blob: ae602ece05f19c75efc437615665f68c1efd2ca8 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "image.h"
#include <lz4.h>
#include <lz4hc.h>
#include <sstream>
#include <sys/stat.h>
#include <zlib.h>
#include "android-base/stringprintf.h"
#include "base/bit_utils.h"
#include "base/length_prefixed_array.h"
#include "base/utils.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/object_array.h"
namespace art {
const uint8_t ImageHeader::kImageMagic[] = { 'a', 'r', 't', '\n' };
// Last change: Add DexCacheSection.
const uint8_t ImageHeader::kImageVersion[] = { '1', '0', '8', '\0' };
ImageHeader::ImageHeader(uint32_t image_reservation_size,
uint32_t component_count,
uint32_t image_begin,
uint32_t image_size,
ImageSection* sections,
uint32_t image_roots,
uint32_t oat_checksum,
uint32_t oat_file_begin,
uint32_t oat_data_begin,
uint32_t oat_data_end,
uint32_t oat_file_end,
uint32_t boot_image_begin,
uint32_t boot_image_size,
uint32_t boot_image_component_count,
uint32_t boot_image_checksum,
uint32_t pointer_size)
: image_reservation_size_(image_reservation_size),
component_count_(component_count),
image_begin_(image_begin),
image_size_(image_size),
image_checksum_(0u),
oat_checksum_(oat_checksum),
oat_file_begin_(oat_file_begin),
oat_data_begin_(oat_data_begin),
oat_data_end_(oat_data_end),
oat_file_end_(oat_file_end),
boot_image_begin_(boot_image_begin),
boot_image_size_(boot_image_size),
boot_image_component_count_(boot_image_component_count),
boot_image_checksum_(boot_image_checksum),
image_roots_(image_roots),
pointer_size_(pointer_size) {
CHECK_EQ(image_begin, RoundUp(image_begin, kElfSegmentAlignment));
if (oat_checksum != 0u) {
CHECK_EQ(oat_file_begin, RoundUp(oat_file_begin, kElfSegmentAlignment));
CHECK_EQ(oat_data_begin, RoundUp(oat_data_begin, kElfSegmentAlignment));
CHECK_LT(image_roots, oat_file_begin);
CHECK_LE(oat_file_begin, oat_data_begin);
CHECK_LT(oat_data_begin, oat_data_end);
CHECK_LE(oat_data_end, oat_file_end);
}
CHECK(ValidPointerSize(pointer_size_)) << pointer_size_;
memcpy(magic_, kImageMagic, sizeof(kImageMagic));
memcpy(version_, kImageVersion, sizeof(kImageVersion));
std::copy_n(sections, kSectionCount, sections_);
}
void ImageHeader::RelocateImageReferences(int64_t delta) {
// App Images can be relocated to a page aligned address.
// Unlike with the Boot Image, for which the memory is reserved in advance of
// loading and is aligned to kElfSegmentAlignment, the App Images can be mapped
// without reserving memory i.e. via direct file mapping in which case the
// memory range is aligned by the kernel and the only guarantee is that it is
// aligned to the page sizes.
//
// NOTE: While this might be less than alignment required via information in
// the ELF header, it should be sufficient in practice as the only reason
// for the ELF segment alignment to be more than one page size is the
// compatibility of the ELF with system configurations that use larger
// page size.
//
// Adding preliminary memory reservation would introduce certain overhead.
//
// However, technically the alignment requirement isn't fulfilled and that
// might be worth addressing even if it adds certain overhead. This will have
// to be done in alignment with the dynamic linker's ELF loader as
// otherwise inconsistency would still be possible e.g. when using
// `dlopen`-like calls to load OAT files.
CHECK_ALIGNED_PARAM(delta, gPageSize) << "relocation delta must be page aligned";
oat_file_begin_ += delta;
oat_data_begin_ += delta;
oat_data_end_ += delta;
oat_file_end_ += delta;
image_begin_ += delta;
image_roots_ += delta;
}
void ImageHeader::RelocateBootImageReferences(int64_t delta) {
CHECK_ALIGNED(delta, kElfSegmentAlignment) << "relocation delta must be Elf segment aligned";
DCHECK_EQ(boot_image_begin_ != 0u, boot_image_size_ != 0u);
if (boot_image_begin_ != 0u) {
boot_image_begin_ += delta;
}
for (size_t i = 0; i < kImageMethodsCount; ++i) {
image_methods_[i] += delta;
}
}
bool ImageHeader::IsAppImage() const {
// Unlike boot image and boot image extensions which include address space for
// oat files in their reservation size, app images are loaded separately from oat
// files and their reservation size is the image size rounded up to Elf alignment.
return image_reservation_size_ == RoundUp(image_size_, kElfSegmentAlignment);
}
uint32_t ImageHeader::GetImageSpaceCount() const {
DCHECK(!IsAppImage());
DCHECK_NE(component_count_, 0u); // Must be the header for the first component.
// For images compiled with --single-image, there is only one oat file. To detect
// that, check whether the reservation ends at the end of the first oat file.
return (image_begin_ + image_reservation_size_ == oat_file_end_) ? 1u : component_count_;
}
bool ImageHeader::IsValid() const {
if (memcmp(magic_, kImageMagic, sizeof(kImageMagic)) != 0) {
return false;
}
if (memcmp(version_, kImageVersion, sizeof(kImageVersion)) != 0) {
return false;
}
if (!IsAligned<kElfSegmentAlignment>(image_reservation_size_)) {
return false;
}
// Unsigned so wraparound is well defined.
if (image_begin_ >= image_begin_ + image_size_) {
return false;
}
if (oat_checksum_ != 0u) {
if (oat_file_begin_ > oat_file_end_) {
return false;
}
if (oat_data_begin_ > oat_data_end_) {
return false;
}
if (oat_file_begin_ >= oat_data_begin_) {
return false;
}
}
return true;
}
const char* ImageHeader::GetMagic() const {
CHECK(IsValid());
return reinterpret_cast<const char*>(magic_);
}
ArtMethod* ImageHeader::GetImageMethod(ImageMethod index) const {
CHECK_LT(static_cast<size_t>(index), kImageMethodsCount);
return reinterpret_cast<ArtMethod*>(image_methods_[index]);
}
std::ostream& operator<<(std::ostream& os, const ImageSection& section) {
return os << "size=" << section.Size() << " range=" << section.Offset() << "-" << section.End();
}
void ImageHeader::VisitObjects(ObjectVisitor* visitor,
uint8_t* base,
PointerSize pointer_size) const {
DCHECK_EQ(pointer_size, GetPointerSize());
const ImageSection& objects = GetObjectsSection();
static const size_t kStartPos = RoundUp(sizeof(ImageHeader), kObjectAlignment);
for (size_t pos = kStartPos; pos < objects.Size(); ) {
mirror::Object* object = reinterpret_cast<mirror::Object*>(base + objects.Offset() + pos);
visitor->Visit(object);
pos += RoundUp(object->SizeOf(), kObjectAlignment);
}
}
PointerSize ImageHeader::GetPointerSize() const {
return ConvertToPointerSize(pointer_size_);
}
bool LZ4_decompress_safe_checked(const char* source,
char* dest,
int compressed_size,
int max_decompressed_size,
/*out*/ size_t* decompressed_size_checked,
/*out*/ std::string* error_msg) {
int decompressed_size = LZ4_decompress_safe(source, dest, compressed_size, max_decompressed_size);
if (UNLIKELY(decompressed_size < 0)) {
*error_msg = android::base::StringPrintf("LZ4_decompress_safe() returned negative size: %d",
decompressed_size);
return false;
} else {
*decompressed_size_checked = static_cast<size_t>(decompressed_size);
return true;
}
}
bool ImageHeader::Block::Decompress(uint8_t* out_ptr,
const uint8_t* in_ptr,
std::string* error_msg) const {
switch (storage_mode_) {
case kStorageModeUncompressed: {
CHECK_EQ(image_size_, data_size_);
memcpy(out_ptr + image_offset_, in_ptr + data_offset_, data_size_);
break;
}
case kStorageModeLZ4:
case kStorageModeLZ4HC: {
// LZ4HC and LZ4 have same internal format, both use LZ4_decompress.
size_t decompressed_size;
bool ok = LZ4_decompress_safe_checked(
reinterpret_cast<const char*>(in_ptr) + data_offset_,
reinterpret_cast<char*>(out_ptr) + image_offset_,
data_size_,
image_size_,
&decompressed_size,
error_msg);
if (!ok) {
return false;
}
if (decompressed_size != image_size_) {
if (error_msg != nullptr) {
// Maybe some disk / memory corruption, just bail.
*error_msg = (std::ostringstream() << "Decompressed size different than image size: "
<< decompressed_size << ", and " << image_size_).str();
}
return false;
}
break;
}
default: {
if (error_msg != nullptr) {
*error_msg = (std::ostringstream() << "Invalid image format " << storage_mode_).str();
}
return false;
}
}
return true;
}
const char* ImageHeader::GetImageSectionName(ImageSections index) {
switch (index) {
case kSectionObjects: return "Objects";
case kSectionArtFields: return "ArtFields";
case kSectionArtMethods: return "ArtMethods";
case kSectionRuntimeMethods: return "RuntimeMethods";
case kSectionImTables: return "ImTables";
case kSectionIMTConflictTables: return "IMTConflictTables";
case kSectionInternedStrings: return "InternedStrings";
case kSectionClassTable: return "ClassTable";
case kSectionStringReferenceOffsets: return "StringReferenceOffsets";
case kSectionDexCacheArrays: return "DexCacheArrays";
case kSectionMetadata: return "Metadata";
case kSectionImageBitmap: return "ImageBitmap";
case kSectionCount: return nullptr;
}
}
// Compress data from `source` into `storage`.
static bool CompressData(ArrayRef<const uint8_t> source,
ImageHeader::StorageMode image_storage_mode,
/*out*/ dchecked_vector<uint8_t>* storage) {
const uint64_t compress_start_time = NanoTime();
// Bound is same for both LZ4 and LZ4HC.
storage->resize(LZ4_compressBound(source.size()));
size_t data_size = 0;
if (image_storage_mode == ImageHeader::kStorageModeLZ4) {
data_size = LZ4_compress_default(
reinterpret_cast<char*>(const_cast<uint8_t*>(source.data())),
reinterpret_cast<char*>(storage->data()),
source.size(),
storage->size());
} else {
DCHECK_EQ(image_storage_mode, ImageHeader::kStorageModeLZ4HC);
data_size = LZ4_compress_HC(
reinterpret_cast<const char*>(const_cast<uint8_t*>(source.data())),
reinterpret_cast<char*>(storage->data()),
source.size(),
storage->size(),
LZ4HC_CLEVEL_MAX);
}
if (data_size == 0) {
return false;
}
storage->resize(data_size);
VLOG(image) << "Compressed from " << source.size() << " to " << storage->size() << " in "
<< PrettyDuration(NanoTime() - compress_start_time);
if (kIsDebugBuild) {
dchecked_vector<uint8_t> decompressed(source.size());
size_t decompressed_size;
std::string error_msg;
bool ok = LZ4_decompress_safe_checked(
reinterpret_cast<char*>(storage->data()),
reinterpret_cast<char*>(decompressed.data()),
storage->size(),
decompressed.size(),
&decompressed_size,
&error_msg);
if (!ok) {
LOG(FATAL) << error_msg;
UNREACHABLE();
}
CHECK_EQ(decompressed_size, decompressed.size());
CHECK_EQ(memcmp(source.data(), decompressed.data(), source.size()), 0) << image_storage_mode;
}
return true;
}
bool ImageHeader::WriteData(const ImageFileGuard& image_file,
const uint8_t* data,
const uint8_t* bitmap_data,
ImageHeader::StorageMode image_storage_mode,
uint32_t max_image_block_size,
bool update_checksum,
std::string* error_msg) {
const bool is_compressed = image_storage_mode != ImageHeader::kStorageModeUncompressed;
dchecked_vector<std::pair<uint32_t, uint32_t>> block_sources;
dchecked_vector<ImageHeader::Block> blocks;
// Add a set of solid blocks such that no block is larger than the maximum size. A solid block
// is a block that must be decompressed all at once.
auto add_blocks = [&](uint32_t offset, uint32_t size) {
while (size != 0u) {
const uint32_t cur_size = std::min(size, max_image_block_size);
block_sources.emplace_back(offset, cur_size);
offset += cur_size;
size -= cur_size;
}
};
add_blocks(sizeof(ImageHeader), this->GetImageSize() - sizeof(ImageHeader));
// Checksum of compressed image data and header.
uint32_t image_checksum = 0u;
if (update_checksum) {
image_checksum = adler32(0L, Z_NULL, 0);
image_checksum = adler32(image_checksum,
reinterpret_cast<const uint8_t*>(this),
sizeof(ImageHeader));
}
// Copy and compress blocks.
uint32_t out_offset = sizeof(ImageHeader);
for (const std::pair<uint32_t, uint32_t> block : block_sources) {
ArrayRef<const uint8_t> raw_image_data(data + block.first, block.second);
dchecked_vector<uint8_t> compressed_data;
ArrayRef<const uint8_t> image_data;
if (is_compressed) {
if (!CompressData(raw_image_data, image_storage_mode, &compressed_data)) {
*error_msg = "Error compressing data for " +
image_file->GetPath() + ": " + std::string(strerror(errno));
return false;
}
image_data = ArrayRef<const uint8_t>(compressed_data);
} else {
image_data = raw_image_data;
// For uncompressed, preserve alignment since the image will be directly mapped.
out_offset = block.first;
}
// Fill in the compressed location of the block.
blocks.emplace_back(ImageHeader::Block(
image_storage_mode,
/*data_offset=*/ out_offset,
/*data_size=*/ image_data.size(),
/*image_offset=*/ block.first,
/*image_size=*/ block.second));
if (!image_file->PwriteFully(image_data.data(), image_data.size(), out_offset)) {
*error_msg = "Failed to write image file data " +
image_file->GetPath() + ": " + std::string(strerror(errno));
return false;
}
out_offset += image_data.size();
if (update_checksum) {
image_checksum = adler32(image_checksum, image_data.data(), image_data.size());
}
}
if (is_compressed) {
// Align up since the compressed data is not necessarily aligned.
out_offset = RoundUp(out_offset, alignof(ImageHeader::Block));
CHECK(!blocks.empty());
const size_t blocks_bytes = blocks.size() * sizeof(blocks[0]);
if (!image_file->PwriteFully(&blocks[0], blocks_bytes, out_offset)) {
*error_msg = "Failed to write image blocks " +
image_file->GetPath() + ": " + std::string(strerror(errno));
return false;
}
this->blocks_offset_ = out_offset;
this->blocks_count_ = blocks.size();
out_offset += blocks_bytes;
}
// Data size includes everything except the bitmap.
this->data_size_ = out_offset - sizeof(ImageHeader);
// Update and write the bitmap section. Note that the bitmap section is relative to the
// possibly compressed image.
ImageSection& bitmap_section = GetImageSection(ImageHeader::kSectionImageBitmap);
// Align up since data size may be unaligned if the image is compressed.
out_offset = RoundUp(out_offset, kElfSegmentAlignment);
bitmap_section = ImageSection(out_offset, bitmap_section.Size());
if (!image_file->PwriteFully(bitmap_data,
bitmap_section.Size(),
bitmap_section.Offset())) {
*error_msg = "Failed to write image file bitmap " +
image_file->GetPath() + ": " + std::string(strerror(errno));
return false;
}
int err = image_file->Flush();
if (err < 0) {
*error_msg = "Failed to flush image file " + image_file->GetPath() + ": " + std::to_string(err);
return false;
}
if (update_checksum) {
// Calculate the image checksum of the remaining data.
image_checksum = adler32(image_checksum,
reinterpret_cast<const uint8_t*>(bitmap_data),
bitmap_section.Size());
this->SetImageChecksum(image_checksum);
}
if (VLOG_IS_ON(image)) {
const size_t separately_written_section_size = bitmap_section.Size();
const size_t total_uncompressed_size = image_size_ + separately_written_section_size;
const size_t total_compressed_size = out_offset + separately_written_section_size;
VLOG(compiler) << "UncompressedImageSize = " << total_uncompressed_size;
if (total_uncompressed_size != total_compressed_size) {
VLOG(compiler) << "CompressedImageSize = " << total_compressed_size;
}
}
DCHECK_EQ(bitmap_section.End(), static_cast<size_t>(image_file->GetLength()))
<< "Bitmap should be at the end of the file";
return true;
}
} // namespace art