| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dlmalloc_space.h" |
| #include "large_object_space.h" |
| #include "zygote_space.h" |
| |
| #include "common_test.h" |
| #include "globals.h" |
| #include "UniquePtr.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object-inl.h" |
| |
| #include <stdint.h> |
| |
| namespace art { |
| namespace gc { |
| namespace space { |
| |
| class SpaceTest : public CommonTest { |
| public: |
| void AddSpace(ContinuousSpace* space) { |
| // For RosAlloc, revoke the thread local runs before moving onto a |
| // new alloc space. |
| Runtime::Current()->GetHeap()->RevokeAllThreadLocalBuffers(); |
| Runtime::Current()->GetHeap()->AddSpace(space); |
| } |
| void InstallClass(mirror::Object* o, size_t size) NO_THREAD_SAFETY_ANALYSIS { |
| // Note the minimum size, which is the size of a zero-length byte array, is 12. |
| EXPECT_GE(size, static_cast<size_t>(12)); |
| SirtRef<mirror::ClassLoader> null_loader(Thread::Current(), NULL); |
| mirror::Class* byte_array_class = Runtime::Current()->GetClassLinker()->FindClass("[B", null_loader); |
| EXPECT_TRUE(byte_array_class != NULL); |
| o->SetClass(byte_array_class); |
| mirror::Array* arr = o->AsArray(); |
| // size_t header_size = sizeof(mirror::Object) + 4; |
| size_t header_size = arr->DataOffset(1).Uint32Value(); |
| int32_t length = size - header_size; |
| arr->SetLength(length); |
| EXPECT_EQ(arr->SizeOf(), size); |
| } |
| |
| static MallocSpace* CreateDlMallocSpace(const std::string& name, size_t initial_size, size_t growth_limit, |
| size_t capacity, byte* requested_begin) { |
| return DlMallocSpace::Create(name, initial_size, growth_limit, capacity, requested_begin); |
| } |
| static MallocSpace* CreateRosAllocSpace(const std::string& name, size_t initial_size, size_t growth_limit, |
| size_t capacity, byte* requested_begin) { |
| return RosAllocSpace::Create(name, initial_size, growth_limit, capacity, requested_begin, |
| Runtime::Current()->GetHeap()->IsLowMemoryMode()); |
| } |
| |
| typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit, |
| size_t capacity, byte* requested_begin); |
| void InitTestBody(CreateSpaceFn create_space); |
| void ZygoteSpaceTestBody(CreateSpaceFn create_space); |
| void AllocAndFreeTestBody(CreateSpaceFn create_space); |
| void AllocAndFreeListTestBody(CreateSpaceFn create_space); |
| |
| void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size, |
| int round, size_t growth_limit); |
| void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space); |
| }; |
| |
| static size_t test_rand(size_t* seed) { |
| *seed = *seed * 1103515245 + 12345; |
| return *seed; |
| } |
| |
| void SpaceTest::InitTestBody(CreateSpaceFn create_space) { |
| { |
| // Init < max == growth |
| UniquePtr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Init == max == growth |
| UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Init > max == growth |
| UniquePtr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, NULL)); |
| EXPECT_TRUE(space.get() == NULL); |
| } |
| { |
| // Growth == init < max |
| UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Growth < init < max |
| UniquePtr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() == NULL); |
| } |
| { |
| // Init < growth < max |
| UniquePtr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, NULL)); |
| EXPECT_TRUE(space.get() != NULL); |
| } |
| { |
| // Init < max < growth |
| UniquePtr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, NULL)); |
| EXPECT_TRUE(space.get() == NULL); |
| } |
| } |
| |
| TEST_F(SpaceTest, Init_DlMallocSpace) { |
| InitTestBody(SpaceTest::CreateDlMallocSpace); |
| } |
| TEST_F(SpaceTest, Init_RosAllocSpace) { |
| InitTestBody(SpaceTest::CreateRosAllocSpace); |
| } |
| |
| // TODO: This test is not very good, we should improve it. |
| // The test should do more allocations before the creation of the ZygoteSpace, and then do |
| // allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that |
| // the GC works with the ZygoteSpace. |
| void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) { |
| size_t dummy = 0; |
| MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, NULL)); |
| ASSERT_TRUE(space != NULL); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| AddSpace(space); |
| Thread* self = Thread::Current(); |
| |
| // Succeeds, fits without adjusting the footprint limit. |
