| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "runtime.h" |
| |
| #include <optional> |
| #include <utility> |
| |
| #ifdef __linux__ |
| #include <sys/prctl.h> |
| #endif |
| |
| #include <fcntl.h> |
| #include <signal.h> |
| #include <sys/mount.h> |
| #include <sys/syscall.h> |
| |
| #if defined(__APPLE__) |
| #include <crt_externs.h> // for _NSGetEnviron |
| #endif |
| |
| #include <cstdio> |
| #include <cstdlib> |
| #include <limits> |
| #include <string.h> |
| #include <thread> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "android-base/strings.h" |
| |
| #include "arch/arm/registers_arm.h" |
| #include "arch/arm64/registers_arm64.h" |
| #include "arch/context.h" |
| #include "arch/instruction_set_features.h" |
| #include "arch/x86/registers_x86.h" |
| #include "arch/x86_64/registers_x86_64.h" |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "asm_support.h" |
| #include "base/aborting.h" |
| #include "base/arena_allocator.h" |
| #include "base/atomic.h" |
| #include "base/dumpable.h" |
| #include "base/enums.h" |
| #include "base/file_utils.h" |
| #include "base/flags.h" |
| #include "base/malloc_arena_pool.h" |
| #include "base/mem_map_arena_pool.h" |
| #include "base/memory_tool.h" |
| #include "base/mutex.h" |
| #include "base/os.h" |
| #include "base/quasi_atomic.h" |
| #include "base/sdk_version.h" |
| #include "base/stl_util.h" |
| #include "base/systrace.h" |
| #include "base/unix_file/fd_file.h" |
| #include "base/utils.h" |
| #include "class_linker-inl.h" |
| #include "class_root-inl.h" |
| #include "compiler_callbacks.h" |
| #include "debugger.h" |
| #include "dex/art_dex_file_loader.h" |
| #include "dex/dex_file_loader.h" |
| #include "entrypoints/runtime_asm_entrypoints.h" |
| #include "entrypoints/entrypoint_utils-inl.h" |
| #include "experimental_flags.h" |
| #include "fault_handler.h" |
| #include "gc/accounting/card_table-inl.h" |
| #include "gc/heap.h" |
| #include "gc/scoped_gc_critical_section.h" |
| #include "gc/space/image_space.h" |
| #include "gc/space/space-inl.h" |
| #include "gc/system_weak.h" |
| #include "gc/task_processor.h" |
| #include "handle_scope-inl.h" |
| #include "hidden_api.h" |
| #include "indirect_reference_table.h" |
| #include "instrumentation.h" |
| #include "intern_table-inl.h" |
| #include "interpreter/interpreter.h" |
| #include "jit/jit.h" |
| #include "jit/jit_code_cache.h" |
| #include "jit/profile_saver.h" |
| #include "jni/java_vm_ext.h" |
| #include "jni/jni_id_manager.h" |
| #include "jni_id_type.h" |
| #include "linear_alloc.h" |
| #include "memory_representation.h" |
| #include "metrics/statsd.h" |
| #include "mirror/array.h" |
| #include "mirror/class-alloc-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/class_ext.h" |
| #include "mirror/class_loader-inl.h" |
| #include "mirror/emulated_stack_frame.h" |
| #include "mirror/field.h" |
| #include "mirror/method.h" |
| #include "mirror/method_handle_impl.h" |
| #include "mirror/method_handles_lookup.h" |
| #include "mirror/method_type.h" |
| #include "mirror/stack_trace_element.h" |
| #include "mirror/throwable.h" |
| #include "mirror/var_handle.h" |
| #include "monitor.h" |
| #include "native/dalvik_system_DexFile.h" |
| #include "native/dalvik_system_BaseDexClassLoader.h" |
| #include "native/dalvik_system_VMDebug.h" |
| #include "native/dalvik_system_VMRuntime.h" |
| #include "native/dalvik_system_VMStack.h" |
| #include "native/dalvik_system_ZygoteHooks.h" |
| #include "native/java_lang_Class.h" |
| #include "native/java_lang_Object.h" |
| #include "native/java_lang_StackStreamFactory.h" |
| #include "native/java_lang_String.h" |
| #include "native/java_lang_StringFactory.h" |
| #include "native/java_lang_System.h" |
| #include "native/java_lang_Thread.h" |
| #include "native/java_lang_Throwable.h" |
| #include "native/java_lang_VMClassLoader.h" |
| #include "native/java_lang_invoke_MethodHandle.h" |
| #include "native/java_lang_invoke_MethodHandleImpl.h" |
| #include "native/java_lang_ref_FinalizerReference.h" |
| #include "native/java_lang_ref_Reference.h" |
| #include "native/java_lang_reflect_Array.h" |
| #include "native/java_lang_reflect_Constructor.h" |
| #include "native/java_lang_reflect_Executable.h" |
| #include "native/java_lang_reflect_Field.h" |
| #include "native/java_lang_reflect_Method.h" |
| #include "native/java_lang_reflect_Parameter.h" |
| #include "native/java_lang_reflect_Proxy.h" |
| #include "native/java_util_concurrent_atomic_AtomicLong.h" |
| #include "native/libcore_io_Memory.h" |
| #include "native/libcore_util_CharsetUtils.h" |
| #include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h" |
| #include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h" |
| #include "native/sun_misc_Unsafe.h" |
| #include "native/jdk_internal_misc_Unsafe.h" |
| #include "native_bridge_art_interface.h" |
| #include "native_stack_dump.h" |
| #include "nativehelper/scoped_local_ref.h" |
| #include "nterp_helpers.h" |
| #include "oat/aot_class_linker.h" |
| #include "oat/elf_file.h" |
| #include "oat/image-inl.h" |
| #include "oat/oat.h" |
| #include "oat/oat_file_manager.h" |
| #include "oat/oat_quick_method_header.h" |
| #include "object_callbacks.h" |
| #include "odr_statslog/odr_statslog.h" |
| #include "parsed_options.h" |
| #include "quick/quick_method_frame_info.h" |
| #include "reflection.h" |
| #include "runtime_callbacks.h" |
| #include "runtime_common.h" |
| #include "runtime_image.h" |
| #include "runtime_intrinsics.h" |
| #include "runtime_options.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "sigchain.h" |
| #include "signal_catcher.h" |
| #include "signal_set.h" |
| #include "thread.h" |
| #include "thread_list.h" |
| #include "ti/agent.h" |
| #include "trace.h" |
| #include "transaction.h" |
| #include "vdex_file.h" |
| #include "verifier/class_verifier.h" |
| #include "well_known_classes-inl.h" |
| |
| #ifdef ART_TARGET_ANDROID |
| #include <android/api-level.h> |
| #include <android/set_abort_message.h> |
| #include "com_android_apex.h" |
| namespace apex = com::android::apex; |
| |
| #endif |
| |
| // Static asserts to check the values of generated assembly-support macros. |
| #define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME); |
| #include "asm_defines.def" |
| #undef ASM_DEFINE |
| |
| namespace art HIDDEN { |
| |
| // If a signal isn't handled properly, enable a handler that attempts to dump the Java stack. |
| static constexpr bool kEnableJavaStackTraceHandler = false; |
| // Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class |
| // linking. |
| static constexpr double kLowMemoryMinLoadFactor = 0.5; |
| static constexpr double kLowMemoryMaxLoadFactor = 0.8; |
| static constexpr double kNormalMinLoadFactor = 0.4; |
| static constexpr double kNormalMaxLoadFactor = 0.7; |
| |
| #ifdef ART_PAGE_SIZE_AGNOSTIC |
| // Declare the constant as ALWAYS_HIDDEN to ensure it isn't visible from outside libart.so. |
| const size_t PageSize::value_ ALWAYS_HIDDEN = GetPageSizeSlow(); |
| PageSize gPageSize ALWAYS_HIDDEN; |
| #endif |
| |
| Runtime* Runtime::instance_ = nullptr; |
| |
| struct TraceConfig { |
| Trace::TraceMode trace_mode; |
| TraceOutputMode trace_output_mode; |
| std::string trace_file; |
| size_t trace_file_size; |
| TraceClockSource clock_source; |
| }; |
| |
| namespace { |
| |
| #ifdef __APPLE__ |
| inline char** GetEnviron() { |
| // When Google Test is built as a framework on MacOS X, the environ variable |
| // is unavailable. Apple's documentation (man environ) recommends using |
| // _NSGetEnviron() instead. |
| return *_NSGetEnviron(); |
| } |
| #else |
| // Some POSIX platforms expect you to declare environ. extern "C" makes |
| // it reside in the global namespace. |
| EXPORT extern "C" char** environ; |
| inline char** GetEnviron() { return environ; } |
| #endif |
| |
| void CheckConstants() { |
| CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset()); |
| } |
| |
| } // namespace |
| |
| Runtime::Runtime() |
| : resolution_method_(nullptr), |
| imt_conflict_method_(nullptr), |
| imt_unimplemented_method_(nullptr), |
| instruction_set_(InstructionSet::kNone), |
| compiler_callbacks_(nullptr), |
| is_zygote_(false), |
| is_primary_zygote_(false), |
| is_system_server_(false), |
| must_relocate_(false), |
| is_concurrent_gc_enabled_(true), |
| is_explicit_gc_disabled_(false), |
| is_eagerly_release_explicit_gc_disabled_(false), |
| image_dex2oat_enabled_(true), |
| default_stack_size_(0), |
| heap_(nullptr), |
| max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation), |
| monitor_list_(nullptr), |
| monitor_pool_(nullptr), |
| thread_list_(nullptr), |
| intern_table_(nullptr), |
| class_linker_(nullptr), |
| signal_catcher_(nullptr), |
| java_vm_(nullptr), |
| thread_pool_ref_count_(0u), |
| fault_message_(nullptr), |
| threads_being_born_(0), |
| shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)), |
| shutting_down_(false), |
| shutting_down_started_(false), |
| started_(false), |
| finished_starting_(false), |
| vfprintf_(nullptr), |
| exit_(nullptr), |
| abort_(nullptr), |
| stats_enabled_(false), |
| is_running_on_memory_tool_(kRunningOnMemoryTool), |
| instrumentation_(), |
| main_thread_group_(nullptr), |
| system_thread_group_(nullptr), |
| system_class_loader_(nullptr), |
| dump_gc_performance_on_shutdown_(false), |
| preinitialization_transactions_(), |
| verify_(verifier::VerifyMode::kNone), |
| target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)), |
| compat_framework_(), |
| implicit_null_checks_(false), |
| implicit_so_checks_(false), |
| implicit_suspend_checks_(false), |
| no_sig_chain_(false), |
| force_native_bridge_(false), |
| is_native_bridge_loaded_(false), |
| is_native_debuggable_(false), |
| async_exceptions_thrown_(false), |
| non_standard_exits_enabled_(false), |
| runtime_debug_state_(RuntimeDebugState::kNonJavaDebuggable), |
| monitor_timeout_enable_(false), |
| monitor_timeout_ns_(0), |
| zygote_max_failed_boots_(0), |
| experimental_flags_(ExperimentalFlags::kNone), |
| oat_file_manager_(nullptr), |
| is_low_memory_mode_(false), |
| madvise_willneed_total_dex_size_(0), |
| madvise_willneed_odex_filesize_(0), |
| madvise_willneed_art_filesize_(0), |
| safe_mode_(false), |
| hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), |
| core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), |
| test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled), |
| dedupe_hidden_api_warnings_(true), |
| hidden_api_access_event_log_rate_(0), |
| dump_native_stack_on_sig_quit_(true), |
| // Initially assume we perceive jank in case the process state is never updated. |
| process_state_(kProcessStateJankPerceptible), |
| zygote_no_threads_(false), |
| verifier_logging_threshold_ms_(100), |
| verifier_missing_kthrow_fatal_(false), |
| perfetto_hprof_enabled_(false), |
| perfetto_javaheapprof_enabled_(false), |
| out_of_memory_error_hook_(nullptr) { |
| static_assert(Runtime::kCalleeSaveSize == |
| static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size"); |
| CheckConstants(); |
| |
| std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u); |
| interpreter::CheckInterpreterAsmConstants(); |
| callbacks_.reset(new RuntimeCallbacks()); |
| for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) { |
| deoptimization_counts_[i] = 0u; |
| } |
| } |
| |
| Runtime::~Runtime() { |
| ScopedTrace trace("Runtime shutdown"); |
| if (is_native_bridge_loaded_) { |
| UnloadNativeBridge(); |
| } |
| |
| Thread* self = Thread::Current(); |
| const bool attach_shutdown_thread = self == nullptr; |
| if (attach_shutdown_thread) { |
| // We can only create a peer if the runtime is actually started. This is only not true during |
| // some tests. If there is extreme memory pressure the allocation of the thread peer can fail. |
| // In this case we will just try again without allocating a peer so that shutdown can continue. |
| // Very few things are actually capable of distinguishing between the peer & peerless states so |
| // this should be fine. |
| // Running callbacks is prone to deadlocks in libjdwp tests that need an event handler lock to |
| // process any event. We also need to enter a GCCriticalSection when processing certain events |
| // (for ex: removing the last breakpoint). These two restrictions together make the tear down |
| // of the jdwp tests deadlock prone if we fail to finish Thread::Attach callback. |
| // (TODO:b/251163712) Remove this once we update deopt manager to not use GCCriticalSection. |
| bool thread_attached = AttachCurrentThread("Shutdown thread", |
| /* as_daemon= */ false, |
| GetSystemThreadGroup(), |
| /* create_peer= */ IsStarted(), |
| /* should_run_callbacks= */ false); |
| if (UNLIKELY(!thread_attached)) { |
| LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer."; |
| CHECK(AttachCurrentThread("Shutdown thread (no java peer)", |
| /* as_daemon= */ false, |
| /* thread_group=*/ nullptr, |
| /* create_peer= */ false)); |
| } |
| self = Thread::Current(); |
| } else { |
| LOG(WARNING) << "Current thread not detached in Runtime shutdown"; |
| } |
| |
| if (dump_gc_performance_on_shutdown_) { |
| heap_->CalculatePreGcWeightedAllocatedBytes(); |
| uint64_t process_cpu_end_time = ProcessCpuNanoTime(); |
| ScopedLogSeverity sls(LogSeverity::INFO); |
| // This can't be called from the Heap destructor below because it |
| // could call RosAlloc::InspectAll() which needs the thread_list |
| // to be still alive. |
| heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO)); |
| |
| uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime(); |
| uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime(); |
| float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time; |
| LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time) |
| << " out of process CPU time " << PrettyDuration(process_cpu_time) |
| << " (" << ratio << ")" |
| << "\n"; |
| double pre_gc_weighted_allocated_bytes = |
| heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time; |
| // Here we don't use process_cpu_time for normalization, because VM shutdown is not a real |
| // GC. Both numerator and denominator take into account until the end of the last GC, |
| // instead of the whole process life time like pre_gc_weighted_allocated_bytes. |
| double post_gc_weighted_allocated_bytes = |
| heap_->GetPostGcWeightedAllocatedBytes() / |
| (heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime()); |
| |
| LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: " |
| << static_cast<uint64_t>(pre_gc_weighted_allocated_bytes) |
| << " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")"; |
| LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: " |
| << static_cast<uint64_t>(post_gc_weighted_allocated_bytes) |
| << " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")" |
| << "\n"; |
| } |
| |
| // Wait for the workers of thread pools to be created since there can't be any |
| // threads attaching during shutdown. |
| WaitForThreadPoolWorkersToStart(); |
| if (jit_ != nullptr) { |
| jit_->WaitForWorkersToBeCreated(); |
| // Stop the profile saver thread before marking the runtime as shutting down. |
| // The saver will try to dump the profiles before being sopped and that |
| // requires holding the mutator lock. |
| jit_->StopProfileSaver(); |
| // Delete thread pool before the thread list since we don't want to wait forever on the |
| // JIT compiler threads. Also this should be run before marking the runtime |
| // as shutting down as some tasks may require mutator access. |
| jit_->DeleteThreadPool(); |
| } |
| if (oat_file_manager_ != nullptr) { |
| oat_file_manager_->WaitForWorkersToBeCreated(); |
| } |
| // Disable GC before deleting the thread-pool and shutting down runtime as it |
| // restricts attaching new threads. |
| heap_->DisableGCForShutdown(); |
| heap_->WaitForWorkersToBeCreated(); |
| // Make sure to let the GC complete if it is running. |
| heap_->WaitForGcToComplete(gc::kGcCauseBackground, self); |
| |
| // Shutdown any trace before SetShuttingDown. Trace uses thread pool workers to flush entries |
| // and we want to make sure they are fully created. Threads cannot attach while shutting down. |
| Trace::Shutdown(); |
| |
| { |
| ScopedTrace trace2("Wait for shutdown cond"); |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| shutting_down_started_ = true; |
| while (threads_being_born_ > 0) { |
| shutdown_cond_->Wait(self); |
| } |
| SetShuttingDown(); |
| } |
| // Shutdown and wait for the daemons. |
| CHECK(self != nullptr); |
| if (IsFinishedStarting()) { |
| ScopedTrace trace2("Waiting for Daemons"); |
| self->ClearException(); |
| ScopedObjectAccess soa(self); |
| WellKnownClasses::java_lang_Daemons_stop->InvokeStatic<'V'>(self); |
| } |
| |
| // Report death. Clients may require a working thread, still, so do it before GC completes and |
| // all non-daemon threads are done. |
| { |
| ScopedObjectAccess soa(self); |
| callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath); |
| } |
| |
| // Delete thread pools before detaching the current thread in case tasks |
