blob: 9989ffefaf3b3f149105e8e0195cc812b16e266a [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dlmalloc_space.h"
#include "large_object_space.h"
#include "zygote_space.h"
#include "common_test.h"
#include "globals.h"
#include "UniquePtr.h"
#include "mirror/array-inl.h"
#include "mirror/object-inl.h"
#include <stdint.h>
namespace art {
namespace gc {
namespace space {
class SpaceTest : public CommonTest {
public:
void AddSpace(ContinuousSpace* space) {
// For RosAlloc, revoke the thread local runs before moving onto a
// new alloc space.
Runtime::Current()->GetHeap()->RevokeAllThreadLocalBuffers();
Runtime::Current()->GetHeap()->AddSpace(space);
}
void InstallClass(mirror::Object* o, size_t size) NO_THREAD_SAFETY_ANALYSIS {
// Note the minimum size, which is the size of a zero-length byte array, is 12.
EXPECT_GE(size, static_cast<size_t>(12));
SirtRef<mirror::ClassLoader> null_loader(Thread::Current(), NULL);
mirror::Class* byte_array_class = Runtime::Current()->GetClassLinker()->FindClass("[B", null_loader);
EXPECT_TRUE(byte_array_class != NULL);
o->SetClass(byte_array_class);
mirror::Array* arr = o->AsArray();
// size_t header_size = sizeof(mirror::Object) + 4;
size_t header_size = arr->DataOffset(1).Uint32Value();
int32_t length = size - header_size;
arr->SetLength(length);
EXPECT_EQ(arr->SizeOf(), size);
}
static MallocSpace* CreateDlMallocSpace(const std::string& name, size_t initial_size, size_t growth_limit,
size_t capacity, byte* requested_begin) {
return DlMallocSpace::Create(name, initial_size, growth_limit, capacity, requested_begin);
}
static MallocSpace* CreateRosAllocSpace(const std::string& name, size_t initial_size, size_t growth_limit,
size_t capacity, byte* requested_begin) {
return RosAllocSpace::Create(name, initial_size, growth_limit, capacity, requested_begin,
Runtime::Current()->GetHeap()->IsLowMemoryMode());
}
typedef MallocSpace* (*CreateSpaceFn)(const std::string& name, size_t initial_size, size_t growth_limit,
size_t capacity, byte* requested_begin);
void InitTestBody(CreateSpaceFn create_space);
void ZygoteSpaceTestBody(CreateSpaceFn create_space);
void AllocAndFreeTestBody(CreateSpaceFn create_space);
void AllocAndFreeListTestBody(CreateSpaceFn create_space);
void SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
int round, size_t growth_limit);
void SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space);
};
static size_t test_rand(size_t* seed) {
*seed = *seed * 1103515245 + 12345;
return *seed;
}
void SpaceTest::InitTestBody(CreateSpaceFn create_space) {
{
// Init < max == growth
UniquePtr<Space> space(create_space("test", 16 * MB, 32 * MB, 32 * MB, NULL));
EXPECT_TRUE(space.get() != NULL);
}
{
// Init == max == growth
UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 16 * MB, NULL));
EXPECT_TRUE(space.get() != NULL);
}
{
// Init > max == growth
UniquePtr<Space> space(create_space("test", 32 * MB, 16 * MB, 16 * MB, NULL));
EXPECT_TRUE(space.get() == NULL);
}
{
// Growth == init < max
UniquePtr<Space> space(create_space("test", 16 * MB, 16 * MB, 32 * MB, NULL));
EXPECT_TRUE(space.get() != NULL);
}
{
// Growth < init < max
UniquePtr<Space> space(create_space("test", 16 * MB, 8 * MB, 32 * MB, NULL));
EXPECT_TRUE(space.get() == NULL);
}
{
// Init < growth < max
UniquePtr<Space> space(create_space("test", 8 * MB, 16 * MB, 32 * MB, NULL));
EXPECT_TRUE(space.get() != NULL);
}
{
// Init < max < growth
UniquePtr<Space> space(create_space("test", 8 * MB, 32 * MB, 16 * MB, NULL));
EXPECT_TRUE(space.get() == NULL);
}
}
TEST_F(SpaceTest, Init_DlMallocSpace) {
InitTestBody(SpaceTest::CreateDlMallocSpace);
}
TEST_F(SpaceTest, Init_RosAllocSpace) {
InitTestBody(SpaceTest::CreateRosAllocSpace);
}
// TODO: This test is not very good, we should improve it.