| mirror::Object* ptr1 = space->Alloc(self, 1 * MB, &dummy); |
| EXPECT_TRUE(ptr1 != NULL); |
| InstallClass(ptr1, 1 * MB); |
| |
| // Fails, requires a higher footprint limit. |
| mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy); |
| EXPECT_TRUE(ptr2 == NULL); |
| |
| // Succeeds, adjusts the footprint. |
| size_t ptr3_bytes_allocated; |
| mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated); |
| EXPECT_TRUE(ptr3 != NULL); |
| EXPECT_LE(8U * MB, ptr3_bytes_allocated); |
| InstallClass(ptr3, 8 * MB); |
| |
| // Fails, requires a higher footprint limit. |
| mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy); |
| EXPECT_TRUE(ptr4 == NULL); |
| |
| // Also fails, requires a higher allowed footprint. |
| mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy); |
| EXPECT_TRUE(ptr5 == NULL); |
| |
| // Release some memory. |
| ScopedObjectAccess soa(self); |
| size_t free3 = space->AllocationSize(ptr3); |
| EXPECT_EQ(free3, ptr3_bytes_allocated); |
| EXPECT_EQ(free3, space->Free(self, ptr3)); |
| EXPECT_LE(8U * MB, free3); |
| |
| // Succeeds, now that memory has been freed. |
| mirror::Object* ptr6 = space->AllocWithGrowth(self, 9 * MB, &dummy); |
| EXPECT_TRUE(ptr6 != NULL); |
| InstallClass(ptr6, 9 * MB); |
| |
| // Final clean up. |
| size_t free1 = space->AllocationSize(ptr1); |
| space->Free(self, ptr1); |
| EXPECT_LE(1U * MB, free1); |
| |
| // Make sure that the zygote space isn't directly at the start of the space. |
| space->Alloc(self, 1U * MB, &dummy); |
| |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| space::Space* old_space = space; |
| heap->RemoveSpace(old_space); |
| space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space", |
| heap->IsLowMemoryMode(), |
| &space); |
| delete old_space; |
| // Add the zygote space. |
| AddSpace(zygote_space); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| AddSpace(space); |
| |
| // Succeeds, fits without adjusting the footprint limit. |
| ptr1 = space->Alloc(self, 1 * MB, &dummy); |
| EXPECT_TRUE(ptr1 != NULL); |
| InstallClass(ptr1, 1 * MB); |
| |
| // Fails, requires a higher footprint limit. |
| ptr2 = space->Alloc(self, 8 * MB, &dummy); |
| EXPECT_TRUE(ptr2 == NULL); |
| |
| // Succeeds, adjusts the footprint. |
| ptr3 = space->AllocWithGrowth(self, 2 * MB, &dummy); |
| EXPECT_TRUE(ptr3 != NULL); |
| InstallClass(ptr3, 2 * MB); |
| space->Free(self, ptr3); |
| |
| // Final clean up. |
| free1 = space->AllocationSize(ptr1); |
| space->Free(self, ptr1); |
| EXPECT_LE(1U * MB, free1); |
| } |
| |
| TEST_F(SpaceTest, ZygoteSpace_DlMallocSpace) { |
| ZygoteSpaceTestBody(SpaceTest::CreateDlMallocSpace); |
| } |
| |
| TEST_F(SpaceTest, ZygoteSpace_RosAllocSpace) { |
| ZygoteSpaceTestBody(SpaceTest::CreateRosAllocSpace); |
| } |
| |
| void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) { |
| size_t dummy = 0; |
| MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, NULL)); |
| ASSERT_TRUE(space != NULL); |
| Thread* self = Thread::Current(); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| AddSpace(space); |
| |
| // Succeeds, fits without adjusting the footprint limit. |
| mirror::Object* ptr1 = space->Alloc(self, 1 * MB, &dummy); |
| EXPECT_TRUE(ptr1 != NULL); |
| InstallClass(ptr1, 1 * MB); |
| |
| // Fails, requires a higher footprint limit. |
| mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy); |
| EXPECT_TRUE(ptr2 == NULL); |
| |
| // Succeeds, adjusts the footprint. |
| size_t ptr3_bytes_allocated; |
| mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated); |
| EXPECT_TRUE(ptr3 != NULL); |
| EXPECT_LE(8U * MB, ptr3_bytes_allocated); |
| InstallClass(ptr3, 8 * MB); |
| |
| // Fails, requires a higher footprint limit. |
| mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy); |
| EXPECT_TRUE(ptr4 == NULL); |
| |
| // Also fails, requires a higher allowed footprint. |
| mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy); |
| EXPECT_TRUE(ptr5 == NULL); |
| |
| // Release some memory. |
| ScopedObjectAccess soa(self); |
| size_t free3 = space->AllocationSize(ptr3); |
| EXPECT_EQ(free3, ptr3_bytes_allocated); |
| space->Free(self, ptr3); |
| EXPECT_LE(8U * MB, free3); |
| |
| // Succeeds, now that memory has been freed. |
| mirror::Object* ptr6 = space->AllocWithGrowth(self, 9 * MB, &dummy); |
| EXPECT_TRUE(ptr6 != NULL); |