| // getting deleted need to have access to Thread::Current. |
| heap_->DeleteThreadPool(); |
| if (oat_file_manager_ != nullptr) { |
| oat_file_manager_->DeleteThreadPool(); |
| } |
| DeleteThreadPool(); |
| CHECK(thread_pool_ == nullptr); |
| |
| if (attach_shutdown_thread) { |
| DetachCurrentThread(/* should_run_callbacks= */ false); |
| self = nullptr; |
| } |
| |
| // Make sure our internal threads are dead before we start tearing down things they're using. |
| GetRuntimeCallbacks()->StopDebugger(); |
| // Deletion ordering is tricky. Null out everything we've deleted. |
| delete signal_catcher_; |
| signal_catcher_ = nullptr; |
| |
| // Shutdown metrics reporting. |
| metrics_reporter_.reset(); |
| |
| // Make sure all other non-daemon threads have terminated, and all daemon threads are suspended. |
| // Also wait for daemon threads to quiesce, so that in addition to being "suspended", they |
| // no longer access monitor and thread list data structures. We leak user daemon threads |
| // themselves, since we have no mechanism for shutting them down. |
| { |
| ScopedTrace trace2("Delete thread list"); |
| thread_list_->ShutDown(); |
| } |
| |
| // TODO Maybe do some locking. |
| for (auto& agent : agents_) { |
| agent->Unload(); |
| } |
| |
| // TODO Maybe do some locking |
| for (auto& plugin : plugins_) { |
| plugin.Unload(); |
| } |
| |
| // Finally delete the thread list. |
| // Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked. |
| // We assume that by this point, we've waited long enough for things to quiesce. |
| delete thread_list_; |
| thread_list_ = nullptr; |
| |
| // Delete the JIT after thread list to ensure that there is no remaining threads which could be |
| // accessing the instrumentation when we delete it. |
| if (jit_ != nullptr) { |
| VLOG(jit) << "Deleting jit"; |
| jit_.reset(nullptr); |
| jit_code_cache_.reset(nullptr); |
| } |
| |
| // Shutdown the fault manager if it was initialized. |
| fault_manager.Shutdown(); |
| |
| ScopedTrace trace2("Delete state"); |
| delete monitor_list_; |
| monitor_list_ = nullptr; |
| delete monitor_pool_; |
| monitor_pool_ = nullptr; |
| delete class_linker_; |
| class_linker_ = nullptr; |
| delete small_lrt_allocator_; |
| small_lrt_allocator_ = nullptr; |
| delete heap_; |
| heap_ = nullptr; |
| delete intern_table_; |
| intern_table_ = nullptr; |
| delete oat_file_manager_; |
| oat_file_manager_ = nullptr; |
| Thread::Shutdown(); |
| QuasiAtomic::Shutdown(); |
| |
| // Destroy allocators before shutting down the MemMap because they may use it. |
| java_vm_.reset(); |
| linear_alloc_.reset(); |
| delete ReleaseStartupLinearAlloc(); |
| linear_alloc_arena_pool_.reset(); |
| arena_pool_.reset(); |
| jit_arena_pool_.reset(); |
| protected_fault_page_.Reset(); |
| MemMap::Shutdown(); |
| |
| // TODO: acquire a static mutex on Runtime to avoid racing. |
| CHECK(instance_ == nullptr || instance_ == this); |
| instance_ = nullptr; |
| |
| // Well-known classes must be deleted or it is impossible to successfully start another Runtime |
| // instance. We rely on a small initialization order issue in Runtime::Start() that requires |
| // elements of WellKnownClasses to be null, see b/65500943. |
| WellKnownClasses::Clear(); |
| |
| #ifdef ART_PAGE_SIZE_AGNOSTIC |
| // This is added to ensure no test is able to access gPageSize prior to initializing Runtime just |
| // because a Runtime instance was created (and subsequently destroyed) by another test. |
| gPageSize.DisallowAccess(); |
| #endif |
| } |
| |
| struct AbortState { |
| void Dump(std::ostream& os) const { |
| if (gAborting > 1) { |
| os << "Runtime aborting --- recursively, so no thread-specific detail!\n"; |
| DumpRecursiveAbort(os); |
| return; |
| } |
| gAborting++; |
| os << "Runtime aborting...\n"; |
| if (Runtime::Current() == nullptr) { |
| os << "(Runtime does not yet exist!)\n"; |
| DumpNativeStack(os, GetTid(), " native: ", nullptr); |
| return; |
| } |
| Thread* self = Thread::Current(); |
| |
| // Dump all threads first and then the aborting thread. While this is counter the logical flow, |
| // it improves the chance of relevant data surviving in the Android logs. |
| |
| DumpAllThreads(os, self); |
| |
| if (self == nullptr) { |
| os << "(Aborting thread was not attached to runtime!)\n"; |
| DumpNativeStack(os, GetTid(), " native: ", nullptr); |
| } else { |
| os << "Aborting thread:\n"; |
| if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) { |
| DumpThread(os, self); |
| } else { |
| if (Locks::mutator_lock_->SharedTryLock(self)) { |
| DumpThread(os, self); |
| Locks::mutator_lock_->SharedUnlock(self); |
| } |
| } |
| } |
| } |
| |
| // No thread-safety analysis as we do explicitly test for holding the mutator lock. |
| void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)); |
| self->Dump(os); |
| if (self->IsExceptionPending()) { |
| mirror::Throwable* exception = self->GetException(); |
| os << "Pending exception " << exception->Dump(); |
| } |
| } |
| |
| void DumpAllThreads(std::ostream& os, Thread* self) const { |
| Runtime* runtime = Runtime::Current(); |
| if (runtime != nullptr) { |
| ThreadList* thread_list = runtime->GetThreadList(); |
| if (thread_list != nullptr) { |
| // Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be |
| // grabbed). |
| // TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout |
| // acquiring the locks. |
| bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self); |
| bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self); |
| if (tll_already_held || tscl_already_held) { |
| os << "Skipping all-threads dump as locks are held:" |
| << (tll_already_held ? "" : " thread_list_lock") |
| << (tscl_already_held ? "" : " thread_suspend_count_lock") |
| << "\n"; |
| return; |
| } |
| bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self); |
| if (ml_already_exlusively_held) { |
| os << "Skipping all-threads dump as mutator lock is exclusively held."; |
| return; |
| } |
| bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self); |
| if (!ml_already_held) { |
| os << "Dumping all threads without mutator lock held\n"; |
| } |
| os << "All threads:\n"; |
| thread_list->Dump(os); |
| } |
| } |
| } |
| |
| // For recursive aborts. |
| void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS { |
| // The only thing we'll attempt is dumping the native stack of the current thread. We will only |
| // try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually |
| // die. |
| // Note: as we're using a global counter for the recursive abort detection, there is a potential |
| // race here and it is not OK to just print when the counter is "2" (one from |
| // Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough. |
| static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u; |
| if (gAborting < kOnlyPrintWhenRecursionLessThan) { |
| gAborting++; |
| DumpNativeStack(os, GetTid()); |
| } |
| } |
| }; |
| |
| void Runtime::SetAbortMessage(const char* msg) { |
| auto old_value = gAborting.fetch_add(1); // set before taking any locks |
| |
| // Only set the first abort message. |
| if (old_value == 0) { |
| #ifdef ART_TARGET_ANDROID |
| android_set_abort_message(msg); |
| #endif |
| // Set the runtime fault message in case our unexpected-signal code will run. |
| Runtime* current = Runtime::Current(); |
| if (current != nullptr) { |
| current->SetFaultMessage(msg); |
| } |
| } |
| } |
| |
| void Runtime::Abort(const char* msg) { |
| SetAbortMessage(msg); |
| |
| // May be coming from an unattached thread. |
| if (Thread::Current() == nullptr) { |
| Runtime* current = Runtime::Current(); |
| if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) { |
| // We do not flag this to the unexpected-signal handler so that that may dump the stack. |
| abort(); |
| UNREACHABLE(); |
| } |
| } |
| |
| { |
| // Ensure that we don't have multiple threads trying to abort at once, |
| // which would result in significantly worse diagnostics. |
| ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNativeForAbort); |
| Locks::abort_lock_->ExclusiveLock(Thread::Current()); |
| } |
| |
| // Get any pending output out of the way. |
| fflush(nullptr); |
| |
| // Many people have difficulty distinguish aborts from crashes, |
| // so be explicit. |
| // Note: use cerr on the host to print log lines immediately, so we get at least some output |
| // in case of recursive aborts. We lose annotation with the source file and line number |
| // here, which is a minor issue. The same is significantly more complicated on device, |
| // which is why we ignore the issue there. |
| AbortState state; |
| if (kIsTargetBuild) { |
| LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state); |
| } else { |
| std::cerr << Dumpable<AbortState>(state); |
| } |
| |
| // Sometimes we dump long messages, and the Android abort message only retains the first line. |
| // In those cases, just log the message again, to avoid logcat limits. |
| if (msg != nullptr && strchr(msg, '\n') != nullptr) { |
| LOG(FATAL_WITHOUT_ABORT) << msg; |
| } |
| |
| FlagRuntimeAbort(); |
| |
| // Call the abort hook if we have one. |
| if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) { |
| LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook..."; |
| Runtime::Current()->abort_(); |
| // notreached |
| LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!"; |
| } |
| |
| abort(); |
| // notreached |
| } |
| |
| /** |
| * Update entrypoints of methods before the first fork. This |
| * helps sharing pages where ArtMethods are allocated between the zygote and |
| * forked apps. |
| */ |
| class UpdateMethodsPreFirstForkVisitor : public ClassVisitor { |
| public: |
| explicit UpdateMethodsPreFirstForkVisitor(ClassLinker* class_linker) |
| : class_linker_(class_linker), |
| can_use_nterp_(interpreter::CanRuntimeUseNterp()) {} |
| |
| bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { |
| bool is_initialized = klass->IsVisiblyInitialized(); |
| for (ArtMethod& method : klass->GetDeclaredMethods(kRuntimePointerSize)) { |
| if (!is_initialized && method.NeedsClinitCheckBeforeCall() && can_use_nterp_) { |
| const void* existing = method.GetEntryPointFromQuickCompiledCode(); |
| if (class_linker_->IsQuickResolutionStub(existing) && CanMethodUseNterp(&method)) { |
| method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpWithClinitEntryPoint()); |
| } |
| } |
| } |
| return true; |
| } |
| |
| private: |
| ClassLinker* const class_linker_; |
| const bool can_use_nterp_; |
| |
| DISALLOW_COPY_AND_ASSIGN(UpdateMethodsPreFirstForkVisitor); |
| }; |
| |
| // Wait until the kernel thinks we are single-threaded again. |
| static void WaitUntilSingleThreaded() { |
| #if defined(__linux__) |
| // Read num_threads field from /proc/self/stat, avoiding higher-level IO libraries that may |
| // break atomicity of the read. |
| static constexpr size_t kNumTries = 1000; |
| static constexpr size_t kNumThreadsIndex = 20; |
| static constexpr ssize_t BUF_SIZE = 500; |
| static constexpr ssize_t BUF_PRINT_SIZE = 150; // Only log this much on failure to limit length. |
| static_assert(BUF_SIZE > BUF_PRINT_SIZE); |
| char buf[BUF_SIZE]; |
| ssize_t bytes_read = -1; |
| for (size_t tries = 0; tries < kNumTries; ++tries) { |
| int stat_fd = open("/proc/self/stat", O_RDONLY | O_CLOEXEC); |
| CHECK(stat_fd >= 0) << strerror(errno); |
| bytes_read = TEMP_FAILURE_RETRY(read(stat_fd, buf, BUF_SIZE)); |
| CHECK(bytes_read >= 0) << strerror(errno); |
| int ret = close(stat_fd); |
| DCHECK(ret == 0) << strerror(errno); |
| ssize_t pos = 0; |
| while (pos < bytes_read && buf[pos++] != ')') {} |
| ++pos; |
| // We're now positioned at the beginning of the third field. Don't count blanks embedded in |
| // second (command) field. |
| size_t blanks_seen = 2; |
| while (pos < bytes_read && blanks_seen < kNumThreadsIndex - 1) { |
| if (buf[pos++] == ' ') { |
| ++blanks_seen; |
| } |
| } |
| CHECK(pos < bytes_read - 2); |
| // pos is first character of num_threads field. |
| CHECK_EQ(buf[pos + 1], ' '); // We never have more than single-digit threads here. |
| if (buf[pos] == '1') { |
| return; // num_threads == 1; success. |
| } |
| usleep(1000); |
| } |
| buf[std::min(BUF_PRINT_SIZE, bytes_read)] = '\0'; // Truncate buf before printing. |
| LOG(FATAL) << "Failed to reach single-threaded state: bytes_read = " << bytes_read |
| << " stat contents = \"" << buf << "...\""; |
| #else // Not Linux; shouldn't matter, but this has a high probability of working slowly. |
| usleep(20'000); |
| #endif |
| } |
| |
| void Runtime::PreZygoteFork() { |
| if (GetJit() != nullptr) { |
| GetJit()->PreZygoteFork(); |
| } |
| // All other threads have already been joined, but they may not have finished |
| // removing themselves from the thread list. Wait until the other threads have completely |
| // finished, and are no longer in the thread list. |
| // TODO: Since the threads Unregister() themselves before exiting, the first wait should be |
| // unnecessary. But since we're reading from a /proc entry that's concurrently changing, for |
| // now we play this as safe as possible. |
| ThreadList* tl = GetThreadList(); |
| { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::thread_list_lock_); |
| tl->WaitForUnregisterToComplete(self); |
| if (kIsDebugBuild) { |
| auto list = tl->GetList(); |
| if (list.size() != 1) { |
| for (Thread* t : list) { |
| std::string name; |
| t->GetThreadName(name); |
| LOG(ERROR) << "Remaining pre-fork thread: " << name; |
| } |
| } |
| } |
| CHECK_EQ(tl->Size(), 1u); |
| // And then wait until the kernel thinks the threads are gone. |
| WaitUntilSingleThreaded(); |
| } |
| |
| if (!heap_->HasZygoteSpace()) { |
| Thread* self = Thread::Current(); |
| // This is the first fork. Update ArtMethods in the boot classpath now to |
| // avoid having forked apps dirty the memory. |
| |
| // Ensure we call FixupStaticTrampolines on all methods that are |
| // initialized. |
| class_linker_->MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ true); |
| |
| ScopedObjectAccess soa(self); |
| UpdateMethodsPreFirstForkVisitor visitor(class_linker_); |
| class_linker_->VisitClasses(&visitor); |
| } |
| heap_->PreZygoteFork(); |
| PreZygoteForkNativeBridge(); |
| } |
| |
| void Runtime::PostZygoteFork() { |
| jit::Jit* jit = GetJit(); |
| if (jit != nullptr) { |
| jit->PostZygoteFork(); |
| // Ensure that the threads in the JIT pool have been created with the right |
| // priority. |
| if (kIsDebugBuild && jit->GetThreadPool() != nullptr) { |
| jit->GetThreadPool()->CheckPthreadPriority( |
| IsZygote() ? jit->GetZygoteThreadPoolPthreadPriority() |
| : jit->GetThreadPoolPthreadPriority()); |
| } |
| } |
| // Reset all stats. |
| ResetStats(0xFFFFFFFF); |
| } |
| |
| void Runtime::CallExitHook(jint status) { |
| if (exit_ != nullptr) { |
| ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNative); |
| exit_(status); |
| LOG(WARNING) << "Exit hook returned instead of exiting!"; |
| } |
| } |
| |
| void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) { |
| // Userfaultfd compaction updates weak intern-table page-by-page via |
| // LinearAlloc. |
| if (!GetHeap()->IsPerformingUffdCompaction()) { |
| GetInternTable()->SweepInternTableWeaks(visitor); |
| } |
| GetMonitorList()->SweepMonitorList(visitor); |
| GetJavaVM()->SweepJniWeakGlobals(visitor); |
| GetHeap()->SweepAllocationRecords(visitor); |
| // Sweep JIT tables only if the GC is moving as in other cases the entries are |
| // not updated. |
| if (GetJit() != nullptr && GetHeap()->IsMovingGc()) { |
| // Visit JIT literal tables. Objects in these tables are classes and strings |
| // and only classes can be affected by class unloading. The strings always |
| // stay alive as they are strongly interned. |
| // TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses |
| // from mutators. See b/32167580. |
| GetJit()->GetCodeCache()->SweepRootTables(visitor); |
| } |
| |
| // All other generic system-weak holders. |
| for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { |
| holder->Sweep(visitor); |
| } |
| } |
| |
| bool Runtime::ParseOptions(const RuntimeOptions& raw_options, |
| bool ignore_unrecognized, |
| RuntimeArgumentMap* runtime_options) { |
| Locks::Init(); |
| InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect. |
| bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options); |
| if (!parsed) { |
| LOG(ERROR) << "Failed to parse options"; |
| return false; |
| } |
| return true; |
| } |
| |
| // Callback to check whether it is safe to call Abort (e.g., to use a call to |
| // LOG(FATAL)). It is only safe to call Abort if the runtime has been created, |
| // properly initialized, and has not shut down. |
| static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS { |
| Runtime* runtime = Runtime::Current(); |
| return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked(); |
| } |
| |
| void Runtime::AddGeneratedCodeRange(const void* start, size_t size) { |
| if (HandlesSignalsInCompiledCode()) { |
| fault_manager.AddGeneratedCodeRange(start, size); |
| } |
| } |
| |