// The test should do more allocations before the creation of the ZygoteSpace, and then do
// allocations after the ZygoteSpace is created. The test should also do some GCs to ensure that
// the GC works with the ZygoteSpace.
void SpaceTest::ZygoteSpaceTestBody(CreateSpaceFn create_space) {
size_t dummy = 0;
MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, NULL));
ASSERT_TRUE(space != NULL);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
Thread* self = Thread::Current();
// Succeeds, fits without adjusting the footprint limit.
mirror::Object* ptr1 = space->Alloc(self, 1 * MB, &dummy);
EXPECT_TRUE(ptr1 != NULL);
InstallClass(ptr1, 1 * MB);
// Fails, requires a higher footprint limit.
mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy);
EXPECT_TRUE(ptr2 == NULL);
// Succeeds, adjusts the footprint.
size_t ptr3_bytes_allocated;
mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated);
EXPECT_TRUE(ptr3 != NULL);
EXPECT_LE(8U * MB, ptr3_bytes_allocated);
InstallClass(ptr3, 8 * MB);
// Fails, requires a higher footprint limit.
mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy);
EXPECT_TRUE(ptr4 == NULL);
// Also fails, requires a higher allowed footprint.
mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy);
EXPECT_TRUE(ptr5 == NULL);
// Release some memory.
ScopedObjectAccess soa(self);
size_t free3 = space->AllocationSize(ptr3);
EXPECT_EQ(free3, ptr3_bytes_allocated);
EXPECT_EQ(free3, space->Free(self, ptr3));
EXPECT_LE(8U * MB, free3);
// Succeeds, now that memory has been freed.
mirror::Object* ptr6 = space->AllocWithGrowth(self, 9 * MB, &dummy);
EXPECT_TRUE(ptr6 != NULL);
InstallClass(ptr6, 9 * MB);
// Final clean up.
size_t free1 = space->AllocationSize(ptr1);
space->Free(self, ptr1);
EXPECT_LE(1U * MB, free1);
// Make sure that the zygote space isn't directly at the start of the space.
space->Alloc(self, 1U * MB, &dummy);
gc::Heap* heap = Runtime::Current()->GetHeap();
space::Space* old_space = space;
heap->RemoveSpace(old_space);
space::ZygoteSpace* zygote_space = space->CreateZygoteSpace("alloc space",
heap->IsLowMemoryMode(),
&space);
delete old_space;
// Add the zygote space.
AddSpace(zygote_space);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
// Succeeds, fits without adjusting the footprint limit.
ptr1 = space->Alloc(self, 1 * MB, &dummy);
EXPECT_TRUE(ptr1 != NULL);
InstallClass(ptr1, 1 * MB);
// Fails, requires a higher footprint limit.
ptr2 = space->Alloc(self, 8 * MB, &dummy);
EXPECT_TRUE(ptr2 == NULL);
// Succeeds, adjusts the footprint.
ptr3 = space->AllocWithGrowth(self, 2 * MB, &dummy);
EXPECT_TRUE(ptr3 != NULL);
InstallClass(ptr3, 2 * MB);
space->Free(self, ptr3);
// Final clean up.