| InstallClass(ptr6, 9 * MB); |
| |
| // Final clean up. |
| size_t free1 = space->AllocationSize(ptr1); |
| space->Free(self, ptr1); |
| EXPECT_LE(1U * MB, free1); |
| } |
| |
| TEST_F(SpaceTest, AllocAndFree_DlMallocSpace) { |
| AllocAndFreeTestBody(SpaceTest::CreateDlMallocSpace); |
| } |
| TEST_F(SpaceTest, AllocAndFree_RosAllocSpace) { |
| AllocAndFreeTestBody(SpaceTest::CreateRosAllocSpace); |
| } |
| |
| TEST_F(SpaceTest, LargeObjectTest) { |
| size_t rand_seed = 0; |
| for (size_t i = 0; i < 2; ++i) { |
| LargeObjectSpace* los = NULL; |
| if (i == 0) { |
| los = space::LargeObjectMapSpace::Create("large object space"); |
| } else { |
| los = space::FreeListSpace::Create("large object space", NULL, 128 * MB); |
| } |
| |
| static const size_t num_allocations = 64; |
| static const size_t max_allocation_size = 0x100000; |
| std::vector<std::pair<mirror::Object*, size_t> > requests; |
| |
| for (size_t phase = 0; phase < 2; ++phase) { |
| while (requests.size() < num_allocations) { |
| size_t request_size = test_rand(&rand_seed) % max_allocation_size; |
| size_t allocation_size = 0; |
| mirror::Object* obj = los->Alloc(Thread::Current(), request_size, &allocation_size); |
| ASSERT_TRUE(obj != NULL); |
| ASSERT_EQ(allocation_size, los->AllocationSize(obj)); |
| ASSERT_GE(allocation_size, request_size); |
| // Fill in our magic value. |
| byte magic = (request_size & 0xFF) | 1; |
| memset(obj, magic, request_size); |
| requests.push_back(std::make_pair(obj, request_size)); |
| } |
| |
| // "Randomly" shuffle the requests. |
| for (size_t k = 0; k < 10; ++k) { |
| for (size_t j = 0; j < requests.size(); ++j) { |
| std::swap(requests[j], requests[test_rand(&rand_seed) % requests.size()]); |
| } |
| } |
| |
| // Free 1 / 2 the allocations the first phase, and all the second phase. |
| size_t limit = !phase ? requests.size() / 2 : 0; |
| while (requests.size() > limit) { |
| mirror::Object* obj = requests.back().first; |
| size_t request_size = requests.back().second; |
| requests.pop_back(); |
| byte magic = (request_size & 0xFF) | 1; |
| for (size_t k = 0; k < request_size; ++k) { |
| ASSERT_EQ(reinterpret_cast<const byte*>(obj)[k], magic); |
| } |
| ASSERT_GE(los->Free(Thread::Current(), obj), request_size); |
| } |
| } |
| |
| size_t bytes_allocated = 0; |
| // Checks that the coalescing works. |
| mirror::Object* obj = los->Alloc(Thread::Current(), 100 * MB, &bytes_allocated); |
| EXPECT_TRUE(obj != NULL); |
| los->Free(Thread::Current(), obj); |
| |
| EXPECT_EQ(0U, los->GetBytesAllocated()); |
| EXPECT_EQ(0U, los->GetObjectsAllocated()); |
| delete los; |
| } |
| } |
| |
| void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) { |
| MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, NULL)); |
| ASSERT_TRUE(space != NULL); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| AddSpace(space); |
| Thread* self = Thread::Current(); |
| |
| // Succeeds, fits without adjusting the max allowed footprint. |
| mirror::Object* lots_of_objects[1024]; |
| for (size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| size_t allocation_size = 0; |
| lots_of_objects[i] = space->Alloc(self, 16, &allocation_size); |
| EXPECT_TRUE(lots_of_objects[i] != nullptr); |
| InstallClass(lots_of_objects[i], 16); |
| EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i])); |
| } |
| |
| // Release memory and check pointers are NULL. |
| { |
| ScopedObjectAccess soa(self); |
| space->FreeList(self, arraysize(lots_of_objects), lots_of_objects); |
| for (size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| EXPECT_TRUE(lots_of_objects[i] == nullptr); |
| } |
| } |
| |
| // Succeeds, fits by adjusting the max allowed footprint. |
| for (size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| size_t allocation_size = 0; |
| lots_of_objects[i] = space->AllocWithGrowth(self, 1024, &allocation_size); |
| EXPECT_TRUE(lots_of_objects[i] != nullptr); |
| InstallClass(lots_of_objects[i], 1024); |
| EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i])); |
| } |
| |
| // Release memory and check pointers are NULL |
| { |
| ScopedObjectAccess soa(self); |
| space->FreeList(self, arraysize(lots_of_objects), lots_of_objects); |
| for (size_t i = 0; i < arraysize(lots_of_objects); i++) { |
| EXPECT_TRUE(lots_of_objects[i] == nullptr); |
| } |
| } |
| } |
| |
| TEST_F(SpaceTest, AllocAndFreeList_DlMallocSpace) { |