| void Runtime::RemoveGeneratedCodeRange(const void* start, size_t size) { |
| if (HandlesSignalsInCompiledCode()) { |
| fault_manager.RemoveGeneratedCodeRange(start, size); |
| } |
| } |
| |
| bool Runtime::Create(RuntimeArgumentMap&& runtime_options) { |
| // TODO: acquire a static mutex on Runtime to avoid racing. |
| if (Runtime::instance_ != nullptr) { |
| return false; |
| } |
| instance_ = new Runtime; |
| Locks::SetClientCallback(IsSafeToCallAbort); |
| if (!instance_->Init(std::move(runtime_options))) { |
| // TODO: Currently deleting the instance will abort the runtime on destruction. Now This will |
| // leak memory, instead. Fix the destructor. b/19100793. |
| // delete instance_; |
| instance_ = nullptr; |
| return false; |
| } |
| return true; |
| } |
| |
| bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) { |
| RuntimeArgumentMap runtime_options; |
| return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) && |
| Create(std::move(runtime_options)); |
| } |
| |
| static jobject CreateSystemClassLoader(Runtime* runtime) { |
| if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) { |
| return nullptr; |
| } |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| ClassLinker* cl = runtime->GetClassLinker(); |
| auto pointer_size = cl->GetImagePointerSize(); |
| |
| ObjPtr<mirror::Class> class_loader_class = GetClassRoot<mirror::ClassLoader>(cl); |
| DCHECK(class_loader_class->IsInitialized()); // Class roots have been initialized. |
| |
| ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod( |
| "getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size); |
| CHECK(getSystemClassLoader != nullptr); |
| CHECK(getSystemClassLoader->IsStatic()); |
| |
| ObjPtr<mirror::Object> system_class_loader = getSystemClassLoader->InvokeStatic<'L'>(soa.Self()); |
| CHECK(system_class_loader != nullptr) |
| << (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "<null>"); |
| |
| ScopedAssertNoThreadSuspension sants(__FUNCTION__); |
| jobject g_system_class_loader = |
| runtime->GetJavaVM()->AddGlobalRef(soa.Self(), system_class_loader); |
| soa.Self()->SetClassLoaderOverride(g_system_class_loader); |
| |
| ObjPtr<mirror::Class> thread_class = WellKnownClasses::java_lang_Thread.Get(); |
| ArtField* contextClassLoader = |
| thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;"); |
| CHECK(contextClassLoader != nullptr); |
| |
| // We can't run in a transaction yet. |
| contextClassLoader->SetObject<false>(soa.Self()->GetPeer(), system_class_loader); |
| |
| return g_system_class_loader; |
| } |
| |
| std::string Runtime::GetCompilerExecutable() const { |
| if (!compiler_executable_.empty()) { |
| return compiler_executable_; |
| } |
| std::string compiler_executable = GetArtBinDir() + "/dex2oat"; |
| if (kIsDebugBuild) { |
| compiler_executable += 'd'; |
| } |
| if (kIsTargetBuild) { |
| compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32"; |
| } |
| return compiler_executable; |
| } |
| |
| void Runtime::RunRootClinits(Thread* self) { |
| class_linker_->RunRootClinits(self); |
| |
| GcRoot<mirror::Throwable>* exceptions[] = { |
| &pre_allocated_OutOfMemoryError_when_throwing_exception_, |
| // &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above. |
| // &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above. |
| &pre_allocated_NoClassDefFoundError_, |
| }; |
| for (GcRoot<mirror::Throwable>* exception : exceptions) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass()); |
| class_linker_->EnsureInitialized(self, klass, true, true); |
| self->AssertNoPendingException(); |
| } |
| } |
| |
| bool Runtime::Start() { |
| VLOG(startup) << "Runtime::Start entering"; |
| |
| CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled"; |
| |
| // If a debug host build, disable ptrace restriction for debugging and test timeout thread dump. |
| // Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel. |
| #if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__) |
| if (kIsDebugBuild) { |
| if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) { |
| PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY"; |
| } |
| } |
| #endif |
| |
| // Restore main thread state to kNative as expected by native code. |
| Thread* self = Thread::Current(); |
| |
| started_ = true; |
| |
| // Before running any clinit, set up the native methods provided by the runtime itself. |
| RegisterRuntimeNativeMethods(self->GetJniEnv()); |
| |
| class_linker_->RunEarlyRootClinits(self); |
| InitializeIntrinsics(); |
| |
| self->TransitionFromRunnableToSuspended(ThreadState::kNative); |
| |
| // InitNativeMethods needs to be after started_ so that the classes |
| // it touches will have methods linked to the oat file if necessary. |
| { |
| ScopedTrace trace2("InitNativeMethods"); |
| InitNativeMethods(); |
| } |
| |
| // InitializeCorePlatformApiPrivateFields() needs to be called after well known class |
| // initializtion in InitNativeMethods(). |
| art::hiddenapi::InitializeCorePlatformApiPrivateFields(); |
| |
| // Initialize well known thread group values that may be accessed threads while attaching. |
| InitThreadGroups(self); |
| |
| Thread::FinishStartup(); |
| |
| // Create the JIT either if we have to use JIT compilation or save profiling info. This is |
| // done after FinishStartup as the JIT pool needs Java thread peers, which require the main |
| // ThreadGroup to exist. |
| // |
| // TODO(calin): We use the JIT class as a proxy for JIT compilation and for |
| // recoding profiles. Maybe we should consider changing the name to be more clear it's |
| // not only about compiling. b/28295073. |
| if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) { |
| CreateJit(); |
| #ifdef ADDRESS_SANITIZER |
| // (b/238730394): In older implementations of sanitizer + glibc there is a race between |
| // pthread_create and dlopen that could cause a deadlock. pthread_create interceptor in ASAN |
| // uses dl_pthread_iterator with a callback that could request a dl_load_lock via call to |
| // __tls_get_addr [1]. dl_pthread_iterate would already hold dl_load_lock so this could cause a |
| // deadlock. __tls_get_addr needs a dl_load_lock only when there is a dlopen happening in |
| // parallel. As a workaround we wait for the pthread_create (i.e JIT thread pool creation) to |
| // finish before going to the next phase. Creating a system class loader could need a dlopen so |
| // we wait here till threads are initialized. |
| // [1] https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/sanitizer_common/sanitizer_linux_libcdep.cpp#L408 |
| // See this for more context: https://reviews.llvm.org/D98926 |
| // TODO(b/238730394): Revisit this workaround once we migrate to musl libc. |
| if (jit_ != nullptr) { |
| jit_->GetThreadPool()->WaitForWorkersToBeCreated(); |
| } |
| #endif |
| } |
| |
| // Send the start phase event. We have to wait till here as this is when the main thread peer |
| // has just been generated, important root clinits have been run and JNI is completely functional. |
| { |
| ScopedObjectAccess soa(self); |
| callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart); |
| } |
| |
| system_class_loader_ = CreateSystemClassLoader(this); |
| |
| if (!is_zygote_) { |
| if (is_native_bridge_loaded_) { |
| PreInitializeNativeBridge("."); |
| } |
| NativeBridgeAction action = force_native_bridge_ |
| ? NativeBridgeAction::kInitialize |
| : NativeBridgeAction::kUnload; |
| InitNonZygoteOrPostFork(self->GetJniEnv(), |
| /* is_system_server= */ false, |
| /* is_child_zygote= */ false, |
| action, |
| GetInstructionSetString(kRuntimeISA)); |
| } |
| |
| { |
| ScopedObjectAccess soa(self); |
| StartDaemonThreads(); |
| self->GetJniEnv()->AssertLocalsEmpty(); |
| |
| // Send the initialized phase event. Send it after starting the Daemon threads so that agents |
| // cannot delay the daemon threads from starting forever. |
| callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit); |
| self->GetJniEnv()->AssertLocalsEmpty(); |
| } |
| |
| VLOG(startup) << "Runtime::Start exiting"; |
| finished_starting_ = true; |
| |
| if (trace_config_.get() != nullptr && trace_config_->trace_file != "") { |
| ScopedThreadStateChange tsc(self, ThreadState::kWaitingForMethodTracingStart); |
| int flags = 0; |
| if (trace_config_->clock_source == TraceClockSource::kDual) { |
| flags = Trace::TraceFlag::kTraceClockSourceWallClock | |
| Trace::TraceFlag::kTraceClockSourceThreadCpu; |
| } else if (trace_config_->clock_source == TraceClockSource::kWall) { |
| flags = Trace::TraceFlag::kTraceClockSourceWallClock; |
| } else if (TraceClockSource::kThreadCpu == trace_config_->clock_source) { |
| flags = Trace::TraceFlag::kTraceClockSourceThreadCpu; |
| } else { |
| LOG(ERROR) << "Unexpected clock source"; |
| } |
| Trace::Start(trace_config_->trace_file.c_str(), |
| static_cast<int>(trace_config_->trace_file_size), |
| flags, |
| trace_config_->trace_output_mode, |
| trace_config_->trace_mode, |
| 0); |
| } |
| |
| // In case we have a profile path passed as a command line argument, |
| // register the current class path for profiling now. Note that we cannot do |
| // this before we create the JIT and having it here is the most convenient way. |
| // This is used when testing profiles with dalvikvm command as there is no |
| // framework to register the dex files for profiling. |
| if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() && |
| !jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) { |
| std::vector<std::string> dex_filenames; |
| Split(class_path_string_, ':', &dex_filenames); |
| |
| // We pass "" as the package name because at this point we don't know it. It could be the |
| // Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during |
| // post-fork or during RegisterAppInfo. |
| // |
| // Also, it's ok to pass "" to the ref profile filename. It indicates we don't have |
| // a reference profile. |
| RegisterAppInfo( |
| /*package_name=*/ "", |
| dex_filenames, |
| jit_options_->GetProfileSaverOptions().GetProfilePath(), |
| /*ref_profile_filename=*/ "", |
| kVMRuntimePrimaryApk); |
| } |
| |
| return true; |
| } |
| |
| void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) { |
| DCHECK_GT(threads_being_born_, 0U); |
| threads_being_born_--; |
| if (shutting_down_started_ && threads_being_born_ == 0) { |
| shutdown_cond_->Broadcast(Thread::Current()); |
| } |
| } |
| |
| void Runtime::InitNonZygoteOrPostFork( |
| JNIEnv* env, |
| bool is_system_server, |
| // This is true when we are initializing a child-zygote. It requires |
| // native bridge initialization to be able to run guest native code in |
| // doPreload(). |
| bool is_child_zygote, |
| NativeBridgeAction action, |
| const char* isa, |
| bool profile_system_server) { |
| if (is_native_bridge_loaded_) { |
| switch (action) { |
| case NativeBridgeAction::kUnload: |
| UnloadNativeBridge(); |
| is_native_bridge_loaded_ = false; |
| break; |
| case NativeBridgeAction::kInitialize: |
| InitializeNativeBridge(env, isa); |
| break; |
| } |
| } |
| |
| if (is_child_zygote) { |
| // If creating a child-zygote we only initialize native bridge. The rest of |
| // runtime post-fork logic would spin up threads for Binder and JDWP. |
| // Instead, the Java side of the child process will call a static main in a |
| // class specified by the parent. |
| return; |
| } |
| |
| DCHECK(!IsZygote()); |
| |
| if (is_system_server) { |
| // Register the system server code paths. |
| // TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now |
| // the method is only called when we set up the profile. It should be called all the time |
| // (simillar to the apps). Once that's done this manual registration can be removed. |
| const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH"); |
| if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) { |
| LOG(WARNING) << "System server class path not set"; |
| } else { |
| std::vector<std::string> jars = android::base::Split(system_server_classpath, ":"); |
| app_info_.RegisterAppInfo("android", |
| jars, |
| /*profile_output_filename=*/ "", |
| /*ref_profile_filename=*/ "", |
| AppInfo::CodeType::kPrimaryApk); |
| } |
| |
| // Set the system server package name to "android". |
| // This is used to tell the difference between samples provided by system server |
| // and samples generated by other apps when processing boot image profiles. |
| SetProcessPackageName("android"); |
| if (profile_system_server) { |
| jit_options_->SetWaitForJitNotificationsToSaveProfile(false); |
| VLOG(profiler) << "Enabling system server profiles"; |
| } |
| } |
| |
| // Create the thread pools. |
| // Avoid creating the runtime thread pool for system server since it will not be used and would |
| // waste memory. |
| if (!is_system_server) { |
| ScopedTrace timing("CreateThreadPool"); |
| constexpr size_t kStackSize = 64 * KB; |
| constexpr size_t kMaxRuntimeWorkers = 4u; |
| const size_t num_workers = |
| std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers); |
| MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); |
| CHECK(thread_pool_ == nullptr); |
| thread_pool_.reset( |
| ThreadPool::Create("Runtime", num_workers, /*create_peers=*/false, kStackSize)); |
| thread_pool_->StartWorkers(Thread::Current()); |
| } |
| |
| // Reset the gc performance data and metrics at zygote fork so that the events from |
| // before fork aren't attributed to an app. |
| heap_->ResetGcPerformanceInfo(); |
| GetMetrics()->Reset(); |
| |
| if (metrics_reporter_ != nullptr) { |
| // Now that we know if we are an app or system server, reload the metrics reporter config |
| // in case there are any difference. |
| metrics::ReportingConfig metrics_config = |
| metrics::ReportingConfig::FromFlags(is_system_server); |
| |
| metrics_reporter_->ReloadConfig(metrics_config); |
| |
| metrics::SessionData session_data{metrics::SessionData::CreateDefault()}; |
| // Start the session id from 1 to avoid clashes with the default value. |
| // (better for debugability) |
| session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max()); |
| // TODO: set session_data.compilation_reason and session_data.compiler_filter |
| metrics_reporter_->MaybeStartBackgroundThread(session_data); |
| // Also notify about any updates to the app info. |
| metrics_reporter_->NotifyAppInfoUpdated(&app_info_); |
| } |
| |
| StartSignalCatcher(); |
| |
| ScopedObjectAccess soa(Thread::Current()); |
| if (IsPerfettoHprofEnabled() && |
| (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() || |
| Runtime::Current()->IsSystemServer())) { |
| std::string err; |
| ScopedTrace tr("perfetto_hprof init."); |
| ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative); |
| if (!EnsurePerfettoPlugin(&err)) { |
| LOG(WARNING) << "Failed to load perfetto_hprof: " << err; |
| } |
| } |
| if (IsPerfettoJavaHeapStackProfEnabled() && |
| (Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() || |
| Runtime::Current()->IsSystemServer())) { |
| // Marker used for dev tracing similar to above markers. |
| ScopedTrace tr("perfetto_javaheapprof init."); |
| } |
| if (Runtime::Current()->IsSystemServer()) { |
| std::string err; |
| ScopedTrace tr("odrefresh and device stats logging"); |
| ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative); |
| // Report stats if available. This should be moved into ART Services when they are ready. |
| if (!odrefresh::UploadStatsIfAvailable(&err)) { |
| LOG(WARNING) << "Failed to upload odrefresh metrics: " << err; |
| } |
| metrics::ReportDeviceMetrics(); |
| } |
| |
| if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) { |
| if (IsJavaDebuggable()) { |
| SetJniIdType(JniIdType::kIndices); |
| } else { |
| SetJniIdType(JniIdType::kPointer); |
| } |
| } |
| ATraceIntegerValue( |
| "profilebootclasspath", |
| static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath())); |
| // Start the JDWP thread. If the command-line debugger flags specified "suspend=y", |
| // this will pause the runtime (in the internal debugger implementation), so we probably want |
| // this to come last. |
| GetRuntimeCallbacks()->StartDebugger(); |
| } |
| |
| void Runtime::StartSignalCatcher() { |
| if (!is_zygote_) { |
| signal_catcher_ = new SignalCatcher(); |
| } |
| } |
| |
| bool Runtime::IsShuttingDown(Thread* self) { |
| MutexLock mu(self, *Locks::runtime_shutdown_lock_); |
| return IsShuttingDownLocked(); |
| } |
| |
| void Runtime::StartDaemonThreads() { |
| ScopedTrace trace(__FUNCTION__); |
| VLOG(startup) << "Runtime::StartDaemonThreads entering"; |
| |
| Thread* self = Thread::Current(); |
| |
| DCHECK_EQ(self->GetState(), ThreadState::kRunnable); |
| |
| WellKnownClasses::java_lang_Daemons_start->InvokeStatic<'V'>(self); |
| if (UNLIKELY(self->IsExceptionPending())) { |
| LOG(FATAL) << "Error starting java.lang.Daemons: " << self->GetException()->Dump(); |
| } |
| |
| VLOG(startup) << "Runtime::StartDaemonThreads exiting"; |
| } |
| |
| static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames, |
| ArrayRef<const std::string> dex_locations, |
| ArrayRef<File> dex_files, |