free1 = space->AllocationSize(ptr1);
space->Free(self, ptr1);
EXPECT_LE(1U * MB, free1);
}
TEST_F(SpaceTest, ZygoteSpace_DlMallocSpace) {
ZygoteSpaceTestBody(SpaceTest::CreateDlMallocSpace);
}
TEST_F(SpaceTest, ZygoteSpace_RosAllocSpace) {
ZygoteSpaceTestBody(SpaceTest::CreateRosAllocSpace);
}
void SpaceTest::AllocAndFreeTestBody(CreateSpaceFn create_space) {
size_t dummy = 0;
MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, NULL));
ASSERT_TRUE(space != NULL);
Thread* self = Thread::Current();
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
// Succeeds, fits without adjusting the footprint limit.
mirror::Object* ptr1 = space->Alloc(self, 1 * MB, &dummy);
EXPECT_TRUE(ptr1 != NULL);
InstallClass(ptr1, 1 * MB);
// Fails, requires a higher footprint limit.
mirror::Object* ptr2 = space->Alloc(self, 8 * MB, &dummy);
EXPECT_TRUE(ptr2 == NULL);
// Succeeds, adjusts the footprint.
size_t ptr3_bytes_allocated;
mirror::Object* ptr3 = space->AllocWithGrowth(self, 8 * MB, &ptr3_bytes_allocated);
EXPECT_TRUE(ptr3 != NULL);
EXPECT_LE(8U * MB, ptr3_bytes_allocated);
InstallClass(ptr3, 8 * MB);
// Fails, requires a higher footprint limit.
mirror::Object* ptr4 = space->Alloc(self, 8 * MB, &dummy);
EXPECT_TRUE(ptr4 == NULL);
// Also fails, requires a higher allowed footprint.
mirror::Object* ptr5 = space->AllocWithGrowth(self, 8 * MB, &dummy);
EXPECT_TRUE(ptr5 == NULL);
// Release some memory.
ScopedObjectAccess soa(self);
size_t free3 = space->AllocationSize(ptr3);
EXPECT_EQ(free3, ptr3_bytes_allocated);
space->Free(self, ptr3);
EXPECT_LE(8U * MB, free3);
// Succeeds, now that memory has been freed.
mirror::Object* ptr6 = space->AllocWithGrowth(self, 9 * MB, &dummy);
EXPECT_TRUE(ptr6 != NULL);
InstallClass(ptr6, 9 * MB);
// Final clean up.
size_t free1 = space->AllocationSize(ptr1);
space->Free(self, ptr1);
EXPECT_LE(1U * MB, free1);
}
TEST_F(SpaceTest, AllocAndFree_DlMallocSpace) {
AllocAndFreeTestBody(SpaceTest::CreateDlMallocSpace);
}
TEST_F(SpaceTest, AllocAndFree_RosAllocSpace) {
AllocAndFreeTestBody(SpaceTest::CreateRosAllocSpace);
}
TEST_F(SpaceTest, LargeObjectTest) {
size_t rand_seed = 0;
for (size_t i = 0; i < 2; ++i) {
LargeObjectSpace* los = NULL;
if (i == 0) {
los = space::LargeObjectMapSpace::Create("large object space");
} else {
los = space::FreeListSpace::Create("large object space", NULL, 128 * MB);
}
static const size_t num_allocations = 64;
static const size_t max_allocation_size = 0x100000;
std::vector<std::pair<mirror::Object*, size_t> > requests;
for (size_t phase = 0; phase < 2; ++phase) {
while (requests.size() < num_allocations) {
size_t request_size = test_rand(&rand_seed) % max_allocation_size;
size_t allocation_size = 0;
mirror::Object* obj = los->Alloc(Thread::Current(), request_size, &allocation_size);
ASSERT_TRUE(obj != NULL);
ASSERT_EQ(allocation_size, los->AllocationSize(obj));
ASSERT_GE(allocation_size, request_size);
// Fill in our magic value.
byte magic = (request_size & 0xFF) | 1;
memset(obj, magic, request_size);
requests.push_back(std::make_pair(obj, request_size));
}
// "Randomly" shuffle the requests.
for (size_t k = 0; k < 10; ++k) {
for (size_t j = 0; j < requests.size(); ++j) {
std::swap(requests[j], requests[test_rand(&rand_seed) % requests.size()]);
}
}
// Free 1 / 2 the allocations the first phase, and all the second phase.
size_t limit = !phase ? requests.size() / 2 : 0;
while (requests.size() > limit) {
mirror::Object* obj = requests.back().first;
size_t request_size = requests.back().second;
requests.pop_back();
byte magic = (request_size & 0xFF) | 1;
for (size_t k = 0; k < request_size; ++k) {
ASSERT_EQ(reinterpret_cast<const byte*>(obj)[k], magic);
}
ASSERT_GE(los->Free(Thread::Current(), obj), request_size);
}
}
size_t bytes_allocated = 0;
// Checks that the coalescing works.
mirror::Object* obj = los->Alloc(Thread::Current(), 100 * MB, &bytes_allocated);
EXPECT_TRUE(obj != NULL);
los->Free(Thread::Current(), obj);
EXPECT_EQ(0U, los->GetBytesAllocated());
EXPECT_EQ(0U, los->GetObjectsAllocated());
delete los;
}
}
void SpaceTest::AllocAndFreeListTestBody(CreateSpaceFn create_space) {
MallocSpace* space(create_space("test", 4 * MB, 16 * MB, 16 * MB, NULL));
ASSERT_TRUE(space != NULL);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
Thread* self = Thread::Current();
// Succeeds, fits without adjusting the max allowed footprint.
mirror::Object* lots_of_objects[1024];
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
size_t allocation_size = 0;
lots_of_objects[i] = space->Alloc(self, 16, &allocation_size);
EXPECT_TRUE(lots_of_objects[i] != nullptr);
InstallClass(lots_of_objects[i], 16);
EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i]));
}
// Release memory and check pointers are NULL.
{
ScopedObjectAccess soa(self);
space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
EXPECT_TRUE(lots_of_objects[i] == nullptr);
}
}
// Succeeds, fits by adjusting the max allowed footprint.
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
size_t allocation_size = 0;
lots_of_objects[i] = space->AllocWithGrowth(self, 1024, &allocation_size);
EXPECT_TRUE(lots_of_objects[i] != nullptr);
InstallClass(lots_of_objects[i], 1024);
EXPECT_EQ(allocation_size, space->AllocationSize(lots_of_objects[i]));
}
// Release memory and check pointers are NULL
{
ScopedObjectAccess soa(self);
space->FreeList(self, arraysize(lots_of_objects), lots_of_objects);
for (size_t i = 0; i < arraysize(lots_of_objects); i++) {
EXPECT_TRUE(lots_of_objects[i] == nullptr);
}
}
}
TEST_F(SpaceTest, AllocAndFreeList_DlMallocSpace) {
AllocAndFreeListTestBody(SpaceTest::CreateDlMallocSpace);
}
TEST_F(SpaceTest, AllocAndFreeList_RosAllocSpace) {
AllocAndFreeListTestBody(SpaceTest::CreateRosAllocSpace);
}
void SpaceTest::SizeFootPrintGrowthLimitAndTrimBody(MallocSpace* space, intptr_t object_size,
int round, size_t growth_limit) {
if (((object_size > 0 && object_size >= static_cast<intptr_t>(growth_limit))) ||
((object_size < 0 && -object_size >= static_cast<intptr_t>(growth_limit)))) {
// No allocation can succeed
return;
}
// The space's footprint equals amount of resources requested from system
size_t footprint = space->GetFootprint();
// The space must at least have its book keeping allocated
EXPECT_GT(footprint, 0u);
// But it shouldn't exceed the initial size
EXPECT_LE(footprint, growth_limit);
// space's size shouldn't exceed the initial size
EXPECT_LE(space->Size(), growth_limit);
// this invariant should always hold or else the space has grown to be larger than what the
// space believes its size is (which will break invariants)
EXPECT_GE(space->Size(), footprint);
// Fill the space with lots of small objects up to the growth limit
size_t max_objects = (growth_limit / (object_size > 0 ? object_size : 8)) + 1;
UniquePtr<mirror::Object*[]> lots_of_objects(new mirror::Object*[max_objects]);
size_t last_object = 0; // last object for which allocation succeeded
size_t amount_allocated = 0; // amount of space allocated
Thread* self = Thread::Current();
size_t rand_seed = 123456789;
for (size_t i = 0; i < max_objects; i++) {
size_t alloc_fails = 0; // number of failed allocations
size_t max_fails = 30; // number of times we fail allocation before giving up
for (; alloc_fails < max_fails; alloc_fails++) {
size_t alloc_size;
if (object_size > 0) {
alloc_size = object_size;
} else {
alloc_size = test_rand(&rand_seed) % static_cast<size_t>(-object_size);
// Note the minimum size, which is the size of a zero-length byte array, is 12.
if (alloc_size < 12) {
alloc_size = 12;
}
}
mirror::Object* object;
size_t bytes_allocated = 0;
if (round <= 1) {
object = space->Alloc(self, alloc_size, &bytes_allocated);
} else {
object = space->AllocWithGrowth(self, alloc_size, &bytes_allocated);
}
footprint = space->GetFootprint();
EXPECT_GE(space->Size(), footprint); // invariant
if (object != NULL) { // allocation succeeded
InstallClass(object, alloc_size);
lots_of_objects.get()[i] = object;
size_t allocation_size = space->AllocationSize(object);
EXPECT_EQ(bytes_allocated, allocation_size);
if (object_size > 0) {
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
} else {
EXPECT_GE(allocation_size, 8u);
}
amount_allocated += allocation_size;
break;
}
}
if (alloc_fails == max_fails) {
last_object = i;
break;
}
}
CHECK_NE(last_object, 0u); // we should have filled the space
EXPECT_GT(amount_allocated, 0u);
// We shouldn't have gone past the growth_limit
EXPECT_LE(amount_allocated, growth_limit);
EXPECT_LE(footprint, growth_limit);
EXPECT_LE(space->Size(), growth_limit);
// footprint and size should agree with amount allocated
EXPECT_GE(footprint, amount_allocated);
EXPECT_GE(space->Size(), amount_allocated);
// Release storage in a semi-adhoc manner
size_t free_increment = 96;
while (true) {
// Give the space a haircut
space->Trim();
// Bounds sanity
footprint = space->GetFootprint();
EXPECT_LE(amount_allocated, growth_limit);
EXPECT_GE(footprint, amount_allocated);
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), amount_allocated);
EXPECT_LE(space->Size(), growth_limit);
if (free_increment == 0) {
break;
}
{
// Free some objects
ScopedObjectAccess soa(self);
for (size_t i = 0; i < last_object; i += free_increment) {
mirror::Object* object = lots_of_objects.get()[i];
if (object == NULL) {
continue;
}
size_t allocation_size = space->AllocationSize(object);
if (object_size > 0) {
EXPECT_GE(allocation_size, static_cast<size_t>(object_size));
} else {
EXPECT_GE(allocation_size, 8u);
}
space->Free(self, object);
lots_of_objects.get()[i] = NULL;
amount_allocated -= allocation_size;
footprint = space->GetFootprint();
EXPECT_GE(space->Size(), footprint); // invariant
}
free_increment >>= 1;
}
}
// The space has become empty here before allocating a large object
// below. For RosAlloc, revoke thread-local runs, which are kept
// even when empty for a performance reason, so that they won't
// cause the following large object allocation to fail due to
// potential fragmentation. Note they are normally revoked at each
// GC (but no GC here.)
space->RevokeAllThreadLocalBuffers();
// All memory was released, try a large allocation to check freed memory is being coalesced
mirror::Object* large_object;
size_t three_quarters_space = (growth_limit / 2) + (growth_limit / 4);
size_t bytes_allocated = 0;
if (round <= 1) {
large_object = space->Alloc(self, three_quarters_space, &bytes_allocated);
} else {
large_object = space->AllocWithGrowth(self, three_quarters_space, &bytes_allocated);
}
EXPECT_TRUE(large_object != NULL);
InstallClass(large_object, three_quarters_space);
// Sanity check footprint
footprint = space->GetFootprint();
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), footprint);
EXPECT_LE(space->Size(), growth_limit);
// Clean up
{
ScopedObjectAccess soa(self);
space->Free(self, large_object);
}
// Sanity check footprint
footprint = space->GetFootprint();
EXPECT_LE(footprint, growth_limit);
EXPECT_GE(space->Size(), footprint);
EXPECT_LE(space->Size(), growth_limit);
}
void SpaceTest::SizeFootPrintGrowthLimitAndTrimDriver(size_t object_size, CreateSpaceFn create_space) {
size_t initial_size = 4 * MB;
size_t growth_limit = 8 * MB;
size_t capacity = 16 * MB;
MallocSpace* space(create_space("test", initial_size, growth_limit, capacity, NULL));
ASSERT_TRUE(space != NULL);
// Basic sanity
EXPECT_EQ(space->Capacity(), growth_limit);
EXPECT_EQ(space->NonGrowthLimitCapacity(), capacity);
// Make space findable to the heap, will also delete space when runtime is cleaned up
AddSpace(space);
// In this round we don't allocate with growth and therefore can't grow past the initial size.
// This effectively makes the growth_limit the initial_size, so assert this.
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 1, initial_size);
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 2, growth_limit);
// Remove growth limit
space->ClearGrowthLimit();
EXPECT_EQ(space->Capacity(), capacity);
SizeFootPrintGrowthLimitAndTrimBody(space, object_size, 3, capacity);
}
#define TEST_SizeFootPrintGrowthLimitAndTrim(name, size) \
TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name##_DlMallocSpace) { \
SizeFootPrintGrowthLimitAndTrimDriver(size, SpaceTest::CreateDlMallocSpace); \
} \
TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name##_DlMallocSpace) { \
SizeFootPrintGrowthLimitAndTrimDriver(-size, SpaceTest::CreateDlMallocSpace); \
} \
TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_##name##_RosAllocSpace) { \
SizeFootPrintGrowthLimitAndTrimDriver(size, SpaceTest::CreateRosAllocSpace); \
} \
TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_RandomAllocationsWithMax_##name##_RosAllocSpace) { \
SizeFootPrintGrowthLimitAndTrimDriver(-size, SpaceTest::CreateRosAllocSpace); \
}
// Each size test is its own test so that we get a fresh heap each time
TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_12B_DlMallocSpace) {
SizeFootPrintGrowthLimitAndTrimDriver(12, SpaceTest::CreateDlMallocSpace);
}
TEST_F(SpaceTest, SizeFootPrintGrowthLimitAndTrim_AllocationsOf_12B_RosAllocSpace) {
SizeFootPrintGrowthLimitAndTrimDriver(12, SpaceTest::CreateRosAllocSpace);
}
TEST_SizeFootPrintGrowthLimitAndTrim(16B, 16)
TEST_SizeFootPrintGrowthLimitAndTrim(24B, 24)
TEST_SizeFootPrintGrowthLimitAndTrim(32B, 32)
TEST_SizeFootPrintGrowthLimitAndTrim(64B, 64)
TEST_SizeFootPrintGrowthLimitAndTrim(128B, 128)
TEST_SizeFootPrintGrowthLimitAndTrim(1KB, 1 * KB)
TEST_SizeFootPrintGrowthLimitAndTrim(4KB, 4 * KB)
TEST_SizeFootPrintGrowthLimitAndTrim(1MB, 1 * MB)
TEST_SizeFootPrintGrowthLimitAndTrim(4MB, 4 * MB)
TEST_SizeFootPrintGrowthLimitAndTrim(8MB, 8 * MB)
} // namespace space
} // namespace gc
} // namespace art