| AllocAndFreeListTestBody(SpaceTest::CreateDlMallocSpace); |
| } |
| TEST_F(SpaceTest, AllocAndFreeList_RosAllocSpace) { |
| AllocAndFreeListTestBody(SpaceTest::CreateRosAllocSpace); |
| } |
| |
| void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size, |
| int round, size_t growth_limit) { |
| if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) || |
| ((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) { |
| // No allocation can succeed |
| return; |
| } |
| |
| // The space's footprint equals amount of resources requested from system |
| size_t footprint = space->GetFootprint(); |
| |
| // The space must at least have its book keeping allocated |
| EXPECT_GT(footprint, 0u); |
| |
| // But it shouldn't exceed the initial size |
| EXPECT_LE(footprint, growth_limit); |
| |
| // space's size shouldn't exceed the initial size |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // this invariant should always hold or else the space has grown to be larger than what the |
| // space believes its size is (which will break invariants) |
| EXPECT_GE(space->Size(), footprint); |
| |
| // Fill the space with lots of small objects up to the growth limit |
| size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1; |
| UniquePtr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]); |
| size_t last_object = 0; // last object for which allocation succeeded |
| size_t amount_allocated = 0; // amount of space allocated |
| Thread* self = Thread::Current(); |
| size_t rand_seed = 123456789; |
| for (size_t i = 0; i < max_objects; i++) { |
| size_t alloc_fails = 0; // number of failed allocations |
| size_t max_fails = 30; // number of times we fail allocation before giving up |
| for (; alloc_fails < max_fails; alloc_fails++) { |
| size_t alloc_size; |
| if (object_size > 0) { |
| alloc_size = object_size; |
| } else { |
| alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size); |
| // Note the minimum size, which is the size of a zero-length byte array, is 12. |
| if (alloc_size < 12) { |
| alloc_size = 12; |
| } |
| } |
| mirror::Object* object; |
| size_t bytes_allocated = 0; |
| if (round <= 1) { |
| object = space->Alloc(self, alloc_size, &bytes_allocated); |
| } else { |
| object = space->AllocWithGrowth(self, alloc_size, &bytes_allocated); |
| } |
| footprint = space->GetFootprint(); |
| EXPECT_GE(space->Size(), footprint); // invariant |
| if (object != NULL) { // allocation succeeded |
| InstallClass(object, alloc_size); |
| lots_of_objects.get()[i] = object; |
| size_t allocation_size = space->AllocationSize(object); |
| EXPECT_EQ(bytes_allocated, allocation_size); |
| if (object_size > 0) { |
| EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); |
| } else { |
| EXPECT_GE(allocation_size, 8u); |
| } |
| amount_allocated += allocation_size; |
| break; |
| } |
| } |
| if (alloc_fails == max_fails) { |
| last_object = i; |
| break; |
| } |
| } |
| CHECK_NE(last_object, 0u); // we should have filled the space |
| EXPECT_GT(amount_allocated, 0u); |
| |
| // We shouldn't have gone past the growth_limit |
| EXPECT_LE(amount_allocated, growth_limit); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // footprint and size should agree with amount allocated |
| EXPECT_GE(footprint, amount_allocated); |
| EXPECT_GE(space->Size(), amount_allocated); |
| |
| // Release storage in a semi-adhoc manner |
| size_t free_increment = 96; |
| while (true) { |
| // Give the space a haircut |
| space->Trim(); |
| |
| // Bounds sanity |
| footprint = space->GetFootprint(); |
| EXPECT_LE(amount_allocated, growth_limit); |
| EXPECT_GE(footprint, amount_allocated); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), amount_allocated); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| if (free_increment == 0) { |
| break; |
| } |
| |
| { |
| // Free some objects |
| ScopedObjectAccess soa(self); |
| for (size_t i = 0; i < last_object; i += free_increment) { |
| mirror::Object* object = lots_of_objects.get()[i]; |
| if (object == NULL) { |
| continue; |
| } |
| size_t allocation_size = space->AllocationSize(object); |
| if (object_size > 0) { |
| EXPECT_GE(allocation_size, static_cast<size_t>(object_size)); |
| } else { |
| EXPECT_GE(allocation_size, 8u); |
| } |
| space->Free(self, object); |
| lots_of_objects.get()[i] = NULL; |
| amount_allocated -= allocation_size; |
