.h"
#include "obj_ptr-inl.h"
#include "runtime.h"
#include "thread-current-inl.h"
#include "thread.h"
#include "thread_list.h"
#include "thread_pool.h"
namespace art {
// Quickly access the current thread from a JNIEnv.
inline Thread* Thread::ForEnv(JNIEnv* env) {
JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env));
return full_env->GetSelf();
}
inline size_t Thread::GetStackOverflowProtectedSize() {
// The kMemoryToolStackGuardSizeScale is expected to be 1 when ASan is not enabled.
// As the function is always inlined, in those cases each function call should turn
// into a simple reference to gPageSize.
return kMemoryToolStackGuardSizeScale * gPageSize;
}
inline ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
if (obj == nullptr) {
return nullptr;
}
IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
if (LIKELY(IndirectReferenceTable::IsJniTransitionOrLocalReference(ref))) {
// For JNI transitions, the `jclass` for a static method points to the
// `CompressedReference<>` in the `ArtMethod::declaring_class_` and other `jobject`
// arguments point to spilled stack references but a `StackReference<>` is just
// a subclass of `CompressedReference<>`. Local references also point to
// a `CompressedReference<>` encapsulated in a `GcRoot<>`.
if (kIsDebugBuild && IndirectReferenceTable::GetIndirectRefKind(ref) == kJniTransition) {
CHECK(IsJniTransitionReference(obj));
}
auto* cref = IndirectReferenceTable::ClearIndirectRefKind<
mirror::CompressedReference<mirror::Object>*>(ref);
ObjPtr<mirror::Object> result = cref->AsMirrorPtr();
if (kIsDebugBuild && IndirectReferenceTable::GetIndirectRefKind(ref) != kJniTransition) {
CHECK_EQ(result, tlsPtr_.jni_env->locals_.Get(ref));
}
return result;
} else {
return DecodeGlobalJObject(obj);
}
}
inline void Thread::AllowThreadSuspension() {
CheckSuspend();
// Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due
// to missing handles.
PoisonObjectPointers();
}
inline void Thread::CheckSuspend(bool implicit) {
DCHECK_EQ(Thread::Current(), this);
while (true) {
StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
if (LIKELY(!state_and_flags.IsAnyOfFlagsSet(SuspendOrCheckpointRequestFlags()))) {
break;
} else if (state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest)) {
RunCheckpointFunction();
} else if (state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest) &&
!state_and_flags.IsFlagSet(ThreadFlag::kSuspensionImmune)) {
FullSuspendCheck(implicit);
implicit = false; // We do not need to `MadviseAwayAlternateSignalStack()` anymore.
} else if (state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest)) {
RunEmptyCheckpoint();
} else {
DCHECK(state_and_flags.IsFlagSet(ThreadFlag::kSuspensionImmune));
break;
}
}
if (implicit) {
// For implicit suspend check we want to `madvise()` away
// the alternate signal stack to avoid wasting memory.
MadviseAwayAlternateSignalStack();
}
}
inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) {
Thread* self = Thread::Current();
DCHECK_EQ(self, this);
for (;;) {
if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
RunEmptyCheckpoint();
// Check we hold only an expected mutex when accessing weak ref.
if (kIsDebugBuild) {
for (int i = kLockLevelCount - 1; i >= 0; --i) {
BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
if (held_mutex != nullptr && held_mutex != GetMutatorLock() &&
held_mutex != cond_var_mutex &&
held_mutex != cp_placeholder_mutex_.load(std::memory_order_relaxed)) {
// placeholder_mutex may still be nullptr. That's OK.
CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex))
<< "Holding unexpected mutex " << held_mutex->GetName()
<< " when accessing weak ref";
}
}
}
} else {
break;
}
}
}
inline void Thread::CheckEmptyCheckpointFromMutex() {
DCHECK_EQ(Thread::Current(), this);
for (;;) {
if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) {
RunEmptyCheckpoint();
} else {
break;
}
}
}
inline ThreadState Thread::SetState(ThreadState new_state) {
// Should only be used to change between suspended states.
// Cannot use this code to change into or from Runnable as changing to Runnable should
// fail if the `ThreadFlag::kSuspendRequest` is set and changing from Runnable might
// miss passing an active suspend barrier.
DCHECK_NE(new_state, ThreadState::kRunnable);
if (kIsDebugBuild && this != Thread::Current()) {
std::string name;
GetThreadName(name);
LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()="
<< Thread::Current() << ") changing state to " << new_state;
}
while (true) {
StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
CHECK_NE(old_state_and_flags.GetState(), ThreadState::kRunnable)
<< new_state << " " << *this << " " << *Thread::Current();
StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
bool done =
tls32_.state_and_flags.CompareAndSetWeakRelaxed(old_state_and_flags.GetValue(),
new_state_and_flags.GetValue());
if (done) {
return static_cast<ThreadState>(old_state_and_flags.GetState());
}
}
}
inline bool Thread::IsThreadSuspensionAllowable() const {
if (tls32_.no_thread_suspension != 0) {
return false;
}
for (int i = kLockLevelCount - 1; i >= 0; --i) {
if (i != kMutatorLock &&
i != kUserCodeSuspensionLock &&
GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) {
return false;
}
}
// Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
// have the mutex meaning we need to do this hack.
auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
return tls32_.user_code_suspend_count != 0;
};
if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
return false;
}
return true;
}
inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const {
if (kIsDebugBuild) {
if (gAborting == 0) {
CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause;
}
if (check_locks) {
bool bad_mutexes_held = false;
for (int i = kLockLevelCount - 1; i >= 0; --i) {
// We expect no locks except the mutator lock. User code suspension lock is OK as long as
// we aren't going to be held suspended due to SuspendReason::kForUserCode.
if (i != kMutatorLock && i != kUserCodeSuspensionLock) {
BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i));
if (held_mutex != nullptr) {
LOG(ERROR) << "holding \"" << held_mutex->GetName()
<< "\" at point where thread suspension is expected";
bad_mutexes_held = true;
}
}
}
// Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to
// user_code_suspend_count which would prevent the thread from ever waking up. Thread
// autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we
// have the mutex meaning we need to do this hack.
auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS {
return tls32_.user_code_suspend_count != 0;
};
if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) {
LOG(ERROR) << "suspending due to user-code while holding \""
<< Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never "
<< "wake up.";
bad_mutexes_held = true;
}
if (gAborting == 0) {
CHECK(!bad_mutexes_held);
}
}
}
}
inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) {
DCHECK_NE(new_state, ThreadState::kRunnable);
while (true) {
StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest))) {
RunCheckpointFunction();
continue;
}
if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
RunEmptyCheckpoint();
continue;
}
// Change the state but keep the current flags (kCheckpointRequest is clear).
DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest));
DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest));
StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state);
// CAS the value, ensuring that prior memory operations are visible to any thread
// that observes that we are suspended.
bool done =
tls32_.state_and_flags.CompareAndSetWeakRelease(old_state_and_flags.GetValue(),
new_state_and_flags.GetValue());
if (LIKELY(done)) {
break;
}
}
}
inline void Thread::CheckActiveSuspendBarriers() {
DCHECK_NE(GetState(), ThreadState::kRunnable);
while (true) {
StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
if (LIKELY(!state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) &&
!state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest) &&
!state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier))) {
break;
} else if (state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
PassActiveSuspendBarriers();
} else {
// Impossible
LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint";
}
}
}
inline void Thread::AddSuspend1Barrier(WrappedSuspend1Barrier* suspend1_barrier) {
suspend1_barrier->next_ = tlsPtr_.active_suspend1_barriers;
tlsPtr_.active_suspend1_barriers = suspend1_barrier;
}
inline void Thread::RemoveFirstSuspend1Barrier() {
tlsPtr_.active_suspend1_barriers = tlsPtr_.active_suspend1_barriers->next_;
}
inline bool Thread::HasActiveSuspendBarrier() {
return tlsPtr_.active_suspend1_barriers != nullptr ||
tlsPtr_.active_suspendall_barrier != nullptr;
}
inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) {
// Note: JNI stubs inline a fast path of this method that transitions to suspended if
// there are no flags set and then clears the `held_mutexes[kMutatorLock]` (this comes
// from a specialized `BaseMutex::RegisterAsLockedImpl(., kMutatorLock)` inlined from
// the `GetMutatorLock()->TransitionFromRunnableToSuspended(this)` below).
// Therefore any code added here (other than debug build assertions) should be gated
// on some flag being set, so that the JNI stub can take the slow path to get here.
AssertThreadSuspensionIsAllowable();
PoisonObjectPointersIfDebug();
DCHECK_EQ(this, Thread::Current());
// Change to non-runnable state, thereby appearing suspended to the system.
TransitionToSuspendedAndRunCheckpoints(new_state);
// Mark the release of the share of the mutator lock.
GetMutatorLock()->TransitionFromRunnableToSuspended(this);
// Once suspended - check the active suspend barrier flag
CheckActiveSuspendBarriers();
}
inline ThreadState Thread::TransitionFromSuspendedToRunnable() {
// Note: JNI stubs inline a fast path of this method that transitions to Runnable if
// there are no flags set and then stores the mutator lock to `held_mutexes[kMutatorLock]`
// (this comes from a specialized `BaseMutex::RegisterAsUnlockedImpl(., kMutatorLock)`
// inlined from the `GetMutatorLock()->TransitionFromSuspendedToRunnable(this)` below).
// Therefore any code added here (other than debug build assertions) should be gated
// on some flag being set, so that the JNI stub can take the slow path to get here.
DCHECK(this == Current());
StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
ThreadState old_state = old_state_and_flags.GetState();
DCHECK_NE(old_state, ThreadState::kRunnable);
while (true) {
GetMutatorLock()->AssertNotHeld(this); // Otherwise we starve GC.
// Optimize for the return from native code case - this is the fast path.
// Atomically change from suspended to runnable if no suspend request pending.
constexpr uint32_t kCheckedFlags =
SuspendOrCheckpointRequestFlags() |
enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier) |
FlipFunctionFlags();
if (LIKELY(!old_state_and_flags.IsAnyOfFlagsSet(kCheckedFlags))) {
// CAS the value with a memory barrier.
StateAndFlags new_state_and_flags = old_state_and_flags.WithState(ThreadState::kRunnable);
if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
new_state_and_flags.GetValue()))) {
// Mark the acquisition of a share of the mutator lock.
GetMutatorLock()->TransitionFromSuspendedToRunnable(this);
break;
}
} else if (old_state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) {
PassActiveSuspendBarriers();
} else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) ||
old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) {
// Checkpoint flags should not be set while in suspended state.
static_assert(static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
LOG(FATAL) << "Transitioning to Runnable with checkpoint flag,"
// Note: Keeping unused flags. If they are set, it points to memory corruption.
<< " flags=" << old_state_and_flags.WithState(ThreadState::kRunnable).GetValue()
<< " state=" << old_state_and_flags.GetState();
} else if (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
// Wait while our suspend count is non-zero.
// We pass null to the MutexLock as we may be in a situation where the
// runtime is shutting down. Guarding ourselves from that situation
// requires to take the shutdown lock, which is undesirable here.
Thread* thread_to_pass = nullptr;
if (kIsDebugBuild && !IsDaemon()) {
// We know we can make our debug locking checks on non-daemon threads,
// so re-enable them on debug builds.
thread_to_pass = this;
}
MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_);
// Reload state and flags after locking the mutex.
old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
DCHECK_EQ(old_state, old_state_and_flags.GetState());
while (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) {
// Re-check when Thread::resume_cond_ is notified.
Thread::resume_cond_->Wait(thread_to_pass);
// Reload state and flags after waiting.
old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
DCHECK_EQ(old_state, old_state_and_flags.GetState());
}
DCHECK_EQ(GetSuspendCount(), 0);
} else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction))) {
DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
// Do this before transitioning to runnable, both because we shouldn't wait in a runnable
// state, and so that the thread running the flip function can DCHECK we're not runnable.
WaitForFlipFunction(this);
} else if (old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) {
// Logically acquire mutator lock in shared mode.
DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction));
if (EnsureFlipFunctionStarted(this, this, old_state_and_flags)) {
break;
}
}
// Reload state and flags.
old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
DCHECK_EQ(old_state, old_state_and_flags.GetState());
}
DCHECK_EQ(this->GetState(), ThreadState::kRunnable);
return static_cast<ThreadState>(old_state);
}
inline mirror::Object* Thread::AllocTlab(size_t bytes) {
DCHECK_GE(TlabSize(), bytes);
++tlsPtr_.thread_local_objects;
mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos);
tlsPtr_.thread_local_pos += bytes;
return ret;
}
inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) {
DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end);
if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) {
// There's room.
DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) +
sizeof(StackReference<mirror::Object>),
reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end));
DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr);
tlsPtr_.thread_local_alloc_stack_top->Assign(obj);
++tlsPtr_.thread_local_alloc_stack_top;
return true;
}
return false;
}
inline bool Thread::GetWeakRefAccessEnabled() const {
DCHECK(gUseReadBarrier);
DCHECK(this == Thread::Current());
WeakRefAccessState s = tls32_.weak_ref_access_enabled.load(std::memory_order_relaxed);
if (LIKELY(s == WeakRefAccessState::kVisiblyEnabled)) {
return true;
}
s = tls32_.weak_ref_access_enabled.load(std::memory_order_acquire);
if (s == WeakRefAccessState::kVisiblyEnabled) {
return true;
} else if (s == WeakRefAccessState::kDisabled) {
return false;
}
DCHECK(s == WeakRefAccessState::kEnabled)
<< "state = " << static_cast<std::underlying_type_t<WeakRefAccessState>>(s);
// The state is only changed back to DISABLED during a checkpoint. Thus no other thread can
// change the value concurrently here. No other thread reads the value we store here, so there
// is no need for a release store.
tls32_.weak_ref_access_enabled.store(WeakRefAccessState::kVisiblyEnabled,
std::memory_order_relaxed);
return true;
}
inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
StackReference<mirror::Object>* end) {
DCHECK(Thread::Current() == this) << "Should be called by self";
DCHECK(start != nullptr);
DCHECK(end != nullptr);
DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>));
DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>));
DCHECK_LT(start, end);
tlsPtr_.thread_local_alloc_stack_end = end;
tlsPtr_.thread_local_alloc_stack_top = start;
}
inline void Thread::RevokeThreadLocalAllocationStack() {
if (kIsDebugBuild) {
// Note: self is not necessarily equal to this thread since thread may be suspended.
Thread* self = Thread::Current();
DCHECK(this == self || GetState() != ThreadState::kRunnable)
<< GetState() << " thread " << this << " self " << self;
}
tlsPtr_.thread_local_alloc_stack_end = nullptr;
tlsPtr_.thread_local_alloc_stack_top = nullptr;
}
inline void Thread::PoisonObjectPointersIfDebug() {
if (kObjPtrPoisoning) {
Thread::Current()->PoisonObjectPointers();
}
}
inline void Thread::IncrementSuspendCount(Thread* self,
AtomicInteger* suspendall_barrier,
WrappedSuspend1Barrier* suspend1_barrier,
SuspendReason reason) {
if (kIsDebugBuild) {
Locks::thread_suspend_count_lock_->AssertHeld(self);
if (this != self) {
Locks::thread_list_lock_->AssertHeld(self);
}
}
if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
Locks::user_code_suspension_lock_->AssertHeld(self);
}
uint32_t flags = enum_cast<uint32_t>(ThreadFlag::kSuspendRequest);
if (suspendall_barrier != nullptr) {
DCHECK(suspend1_barrier == nullptr);
DCHECK(tlsPtr_.active_suspendall_barrier == nullptr);
tlsPtr_.active_suspendall_barrier = suspendall_barrier;
flags |= enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier);
} else if (suspend1_barrier != nullptr) {
AddSuspend1Barrier(suspend1_barrier);
flags |= enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier);
}
++tls32_.suspend_count;
if (reason == SuspendReason::kForUserCode) {
++tls32_.user_code_suspend_count;
}
// Two bits might be set simultaneously.
tls32_.state_and_flags.fetch_or(flags, std::memory_order_release);
TriggerSuspend();
}
inline void Thread::IncrementSuspendCount(Thread* self) {
IncrementSuspendCount(self, nullptr, nullptr, SuspendReason::kInternal);
}
inline void Thread::DecrementSuspendCount(Thread* self, bool for_user_code) {
DCHECK(ReadFlag(ThreadFlag::kSuspendRequest));
Locks::thread_suspend_count_lock_->AssertHeld(self);
if (UNLIKELY(tls32_.suspend_count <= 0)) {
UnsafeLogFatalForSuspendCount(self, this);
UNREACHABLE();
}
if (for_user_code) {
Locks::user_code_suspension_lock_->AssertHeld(self);
if (UNLIKELY(tls32_.user_code_suspend_count <= 0)) {
LOG(ERROR) << "user_code_suspend_count incorrect";
UnsafeLogFatalForSuspendCount(self, this);
UNREACHABLE();
}
--tls32_.user_code_suspend_count;
}
--tls32_.suspend_count;
if (tls32_.suspend_count == 0) {
AtomicClearFlag(ThreadFlag::kSuspendRequest, std::memory_order_release);
}
}
inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) {
new_top_frame->CheckConsistentVRegs();
return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
}
inline ShadowFrame* Thread::PopShadowFrame() {
return tlsPtr_.managed_stack.PopShadowFrame();
}
inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const {
uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check
? GetStackOverflowReservedBytes(kRuntimeISA)
: 0);
if (kIsDebugBuild) {
// In a debuggable build, but especially under ASAN, the access-checks interpreter has a
// potentially humongous stack size. We don't want to take too much of the stack regularly,
// so do not increase the regular reserved size (for compiled code etc) and only report the
// virtually smaller stack to the interpreter here.
end += GetStackOverflowReservedBytes(kRuntimeISA);
}
return end;
}
inline void Thread::ResetDefaultStackEnd() {
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
// to throw a StackOverflowError.
tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
}
inline void Thread::NotifyOnThreadExit(ThreadExitFlag* tef) {
DCHECK_EQ(tef->exited_, false);
DCHECK(tlsPtr_.thread_exit_flags == nullptr || !tlsPtr_.thread_exit_flags->exited_);
tef->next_ = tlsPtr_.thread_exit_flags;
tlsPtr_.thread_exit_flags = tef;
if (tef->next_ != nullptr) {
DCHECK(!tef->next_->HasExited());
tef->next_->prev_ = tef;
}
tef->prev_ = nullptr;
}
inline void Thread::UnregisterThreadExitFlag(ThreadExitFlag* tef) {
if (tef->HasExited()) {
// List is no longer used; each client will deallocate its own ThreadExitFlag.
return;
}
DCHECK(IsRegistered(tef));
// Remove tef from the list.
if (tef->next_ != nullptr) {
tef->next_->prev_ = tef->prev_;
}
if (tef->prev_ == nullptr) {
DCHECK_EQ(tlsPtr_.thread_exit_flags, tef);
tlsPtr_.thread_exit_flags = tef->next_;
} else {
DCHECK_NE(tlsPtr_.thread_exit_flags, tef);
tef->prev_->next_ = tef->next_;
}
DCHECK(tlsPtr_.thread_exit_flags == nullptr || tlsPtr_.thread_exit_flags->prev_ == nullptr);
}
inline void Thread::DCheckUnregisteredEverywhere(ThreadExitFlag* first, ThreadExitFlag* last) {
if (!kIsDebugBuild) {
return;
}
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::thread_list_lock_);
Runtime::Current()->GetThreadList()->ForEach([&](Thread* t) REQUIRES(Locks::thread_list_lock_) {
for (ThreadExitFlag* tef = t->tlsPtr_.thread_exit_flags; tef != nullptr; tef = tef->next_) {
CHECK(tef < first || tef > last)
<< "tef = " << std::hex << tef << " first = " << first << std::dec;
}
// Also perform a minimal consistency check on each list.
ThreadExitFlag* flags = t->tlsPtr_.thread_exit_flags;
CHECK(flags == nullptr || flags->prev_ == nullptr);
});
}
inline bool Thread::IsRegistered(ThreadExitFlag* query_tef) {
for (ThreadExitFlag* tef = tlsPtr_.thread_exit_flags; tef != nullptr; tef = tef->next_) {
if (tef == query_tef) {
return true;
}
}
return false;
}
inline void Thread::DisallowPreMonitorMutexes() {
if (kIsDebugBuild) {
CHECK(this == Thread::Current());
CHECK(GetHeldMutex(kMonitorLock) == nullptr);
// Pretend we hold a kMonitorLock level mutex to detect disallowed mutex
// acquisitions by checkpoint Run() methods. We don't normally register or thus check
// kMonitorLock level mutexes, but this is an exception.
Mutex* ph = cp_placeholder_mutex_.load(std::memory_order_acquire);
if (UNLIKELY(ph == nullptr)) {
Mutex* new_ph = new Mutex("checkpoint placeholder mutex", kMonitorLock);
if (LIKELY(cp_placeholder_mutex_.compare_exchange_strong(ph, new_ph))) {
ph = new_ph;
} else {
// ph now has the value set by another thread.
delete new_ph;
}
}
SetHeldMutex(kMonitorLock, ph);
}
}
// Undo the effect of the previous call. Again only invoked by the thread itself.
inline void Thread::AllowPreMonitorMutexes() {
if (kIsDebugBuild) {
CHECK_EQ(GetHeldMutex(kMonitorLock), cp_placeholder_mutex_.load(std::memory_order_relaxed));
SetHeldMutex(kMonitorLock, nullptr);
}
}
} // namespace art
#endif // ART_RUNTIME_THREAD_INL_H_