| std::vector<std::unique_ptr<const DexFile>>* out_dex_files) { |
| DCHECK(out_dex_files != nullptr) << "OpenDexFiles: out-param is nullptr"; |
| size_t failure_count = 0; |
| for (size_t i = 0; i < dex_filenames.size(); i++) { |
| const char* dex_filename = dex_filenames[i].c_str(); |
| const char* dex_location = dex_locations[i].c_str(); |
| File noFile; |
| File* file = i < dex_files.size() ? &dex_files[i] : &noFile; |
| static constexpr bool kVerifyChecksum = true; |
| std::string error_msg; |
| if (!OS::FileExists(dex_filename) && file->IsValid()) { |
| LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'"; |
| continue; |
| } |
| bool verify = Runtime::Current()->IsVerificationEnabled(); |
| ArtDexFileLoader dex_file_loader(dex_filename, file, dex_location); |
| if (!dex_file_loader.Open(verify, kVerifyChecksum, &error_msg, out_dex_files)) { |
| LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "' / fd " << file->Fd() |
| << ": " << error_msg; |
| ++failure_count; |
| } |
| if (file->IsValid()) { |
| bool close_ok = file->Close(); |
| DCHECK(close_ok) << dex_filename; |
| } |
| } |
| return failure_count; |
| } |
| |
| void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) { |
| CHECK(sentinel_.Read() == nullptr); |
| CHECK(sentinel != nullptr); |
| CHECK(!heap_->IsMovableObject(sentinel)); |
| sentinel_ = GcRoot<mirror::Object>(sentinel); |
| } |
| |
| GcRoot<mirror::Object> Runtime::GetSentinel() { |
| return sentinel_; |
| } |
| |
| static inline void CreatePreAllocatedException(Thread* self, |
| Runtime* runtime, |
| GcRoot<mirror::Throwable>* exception, |
| const char* exception_class_descriptor, |
| const char* msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK_EQ(self, Thread::Current()); |
| ClassLinker* class_linker = runtime->GetClassLinker(); |
| // Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>(). |
| ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor); |
| CHECK(klass != nullptr); |
| gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator(); |
| ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast( |
| klass->Alloc(self, allocator_type)); |
| CHECK(exception_object != nullptr); |
| *exception = GcRoot<mirror::Throwable>(exception_object); |
| // Initialize the "detailMessage" field. |
| ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg); |
| CHECK(message != nullptr); |
| ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker); |
| ArtField* detailMessageField = |
| throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;"); |
| CHECK(detailMessageField != nullptr); |
| detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message); |
| } |
| |
| std::string Runtime::GetApexVersions(ArrayRef<const std::string> boot_class_path_locations) { |
| std::vector<std::string_view> bcp_apexes; |
| for (std::string_view jar : boot_class_path_locations) { |
| std::string_view apex = ApexNameFromLocation(jar); |
| if (!apex.empty()) { |
| bcp_apexes.push_back(apex); |
| } |
| } |
| static const char* kApexFileName = "/apex/apex-info-list.xml"; |
| // Start with empty markers. |
| std::string empty_apex_versions(bcp_apexes.size(), '/'); |
| // When running on host or chroot, we just use empty markers. |
| if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) { |
| return empty_apex_versions; |
| } |
| #ifdef ART_TARGET_ANDROID |
| if (access(kApexFileName, R_OK) != 0) { |
| PLOG(WARNING) << "Failed to read " << kApexFileName; |
| return empty_apex_versions; |
| } |
| auto info_list = apex::readApexInfoList(kApexFileName); |
| if (!info_list.has_value()) { |
| LOG(WARNING) << "Failed to parse " << kApexFileName; |
| return empty_apex_versions; |
| } |
| |
| std::string result; |
| std::map<std::string_view, const apex::ApexInfo*> apex_infos; |
| for (const apex::ApexInfo& info : info_list->getApexInfo()) { |
| if (info.getIsActive()) { |
| apex_infos.emplace(info.getModuleName(), &info); |
| } |
| } |
| for (const std::string_view& str : bcp_apexes) { |
| auto info = apex_infos.find(str); |
| if (info == apex_infos.end() || info->second->getIsFactory()) { |
| result += '/'; |
| } else { |
| // In case lastUpdateMillis field is populated in apex-info-list.xml, we |
| // prefer to use it as version scheme. If the field is missing we |
| // fallback to the version code of the APEX. |
| uint64_t version = info->second->hasLastUpdateMillis() |
| ? info->second->getLastUpdateMillis() |
| : info->second->getVersionCode(); |
| android::base::StringAppendF(&result, "/%" PRIu64, version); |
| } |
| } |
| return result; |
| #else |
| return empty_apex_versions; // Not an Android build. |
| #endif |
| } |
| |
| void Runtime::InitializeApexVersions() { |
| apex_versions_ = |
| GetApexVersions(ArrayRef<const std::string>(Runtime::Current()->GetBootClassPathLocations())); |
| } |
| |
| void Runtime::ReloadAllFlags(const std::string& caller) { |
| FlagBase::ReloadAllFlags(caller); |
| } |
| |
| static std::vector<File> FileFdsToFileObjects(std::vector<int>&& fds) { |
| std::vector<File> files; |
| files.reserve(fds.size()); |
| for (int fd : fds) { |
| files.push_back(File(fd, /*check_usage=*/false)); |
| } |
| return files; |
| } |
| |
| bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) { |
| // (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc. |
| // Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc. |
| env_snapshot_.TakeSnapshot(); |
| |
| #ifdef ART_PAGE_SIZE_AGNOSTIC |
| gPageSize.AllowAccess(); |
| #endif |
| |
| using Opt = RuntimeArgumentMap; |
| Opt runtime_options(std::move(runtime_options_in)); |
| ScopedTrace trace(__FUNCTION__); |
| CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), gPageSize); |
| |
| // Reload all the flags value (from system properties and device configs). |
| ReloadAllFlags(__FUNCTION__); |
| |
| deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles); |
| if (deny_art_apex_data_files_) { |
| // We will run slower without those files if the system has taken an ART APEX update. |
| LOG(WARNING) << "ART APEX data files are untrusted."; |
| } |
| |
| // Early override for logging output. |
| if (runtime_options.Exists(Opt::UseStderrLogger)) { |
| android::base::SetLogger(android::base::StderrLogger); |
| } |
| |
| MemMap::Init(); |
| |
| verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal); |
| force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop); |
| perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof); |
| perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf); |
| |
| // Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels. |
| // If we cannot reserve it, log a warning. |
| // Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..) |
| // is out-of-the-way enough that it should not collide with boot image mapping. |
| // Note: Don't request an error message. That will lead to a maps dump in the case of failure, |
| // leading to logspam. |
| { |
| const uintptr_t sentinel_addr = |
| RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), gPageSize); |
| protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page", |
| reinterpret_cast<uint8_t*>(sentinel_addr), |
| gPageSize, |
| PROT_NONE, |
| /*low_4gb=*/ true, |
| /*reuse=*/ false, |
| /*reservation=*/ nullptr, |
| /*error_msg=*/ nullptr); |
| if (!protected_fault_page_.IsValid()) { |
| LOG(WARNING) << "Could not reserve sentinel fault page"; |
| } else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != sentinel_addr) { |
| LOG(WARNING) << "Could not reserve sentinel fault page at the right address."; |
| protected_fault_page_.Reset(); |
| } |
| } |
| |
| VLOG(startup) << "Runtime::Init -verbose:startup enabled"; |
| |
| QuasiAtomic::Startup(); |
| |
| oat_file_manager_ = new OatFileManager(); |
| |
| jni_id_manager_.reset(new jni::JniIdManager()); |
| |
| Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread)); |
| Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold), |
| runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold)); |
| |
| image_locations_ = runtime_options.ReleaseOrDefault(Opt::Image); |
| |
| SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet)); |
| boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath); |
| boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations); |
| DCHECK(boot_class_path_locations_.empty() || |
| boot_class_path_locations_.size() == boot_class_path_.size()); |
| if (boot_class_path_.empty()) { |
| LOG(ERROR) << "Boot classpath is empty"; |
| return false; |
| } |
| |
| boot_class_path_files_ = |
| FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathFds)); |
| if (!boot_class_path_files_.empty() && boot_class_path_files_.size() != boot_class_path_.size()) { |
| LOG(ERROR) << "Number of FDs specified in -Xbootclasspathfds must match the number of JARs in " |
| << "-Xbootclasspath."; |
| return false; |
| } |
| |
| boot_class_path_image_files_ = |
| FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathImageFds)); |
| boot_class_path_vdex_files_ = |
| FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathVdexFds)); |
| boot_class_path_oat_files_ = |
| FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathOatFds)); |
| CHECK(boot_class_path_image_files_.empty() || |
| boot_class_path_image_files_.size() == boot_class_path_.size()); |
| CHECK(boot_class_path_vdex_files_.empty() || |
| boot_class_path_vdex_files_.size() == boot_class_path_.size()); |
| CHECK(boot_class_path_oat_files_.empty() || |
| boot_class_path_oat_files_.size() == boot_class_path_.size()); |
| |
| class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath); |
| properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList); |
| |
| compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr); |
| must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate); |
| is_zygote_ = runtime_options.Exists(Opt::Zygote); |
| is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote); |
| is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC); |
| is_eagerly_release_explicit_gc_disabled_ = |
| runtime_options.Exists(Opt::DisableEagerlyReleaseExplicitGC); |
| image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat); |
| dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit); |
| allow_in_memory_compilation_ = runtime_options.Exists(Opt::AllowInMemoryCompilation); |
| |
| if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) { |
| oat_file_manager_->SetOnlyUseTrustedOatFiles(); |
| } |
| |
| vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf); |
| exit_ = runtime_options.GetOrDefault(Opt::HookExit); |
| abort_ = runtime_options.GetOrDefault(Opt::HookAbort); |
| |
| default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize); |
| |
| compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler); |
| compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions); |
| for (const std::string& option : Runtime::Current()->GetCompilerOptions()) { |
| if (option == "--debuggable") { |
| SetRuntimeDebugState(RuntimeDebugState::kJavaDebuggableAtInit); |
| break; |
| } |
| } |
| image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions); |
| |
| finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs); |
| max_spins_before_thin_lock_inflation_ = |
| runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation); |
| |
| monitor_list_ = new MonitorList; |
| monitor_pool_ = MonitorPool::Create(); |
| thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout)); |
| intern_table_ = new InternTable; |
| |
| monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable); |
| int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout); |
| if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) { |
| LOG(WARNING) << "Monitor timeout too short: Increasing"; |
| monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs; |
| } |
| if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) { |
| LOG(WARNING) << "Monitor timeout too long: Decreasing"; |
| monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1; |
| } |
| monitor_timeout_ns_ = MsToNs(monitor_timeout_ms); |
| |
| verify_ = runtime_options.GetOrDefault(Opt::Verify); |
| |
| target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion); |
| |
| // Set hidden API enforcement policy. The checks are disabled by default and |
| // we only enable them if: |
| // (a) runtime was started with a command line flag that enables the checks, or |
| // (b) Zygote forked a new process that is not exempt (see ZygoteHooks). |
| hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy); |
| DCHECK_IMPLIES(is_zygote_, hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled); |
| |
| // Set core platform API enforcement policy. The checks are disabled by default and |
| // can be enabled with a command line flag. AndroidRuntime will pass the flag if |
| // a system property is set. |
| core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy); |
| if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) { |
| LOG(INFO) << "Core platform API reporting enabled, enforcing=" |
| << (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false"); |
| } |
| |
| // Dex2Oat's Runtime does not need the signal chain or the fault handler |
| // and it passes the `NoSigChain` option to `Runtime` to indicate this. |
| no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain); |
| force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge); |
| |
| Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_); |
| |
| fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint); |
| |
| if (runtime_options.GetOrDefault(Opt::Interpret)) { |
| GetInstrumentation()->ForceInterpretOnly(); |
| } |
| |
| zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots); |
| experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental); |
| is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode); |
| madvise_willneed_total_dex_size_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize); |
| madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize); |
| madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize); |
| |
| jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds); |
| automatically_set_jni_ids_indirection_ = |
| runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds); |
| |
| plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins); |
| agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath); |
| // TODO Add back in -agentlib |
| // for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) { |
| // agents_.push_back(lib); |
| // } |
| |
| float foreground_heap_growth_multiplier; |
| if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) { |
| // If low memory mode, use 1.0 as the multiplier by default. |
| foreground_heap_growth_multiplier = 1.0f; |
| } else { |
| // Extra added to the default heap growth multiplier for concurrent GC |
| // compaction algorithms. This is done for historical reasons. |
| // TODO: remove when we revisit heap configurations. |
| foreground_heap_growth_multiplier = |
| runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) + 1.0f; |
| } |
| XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption); |
| |
| // Generational CC collection is currently only compatible with Baker read barriers. |
| bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc; |
| |
| // Cache the apex versions. |
| InitializeApexVersions(); |
| |
| BackgroundGcOption background_gc = |
| gUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground) : |
| (gUseUserfaultfd ? BackgroundGcOption(gc::kCollectorTypeCMCBackground) : |
| runtime_options.GetOrDefault(Opt::BackgroundGc)); |
| |
| heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize), |
| runtime_options.GetOrDefault(Opt::HeapGrowthLimit), |
| runtime_options.GetOrDefault(Opt::HeapMinFree), |
| runtime_options.GetOrDefault(Opt::HeapMaxFree), |
| runtime_options.GetOrDefault(Opt::HeapTargetUtilization), |
| foreground_heap_growth_multiplier, |
| runtime_options.GetOrDefault(Opt::StopForNativeAllocs), |
| runtime_options.GetOrDefault(Opt::MemoryMaximumSize), |
| runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity), |
| GetBootClassPath(), |
| GetBootClassPathLocations(), |
| GetBootClassPathFiles(), |
| GetBootClassPathImageFiles(), |
| GetBootClassPathVdexFiles(), |
| GetBootClassPathOatFiles(), |
| image_locations_, |
| instruction_set_, |
| // Override the collector type to CC if the read barrier config. |
| gUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_, |
| background_gc, |
| runtime_options.GetOrDefault(Opt::LargeObjectSpace), |
| runtime_options.GetOrDefault(Opt::LargeObjectThreshold), |
| runtime_options.GetOrDefault(Opt::ParallelGCThreads), |
| runtime_options.GetOrDefault(Opt::ConcGCThreads), |
| runtime_options.Exists(Opt::LowMemoryMode), |
| runtime_options.GetOrDefault(Opt::LongPauseLogThreshold), |
| runtime_options.GetOrDefault(Opt::LongGCLogThreshold), |
| runtime_options.Exists(Opt::IgnoreMaxFootprint), |
| runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs), |
| runtime_options.GetOrDefault(Opt::UseTLAB), |
| xgc_option.verify_pre_gc_heap_, |
| xgc_option.verify_pre_sweeping_heap_, |
| xgc_option.verify_post_gc_heap_, |
| xgc_option.verify_pre_gc_rosalloc_, |
| xgc_option.verify_pre_sweeping_rosalloc_, |
| xgc_option.verify_post_gc_rosalloc_, |
| xgc_option.gcstress_, |
| xgc_option.measure_, |
| runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM), |
| use_generational_cc, |
| runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs), |
| runtime_options.Exists(Opt::DumpRegionInfoBeforeGC), |
| runtime_options.Exists(Opt::DumpRegionInfoAfterGC)); |
| |
| dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown); |
| |
| bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr; |
| jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions); |
| jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider), |
| IsJavaDebuggable()); |
| switch (jdwp_provider_) { |
| case JdwpProvider::kNone: { |
| VLOG(jdwp) << "Disabling all JDWP support."; |
| if (!jdwp_options_.empty()) { |
| bool has_transport = jdwp_options_.find("transport") != std::string::npos; |
| std::string adb_connection_args = |
| std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_; |
| if (has_explicit_jdwp_options) { |
| LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable " |
| << "jdwp with one of:" << std::endl |
| << " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so " |
| << "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl |
| << (has_transport ? "" : adb_connection_args); |
| } |
| } |
| break; |
| } |
| case JdwpProvider::kAdbConnection: { |
| constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so" |
| : "libadbconnection.so"; |
| plugins_.push_back(Plugin::Create(plugin_name)); |
| break; |
| } |
| case JdwpProvider::kUnset: { |
| LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!"; |
| } |
| } |
| callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback()); |
| |
| jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options)); |
| if (IsAotCompiler()) { |
| // If we are already the compiler at this point, we must be dex2oat. Don't create the jit in |
| // this case. |
| // If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns |
| // null and we don't create the jit. |
| jit_options_->SetUseJitCompilation(false); |
| jit_options_->SetSaveProfilingInfo(false); |
| } |
| |
| // Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but |
| // can't be trimmed as easily. |
| const bool use_malloc = IsAotCompiler(); |
| if (use_malloc) { |
| arena_pool_.reset(new MallocArenaPool()); |
| jit_arena_pool_.reset(new MallocArenaPool()); |
| } else { |
| arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false)); |
| jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata")); |
| } |
| |
| // For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a |
| // 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold |
| // when we have 64 bit ArtMethod pointers. |
| const bool low_4gb = IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA); |
| if (gUseUserfaultfd) { |
| linear_alloc_arena_pool_.reset(new GcVisitedArenaPool(low_4gb, IsZygote())); |
| } else if (low_4gb) { |
| linear_alloc_arena_pool_.reset(new MemMapArenaPool(low_4gb)); |
| } |
| linear_alloc_.reset(CreateLinearAlloc()); |
| startup_linear_alloc_.store(CreateLinearAlloc(), std::memory_order_relaxed); |
| |
| small_lrt_allocator_ = new jni::SmallLrtAllocator(); |
| |
| BlockSignals(); |
| InitPlatformSignalHandlers(); |
| |
| // Change the implicit checks flags based on runtime architecture. |
| switch (kRuntimeISA) { |
| case InstructionSet::kArm64: |
| implicit_suspend_checks_ = true; |
| FALLTHROUGH_INTENDED; |
| case InstructionSet::kArm: |
| case InstructionSet::kThumb2: |
| case InstructionSet::kRiscv64: |
| case InstructionSet::kX86: |
| case InstructionSet::kX86_64: |
| implicit_null_checks_ = true; |
| // Historical note: Installing stack protection was not playing well with Valgrind. |
| implicit_so_checks_ = true; |
| break; |
| default: |
| // Keep the defaults. |
| break; |
| } |
| |
| fault_manager.Init(!no_sig_chain_); |
| if (!no_sig_chain_) { |
| if (HandlesSignalsInCompiledCode()) { |
| // These need to be in a specific order. The null point check handler must be |
| // after the suspend check and stack overflow check handlers. |
| // |
| // Note: the instances attach themselves to the fault manager and are handled by it. The |
| // manager will delete the instance on Shutdown(). |
| if (implicit_suspend_checks_) { |
| new SuspensionHandler(&fault_manager); |
| } |
| |
| if (implicit_so_checks_) { |
| new StackOverflowHandler(&fault_manager); |
| } |
| |
| if (implicit_null_checks_) { |
| new NullPointerHandler(&fault_manager); |
| } |
| |
| if (kEnableJavaStackTraceHandler) { |
| new JavaStackTraceHandler(&fault_manager); |
| } |
| |
| if (interpreter::CanRuntimeUseNterp()) { |
| // Nterp code can use signal handling just like the compiled managed code. |
| OatQuickMethodHeader* nterp_header = OatQuickMethodHeader::NterpMethodHeader; |
| fault_manager.AddGeneratedCodeRange(nterp_header->GetCode(), nterp_header->GetCodeSize()); |
| } |
| } |
| } |
| |
| verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold); |
| |
| std::string error_msg; |
| java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg); |
| if (java_vm_.get() == nullptr) { |
| LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg; |
| return false; |
| } |
| |
| // Add the JniEnv handler. |
| // TODO Refactor this stuff. |
| java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler); |
| |
| Thread::Startup(); |
| |
| // ClassLinker needs an attached thread, but we can't fully attach a thread without creating |
| // objects. We can't supply a thread group yet; it will be fixed later. Since we are the main |
| // thread, we do not get a java peer. |
| Thread* self = Thread::Attach("main", false, nullptr, false, /* should_run_callbacks= */ true); |
| CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId); |
| CHECK(self != nullptr); |
| |
| self->SetIsRuntimeThread(IsAotCompiler()); |
| |
| // Set us to runnable so tools using a runtime can allocate and GC by default |
| self->TransitionFromSuspendedToRunnable(); |
| |
| // Now we're attached, we can take the heap locks and validate the heap. |
| GetHeap()->EnableObjectValidation(); |
| |
| CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U); |
| |
| if (UNLIKELY(IsAotCompiler())) { |
| class_linker_ = new AotClassLinker(intern_table_); |
| } else { |
| class_linker_ = new ClassLinker( |
| intern_table_, |
| runtime_options.GetOrDefault(Opt::FastClassNotFoundException)); |
| } |
| if (GetHeap()->HasBootImageSpace()) { |
| bool result = class_linker_->InitFromBootImage(&error_msg); |
| if (!result) { |
| LOG(ERROR) << "Could not initialize from image: " << error_msg; |
| return false; |
| } |
| if (kIsDebugBuild) { |
| for (auto image_space : GetHeap()->GetBootImageSpaces()) { |
| image_space->VerifyImageAllocations(); |
| } |
| } |
| { |
| ScopedTrace trace2("AddImageStringsToTable"); |
| for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) { |
| GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor()); |
| } |
| } |
| |
| const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents( |
| ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces())); |
| if (total_components != GetBootClassPath().size()) { |
| // The boot image did not contain all boot class path components. Load the rest. |
| CHECK_LT(total_components, GetBootClassPath().size()); |
| size_t start = total_components; |
| DCHECK_LT(start, GetBootClassPath().size()); |
| std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path; |
| if (runtime_options.Exists(Opt::BootClassPathDexList)) { |
| extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList)); |
| } else { |
| ArrayRef<File> bcp_files = start < GetBootClassPathFiles().size() ? |
| ArrayRef<File>(GetBootClassPathFiles()).SubArray(start) : |
| ArrayRef<File>(); |
| OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start), |
| ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start), |
| bcp_files, |
| &extra_boot_class_path); |
| } |
| class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path)); |
| } |
| if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) { |
| // Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable. |
| // Also deoptimize if we are profiling the boot class path. |
| ScopedThreadSuspension sts(self, ThreadState::kNative); |
| ScopedSuspendAll ssa(__FUNCTION__); |
| DeoptimizeBootImage(); |
| } |
| } else { |
| std::vector<std::unique_ptr<const DexFile>> boot_class_path; |
| if (runtime_options.Exists(Opt::BootClassPathDexList)) { |
| boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList)); |
| } else { |
| OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()), |
| ArrayRef<const std::string>(GetBootClassPathLocations()), |
| ArrayRef<File>(GetBootClassPathFiles()), |
| &boot_class_path); |
| } |
| if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) { |
| LOG(ERROR) << "Could not initialize without image: " << error_msg; |
| return false; |
| } |
| |
| // TODO: Should we move the following to InitWithoutImage? |
| SetInstructionSet(instruction_set_); |
| for (uint32_t i = 0; i < kCalleeSaveSize; i++) { |
| CalleeSaveType type = CalleeSaveType(i); |
| if (!HasCalleeSaveMethod(type)) { |
| SetCalleeSaveMethod(CreateCalleeSaveMethod(), type); |
| } |
| } |
| } |
| |
| // Now that the boot image space is set, cache the boot classpath checksums, |
| // to be used when validating oat files. |
| ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces()); |
| ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath()); |
| boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces, |
| bcp_dex_files); |
| |
| CHECK(class_linker_ != nullptr); |
| |
| if (runtime_options.Exists(Opt::MethodTrace)) { |
| trace_config_.reset(new TraceConfig()); |
| trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile); |
| trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize); |
| trace_config_->trace_mode = Trace::TraceMode::kMethodTracing; |
| trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ? |
| TraceOutputMode::kStreaming : |
| TraceOutputMode::kFile; |
| trace_config_->clock_source = runtime_options.GetOrDefault(Opt::MethodTraceClock); |
| } |
| |
| // TODO: Remove this in a follow up CL. This isn't used anywhere. |
| Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock)); |
| |
| if (GetHeap()->HasBootImageSpace()) { |
| const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader(); |
| ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects = |
| ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast( |
| image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects)); |
| pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>( |
| boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable()); |
| DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass() |
| ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); |
| pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>( |
| boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable()); |
| DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass() |
| ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); |
| pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>( |
| boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable()); |
| DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass() |
| ->DescriptorEquals("Ljava/lang/OutOfMemoryError;")); |
| pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>( |
| boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable()); |
| DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass() |
| ->DescriptorEquals("Ljava/lang/NoClassDefFoundError;")); |
| } else { |
| // Pre-allocate an OutOfMemoryError for the case when we fail to |
| // allocate the exception to be thrown. |
| CreatePreAllocatedException(self, |
| this, |
| &pre_allocated_OutOfMemoryError_when_throwing_exception_, |
| "Ljava/lang/OutOfMemoryError;", |
| "OutOfMemoryError thrown while trying to throw an exception; " |
| "no stack trace available"); |
| // Pre-allocate an OutOfMemoryError for the double-OOME case. |
| CreatePreAllocatedException(self, |
| this, |
| &pre_allocated_OutOfMemoryError_when_throwing_oome_, |
| "Ljava/lang/OutOfMemoryError;", |
| "OutOfMemoryError thrown while trying to throw OutOfMemoryError; " |
| "no stack trace available"); |
| // Pre-allocate an OutOfMemoryError for the case when we fail to |
| // allocate while handling a stack overflow. |
| CreatePreAllocatedException(self, |
| this, |
| &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, |
| "Ljava/lang/OutOfMemoryError;", |
| "OutOfMemoryError thrown while trying to handle a stack overflow; " |
| "no stack trace available"); |
| |
| // Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class |
| // ahead of checking the application's class loader. |
| CreatePreAllocatedException(self, |
| this, |
| &pre_allocated_NoClassDefFoundError_, |
| "Ljava/lang/NoClassDefFoundError;", |
| "Class not found using the boot class loader; " |
| "no stack trace available"); |
| } |
| |
| // Class-roots are setup, we can now finish initializing the JniIdManager. |
| GetJniIdManager()->Init(self); |
| |
| InitMetrics(); |
| |
| // Runtime initialization is largely done now. |
| // We load plugins first since that can modify the runtime state slightly. |
| // Load all plugins |
| { |
| // The init method of plugins expect the state of the thread to be non runnable. |
| ScopedThreadSuspension sts(self, ThreadState::kNative); |
| for (auto& plugin : plugins_) { |
| std::string err; |
| if (!plugin.Load(&err)) { |
| LOG(FATAL) << plugin << " failed to load: " << err; |
| } |
| } |
| } |
| |
| // Look for a native bridge. |
| // |
| // The intended flow here is, in the case of a running system: |
| // |
| // Runtime::Init() (zygote): |
| // LoadNativeBridge -> dlopen from cmd line parameter. |
| // | |
| // V |
| // Runtime::Start() (zygote): |
| // No-op wrt native bridge. |
| // | |
| // | start app |
| // V |
| // DidForkFromZygote(action) |
| // action = kUnload -> dlclose native bridge. |
| // action = kInitialize -> initialize library |
| // |
| // |
| // The intended flow here is, in the case of a simple dalvikvm call: |
| // |
| // Runtime::Init(): |
| // LoadNativeBridge -> dlopen from cmd line parameter. |
| // | |
| // V |
| // Runtime::Start(): |
| // DidForkFromZygote(kInitialize) -> try to initialize any native bridge given. |
| // No-op wrt native bridge. |
| { |
| std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge); |
| is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name); |
| } |
| |
| // Startup agents |
| // TODO Maybe we should start a new thread to run these on. Investigate RI behavior more. |
| for (auto& agent_spec : agent_specs_) { |
| // TODO Check err |
| int res = 0; |
| std::string err = ""; |
| ti::LoadError error; |
| std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err); |
| |
| if (agent != nullptr) { |
| agents_.push_back(std::move(agent)); |
| continue; |
| } |
| |
| switch (error) { |
| case ti::LoadError::kInitializationError: |
| LOG(FATAL) << "Unable to initialize agent!"; |
| UNREACHABLE(); |
| |
| case ti::LoadError::kLoadingError: |
| LOG(ERROR) << "Unable to load an agent: " << err; |
| continue; |
| |
| case ti::LoadError::kNoError: |
| break; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| { |
| ScopedObjectAccess soa(self); |
| callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents); |
| } |
| |
| if (IsZygote() && IsPerfettoHprofEnabled()) { |
| constexpr const char* plugin_name = kIsDebugBuild ? |
| "libperfetto_hprofd.so" : "libperfetto_hprof.so"; |
| // Load eagerly in Zygote to improve app startup times. This will make |
| // subsequent dlopens for the library no-ops. |
| dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL); |
| } |
| |
| VLOG(startup) << "Runtime::Init exiting"; |
| |
| return true; |
| } |
| |
| void Runtime::InitMetrics() { |
| metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags(); |
| metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this); |
| } |
| |
| void Runtime::RequestMetricsReport(bool synchronous) { |
| if (metrics_reporter_) { |
| metrics_reporter_->RequestMetricsReport(synchronous); |
| } |
| } |
| |
| bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) { |
| // Is the plugin already loaded? |
| for (const Plugin& p : plugins_) { |
| if (p.GetLibrary() == plugin_name) { |
| return true; |
| } |
| } |
| Plugin new_plugin = Plugin::Create(plugin_name); |
| |
| if (!new_plugin.Load(error_msg)) { |
| return false; |
| } |
| plugins_.push_back(std::move(new_plugin)); |
| return true; |
| } |
| |
| bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) { |
| constexpr const char* plugin_name = kIsDebugBuild ? |
| "libperfetto_hprofd.so" : "libperfetto_hprof.so"; |
| return EnsurePluginLoaded(plugin_name, error_msg); |
| } |
| |
| static bool EnsureJvmtiPlugin(Runtime* runtime, |
| std::string* error_msg) { |
| // TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed. |
| DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable()) |
| << "Being debuggable requires that jdwp (i.e. debugging) is allowed."; |
| // Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are |
| // specifically allowed. |
| if (!Dbg::IsJdwpAllowed()) { |
| *error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable"; |
| return false; |
| } |
| |
| constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so"; |
| return runtime->EnsurePluginLoaded(plugin_name, error_msg); |
| } |
| |
| // Attach a new agent and add it to the list of runtime agents |
| // |
| // TODO: once we decide on the threading model for agents, |
| // revisit this and make sure we're doing this on the right thread |
| // (and we synchronize access to any shared data structures like "agents_") |
| // |
| void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) { |
| std::string error_msg; |
| if (!EnsureJvmtiPlugin(this, &error_msg)) { |
| LOG(WARNING) << "Could not load plugin: " << error_msg; |
| ScopedObjectAccess soa(Thread::Current()); |
| ThrowIOException("%s", error_msg.c_str()); |
| return; |
| } |
| |
| ti::AgentSpec agent_spec(agent_arg); |
| |
| int res = 0; |
| ti::LoadError error; |
| std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg); |
| |
| if (agent != nullptr) { |
| agents_.push_back(std::move(agent)); |
| } else { |
| LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg; |
| ScopedObjectAccess soa(Thread::Current()); |
| ThrowIOException("%s", error_msg.c_str()); |
| } |
| } |
| |
| void Runtime::InitNativeMethods() { |
| VLOG(startup) << "Runtime::InitNativeMethods entering"; |
| Thread* self = Thread::Current(); |
| JNIEnv* env = self->GetJniEnv(); |
| |
| // Must be in the kNative state for calling native methods (JNI_OnLoad code). |
| CHECK_EQ(self->GetState(), ThreadState::kNative); |
| |
| // Then set up libjavacore / libopenjdk / libicu_jni ,which are just |
| // a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can |
| // just use System.loadLibrary, but libcore can't because it's the library |
| // that implements System.loadLibrary! |
| // |
| // By setting calling class to java.lang.Object, the caller location for these |
| // JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the |
| // com_android_art linker namespace. |
| jclass java_lang_Object; |
| { |
| // Use global JNI reference to keep the local references empty. If we allocated a |
| // local reference here, the `PushLocalFrame(128)` that these internal libraries do |
| // in their `JNI_OnLoad()` would reserve a lot of unnecessary space due to rounding. |
| ScopedObjectAccess soa(self); |
| java_lang_Object = reinterpret_cast<jclass>( |
| GetJavaVM()->AddGlobalRef(self, GetClassRoot<mirror::Object>(GetClassLinker()))); |
| } |
| |
| // libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from |
| // libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405 |
| { |
| std::string error_msg; |
| if (!java_vm_->LoadNativeLibrary( |
| env, "libicu_jni.so", nullptr, java_lang_Object, &error_msg)) { |
| LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg; |
| } |
| } |
| { |
| std::string error_msg; |
| if (!java_vm_->LoadNativeLibrary( |
| env, "libjavacore.so", nullptr, java_lang_Object, &error_msg)) { |
| LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg; |
| } |
| } |
| { |
| constexpr const char* kOpenJdkLibrary = kIsDebugBuild |
| ? "libopenjdkd.so" |
| : "libopenjdk.so"; |
| std::string error_msg; |
| if (!java_vm_->LoadNativeLibrary( |
| env, kOpenJdkLibrary, nullptr, java_lang_Object, &error_msg)) { |
| LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg; |
| } |
| } |
| env->DeleteGlobalRef(java_lang_Object); |
| |
| // Initialize well known classes that may invoke runtime native methods. |
| WellKnownClasses::LateInit(env); |
| |
| VLOG(startup) << "Runtime::InitNativeMethods exiting"; |
| } |
| |
| void Runtime::ReclaimArenaPoolMemory() { |
| arena_pool_->LockReclaimMemory(); |
| } |
| |
| void Runtime::InitThreadGroups(Thread* self) { |
| ScopedObjectAccess soa(self); |
| ArtField* main_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup; |
| ArtField* system_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup; |
| // Note: This is running before `ClassLinker::RunRootClinits()`, so we cannot rely on |
| // `ThreadGroup` and `Thread` being initialized. |
| // TODO: Clean up initialization order after all well-known methods are converted to `ArtMethod*` |
| // (and therefore the `WellKnownClasses::Init()` shall not initialize any classes). |
| StackHandleScope<2u> hs(self); |
| Handle<mirror::Class> thread_group_class = |
| hs.NewHandle(main_thread_group_field->GetDeclaringClass()); |
| bool initialized = GetClassLinker()->EnsureInitialized( |
| self, thread_group_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true); |
| CHECK(initialized); |
| Handle<mirror::Class> thread_class = hs.NewHandle(WellKnownClasses::java_lang_Thread.Get()); |
| initialized = GetClassLinker()->EnsureInitialized( |
| self, thread_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true); |
| CHECK(initialized); |
| main_thread_group_ = |
| soa.Vm()->AddGlobalRef(self, main_thread_group_field->GetObject(thread_group_class.Get())); |
| CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler()); |
| system_thread_group_ = |
| soa.Vm()->AddGlobalRef(self, system_thread_group_field->GetObject(thread_group_class.Get())); |
| CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler()); |
| } |
| |
| jobject Runtime::GetMainThreadGroup() const { |
| CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler()); |
| return main_thread_group_; |
| } |
| |
| jobject Runtime::GetSystemThreadGroup() const { |
| CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler()); |
| return system_thread_group_; |
| } |
| |
| jobject Runtime::GetSystemClassLoader() const { |
| CHECK_IMPLIES(system_class_loader_ == nullptr, IsAotCompiler()); |
| return system_class_loader_; |
| } |
| |
| void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) { |
| register_dalvik_system_DexFile(env); |
| register_dalvik_system_BaseDexClassLoader(env); |
| register_dalvik_system_VMDebug(env); |
| register_dalvik_system_VMRuntime(env); |
| register_dalvik_system_VMStack(env); |
| register_dalvik_system_ZygoteHooks(env); |
| register_java_lang_Class(env); |
| register_java_lang_Object(env); |
| register_java_lang_invoke_MethodHandle(env); |
| register_java_lang_invoke_MethodHandleImpl(env); |
| register_java_lang_ref_FinalizerReference(env); |
| register_java_lang_reflect_Array(env); |
| register_java_lang_reflect_Constructor(env); |
| register_java_lang_reflect_Executable(env); |
| register_java_lang_reflect_Field(env); |
| register_java_lang_reflect_Method(env); |
| register_java_lang_reflect_Parameter(env); |
| register_java_lang_reflect_Proxy(env); |
| register_java_lang_ref_Reference(env); |
| register_java_lang_StackStreamFactory(env); |
| register_java_lang_String(env); |
| register_java_lang_StringFactory(env); |
| register_java_lang_System(env); |
| register_java_lang_Thread(env); |
| register_java_lang_Throwable(env); |
| register_java_lang_VMClassLoader(env); |
| register_java_util_concurrent_atomic_AtomicLong(env); |
| register_jdk_internal_misc_Unsafe(env); |
| register_libcore_io_Memory(env); |
| register_libcore_util_CharsetUtils(env); |
| register_org_apache_harmony_dalvik_ddmc_DdmServer(env); |
| register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env); |
| register_sun_misc_Unsafe(env); |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) { |
| os << GetDeoptimizationKindName(kind); |
| return os; |
| } |
| |
| void Runtime::DumpDeoptimizations(std::ostream& os) { |
| for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) { |
| if (deoptimization_counts_[i] != 0) { |
| os << "Number of " |
| << GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i)) |
| << " deoptimizations: " |
| << deoptimization_counts_[i] |
| << "\n"; |
| } |
| } |
| } |
| |
| std::optional<uint64_t> Runtime::SiqQuitNanoTime() const { |
| return signal_catcher_ != nullptr ? signal_catcher_->SiqQuitNanoTime() : std::nullopt; |
| } |
| |
| void Runtime::DumpForSigQuit(std::ostream& os) { |
| // Print backtraces first since they are important do diagnose ANRs, |
| // and ANRs can often be trimmed to limit upload size. |
| thread_list_->DumpForSigQuit(os); |
| GetClassLinker()->DumpForSigQuit(os); |
| GetInternTable()->DumpForSigQuit(os); |
| GetJavaVM()->DumpForSigQuit(os); |
| GetHeap()->DumpForSigQuit(os); |
| oat_file_manager_->DumpForSigQuit(os); |
| if (GetJit() != nullptr) { |
| GetJit()->DumpForSigQuit(os); |
| } else { |
| os << "Running non JIT\n"; |
| } |
| DumpDeoptimizations(os); |
| TrackedAllocators::Dump(os); |
| GetMetrics()->DumpForSigQuit(os); |
| os << "\n"; |
| |
| BaseMutex::DumpAll(os); |
| |
| // Inform anyone else who is interested in SigQuit. |
| { |
| ScopedObjectAccess soa(Thread::Current()); |
| callbacks_->SigQuit(); |
| } |
| } |
| |
| void Runtime::DumpLockHolders(std::ostream& os) { |
| pid_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid(); |
| pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner(); |
| pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner(); |
| pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner(); |
| if ((mutator_lock_owner | thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) { |
| os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n" |
| << "ThreadList lock owner tid: " << thread_list_lock_owner << "\n" |
| << "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n" |
| << "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n"; |
| } |
| } |
| |
| void Runtime::SetStatsEnabled(bool new_state) { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, *Locks::instrument_entrypoints_lock_); |
| if (new_state == true) { |
| GetStats()->Clear(~0); |
| // TODO: wouldn't it make more sense to clear _all_ threads' stats? |
| self->GetStats()->Clear(~0); |
| if (stats_enabled_ != new_state) { |
| GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked(); |
| } |
| } else if (stats_enabled_ != new_state) { |
| GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked(); |
| } |
| stats_enabled_ = new_state; |
| } |
| |
| void Runtime::ResetStats(int kinds) { |
| GetStats()->Clear(kinds & 0xffff); |
| // TODO: wouldn't it make more sense to clear _all_ threads' stats? |
| Thread::Current()->GetStats()->Clear(kinds >> 16); |
| } |
| |
| uint64_t Runtime::GetStat(int kind) { |
| RuntimeStats* stats; |
| if (kind < (1<<16)) { |
| stats = GetStats(); |
| } else { |
| stats = Thread::Current()->GetStats(); |
| kind >>= 16; |
| } |
| switch (kind) { |
| case KIND_ALLOCATED_OBJECTS: |
| return stats->allocated_objects; |
| case KIND_ALLOCATED_BYTES: |
| return stats->allocated_bytes; |
| case KIND_FREED_OBJECTS: |
| return stats->freed_objects; |
| case KIND_FREED_BYTES: |
| return stats->freed_bytes; |
| case KIND_GC_INVOCATIONS: |
| return stats->gc_for_alloc_count; |
| case KIND_CLASS_INIT_COUNT: |
| return stats->class_init_count; |
| case KIND_CLASS_INIT_TIME: |
| return stats->class_init_time_ns; |
| case KIND_EXT_ALLOCATED_OBJECTS: |
| case KIND_EXT_ALLOCATED_BYTES: |
| case KIND_EXT_FREED_OBJECTS: |
| case KIND_EXT_FREED_BYTES: |
| return 0; // backward compatibility |
| default: |
| LOG(FATAL) << "Unknown statistic " << kind; |
| UNREACHABLE(); |
| } |
| } |
| |
| void Runtime::BlockSignals() { |
| SignalSet signals; |
| signals.Add(SIGPIPE); |
| // SIGQUIT is used to dump the runtime's state (including stack traces). |
| signals.Add(SIGQUIT); |
| // SIGUSR1 is used to initiate a GC. |
| signals.Add(SIGUSR1); |
| signals.Block(); |
| } |
| |
| bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group, |
| bool create_peer, bool should_run_callbacks) { |
| ScopedTrace trace(__FUNCTION__); |
| Thread* self = Thread::Attach(thread_name, |
| as_daemon, |
| thread_group, |
| create_peer, |
| should_run_callbacks); |
| // Run ThreadGroup.add to notify the group that this thread is now started. |
| if (self != nullptr && create_peer && !IsAotCompiler()) { |
| ScopedObjectAccess soa(self); |
| self->NotifyThreadGroup(soa, thread_group); |
| } |
| return self != nullptr; |
| } |
| |
| void Runtime::DetachCurrentThread(bool should_run_callbacks) { |
| ScopedTrace trace(__FUNCTION__); |
| Thread* self = Thread::Current(); |
| if (self == nullptr) { |
| LOG(FATAL) << "attempting to detach thread that is not attached"; |
| } |
| if (self->HasManagedStack()) { |
| LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code"; |
| } |
| thread_list_->Unregister(self, should_run_callbacks); |
| } |
| |
| mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() { |
| mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read(); |
| if (oome == nullptr) { |
| LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception"; |
| } |
| return oome; |
| } |
| |
| mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() { |
| mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read(); |
| if (oome == nullptr) { |
| LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME"; |
| } |
| return oome; |
| } |
| |
| mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() { |
| mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read(); |
| if (oome == nullptr) { |
| LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow"; |
| } |
| return oome; |
| } |
| |
| mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() { |
| mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read(); |
| if (ncdfe == nullptr) { |
| LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError"; |
| } |
| return ncdfe; |
| } |
| |
| void Runtime::VisitConstantRoots(RootVisitor* visitor) { |
| // Visiting the roots of these ArtMethods is not currently required since all the GcRoots are |
| // null. |
| BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal)); |
| const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); |
| if (HasResolutionMethod()) { |
| resolution_method_->VisitRoots(buffered_visitor, pointer_size); |
| } |
| if (HasImtConflictMethod()) { |
| imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size); |
| } |
| if (imt_unimplemented_method_ != nullptr) { |
| imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size); |
| } |
| for (uint32_t i = 0; i < kCalleeSaveSize; ++i) { |
| auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]); |
| if (m != nullptr) { |
| m->VisitRoots(buffered_visitor, pointer_size); |
| } |
| } |
| } |
| |
| void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { |
| // Userfaultfd compaction updates intern-tables and class-tables page-by-page |
| // via LinearAlloc. So don't visit them here. |
| if (GetHeap()->IsPerformingUffdCompaction()) { |
| class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/false); |
| } else { |
| intern_table_->VisitRoots(visitor, flags); |
| class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/true); |
| } |
| jni_id_manager_->VisitRoots(visitor); |
| heap_->VisitAllocationRecords(visitor); |
| if (jit_ != nullptr) { |
| jit_->VisitRoots(visitor); |
| } |
| if ((flags & kVisitRootFlagNewRoots) == 0) { |
| // Guaranteed to have no new roots in the constant roots. |
| VisitConstantRoots(visitor); |
| } |
| } |
| |
| void Runtime::VisitTransactionRoots(RootVisitor* visitor) { |
| for (Transaction& transaction : preinitialization_transactions_) { |
| transaction.VisitRoots(visitor); |
| } |
| } |
| |
| void Runtime::VisitNonThreadRoots(RootVisitor* visitor) { |
| java_vm_->VisitRoots(visitor); |
| sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); |
| pre_allocated_OutOfMemoryError_when_throwing_exception_ |
| .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); |
| pre_allocated_OutOfMemoryError_when_throwing_oome_ |
| .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); |
| pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ |
| .VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); |
| pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal)); |
| VisitImageRoots(visitor); |
| VisitTransactionRoots(visitor); |
| } |
| |
| void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) { |
| VisitThreadRoots(visitor, flags); |
| VisitNonThreadRoots(visitor); |
| } |
| |
| void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) { |
| thread_list_->VisitRoots(visitor, flags); |
| } |
| |
| void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) { |
| VisitNonConcurrentRoots(visitor, flags); |
| VisitConcurrentRoots(visitor, flags); |
| } |
| |
| void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) { |
| thread_list_->VisitReflectiveTargets(visitor); |
| heap_->VisitReflectiveTargets(visitor); |
| jni_id_manager_->VisitReflectiveTargets(visitor); |
| callbacks_->VisitReflectiveTargets(visitor); |
| } |
| |
| void Runtime::VisitImageRoots(RootVisitor* visitor) { |
| // We only confirm that image roots are unchanged. |
| if (kIsDebugBuild) { |
| for (auto* space : GetHeap()->GetContinuousSpaces()) { |
| if (space->IsImageSpace()) { |
| auto* image_space = space->AsImageSpace(); |
| const auto& image_header = image_space->GetImageHeader(); |
| for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) { |
| mirror::Object* obj = |
| image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr(); |
| if (obj != nullptr) { |
| mirror::Object* after_obj = obj; |
| visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass)); |
| CHECK_EQ(after_obj, obj); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| const PointerSize image_pointer_size = class_linker->GetImagePointerSize(); |
| const size_t method_alignment = ArtMethod::Alignment(image_pointer_size); |
| const size_t method_size = ArtMethod::Size(image_pointer_size); |
| LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray( |
| Thread::Current(), |
| linear_alloc, |
| 1); |
| ArtMethod* method = &method_array->At(0, method_size, method_alignment); |
| CHECK(method != nullptr); |
| method->SetDexMethodIndex(dex::kDexNoIndex); |
| CHECK(method->IsRuntimeMethod()); |
| return method; |
| } |
| |
| ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) { |
| ClassLinker* const class_linker = GetClassLinker(); |
| ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc); |
| // When compiling, the code pointer will get set later when the image is loaded. |
| const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); |
| if (IsAotCompiler()) { |
| method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); |
| } else { |
| method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub()); |
| } |
| // Create empty conflict table. |
| method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc), |
| pointer_size); |
| return method; |
| } |
| |
| void Runtime::SetImtConflictMethod(ArtMethod* method) { |
| CHECK(method != nullptr); |
| CHECK(method->IsRuntimeMethod()); |
| imt_conflict_method_ = method; |
| } |
| |
| ArtMethod* Runtime::CreateResolutionMethod() { |
| auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); |
| // When compiling, the code pointer will get set later when the image is loaded. |
| if (IsAotCompiler()) { |
| PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); |
| method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); |
| method->SetEntryPointFromJniPtrSize(nullptr, pointer_size); |
| } else { |
| method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub()); |
| method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub()); |
| } |
| return method; |
| } |
| |
| ArtMethod* Runtime::CreateCalleeSaveMethod() { |
| auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc()); |
| PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_); |
| method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size); |
| DCHECK_NE(instruction_set_, InstructionSet::kNone); |
| DCHECK(method->IsRuntimeMethod()); |
| return method; |
| } |
| |
| void Runtime::DisallowNewSystemWeaks() { |
| CHECK(!gUseReadBarrier); |
| monitor_list_->DisallowNewMonitors(); |
| intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites); |
| java_vm_->DisallowNewWeakGlobals(); |
| heap_->DisallowNewAllocationRecords(); |
| if (GetJit() != nullptr) { |
| GetJit()->GetCodeCache()->DisallowInlineCacheAccess(); |
| } |
| |
| // All other generic system-weak holders. |
| for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { |
| holder->Disallow(); |
| } |
| } |
| |
| void Runtime::AllowNewSystemWeaks() { |
| CHECK(!gUseReadBarrier); |
| monitor_list_->AllowNewMonitors(); |
| intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping. |
| java_vm_->AllowNewWeakGlobals(); |
| heap_->AllowNewAllocationRecords(); |
| if (GetJit() != nullptr) { |
| GetJit()->GetCodeCache()->AllowInlineCacheAccess(); |
| } |
| |
| // All other generic system-weak holders. |
| for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { |
| holder->Allow(); |
| } |
| } |
| |
| void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) { |
| // This is used for the read barrier case that uses the thread-local |
| // Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled |
| // (see ThreadList::RunCheckpoint). |
| monitor_list_->BroadcastForNewMonitors(); |
| intern_table_->BroadcastForNewInterns(); |
| java_vm_->BroadcastForNewWeakGlobals(); |
| heap_->BroadcastForNewAllocationRecords(); |
| if (GetJit() != nullptr) { |
| GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess(); |
| } |
| |
| // All other generic system-weak holders. |
| for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) { |
| holder->Broadcast(broadcast_for_checkpoint); |
| } |
| } |
| |
| void Runtime::SetInstructionSet(InstructionSet instruction_set) { |
| instruction_set_ = instruction_set; |
| switch (instruction_set) { |
| case InstructionSet::kThumb2: |
| // kThumb2 is the same as kArm, use the canonical value. |
| instruction_set_ = InstructionSet::kArm; |
| break; |
| case InstructionSet::kArm: |
| case InstructionSet::kArm64: |
| case InstructionSet::kRiscv64: |
| case InstructionSet::kX86: |
| case InstructionSet::kX86_64: |
| break; |
| default: |
| UNIMPLEMENTED(FATAL) << instruction_set_; |
| UNREACHABLE(); |
| } |
| } |
| |
| void Runtime::ClearInstructionSet() { |
| instruction_set_ = InstructionSet::kNone; |
| } |
| |
| void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) { |
| DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize); |
| CHECK(method != nullptr); |
| callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method); |
| } |
| |
| void Runtime::ClearCalleeSaveMethods() { |
| for (size_t i = 0; i < kCalleeSaveSize; ++i) { |
| callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr); |
| } |
| } |
| |
| void Runtime::RegisterAppInfo(const std::string& package_name, |
| const std::vector<std::string>& code_paths, |
| const std::string& profile_output_filename, |
| const std::string& ref_profile_filename, |
| int32_t code_type) { |
| app_info_.RegisterAppInfo( |
| package_name, |
| code_paths, |
| profile_output_filename, |
| ref_profile_filename, |
| AppInfo::FromVMRuntimeConstants(code_type)); |
| |
| if (metrics_reporter_ != nullptr) { |
| metrics_reporter_->NotifyAppInfoUpdated(&app_info_); |
| } |
| |
| if (jit_.get() == nullptr) { |
| // We are not JITing. Nothing to do. |
| return; |
| } |
| |
| VLOG(profiler) << "Register app with " << profile_output_filename |
| << " " << android::base::Join(code_paths, ':'); |
| VLOG(profiler) << "Reference profile is: " << ref_profile_filename; |
| |
| if (profile_output_filename.empty()) { |
| LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty."; |
| return; |
| } |
| if (code_paths.empty()) { |
| LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty."; |
| return; |
| } |
| |
| // Framework calls this method for all split APKs. Ignore the calls for the ones with no dex code |
| // so that we don't unnecessarily create profiles for them or write bootclasspath profiling info |
| // to those profiles. |
| bool has_code = false; |
| for (const std::string& path : code_paths) { |
| std::string error_msg; |
| std::optional<uint32_t> checksum; |
| std::vector<std::string> dex_locations; |
| DexFileLoader loader(path); |
| if (!loader.GetMultiDexChecksum(&checksum, &error_msg)) { |
| LOG(WARNING) << error_msg; |
| continue; |
| } |
| if (checksum.has_value()) { |
| has_code = true; |
| break; |
| } |
| } |
| if (!has_code) { |
| VLOG(profiler) << ART_FORMAT( |
| "JIT profile information will not be recorded: no dex code in '{}'.", |
| android::base::Join(code_paths, ',')); |
| return; |
| } |
| |
| jit_->StartProfileSaver(profile_output_filename, code_paths, ref_profile_filename); |
| } |
| |
| // Transaction support. |
| bool Runtime::IsActiveTransaction() const { |
| return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack(); |
| } |
| |
| void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) { |
| DCHECK(IsAotCompiler()); |
| ArenaPool* arena_pool = nullptr; |
| ArenaStack* arena_stack = nullptr; |
| if (preinitialization_transactions_.empty()) { // Top-level transaction? |
| // Make initialized classes visibly initialized now. If that happened during the transaction |
| // and then the transaction was aborted, we would roll back the status update but not the |
| // ClassLinker's bookkeeping structures, so these classes would never be visibly initialized. |
| { |
| Thread* self = Thread::Current(); |
| StackHandleScope<1> hs(self); |
| HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(&root)); |
| ScopedThreadSuspension sts(self, ThreadState::kNative); |
| GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true); |
| } |
| // Pass the runtime `ArenaPool` to the transaction. |
| arena_pool = GetArenaPool(); |
| } else { |
| // Pass the `ArenaStack` from previous transaction to the new one. |
| arena_stack = preinitialization_transactions_.front().GetArenaStack(); |
| } |
| preinitialization_transactions_.emplace_front(strict, root, arena_stack, arena_pool); |
| } |
| |
| void Runtime::ExitTransactionMode() { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| preinitialization_transactions_.pop_front(); |
| } |
| |
| void Runtime::RollbackAndExitTransactionMode() { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| preinitialization_transactions_.front().Rollback(); |
| preinitialization_transactions_.pop_front(); |
| } |
| |
| bool Runtime::IsTransactionAborted() const { |
| if (!IsActiveTransaction()) { |
| return false; |
| } else { |
| DCHECK(IsAotCompiler()); |
| return GetTransaction()->IsAborted(); |
| } |
| } |
| |
| void Runtime::RollbackAllTransactions() { |
| // If transaction is aborted, all transactions will be kept in the list. |
| // Rollback and exit all of them. |
| while (IsActiveTransaction()) { |
| RollbackAndExitTransactionMode(); |
| } |
| } |
| |
| bool Runtime::IsActiveStrictTransactionMode() const { |
| return IsActiveTransaction() && GetTransaction()->IsStrict(); |
| } |
| |
| const Transaction* Runtime::GetTransaction() const { |
| DCHECK(!preinitialization_transactions_.empty()); |
| return &preinitialization_transactions_.front(); |
| } |
| |
| Transaction* Runtime::GetTransaction() { |
| DCHECK(!preinitialization_transactions_.empty()); |
| return &preinitialization_transactions_.front(); |
| } |
| |
| void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| // Throwing an exception may cause its class initialization. If we mark the transaction |
| // aborted before that, we may warn with a false alarm. Throwing the exception before |
| // marking the transaction aborted avoids that. |
| // But now the transaction can be nested, and abort the transaction will relax the constraints |
| // for constructing stack trace. |
| GetTransaction()->Abort(abort_message); |
| GetTransaction()->ThrowAbortError(self, &abort_message); |
| } |
| |
| void Runtime::ThrowTransactionAbortError(Thread* self) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| // Passing nullptr means we rethrow an exception with the earlier transaction abort message. |
| GetTransaction()->ThrowAbortError(self, nullptr); |
| } |
| |
| void Runtime::RecordWriteFieldBoolean(mirror::Object* obj, |
| MemberOffset field_offset, |
| uint8_t value, |
| bool is_volatile) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile); |
| } |
| |
| void Runtime::RecordWriteFieldByte(mirror::Object* obj, |
| MemberOffset field_offset, |
| int8_t value, |
| bool is_volatile) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile); |
| } |
| |
| void Runtime::RecordWriteFieldChar(mirror::Object* obj, |
| MemberOffset field_offset, |
| uint16_t value, |
| bool is_volatile) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile); |
| } |
| |
| void Runtime::RecordWriteFieldShort(mirror::Object* obj, |
| MemberOffset field_offset, |
| int16_t value, |
| bool is_volatile) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile); |
| } |
| |
| void Runtime::RecordWriteField32(mirror::Object* obj, |
| MemberOffset field_offset, |
| uint32_t value, |
| bool is_volatile) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile); |
| } |
| |
| void Runtime::RecordWriteField64(mirror::Object* obj, |
| MemberOffset field_offset, |
| uint64_t value, |
| bool is_volatile) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile); |
| } |
| |
| void Runtime::RecordWriteFieldReference(mirror::Object* obj, |
| MemberOffset field_offset, |
| ObjPtr<mirror::Object> value, |
| bool is_volatile) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteFieldReference(obj, field_offset, value.Ptr(), is_volatile); |
| } |
| |
| void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWriteArray(array, index, value); |
| } |
| |
| void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordStrongStringInsertion(s); |
| } |
| |
| void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWeakStringInsertion(s); |
| } |
| |
| void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordStrongStringRemoval(s); |
| } |
| |
| void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordWeakStringRemoval(s); |
| } |
| |
| void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache, |
| dex::StringIndex string_idx) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordResolveString(dex_cache, string_idx); |
| } |
| |
| void Runtime::RecordResolveMethodType(ObjPtr<mirror::DexCache> dex_cache, |
| dex::ProtoIndex proto_idx) { |
| DCHECK(IsAotCompiler()); |
| DCHECK(IsActiveTransaction()); |
| GetTransaction()->RecordResolveMethodType(dex_cache, proto_idx); |
| } |
| |
| void Runtime::SetFaultMessage(const std::string& message) { |
| std::string* new_msg = new std::string(message); |
| std::string* cur_msg = fault_message_.exchange(new_msg); |
| delete cur_msg; |
| } |
| |
| std::string Runtime::GetFaultMessage() { |
| // Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete |
| // the string in parallel. |
| std::string* cur_msg = fault_message_.exchange(nullptr); |
| |
| // Make a copy of the string. |
| std::string ret = cur_msg == nullptr ? "" : *cur_msg; |
| |
| // Put the message back if it hasn't been updated. |
| std::string* null_str = nullptr; |
| if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) { |
| // Already replaced. |
| delete cur_msg; |
| } |
| |
| return ret; |
| } |
| |
| void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv) |
| const { |
| if (GetInstrumentation()->InterpretOnly()) { |
| argv->push_back("--compiler-filter=verify"); |
| } |
| |
| // Make the dex2oat instruction set match that of the launching runtime. If we have multiple |
| // architecture support, dex2oat may be compiled as a different instruction-set than that |
| // currently being executed. |
| std::string instruction_set("--instruction-set="); |
| instruction_set += GetInstructionSetString(kRuntimeISA); |
| argv->push_back(instruction_set); |
| |
| if (InstructionSetFeatures::IsRuntimeDetectionSupported()) { |
| argv->push_back("--instruction-set-features=runtime"); |
| } else { |
| std::unique_ptr<const InstructionSetFeatures> features( |
| InstructionSetFeatures::FromCppDefines()); |
| std::string feature_string("--instruction-set-features="); |
| feature_string += features->GetFeatureString(); |
| argv->push_back(feature_string); |
| } |
| } |
| |
| void Runtime::CreateJit() { |
| DCHECK(jit_code_cache_ == nullptr); |
| DCHECK(jit_ == nullptr); |
| if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) { |
| DCHECK(!jit_options_->UseJitCompilation()); |
| } |
| |
| if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) { |
| return; |
| } |
| |
| if (IsSafeMode()) { |
| LOG(INFO) << "Not creating JIT because of SafeMode."; |
| return; |
| } |
| |
| std::string error_msg; |
| bool profiling_only = !jit_options_->UseJitCompilation(); |
| jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only, |
| /*rwx_memory_allowed=*/ true, |
| IsZygote(), |
| &error_msg)); |
| if (jit_code_cache_.get() == nullptr) { |
| LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg; |
| return; |
| } |
| |
| jit_ = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get()); |
| jit_->CreateThreadPool(); |
| } |
| |
| bool Runtime::CanRelocate() const { |
| return !IsAotCompiler(); |
| } |
| |
| bool Runtime::IsCompilingBootImage() const { |
| return IsCompiler() && compiler_callbacks_->IsBootImage(); |
| } |
| |
| void Runtime::SetResolutionMethod(ArtMethod* method) { |
| CHECK(method != nullptr); |
| CHECK(method->IsRuntimeMethod()) << method; |
| resolution_method_ = method; |
| } |
| |
| void Runtime::SetImtUnimplementedMethod(ArtMethod* method) { |
| CHECK(method != nullptr); |
| CHECK(method->IsRuntimeMethod()); |
| imt_unimplemented_method_ = method; |
| } |
| |
| void Runtime::FixupConflictTables() { |
| // We can only do this after the class linker is created. |
| const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize(); |
| if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) { |
| imt_unimplemented_method_->SetImtConflictTable( |
| ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size), |
| pointer_size); |
| } |
| if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) { |
| imt_conflict_method_->SetImtConflictTable( |
| ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size), |
| pointer_size); |
| } |
| } |
| |
| void Runtime::DisableVerifier() { |
| verify_ = verifier::VerifyMode::kNone; |
| } |
| |
| bool Runtime::IsVerificationEnabled() const { |
| return verify_ == verifier::VerifyMode::kEnable || |
| verify_ == verifier::VerifyMode::kSoftFail; |
| } |
| |
| bool Runtime::IsVerificationSoftFail() const { |
| return verify_ == verifier::VerifyMode::kSoftFail; |
| } |
| |
| bool Runtime::IsAsyncDeoptimizeable(ArtMethod* method, uintptr_t code) const { |
| if (OatQuickMethodHeader::NterpMethodHeader != nullptr) { |
| if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) { |
| return true; |
| } |
| } |
| |
| // We only support async deopt (ie the compiled code is not explicitly asking for |
| // deopt, but something else like the debugger) in debuggable JIT code. |
| // We could look at the oat file where `code` is being defined, |
| // and check whether it's been compiled debuggable, but we decided to |
| // only rely on the JIT for debuggable apps. |
| // The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private |
| // region as well. |
| if (GetJit() != nullptr && |
| GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code))) { |
| // If the code is JITed code then check if it was compiled as debuggable. |
| const OatQuickMethodHeader* header = method->GetOatQuickMethodHeader(code); |
| return CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr()); |
| } |
| |
| return false; |
| } |
| |
| |
| LinearAlloc* Runtime::CreateLinearAlloc() { |
| ArenaPool* pool = linear_alloc_arena_pool_.get(); |
| return pool != nullptr |
| ? new LinearAlloc(pool, gUseUserfaultfd) |
| : new LinearAlloc(arena_pool_.get(), /*track_allocs=*/ false); |
| } |
| |
| class Runtime::SetupLinearAllocForZygoteFork : public AllocatorVisitor { |
| public: |
| explicit SetupLinearAllocForZygoteFork(Thread* self) : self_(self) {} |
| |
| bool Visit(LinearAlloc* alloc) override { |
| alloc->SetupForPostZygoteFork(self_); |
| return true; |
| } |
| |
| private: |
| Thread* self_; |
| }; |
| |
| void Runtime::SetupLinearAllocForPostZygoteFork(Thread* self) { |
| if (gUseUserfaultfd) { |
| // Setup all the linear-allocs out there for post-zygote fork. This will |
| // basically force the arena allocator to ask for a new arena for the next |
| // allocation. All arenas allocated from now on will be in the userfaultfd |
| // visited space. |
| if (GetLinearAlloc() != nullptr) { |
| GetLinearAlloc()->SetupForPostZygoteFork(self); |
| } |
| if (GetStartupLinearAlloc() != nullptr) { |
| GetStartupLinearAlloc()->SetupForPostZygoteFork(self); |
| } |
| { |
| Locks::mutator_lock_->AssertNotHeld(self); |
| ReaderMutexLock mu2(self, *Locks::mutator_lock_); |
| ReaderMutexLock mu3(self, *Locks::classlinker_classes_lock_); |
| SetupLinearAllocForZygoteFork visitor(self); |
| GetClassLinker()->VisitAllocators(&visitor); |
| } |
| static_cast<GcVisitedArenaPool*>(GetLinearAllocArenaPool())->SetupPostZygoteMode(); |
| } |
| } |
| |
| double Runtime::GetHashTableMinLoadFactor() const { |
| return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor; |
| } |
| |
| double Runtime::GetHashTableMaxLoadFactor() const { |
| return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor; |
| } |
| |
| void Runtime::UpdateProcessState(ProcessState process_state) { |
| ProcessState old_process_state = process_state_; |
| process_state_ = process_state; |
| GetHeap()->UpdateProcessState(old_process_state, process_state); |
| } |
| |
| void Runtime::RegisterSensitiveThread() const { |
| Thread::SetJitSensitiveThread(); |
| } |
| |
| // Returns true if JIT compilations are enabled. GetJit() will be not null in this case. |
| bool Runtime::UseJitCompilation() const { |
| return (jit_ != nullptr) && jit_->UseJitCompilation(); |
| } |
| |
| void Runtime::EnvSnapshot::TakeSnapshot() { |
| char** env = GetEnviron(); |
| for (size_t i = 0; env[i] != nullptr; ++i) { |
| name_value_pairs_.emplace_back(new std::string(env[i])); |
| } |
| // The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers |
| // for quick use by GetSnapshot. This avoids allocation and copying cost at Exec. |
| c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]); |
| for (size_t i = 0; env[i] != nullptr; ++i) { |
| c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str()); |
| } |
| c_env_vector_[name_value_pairs_.size()] = nullptr; |
| } |
| |
| char** Runtime::EnvSnapshot::GetSnapshot() const { |
| return c_env_vector_.get(); |
| } |
| |
| void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { |
| gc::ScopedGCCriticalSection gcs(Thread::Current(), |
| gc::kGcCauseAddRemoveSystemWeakHolder, |
| gc::kCollectorTypeAddRemoveSystemWeakHolder); |
| // Note: The ScopedGCCriticalSection also ensures that the rest of the function is in |
| // a critical section. |
| system_weak_holders_.push_back(holder); |
| } |
| |
| void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) { |
| gc::ScopedGCCriticalSection gcs(Thread::Current(), |
| gc::kGcCauseAddRemoveSystemWeakHolder, |
| gc::kCollectorTypeAddRemoveSystemWeakHolder); |
| auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder); |
| if (it != system_weak_holders_.end()) { |
| system_weak_holders_.erase(it); |
| } |
| } |
| |
| RuntimeCallbacks* Runtime::GetRuntimeCallbacks() { |
| return callbacks_.get(); |
| } |
| |
| // Used to update boot image to not use AOT code. This is used when transitioning the runtime to |
| // java debuggable. This visitor re-initializes the entry points without using AOT code. This also |
| // disables shared hotness counters so the necessary methods can be JITed more efficiently. |
| class DeoptimizeBootImageClassVisitor : public ClassVisitor { |
| public: |
| explicit DeoptimizeBootImageClassVisitor(instrumentation::Instrumentation* instrumentation) |
| : instrumentation_(instrumentation) {} |
| |
| bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) { |
| DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())); |
| auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize(); |
| for (auto& m : klass->GetMethods(pointer_size)) { |
| const void* code = m.GetEntryPointFromQuickCompiledCode(); |
| if (!m.IsInvokable()) { |
| continue; |
| } |
| // For java debuggable runtimes we also deoptimize native methods. For other cases (boot |
| // image profiling) we don't need to deoptimize native methods. If this changes also |
| // update Instrumentation::CanUseAotCode. |
| bool deoptimize_native_methods = Runtime::Current()->IsJavaDebuggable(); |
| if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) && |
| (!m.IsNative() || deoptimize_native_methods) && |
| !m.IsProxyMethod()) { |
| instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr); |
| } |
| |
| if (Runtime::Current()->GetJit() != nullptr && |
| Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) && |
| (!m.IsNative() || deoptimize_native_methods)) { |
| DCHECK(!m.IsProxyMethod()); |
| instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr); |
| } |
| |
| if (m.IsPreCompiled()) { |
| // Precompilation is incompatible with debuggable, so clear the flag |
| // and update the entrypoint in case it has been compiled. |
| m.ClearPreCompiled(); |
| instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr); |
| } |
| |
| // Clear MemorySharedAccessFlags so the boot class methods can be JITed better. |
| m.ClearMemorySharedMethod(); |
| } |
| return true; |
| } |
| |
| private: |
| instrumentation::Instrumentation* const instrumentation_; |
| }; |
| |
| void Runtime::SetRuntimeDebugState(RuntimeDebugState state) { |
| if (state != RuntimeDebugState::kJavaDebuggableAtInit) { |
| // We never change the state if we started as a debuggable runtime. |
| DCHECK(runtime_debug_state_ != RuntimeDebugState::kJavaDebuggableAtInit); |
| } |
| runtime_debug_state_ = state; |
| } |
| |
| void Runtime::DeoptimizeBootImage() { |
| // If we've already started and we are setting this runtime to debuggable, |
| // we patch entry points of methods in boot image to interpreter bridge, as |
| // boot image code may be AOT compiled as not debuggable. |
| DeoptimizeBootImageClassVisitor visitor(GetInstrumentation()); |
| GetClassLinker()->VisitClasses(&visitor); |
| jit::Jit* jit = GetJit(); |
| if (jit != nullptr) { |
| // Code previously compiled may not be compiled debuggable. |
| jit->GetCodeCache()->TransitionToDebuggable(); |
| } |
| } |
| |
| Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage() |
| : thread_pool_(Runtime::Current()->AcquireThreadPool()) {} |
| |
| Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() { |
| Runtime::Current()->ReleaseThreadPool(); |
| } |
| |
| bool Runtime::DeleteThreadPool() { |
| // Make sure workers are started to prevent thread shutdown errors. |
| WaitForThreadPoolWorkersToStart(); |
| std::unique_ptr<ThreadPool> thread_pool; |
| { |
| MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); |
| if (thread_pool_ref_count_ == 0) { |
| thread_pool = std::move(thread_pool_); |
| } |
| } |
| return thread_pool != nullptr; |
| } |
| |
| ThreadPool* Runtime::AcquireThreadPool() { |
| MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); |
| ++thread_pool_ref_count_; |
| return thread_pool_.get(); |
| } |
| |
| void Runtime::ReleaseThreadPool() { |
| MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_); |
| CHECK_GT(thread_pool_ref_count_, 0u); |
| --thread_pool_ref_count_; |
| } |
| |
| void Runtime::WaitForThreadPoolWorkersToStart() { |
| // Need to make sure workers are created before deleting the pool. |
| ScopedThreadPoolUsage stpu; |
| if (stpu.GetThreadPool() != nullptr) { |
| stpu.GetThreadPool()->WaitForWorkersToBeCreated(); |
| } |
| } |
| |
| void Runtime::ResetStartupCompleted() { |
| startup_completed_.store(false, std::memory_order_seq_cst); |
| } |
| |
| bool Runtime::NotifyStartupCompleted() { |
| DCHECK(!IsZygote()); |
| bool expected = false; |
| if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) { |
| // Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to |
| // once externally. For this reason there are no asserts. |
| return false; |
| } |
| |
| VLOG(startup) << app_info_; |
| |
| ProfileSaver::NotifyStartupCompleted(); |
| |
| if (metrics_reporter_ != nullptr) { |
| metrics_reporter_->NotifyStartupCompleted(); |
| } |
| return true; |
| } |
| |
| void Runtime::NotifyDexFileLoaded() { |
| if (metrics_reporter_ != nullptr) { |
| metrics_reporter_->NotifyAppInfoUpdated(&app_info_); |
| } |
| } |
| |
| bool Runtime::GetStartupCompleted() const { |
| return startup_completed_.load(std::memory_order_seq_cst); |
| } |
| |
| void Runtime::SetSignalHookDebuggable(bool value) { |
| SkipAddSignalHandler(value); |
| } |
| |
| void Runtime::SetJniIdType(JniIdType t) { |
| CHECK(CanSetJniIdType()) << "Not allowed to change id type!"; |
| if (t == GetJniIdType()) { |
| return; |
| } |
| jni_ids_indirection_ = t; |
| JNIEnvExt::ResetFunctionTable(); |
| WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv()); |
| } |
| |
| bool Runtime::IsSystemServerProfiled() const { |
| return IsSystemServer() && jit_options_->GetSaveProfilingInfo(); |
| } |
| |
| bool Runtime::GetOatFilesExecutable() const { |
| return !IsAotCompiler() && !IsSystemServerProfiled(); |
| } |
| |
| void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes, |
| size_t map_size_bytes, |
| const uint8_t* map_begin, |
| const uint8_t* map_end, |
| const std::string& file_name) { |
| map_begin = AlignDown(map_begin, gPageSize); |
| map_size_bytes = RoundUp(map_size_bytes, gPageSize); |
| #ifdef ART_TARGET_ANDROID |
| // Short-circuit the madvise optimization for background processes. This |
| // avoids IO and memory contention with foreground processes, particularly |
| // those involving app startup. |
| // Note: We can only safely short-circuit the madvise on T+, as it requires |
| // the framework to always immediately notify ART of process states. |
| static const int kApiLevel = android_get_device_api_level(); |
| const bool accurate_process_state_at_startup = kApiLevel >= __ANDROID_API_T__; |
| if (accurate_process_state_at_startup) { |
| const Runtime* runtime = Runtime::Current(); |
| if (runtime != nullptr && !runtime->InJankPerceptibleProcessState()) { |
| return; |
| } |
| } |
| #endif // ART_TARGET_ANDROID |
| |
| // Ideal blockTransferSize for madvising files (128KiB) |
| static constexpr size_t kIdealIoTransferSizeBytes = 128*1024; |
| |
| size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes); |
| |
| if (target_size_bytes > 0) { |
| ScopedTrace madvising_trace("madvising " |
| + file_name |
| + " size=" |
| + std::to_string(target_size_bytes)); |
| |
| // Based on requested size (target_size_bytes) |
| const uint8_t* target_pos = map_begin + target_size_bytes; |
| |
| // Clamp endOfFile if its past map_end |
| if (target_pos > map_end) { |
| target_pos = map_end; |
| } |
| |
| // Madvise the whole file up to target_pos in chunks of |
| // kIdealIoTransferSizeBytes (to MADV_WILLNEED) |
| // Note: |
| // madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal |
| // block size for device) per call, hence the need for chunks. (128KB is a |
| // good default.) |
| for (const uint8_t* madvise_start = map_begin; |
| madvise_start < target_pos; |
| madvise_start += kIdealIoTransferSizeBytes) { |
| void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start)); |
| size_t madvise_length = std::min(kIdealIoTransferSizeBytes, |
| static_cast<size_t>(target_pos - madvise_start)); |
| int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED); |
| // In case of error we stop madvising rest of the file |
| if (status < 0) { |
| LOG(ERROR) << "Failed to madvise file " << file_name |
| << " for size:" << map_size_bytes |
| << ": " << strerror(errno); |
| break; |
| } |
| } |
| } |
| } |
| |
| // Return whether a boot image has a profile. This means we'll need to pre-JIT |
| // methods in that profile for performance. |
| bool Runtime::HasImageWithProfile() const { |
| for (gc::space::ImageSpace* space : GetHeap()->GetBootImageSpaces()) { |
| if (!space->GetProfileFiles().empty()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void Runtime::AppendToBootClassPath(const std::string& filename, const std::string& location) { |
| DCHECK(!DexFileLoader::IsMultiDexLocation(filename)); |
| boot_class_path_.push_back(filename); |
| if (!boot_class_path_locations_.empty()) { |
| DCHECK(!DexFileLoader::IsMultiDexLocation(location)); |
| boot_class_path_locations_.push_back(location); |
| } |
| } |
| |
| void Runtime::AppendToBootClassPath( |
| const std::string& filename, |
| const std::string& location, |
| const std::vector<std::unique_ptr<const art::DexFile>>& dex_files) { |
| AppendToBootClassPath(filename, location); |
| ScopedObjectAccess soa(Thread::Current()); |
| for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) { |
| // The first element must not be at a multi-dex location, while other elements must be. |
| DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), |
| dex_file.get() == dex_files.begin()->get()); |
| GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file.get()); |
| } |
| } |
| |
| void Runtime::AppendToBootClassPath(const std::string& filename, |
| const std::string& location, |
| const std::vector<const art::DexFile*>& dex_files) { |
| AppendToBootClassPath(filename, location); |
| ScopedObjectAccess soa(Thread::Current()); |
| for (const art::DexFile* dex_file : dex_files) { |
| // The first element must not be at a multi-dex location, while other elements must be. |
| DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), |
| dex_file == *dex_files.begin()); |
| GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file); |
| } |
| } |
| |
| void Runtime::AppendToBootClassPath( |
| const std::string& filename, |
| const std::string& location, |
| const std::vector<std::pair<const art::DexFile*, ObjPtr<mirror::DexCache>>>& |
| dex_files_and_cache) { |
| AppendToBootClassPath(filename, location); |
| ScopedObjectAccess soa(Thread::Current()); |
| for (const auto& [dex_file, dex_cache] : dex_files_and_cache) { |
| // The first element must not be at a multi-dex location, while other elements must be. |
| DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), |
| dex_file == dex_files_and_cache.begin()->first); |
| GetClassLinker()->AppendToBootClassPath(dex_file, dex_cache); |
| } |
| } |
| |
| void Runtime::AddExtraBootDexFiles(const std::string& filename, |
| const std::string& location, |
| std::vector<std::unique_ptr<const art::DexFile>>&& dex_files) { |
| AppendToBootClassPath(filename, location); |
| ScopedObjectAccess soa(Thread::Current()); |
| if (kIsDebugBuild) { |
| for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) { |
| // The first element must not be at a multi-dex location, while other elements must be. |
| DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()), |
| dex_file.get() == dex_files.begin()->get()); |
| } |
| } |
| GetClassLinker()->AddExtraBootDexFiles(Thread::Current(), std::move(dex_files)); |
| } |
| |
| } // namespace art |