| footprint = space->GetFootprint(); |
| EXPECT_GE(space->Size(), footprint); // invariant |
| } |
| |
| free_increment >>= 1; |
| } |
| } |
| // The space has become empty here before allocating a large object |
| // below. For RosAlloc, revoke thread-local runs, which are kept |
| // even when empty for a performance reason, so that they won't |
| // cause the following large object allocation to fail due to |
| // potential fragmentation. Note they are normally revoked at each |
| // GC (but no GC here.) |
| space->RevokeAllThreadLocalBuffers(); |
| |
| // All memory was released, try a large allocation to check freed memory is being coalesced |
| mirror::Object* large_object; |
| size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4); |
| size_t bytes_allocated = 0; |
| if (round <= 1) { |
| large_object = space->Alloc(self, three_quarters_space, &bytes_allocated); |
| } else { |
| large_object = space->AllocWithGrowth(self, three_quarters_space, &bytes_allocated); |
| } |
| EXPECT_TRUE(large_object != NULL); |
| InstallClass(large_object, three_quarters_space); |
| |
| // Sanity check footprint |
| footprint = space->GetFootprint(); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), footprint); |
| EXPECT_LE(space->Size(), growth_limit); |
| |
| // Clean up |
| { |
| ScopedObjectAccess soa(self); |
| space->Free(self, large_object); |
| } |
| // Sanity check footprint |
| footprint = space->GetFootprint(); |
| EXPECT_LE(footprint, growth_limit); |
| EXPECT_GE(space->Size(), footprint); |
| EXPECT_LE(space->Size(), growth_limit); |
| } |
| |
| void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) { |
| size_t initial_size = 4 * MB; |
| size_t growth_limit = 8 * MB; |
| size_t capacity = 16 * MB; |
| MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, NULL)); |
| ASSERT_TRUE(space != NULL); |
| |
| // Basic sanity |
| EXPECT_EQ(space->Capacity(), growth_limit); |
| EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity); |
| |
| // Make space findable to the heap, will also delete space when runtime is cleaned up |
| AddSpace(space); |
| |
| // In this round we don't allocate with growth and therefore can't grow past the initial size. |
| // This effectively makes the growth_limit the initial_size, so assert this. |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size); |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit); |
| // Remove growth limit |
| space->ClearGrowthLimit(); |
| EXPECT_EQ(space->Capacity(), capacity); |
| SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity); |
| } |
| |
| #define TEST_SizeFootPrintGrowthLimitAndTrim(name, size) \ |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name##_DlMallocSpace) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(size, SpaceTest::CreateDlMallocSpace); \ |
| } \ |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name##_DlMallocSpace) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(-size, SpaceTest::CreateDlMallocSpace); \ |
| } \ |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name##_RosAllocSpace) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(size, SpaceTest::CreateRosAllocSpace); \ |
| } \ |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name##_RosAllocSpace) { \ |
| SizeFootPrintGrowthLimitAndTrimDriver(-size, SpaceTest::CreateRosAllocSpace); \ |
| } |
| |
| // Each size test is its own test so that we get a fresh heap each time |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_12B_DlMallocSpace) { |
| SizeFootPrintGrowthLimitAndTrimDriver(12, SpaceTest::CreateDlMallocSpace); |
| } |
| TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_12B_RosAllocSpace) { |
| SizeFootPrintGrowthLimitAndTrimDriver(12, SpaceTest::CreateRosAllocSpace); |
| } |
| TEST_SizeFootPrintGrowthLimitAndTrim(16B, 16) |
| TEST_SizeFootPrintGrowthLimitAndTrim(24B, 24) |
| TEST_SizeFootPrintGrowthLimitAndTrim(32B, 32) |
| TEST_SizeFootPrintGrowthLimitAndTrim(64B, 64) |
| TEST_SizeFootPrintGrowthLimitAndTrim(128B, 128) |
| TEST_SizeFootPrintGrowthLimitAndTrim(1KB, 1 * KB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(4KB, 4 * KB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(1MB, 1 * MB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(4MB, 4 * MB) |
| TEST_SizeFootPrintGrowthLimitAndTrim(8MB, 8 * MB) |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |