blob: db829f32337ac956388bd0cd7cb625cb7738e7b3 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "linker/arm64/relative_patcher_arm64.h"
#include "arch/arm64/asm_support_arm64.h"
#include "arch/arm64/instruction_set_features_arm64.h"
#include "art_method.h"
#include "base/bit_utils.h"
#include "compiled_method.h"
#include "driver/compiler_driver.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "linker/output_stream.h"
#include "lock_word.h"
#include "mirror/array-inl.h"
#include "mirror/object.h"
#include "oat.h"
#include "oat_quick_method_header.h"
#include "read_barrier.h"
#include "utils/arm64/assembler_arm64.h"
namespace art {
namespace linker {
namespace {
// Maximum positive and negative displacement for method call measured from the patch location.
// (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from
// the ARM64 PC pointing to the BL.)
constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u;
constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27);
// Maximum positive and negative displacement for a conditional branch measured from the patch
// location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4]
// measured from the ARM64 PC pointing to the B.cond.)
constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u;
constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20);
// The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes.
constexpr uint32_t kAdrpThunkSize = 8u;
inline bool IsAdrpPatch(const LinkerPatch& patch) {
switch (patch.GetType()) {
case LinkerPatch::Type::kCall:
case LinkerPatch::Type::kCallRelative:
case LinkerPatch::Type::kBakerReadBarrierBranch:
return false;
case LinkerPatch::Type::kMethodRelative:
case LinkerPatch::Type::kMethodBssEntry:
case LinkerPatch::Type::kTypeRelative:
case LinkerPatch::Type::kTypeBssEntry:
case LinkerPatch::Type::kStringRelative:
case LinkerPatch::Type::kStringBssEntry:
return patch.LiteralOffset() == patch.PcInsnOffset();
}
}
inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) {
if (num_adrp == 0u) {
return 0u;
}
uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, kArm64) - code_size;
return kAdrpThunkSize * num_adrp + alignment_bytes;
}
} // anonymous namespace
Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider,
const Arm64InstructionSetFeatures* features)
: ArmBaseRelativePatcher(provider, kArm64),
fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()),
reserved_adrp_thunks_(0u),
processed_adrp_thunks_(0u) {
if (fix_cortex_a53_843419_) {
adrp_thunk_locations_.reserve(16u);
current_method_thunks_.reserve(16u * kAdrpThunkSize);
}
}
uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset,
const CompiledMethod* compiled_method,
MethodReference method_ref) {
if (!fix_cortex_a53_843419_) {
DCHECK(adrp_thunk_locations_.empty());
return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u);
}
// Add thunks for previous method if any.
if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
reserved_adrp_thunks_ = adrp_thunk_locations_.size();
}
// Count the number of ADRP insns as the upper bound on the number of thunks needed
// and use it to reserve space for other linker patches.
size_t num_adrp = 0u;
DCHECK(compiled_method != nullptr);
for (const LinkerPatch& patch : compiled_method->GetPatches()) {
if (IsAdrpPatch(patch)) {
++num_adrp;
}
}
ArrayRef<const uint8_t> code = compiled_method->GetQuickCode();
uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size());
offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space);
if (num_adrp == 0u) {
return offset;
}
// Now that we have the actual offset where the code will be placed, locate the ADRP insns
// that actually require the thunk.
uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader));
uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size());
DCHECK(compiled_method != nullptr);
for (const LinkerPatch& patch : compiled_method->GetPatches()) {
if (IsAdrpPatch(patch)) {
uint32_t patch_offset = quick_code_offset + patch.LiteralOffset();
if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) {
adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset);
thunk_offset += kAdrpThunkSize;
}
}
}
return offset;
}
uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) {
if (!fix_cortex_a53_843419_) {
DCHECK(adrp_thunk_locations_.empty());
} else {
// Add thunks for the last method if any.
if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) {
size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_;
offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks;
reserved_adrp_thunks_ = adrp_thunk_locations_.size();
}
}
return ArmBaseRelativePatcher::ReserveSpaceEnd(offset);
}
uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) {
if (fix_cortex_a53_843419_) {
if (!current_method_thunks_.empty()) {
uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64);
if (kIsDebugBuild) {
CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
CHECK_LE(num_thunks, processed_adrp_thunks_);
for (size_t i = 0u; i != num_thunks; ++i) {
const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i];
CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize);
}
}
uint32_t aligned_code_delta = aligned_offset - offset;
if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) {
return 0u;
}
if (!WriteMiscThunk(out, ArrayRef<const uint8_t>(current_method_thunks_))) {
return 0u;
}
offset = aligned_offset + current_method_thunks_.size();
current_method_thunks_.clear();
}
}
return ArmBaseRelativePatcher::WriteThunks(out, offset);
}
void Arm64RelativePatcher::PatchCall(std::vector<uint8_t>* code,
uint32_t literal_offset,
uint32_t patch_offset, uint32_t
target_offset) {
DCHECK_LE(literal_offset + 4u, code->size());
DCHECK_EQ(literal_offset & 3u, 0u);
DCHECK_EQ(patch_offset & 3u, 0u);
DCHECK_EQ(target_offset & 3u, 0u);
uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u);
DCHECK_EQ(displacement & 3u, 0u);
DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed.
uint32_t insn = (displacement & 0x0fffffffu) >> 2;
insn |= 0x94000000; // BL
// Check that we're just overwriting an existing BL.
DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u);
// Write the new BL.
SetInsn(code, literal_offset, insn);
}
void Arm64RelativePatcher::PatchPcRelativeReference(std::vector<uint8_t>* code,
const LinkerPatch& patch,
uint32_t patch_offset,
uint32_t target_offset) {
DCHECK_EQ(patch_offset & 3u, 0u);
DCHECK_EQ(target_offset & 3u, 0u);
uint32_t literal_offset = patch.LiteralOffset();
uint32_t insn = GetInsn(code, literal_offset);
uint32_t pc_insn_offset = patch.PcInsnOffset();
uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu);
bool wide = (insn & 0x40000000) != 0;
uint32_t shift = wide ? 3u : 2u;
if (literal_offset == pc_insn_offset) {
// Check it's an ADRP with imm == 0 (unset).
DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u)
<< literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn;
if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() &&
adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) {
DCHECK(NeedsErratum843419Thunk(ArrayRef<const uint8_t>(*code),
literal_offset, patch_offset));
uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second;
uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu);
uint32_t adrp = PatchAdrp(insn, adrp_disp);
uint32_t out_disp = thunk_offset - patch_offset;
DCHECK_EQ(out_disp & 3u, 0u);
DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed.
insn = (out_disp & 0x0fffffffu) >> shift;
insn |= 0x14000000; // B <thunk>
uint32_t back_disp = -out_disp;
DCHECK_EQ(back_disp & 3u, 0u);
DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed.
uint32_t b_back = (back_disp & 0x0fffffffu) >> 2;
b_back |= 0x14000000; // B <back>
size_t thunks_code_offset = current_method_thunks_.size();
current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize);
SetInsn(&current_method_thunks_, thunks_code_offset, adrp);
SetInsn(&current_method_thunks_, thunks_code_offset + 4u, b_back);
static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions");
processed_adrp_thunks_ += 1u;
} else {
insn = PatchAdrp(insn, disp);
}
// Write the new ADRP (or B to the erratum 843419 thunk).
SetInsn(code, literal_offset, insn);
} else {
if ((insn & 0xfffffc00) == 0x91000000) {
// ADD immediate, 64-bit with imm12 == 0 (unset).
if (!kEmitCompilerReadBarrier) {
DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative ||
patch.GetType() == LinkerPatch::Type::kTypeRelative ||
patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType();
} else {
// With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry.
DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative ||
patch.GetType() == LinkerPatch::Type::kTypeRelative ||
patch.GetType() == LinkerPatch::Type::kStringRelative ||
patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
}
shift = 0u; // No shift for ADD.
} else {
// LDR/STR 32-bit or 64-bit with imm12 == 0 (unset).
DCHECK(patch.GetType() == LinkerPatch::Type::kMethodBssEntry ||
patch.GetType() == LinkerPatch::Type::kTypeBssEntry ||
patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType();
DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn;
}
if (kIsDebugBuild) {
uint32_t adrp = GetInsn(code, pc_insn_offset);
if ((adrp & 0x9f000000u) != 0x90000000u) {
CHECK(fix_cortex_a53_843419_);
CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B <thunk>
CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize);
size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize;
CHECK_LE(num_thunks, processed_adrp_thunks_);
uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset;
for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) {
CHECK_NE(i, processed_adrp_thunks_);
if (adrp_thunk_locations_[i].first == b_offset) {
size_t idx = num_thunks - (processed_adrp_thunks_ - i);
adrp = GetInsn(&current_method_thunks_, idx * kAdrpThunkSize);
break;
}
}
}
CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points
0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register.
}
uint32_t imm12 = (disp & 0xfffu) >> shift;
insn = (insn & ~(0xfffu << 10)) | (imm12 << 10);
SetInsn(code, literal_offset, insn);
}
}
void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector<uint8_t>* code,
const LinkerPatch& patch,
uint32_t patch_offset) {
DCHECK_ALIGNED(patch_offset, 4u);
uint32_t literal_offset = patch.LiteralOffset();
DCHECK_ALIGNED(literal_offset, 4u);
DCHECK_LT(literal_offset, code->size());
uint32_t insn = GetInsn(code, literal_offset);
DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000); // CBNZ Xt, +0 (unpatched)
ThunkKey key = GetBakerThunkKey(patch);
if (kIsDebugBuild) {
const uint32_t encoded_data = key.GetCustomValue1();
BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
// Check that the next instruction matches the expected LDR.
switch (kind) {
case BakerReadBarrierKind::kField: {
DCHECK_GE(code->size() - literal_offset, 8u);
uint32_t next_insn = GetInsn(code, literal_offset + 4u);
// LDR (immediate) with correct base_reg.
CheckValidReg(next_insn & 0x1fu); // Check destination register.
const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
break;
}
case BakerReadBarrierKind::kArray: {
DCHECK_GE(code->size() - literal_offset, 8u);
uint32_t next_insn = GetInsn(code, literal_offset + 4u);
// LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
// and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
CheckValidReg(next_insn & 0x1fu); // Check destination register.
const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
break;
}
case BakerReadBarrierKind::kGcRoot: {
DCHECK_GE(literal_offset, 4u);
uint32_t prev_insn = GetInsn(code, literal_offset - 4u);
// LDR (immediate) with correct root_reg.
const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg);
break;
}
default:
LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
UNREACHABLE();
}
}
uint32_t target_offset = GetThunkTargetOffset(key, patch_offset);
DCHECK_ALIGNED(target_offset, 4u);
uint32_t disp = target_offset - patch_offset;
DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u); // 21-bit signed.
insn |= (disp << (5 - 2)) & 0x00ffffe0u; // Shift bits 2-20 to 5-23.
SetInsn(code, literal_offset, insn);
}
#define __ assembler.GetVIXLAssembler()->
static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
vixl::aarch64::Register base_reg,
vixl::aarch64::MemOperand& lock_word,
vixl::aarch64::Label* slow_path) {
using namespace vixl::aarch64; // NOLINT(build/namespaces)
// Load the lock word containing the rb_state.
__ Ldr(ip0.W(), lock_word);
// Given the numeric representation, it's enough to check the low bit of the rb_state.
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
__ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
static_assert(
BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
"Field and array LDR offsets must be the same to reuse the same code.");
// Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
"Field LDR must be 1 instruction (4B) before the return address label; "
" 2 instructions (8B) for heap poisoning.");
__ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
// Introduce a dependency on the lock_word including rb_state,
// to prevent load-load reordering, and without using
// a memory barrier (which would be more expensive).
__ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
__ Br(lr); // And return back to the function.
// Note: The fake dependency is unnecessary for the slow path.
}
// Load the read barrier introspection entrypoint in register `entrypoint`.
static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
vixl::aarch64::Register entrypoint) {
using vixl::aarch64::MemOperand;
using vixl::aarch64::ip0;
// Thread Register.
const vixl::aarch64::Register tr = vixl::aarch64::x19;
// entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
DCHECK_EQ(ip0.GetCode(), 16u);
const int32_t entry_point_offset =
Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
__ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
}
void Arm64RelativePatcher::CompileBakerReadBarrierThunk(arm64::Arm64Assembler& assembler,
uint32_t encoded_data) {
using namespace vixl::aarch64; // NOLINT(build/namespaces)
BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
switch (kind) {
case BakerReadBarrierKind::kField: {
// Check if the holder is gray and, if not, add fake dependency to the base register
// and return to the LDR instruction to load the reference. Otherwise, use introspection
// to load the reference and call the entrypoint (in IP1) that performs further checks
// on the reference and marks it if needed.
auto base_reg =
Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
CheckValidReg(base_reg.GetCode());
auto holder_reg =
Register::GetXRegFromCode(BakerReadBarrierSecondRegField::Decode(encoded_data));
CheckValidReg(holder_reg.GetCode());
UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
temps.Exclude(ip0, ip1);
// If base_reg differs from holder_reg, the offset was too large and we must have
// emitted an explicit null check before the load. Otherwise, we need to null-check
// the holder as we do not necessarily do that check before going to the thunk.
vixl::aarch64::Label throw_npe;
if (holder_reg.Is(base_reg)) {
__ Cbz(holder_reg.W(), &throw_npe);
}
vixl::aarch64::Label slow_path;
MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
__ Bind(&slow_path);
MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
__ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
__ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
__ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
// Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
__ Br(ip1); // Jump to the entrypoint.
if (holder_reg.Is(base_reg)) {
// Add null check slow path. The stack map is at the address pointed to by LR.
__ Bind(&throw_npe);
int32_t offset = GetThreadOffset<kArm64PointerSize>(kQuickThrowNullPointer).Int32Value();
__ Ldr(ip0, MemOperand(/* Thread* */ vixl::aarch64::x19, offset));
__ Br(ip0);
}
break;
}
case BakerReadBarrierKind::kArray: {
auto base_reg =
Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
CheckValidReg(base_reg.GetCode());
DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data));
UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
temps.Exclude(ip0, ip1);
vixl::aarch64::Label slow_path;
int32_t data_offset =
mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
DCHECK_LT(lock_word.GetOffset(), 0);
EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
__ Bind(&slow_path);
MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
__ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
__ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
__ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
// a switch case target based on the index register.
__ Mov(ip0, base_reg); // Move the base register to ip0.
__ Br(ip1); // Jump to the entrypoint's array switch case.
break;
}
case BakerReadBarrierKind::kGcRoot: {
// Check if the reference needs to be marked and if so (i.e. not null, not marked yet
// and it does not have a forwarding address), call the correct introspection entrypoint;
// otherwise return the reference (or the extracted forwarding address).
// There is no gray bit check for GC roots.
auto root_reg =
Register::GetWRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data));
CheckValidReg(root_reg.GetCode());
DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data));
UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
temps.Exclude(ip0, ip1);
vixl::aarch64::Label return_label, not_marked, forwarding_address;
__ Cbz(root_reg, &return_label);
MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
__ Ldr(ip0.W(), lock_word);
__ Tbz(ip0.W(), LockWord::kMarkBitStateShift, &not_marked);
__ Bind(&return_label);
__ Br(lr);
__ Bind(&not_marked);
__ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
__ B(&forwarding_address, mi);
LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
// Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
// art_quick_read_barrier_mark_introspection_gc_roots.
__ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
__ Mov(ip0.W(), root_reg);
__ Br(ip1);
__ Bind(&forwarding_address);
__ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
__ Br(lr);
break;
}
default:
LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
UNREACHABLE();
}
}
std::vector<uint8_t> Arm64RelativePatcher::CompileThunk(const ThunkKey& key) {
ArenaPool pool;
ArenaAllocator arena(&pool);
arm64::Arm64Assembler assembler(&arena);
switch (key.GetType()) {
case ThunkType::kMethodCall: {
// The thunk just uses the entry point in the ArtMethod. This works even for calls
// to the generic JNI and interpreter trampolines.
Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kArm64PointerSize).Int32Value());
assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
break;
}
case ThunkType::kBakerReadBarrier: {
CompileBakerReadBarrierThunk(assembler, key.GetCustomValue1());
break;
}
}
// Ensure we emit the literal pool.
assembler.FinalizeCode();
std::vector<uint8_t> thunk_code(assembler.CodeSize());
MemoryRegion code(thunk_code.data(), thunk_code.size());
assembler.FinalizeInstructions(code);
return thunk_code;
}
#undef __
uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(const ThunkKey& key) {
switch (key.GetType()) {
case ThunkType::kMethodCall:
return kMaxMethodCallPositiveDisplacement;
case ThunkType::kBakerReadBarrier:
return kMaxBcondPositiveDisplacement;
}
}
uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(const ThunkKey& key) {
switch (key.GetType()) {
case ThunkType::kMethodCall:
return kMaxMethodCallNegativeDisplacement;
case ThunkType::kBakerReadBarrier:
return kMaxBcondNegativeDisplacement;
}
}
uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) {
return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg.
// Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30.
((disp & 0x00003000u) << (29 - 12)) |
// The next 16 bits are encoded in bits 5-22.
((disp & 0xffffc000u) >> (12 + 2 - 5)) |
// Since the target_offset is based on the beginning of the oat file and the
// image space precedes the oat file, the target_offset into image space will
// be negative yet passed as uint32_t. Therefore we limit the displacement
// to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from
// the highest bit of the displacement. This is encoded in bit 23.
((disp & 0x80000000u) >> (31 - 23));
}
bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef<const uint8_t> code,
uint32_t literal_offset,
uint32_t patch_offset) {
DCHECK_EQ(patch_offset & 0x3u, 0u);
if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc
uint32_t adrp = GetInsn(code, literal_offset);
DCHECK_EQ(adrp & 0x9f000000, 0x90000000);
uint32_t next_offset = patch_offset + 4u;
uint32_t next_insn = GetInsn(code, literal_offset + 4u);
// Below we avoid patching sequences where the adrp is followed by a load which can easily
// be proved to be aligned.
// First check if the next insn is the LDR using the result of the ADRP.
// LDR <Wt>, [<Xn>, #pimm], where <Xn> == ADRP destination reg.
if ((next_insn & 0xffc00000) == 0xb9400000 &&
(((next_insn >> 5) ^ adrp) & 0x1f) == 0) {
return false;
}
// And since LinkerPatch::Type::k{Method,Type,String}Relative is using the result
// of the ADRP for an ADD immediate, check for that as well. We generalize a bit
// to include ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination
// or stores the result to a different register.
if ((next_insn & 0x1f000000) == 0x11000000 &&
((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) {
return false;
}
// LDR <Wt>, <label> is always aligned and thus it doesn't cause boundary crossing.
if ((next_insn & 0xff000000) == 0x18000000) {
return false;
}
// LDR <Xt>, <label> is aligned iff the pc + displacement is a multiple of 8.
if ((next_insn & 0xff000000) == 0x58000000) {
bool is_aligned_load = (((next_offset >> 2) ^ (next_insn >> 5)) & 1) == 0;
return !is_aligned_load;
}
// LDR <Wt>, [SP, #<pimm>] and LDR <Xt>, [SP, #<pimm>] are always aligned loads, as SP is
// guaranteed to be 128-bits aligned and <pimm> is multiple of the load size.
if ((next_insn & 0xbfc003e0) == 0xb94003e0) {
return false;
}
return true;
}
return false;
}
void Arm64RelativePatcher::SetInsn(std::vector<uint8_t>* code, uint32_t offset, uint32_t value) {
DCHECK_LE(offset + 4u, code->size());
DCHECK_EQ(offset & 3u, 0u);
uint8_t* addr = &(*code)[offset];
addr[0] = (value >> 0) & 0xff;
addr[1] = (value >> 8) & 0xff;
addr[2] = (value >> 16) & 0xff;
addr[3] = (value >> 24) & 0xff;
}
uint32_t Arm64RelativePatcher::GetInsn(ArrayRef<const uint8_t> code, uint32_t offset) {
DCHECK_LE(offset + 4u, code.size());
DCHECK_EQ(offset & 3u, 0u);
const uint8_t* addr = &code[offset];
return
(static_cast<uint32_t>(addr[0]) << 0) +
(static_cast<uint32_t>(addr[1]) << 8) +
(static_cast<uint32_t>(addr[2]) << 16)+
(static_cast<uint32_t>(addr[3]) << 24);
}
template <typename Alloc>
uint32_t Arm64RelativePatcher::GetInsn(std::vector<uint8_t, Alloc>* code, uint32_t offset) {
return GetInsn(ArrayRef<const uint8_t>(*code), offset);
}
} // namespace linker
} // namespace art