| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_THREAD_INL_H_ |
| #define ART_RUNTIME_THREAD_INL_H_ |
| |
| #include "arch/instruction_set.h" |
| #include "base/aborting.h" |
| #include "base/casts.h" |
| #include "base/mutex-inl.h" |
| #include "base/time_utils.h" |
| #include "indirect_reference_table.h" |
| #include "jni/jni_env_ext.h" |
| #include "managed_stack-inl.h" |
| #include "obj_ptr-inl.h" |
| #include "runtime.h" |
| #include "thread-current-inl.h" |
| #include "thread.h" |
| #include "thread_list.h" |
| #include "thread_pool.h" |
| |
| namespace art { |
| |
| // Quickly access the current thread from a JNIEnv. |
| inline Thread* Thread::ForEnv(JNIEnv* env) { |
| JNIEnvExt* full_env(down_cast<JNIEnvExt*>(env)); |
| return full_env->GetSelf(); |
| } |
| |
| inline size_t Thread::GetStackOverflowProtectedSize() { |
| // The kMemoryToolStackGuardSizeScale is expected to be 1 when ASan is not enabled. |
| // As the function is always inlined, in those cases each function call should turn |
| // into a simple reference to gPageSize. |
| return kMemoryToolStackGuardSizeScale * gPageSize; |
| } |
| |
| inline ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const { |
| if (obj == nullptr) { |
| return nullptr; |
| } |
| IndirectRef ref = reinterpret_cast<IndirectRef>(obj); |
| if (LIKELY(IndirectReferenceTable::IsJniTransitionOrLocalReference(ref))) { |
| // For JNI transitions, the `jclass` for a static method points to the |
| // `CompressedReference<>` in the `ArtMethod::declaring_class_` and other `jobject` |
| // arguments point to spilled stack references but a `StackReference<>` is just |
| // a subclass of `CompressedReference<>`. Local references also point to |
| // a `CompressedReference<>` encapsulated in a `GcRoot<>`. |
| if (kIsDebugBuild && IndirectReferenceTable::GetIndirectRefKind(ref) == kJniTransition) { |
| CHECK(IsJniTransitionReference(obj)); |
| } |
| auto* cref = IndirectReferenceTable::ClearIndirectRefKind< |
| mirror::CompressedReference<mirror::Object>*>(ref); |
| ObjPtr<mirror::Object> result = cref->AsMirrorPtr(); |
| if (kIsDebugBuild && IndirectReferenceTable::GetIndirectRefKind(ref) != kJniTransition) { |
| CHECK_EQ(result, tlsPtr_.jni_env->locals_.Get(ref)); |
| } |
| return result; |
| } else { |
| return DecodeGlobalJObject(obj); |
| } |
| } |
| |
| inline void Thread::AllowThreadSuspension() { |
| CheckSuspend(); |
| // Invalidate the current thread's object pointers (ObjPtr) to catch possible moving GC bugs due |
| // to missing handles. |
| PoisonObjectPointers(); |
| } |
| |
| inline void Thread::CheckSuspend(bool implicit) { |
| DCHECK_EQ(Thread::Current(), this); |
| while (true) { |
| StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| if (LIKELY(!state_and_flags.IsAnyOfFlagsSet(SuspendOrCheckpointRequestFlags()))) { |
| break; |
| } else if (state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest)) { |
| RunCheckpointFunction(); |
| } else if (state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest) && |
| !state_and_flags.IsFlagSet(ThreadFlag::kSuspensionImmune)) { |
| FullSuspendCheck(implicit); |
| implicit = false; // We do not need to `MadviseAwayAlternateSignalStack()` anymore. |
| } else if (state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest)) { |
| RunEmptyCheckpoint(); |
| } else { |
| DCHECK(state_and_flags.IsFlagSet(ThreadFlag::kSuspensionImmune)); |
| break; |
| } |
| } |
| if (implicit) { |
| // For implicit suspend check we want to `madvise()` away |
| // the alternate signal stack to avoid wasting memory. |
| MadviseAwayAlternateSignalStack(); |
| } |
| } |
| |
| inline void Thread::CheckEmptyCheckpointFromWeakRefAccess(BaseMutex* cond_var_mutex) { |
| Thread* self = Thread::Current(); |
| DCHECK_EQ(self, this); |
| for (;;) { |
| if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) { |
| RunEmptyCheckpoint(); |
| // Check we hold only an expected mutex when accessing weak ref. |
| if (kIsDebugBuild) { |
| for (int i = kLockLevelCount - 1; i >= 0; --i) { |
| BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i)); |
| if (held_mutex != nullptr && held_mutex != GetMutatorLock() && |
| held_mutex != cond_var_mutex && |
| held_mutex != cp_placeholder_mutex_.load(std::memory_order_relaxed)) { |
| // placeholder_mutex may still be nullptr. That's OK. |
| CHECK(Locks::IsExpectedOnWeakRefAccess(held_mutex)) |
| << "Holding unexpected mutex " << held_mutex->GetName() |
| << " when accessing weak ref"; |
| } |
| } |
| } |
| } else { |
| break; |
| } |
| } |
| } |
| |
| inline void Thread::CheckEmptyCheckpointFromMutex() { |
| DCHECK_EQ(Thread::Current(), this); |
| for (;;) { |
| if (ReadFlag(ThreadFlag::kEmptyCheckpointRequest)) { |
| RunEmptyCheckpoint(); |
| } else { |
| break; |
| } |
| } |
| } |
| |
| inline ThreadState Thread::SetState(ThreadState new_state) { |
| // Should only be used to change between suspended states. |
| // Cannot use this code to change into or from Runnable as changing to Runnable should |
| // fail if the `ThreadFlag::kSuspendRequest` is set and changing from Runnable might |
| // miss passing an active suspend barrier. |
| DCHECK_NE(new_state, ThreadState::kRunnable); |
| if (kIsDebugBuild && this != Thread::Current()) { |
| std::string name; |
| GetThreadName(name); |
| LOG(FATAL) << "Thread \"" << name << "\"(" << this << " != Thread::Current()=" |
| << Thread::Current() << ") changing state to " << new_state; |
| } |
| |
| while (true) { |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| CHECK_NE(old_state_and_flags.GetState(), ThreadState::kRunnable) |
| << new_state << " " << *this << " " << *Thread::Current(); |
| StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state); |
| bool done = |
| tls32_.state_and_flags.CompareAndSetWeakRelaxed(old_state_and_flags.GetValue(), |
| new_state_and_flags.GetValue()); |
| if (done) { |
| return static_cast<ThreadState>(old_state_and_flags.GetState()); |
| } |
| } |
| } |
| |
| inline bool Thread::IsThreadSuspensionAllowable() const { |
| if (tls32_.no_thread_suspension != 0) { |
| return false; |
| } |
| for (int i = kLockLevelCount - 1; i >= 0; --i) { |
| if (i != kMutatorLock && |
| i != kUserCodeSuspensionLock && |
| GetHeldMutex(static_cast<LockLevel>(i)) != nullptr) { |
| return false; |
| } |
| } |
| // Thread autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we |
| // have the mutex meaning we need to do this hack. |
| auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS { |
| return tls32_.user_code_suspend_count != 0; |
| }; |
| if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) { |
| return false; |
| } |
| return true; |
| } |
| |
| inline void Thread::AssertThreadSuspensionIsAllowable(bool check_locks) const { |
| if (kIsDebugBuild) { |
| if (gAborting == 0) { |
| CHECK_EQ(0u, tls32_.no_thread_suspension) << tlsPtr_.last_no_thread_suspension_cause; |
| } |
| if (check_locks) { |
| bool bad_mutexes_held = false; |
| for (int i = kLockLevelCount - 1; i >= 0; --i) { |
| // We expect no locks except the mutator lock. User code suspension lock is OK as long as |
| // we aren't going to be held suspended due to SuspendReason::kForUserCode. |
| if (i != kMutatorLock && i != kUserCodeSuspensionLock) { |
| BaseMutex* held_mutex = GetHeldMutex(static_cast<LockLevel>(i)); |
| if (held_mutex != nullptr) { |
| LOG(ERROR) << "holding \"" << held_mutex->GetName() |
| << "\" at point where thread suspension is expected"; |
| bad_mutexes_held = true; |
| } |
| } |
| } |
| // Make sure that if we hold the user_code_suspension_lock_ we aren't suspending due to |
| // user_code_suspend_count which would prevent the thread from ever waking up. Thread |
| // autoanalysis isn't able to understand that the GetHeldMutex(...) or AssertHeld means we |
| // have the mutex meaning we need to do this hack. |
| auto is_suspending_for_user_code = [this]() NO_THREAD_SAFETY_ANALYSIS { |
| return tls32_.user_code_suspend_count != 0; |
| }; |
| if (GetHeldMutex(kUserCodeSuspensionLock) != nullptr && is_suspending_for_user_code()) { |
| LOG(ERROR) << "suspending due to user-code while holding \"" |
| << Locks::user_code_suspension_lock_->GetName() << "\"! Thread would never " |
| << "wake up."; |
| bad_mutexes_held = true; |
| } |
| if (gAborting == 0) { |
| CHECK(!bad_mutexes_held); |
| } |
| } |
| } |
| } |
| |
| inline void Thread::TransitionToSuspendedAndRunCheckpoints(ThreadState new_state) { |
| DCHECK_NE(new_state, ThreadState::kRunnable); |
| while (true) { |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable); |
| if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest))) { |
| RunCheckpointFunction(); |
| continue; |
| } |
| if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) { |
| RunEmptyCheckpoint(); |
| continue; |
| } |
| // Change the state but keep the current flags (kCheckpointRequest is clear). |
| DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest)); |
| DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest)); |
| StateAndFlags new_state_and_flags = old_state_and_flags.WithState(new_state); |
| |
| // CAS the value, ensuring that prior memory operations are visible to any thread |
| // that observes that we are suspended. |
| bool done = |
| tls32_.state_and_flags.CompareAndSetWeakRelease(old_state_and_flags.GetValue(), |
| new_state_and_flags.GetValue()); |
| if (LIKELY(done)) { |
| break; |
| } |
| } |
| } |
| |
| inline void Thread::CheckActiveSuspendBarriers() { |
| DCHECK_NE(GetState(), ThreadState::kRunnable); |
| while (true) { |
| StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| if (LIKELY(!state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) && |
| !state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest) && |
| !state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier))) { |
| break; |
| } else if (state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) { |
| PassActiveSuspendBarriers(); |
| } else { |
| // Impossible |
| LOG(FATAL) << "Fatal, thread transitioned into suspended without running the checkpoint"; |
| } |
| } |
| } |
| |
| inline void Thread::AddSuspend1Barrier(WrappedSuspend1Barrier* suspend1_barrier) { |
| suspend1_barrier->next_ = tlsPtr_.active_suspend1_barriers; |
| tlsPtr_.active_suspend1_barriers = suspend1_barrier; |
| } |
| |
| inline void Thread::RemoveFirstSuspend1Barrier() { |
| tlsPtr_.active_suspend1_barriers = tlsPtr_.active_suspend1_barriers->next_; |
| } |
| |
| inline bool Thread::HasActiveSuspendBarrier() { |
| return tlsPtr_.active_suspend1_barriers != nullptr || |
| tlsPtr_.active_suspendall_barrier != nullptr; |
| } |
| |
| inline void Thread::TransitionFromRunnableToSuspended(ThreadState new_state) { |
| // Note: JNI stubs inline a fast path of this method that transitions to suspended if |
| // there are no flags set and then clears the `held_mutexes[kMutatorLock]` (this comes |
| // from a specialized `BaseMutex::RegisterAsLockedImpl(., kMutatorLock)` inlined from |
| // the `GetMutatorLock()->TransitionFromRunnableToSuspended(this)` below). |
| // Therefore any code added here (other than debug build assertions) should be gated |
| // on some flag being set, so that the JNI stub can take the slow path to get here. |
| AssertThreadSuspensionIsAllowable(); |
| PoisonObjectPointersIfDebug(); |
| DCHECK_EQ(this, Thread::Current()); |
| // Change to non-runnable state, thereby appearing suspended to the system. |
| TransitionToSuspendedAndRunCheckpoints(new_state); |
| // Mark the release of the share of the mutator lock. |
| GetMutatorLock()->TransitionFromRunnableToSuspended(this); |
| // Once suspended - check the active suspend barrier flag |
| CheckActiveSuspendBarriers(); |
| } |
| |
| inline ThreadState Thread::TransitionFromSuspendedToRunnable() { |
| // Note: JNI stubs inline a fast path of this method that transitions to Runnable if |
| // there are no flags set and then stores the mutator lock to `held_mutexes[kMutatorLock]` |
| // (this comes from a specialized `BaseMutex::RegisterAsUnlockedImpl(., kMutatorLock)` |
| // inlined from the `GetMutatorLock()->TransitionFromSuspendedToRunnable(this)` below). |
| // Therefore any code added here (other than debug build assertions) should be gated |
| // on some flag being set, so that the JNI stub can take the slow path to get here. |
| DCHECK(this == Current()); |
| StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| ThreadState old_state = old_state_and_flags.GetState(); |
| DCHECK_NE(old_state, ThreadState::kRunnable); |
| while (true) { |
| GetMutatorLock()->AssertNotHeld(this); // Otherwise we starve GC. |
| // Optimize for the return from native code case - this is the fast path. |
| // Atomically change from suspended to runnable if no suspend request pending. |
| constexpr uint32_t kCheckedFlags = |
| SuspendOrCheckpointRequestFlags() | |
| enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier) | |
| FlipFunctionFlags(); |
| if (LIKELY(!old_state_and_flags.IsAnyOfFlagsSet(kCheckedFlags))) { |
| // CAS the value with a memory barrier. |
| StateAndFlags new_state_and_flags = old_state_and_flags.WithState(ThreadState::kRunnable); |
| if (LIKELY(tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(), |
| new_state_and_flags.GetValue()))) { |
| // Mark the acquisition of a share of the mutator lock. |
| GetMutatorLock()->TransitionFromSuspendedToRunnable(this); |
| break; |
| } |
| } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kActiveSuspendBarrier)) { |
| PassActiveSuspendBarriers(); |
| } else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kCheckpointRequest) || |
| old_state_and_flags.IsFlagSet(ThreadFlag::kEmptyCheckpointRequest))) { |
| // Checkpoint flags should not be set while in suspended state. |
| static_assert(static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u); |
| LOG(FATAL) << "Transitioning to Runnable with checkpoint flag," |
| // Note: Keeping unused flags. If they are set, it points to memory corruption. |
| << " flags=" << old_state_and_flags.WithState(ThreadState::kRunnable).GetValue() |
| << " state=" << old_state_and_flags.GetState(); |
| } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) { |
| // Wait while our suspend count is non-zero. |
| |
| // We pass null to the MutexLock as we may be in a situation where the |
| // runtime is shutting down. Guarding ourselves from that situation |
| // requires to take the shutdown lock, which is undesirable here. |
| Thread* thread_to_pass = nullptr; |
| if (kIsDebugBuild && !IsDaemon()) { |
| // We know we can make our debug locking checks on non-daemon threads, |
| // so re-enable them on debug builds. |
| thread_to_pass = this; |
| } |
| MutexLock mu(thread_to_pass, *Locks::thread_suspend_count_lock_); |
| // Reload state and flags after locking the mutex. |
| old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| DCHECK_EQ(old_state, old_state_and_flags.GetState()); |
| while (old_state_and_flags.IsFlagSet(ThreadFlag::kSuspendRequest)) { |
| // Re-check when Thread::resume_cond_ is notified. |
| Thread::resume_cond_->Wait(thread_to_pass); |
| // Reload state and flags after waiting. |
| old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| DCHECK_EQ(old_state, old_state_and_flags.GetState()); |
| } |
| DCHECK_EQ(GetSuspendCount(), 0); |
| } else if (UNLIKELY(old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction))) { |
| DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)); |
| // Do this before transitioning to runnable, both because we shouldn't wait in a runnable |
| // state, and so that the thread running the flip function can DCHECK we're not runnable. |
| WaitForFlipFunction(this); |
| } else if (old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) { |
| // Logically acquire mutator lock in shared mode. |
| DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)); |
| if (EnsureFlipFunctionStarted(this, this, old_state_and_flags)) { |
| break; |
| } |
| } |
| // Reload state and flags. |
| old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed); |
| DCHECK_EQ(old_state, old_state_and_flags.GetState()); |
| } |
| DCHECK_EQ(this->GetState(), ThreadState::kRunnable); |
| return static_cast<ThreadState>(old_state); |
| } |
| |
| inline mirror::Object* Thread::AllocTlab(size_t bytes) { |
| DCHECK_GE(TlabSize(), bytes); |
| ++tlsPtr_.thread_local_objects; |
| mirror::Object* ret = reinterpret_cast<mirror::Object*>(tlsPtr_.thread_local_pos); |
| tlsPtr_.thread_local_pos += bytes; |
| return ret; |
| } |
| |
| inline bool Thread::PushOnThreadLocalAllocationStack(mirror::Object* obj) { |
| DCHECK_LE(tlsPtr_.thread_local_alloc_stack_top, tlsPtr_.thread_local_alloc_stack_end); |
| if (tlsPtr_.thread_local_alloc_stack_top < tlsPtr_.thread_local_alloc_stack_end) { |
| // There's room. |
| DCHECK_LE(reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_top) + |
| sizeof(StackReference<mirror::Object>), |
| reinterpret_cast<uint8_t*>(tlsPtr_.thread_local_alloc_stack_end)); |
| DCHECK(tlsPtr_.thread_local_alloc_stack_top->AsMirrorPtr() == nullptr); |
| tlsPtr_.thread_local_alloc_stack_top->Assign(obj); |
| ++tlsPtr_.thread_local_alloc_stack_top; |
| return true; |
| } |
| return false; |
| } |
| |
| inline bool Thread::GetWeakRefAccessEnabled() const { |
| DCHECK(gUseReadBarrier); |
| DCHECK(this == Thread::Current()); |
| WeakRefAccessState s = tls32_.weak_ref_access_enabled.load(std::memory_order_relaxed); |
| if (LIKELY(s == WeakRefAccessState::kVisiblyEnabled)) { |
| return true; |
| } |
| s = tls32_.weak_ref_access_enabled.load(std::memory_order_acquire); |
| if (s == WeakRefAccessState::kVisiblyEnabled) { |
| return true; |
| } else if (s == WeakRefAccessState::kDisabled) { |
| return false; |
| } |
| DCHECK(s == WeakRefAccessState::kEnabled) |
| << "state = " << static_cast<std::underlying_type_t<WeakRefAccessState>>(s); |
| // The state is only changed back to DISABLED during a checkpoint. Thus no other thread can |
| // change the value concurrently here. No other thread reads the value we store here, so there |
| // is no need for a release store. |
| tls32_.weak_ref_access_enabled.store(WeakRefAccessState::kVisiblyEnabled, |
| std::memory_order_relaxed); |
| return true; |
| } |
| |
| inline void Thread::SetThreadLocalAllocationStack(StackReference<mirror::Object>* start, |
| StackReference<mirror::Object>* end) { |
| DCHECK(Thread::Current() == this) << "Should be called by self"; |
| DCHECK(start != nullptr); |
| DCHECK(end != nullptr); |
| DCHECK_ALIGNED(start, sizeof(StackReference<mirror::Object>)); |
| DCHECK_ALIGNED(end, sizeof(StackReference<mirror::Object>)); |
| DCHECK_LT(start, end); |
| tlsPtr_.thread_local_alloc_stack_end = end; |
| tlsPtr_.thread_local_alloc_stack_top = start; |
| } |
| |
| inline void Thread::RevokeThreadLocalAllocationStack() { |
| if (kIsDebugBuild) { |
| // Note: self is not necessarily equal to this thread since thread may be suspended. |
| Thread* self = Thread::Current(); |
| DCHECK(this == self || GetState() != ThreadState::kRunnable) |
| << GetState() << " thread " << this << " self " << self; |
| } |
| tlsPtr_.thread_local_alloc_stack_end = nullptr; |
| tlsPtr_.thread_local_alloc_stack_top = nullptr; |
| } |
| |
| inline void Thread::PoisonObjectPointersIfDebug() { |
| if (kObjPtrPoisoning) { |
| Thread::Current()->PoisonObjectPointers(); |
| } |
| } |
| |
| inline void Thread::IncrementSuspendCount(Thread* self, |
| AtomicInteger* suspendall_barrier, |
| WrappedSuspend1Barrier* suspend1_barrier, |
| SuspendReason reason) { |
| if (kIsDebugBuild) { |
| Locks::thread_suspend_count_lock_->AssertHeld(self); |
| if (this != self) { |
| Locks::thread_list_lock_->AssertHeld(self); |
| } |
| } |
| if (UNLIKELY(reason == SuspendReason::kForUserCode)) { |
| Locks::user_code_suspension_lock_->AssertHeld(self); |
| } |
| |
| uint32_t flags = enum_cast<uint32_t>(ThreadFlag::kSuspendRequest); |
| if (suspendall_barrier != nullptr) { |
| DCHECK(suspend1_barrier == nullptr); |
| DCHECK(tlsPtr_.active_suspendall_barrier == nullptr); |
| tlsPtr_.active_suspendall_barrier = suspendall_barrier; |
| flags |= enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier); |
| } else if (suspend1_barrier != nullptr) { |
| AddSuspend1Barrier(suspend1_barrier); |
| flags |= enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier); |
| } |
| |
| ++tls32_.suspend_count; |
| if (reason == SuspendReason::kForUserCode) { |
| ++tls32_.user_code_suspend_count; |
| } |
| |
| // Two bits might be set simultaneously. |
| tls32_.state_and_flags.fetch_or(flags, std::memory_order_release); |
| TriggerSuspend(); |
| } |
| |
| inline void Thread::IncrementSuspendCount(Thread* self) { |
| IncrementSuspendCount(self, nullptr, nullptr, SuspendReason::kInternal); |
| } |
| |
| inline void Thread::DecrementSuspendCount(Thread* self, bool for_user_code) { |
| DCHECK(ReadFlag(ThreadFlag::kSuspendRequest)); |
| Locks::thread_suspend_count_lock_->AssertHeld(self); |
| if (UNLIKELY(tls32_.suspend_count <= 0)) { |
| UnsafeLogFatalForSuspendCount(self, this); |
| UNREACHABLE(); |
| } |
| if (for_user_code) { |
| Locks::user_code_suspension_lock_->AssertHeld(self); |
| if (UNLIKELY(tls32_.user_code_suspend_count <= 0)) { |
| LOG(ERROR) << "user_code_suspend_count incorrect"; |
| UnsafeLogFatalForSuspendCount(self, this); |
| UNREACHABLE(); |
| } |
| --tls32_.user_code_suspend_count; |
| } |
| |
| --tls32_.suspend_count; |
| |
| if (tls32_.suspend_count == 0) { |
| AtomicClearFlag(ThreadFlag::kSuspendRequest, std::memory_order_release); |
| } |
| } |
| |
| inline ShadowFrame* Thread::PushShadowFrame(ShadowFrame* new_top_frame) { |
| new_top_frame->CheckConsistentVRegs(); |
| return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame); |
| } |
| |
| inline ShadowFrame* Thread::PopShadowFrame() { |
| return tlsPtr_.managed_stack.PopShadowFrame(); |
| } |
| |
| inline uint8_t* Thread::GetStackEndForInterpreter(bool implicit_overflow_check) const { |
| uint8_t* end = tlsPtr_.stack_end + (implicit_overflow_check |
| ? GetStackOverflowReservedBytes(kRuntimeISA) |
| : 0); |
| if (kIsDebugBuild) { |
| // In a debuggable build, but especially under ASAN, the access-checks interpreter has a |
| // potentially humongous stack size. We don't want to take too much of the stack regularly, |
| // so do not increase the regular reserved size (for compiled code etc) and only report the |
| // virtually smaller stack to the interpreter here. |
| end += GetStackOverflowReservedBytes(kRuntimeISA); |
| } |
| return end; |
| } |
| |
| inline void Thread::ResetDefaultStackEnd() { |
| // Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room |
| // to throw a StackOverflowError. |
| tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA); |
| } |
| |
| inline void Thread::NotifyOnThreadExit(ThreadExitFlag* tef) { |
| DCHECK_EQ(tef->exited_, false); |
| DCHECK(tlsPtr_.thread_exit_flags == nullptr || !tlsPtr_.thread_exit_flags->exited_); |
| tef->next_ = tlsPtr_.thread_exit_flags; |
| tlsPtr_.thread_exit_flags = tef; |
| if (tef->next_ != nullptr) { |
| DCHECK(!tef->next_->HasExited()); |
| tef->next_->prev_ = tef; |
| } |
| tef->prev_ = nullptr; |
| } |
| |
| inline void Thread::UnregisterThreadExitFlag(ThreadExitFlag* tef) { |
| if (tef->HasExited()) { |
| // List is no longer used; each client will deallocate its own ThreadExitFlag. |
| return; |
| } |
| DCHECK(IsRegistered(tef)); |
| // Remove tef from the list. |
| if (tef->next_ != nullptr) { |
| tef->next_->prev_ = tef->prev_; |
| } |
| if (tef->prev_ == nullptr) { |
| DCHECK_EQ(tlsPtr_.thread_exit_flags, tef); |
| tlsPtr_.thread_exit_flags = tef->next_; |
| } else { |
| DCHECK_NE(tlsPtr_.thread_exit_flags, tef); |
| tef->prev_->next_ = tef->next_; |
| } |
| DCHECK(tlsPtr_.thread_exit_flags == nullptr || tlsPtr_.thread_exit_flags->prev_ == nullptr); |
| } |
| |
| inline void Thread::DCheckUnregisteredEverywhere(ThreadExitFlag* first, ThreadExitFlag* last) { |
| if (!kIsDebugBuild) { |
| return; |
| } |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| Runtime::Current()->GetThreadList()->ForEach([&](Thread* t) REQUIRES(Locks::thread_list_lock_) { |
| for (ThreadExitFlag* tef = t->tlsPtr_.thread_exit_flags; tef != nullptr; tef = tef->next_) { |
| CHECK(tef < first || tef > last) |
| << "tef = " << std::hex << tef << " first = " << first << std::dec; |
| } |
| // Also perform a minimal consistency check on each list. |
| ThreadExitFlag* flags = t->tlsPtr_.thread_exit_flags; |
| CHECK(flags == nullptr || flags->prev_ == nullptr); |
| }); |
| } |
| |
| inline bool Thread::IsRegistered(ThreadExitFlag* query_tef) { |
| for (ThreadExitFlag* tef = tlsPtr_.thread_exit_flags; tef != nullptr; tef = tef->next_) { |
| if (tef == query_tef) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| inline void Thread::DisallowPreMonitorMutexes() { |
| if (kIsDebugBuild) { |
| CHECK(this == Thread::Current()); |
| CHECK(GetHeldMutex(kMonitorLock) == nullptr); |
| // Pretend we hold a kMonitorLock level mutex to detect disallowed mutex |
| // acquisitions by checkpoint Run() methods. We don't normally register or thus check |
| // kMonitorLock level mutexes, but this is an exception. |
| Mutex* ph = cp_placeholder_mutex_.load(std::memory_order_acquire); |
| if (UNLIKELY(ph == nullptr)) { |
| Mutex* new_ph = new Mutex("checkpoint placeholder mutex", kMonitorLock); |
| if (LIKELY(cp_placeholder_mutex_.compare_exchange_strong(ph, new_ph))) { |
| ph = new_ph; |
| } else { |
| // ph now has the value set by another thread. |
| delete new_ph; |
| } |
| } |
| SetHeldMutex(kMonitorLock, ph); |
| } |
| } |
| |
| // Undo the effect of the previous call. Again only invoked by the thread itself. |
| inline void Thread::AllowPreMonitorMutexes() { |
| if (kIsDebugBuild) { |
| CHECK_EQ(GetHeldMutex(kMonitorLock), cp_placeholder_mutex_.load(std::memory_order_relaxed)); |
| SetHeldMutex(kMonitorLock, nullptr); |
| } |
| } |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_THREAD_INL_H_ |