blob: 4279e0e81866f787ee660a108579655c3d8294cd [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "runtime.h"
#include <optional>
#include <utility>
#ifdef __linux__
#include <sys/prctl.h>
#endif
#include <fcntl.h>
#include <signal.h>
#include <sys/mount.h>
#include <sys/syscall.h>
#if defined(__APPLE__)
#include <crt_externs.h> // for _NSGetEnviron
#endif
#include <cstdio>
#include <cstdlib>
#include <limits>
#include <string.h>
#include <thread>
#include <unordered_set>
#include <vector>
#include "android-base/strings.h"
#include "arch/arm/registers_arm.h"
#include "arch/arm64/registers_arm64.h"
#include "arch/context.h"
#include "arch/instruction_set_features.h"
#include "arch/x86/registers_x86.h"
#include "arch/x86_64/registers_x86_64.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "asm_support.h"
#include "base/aborting.h"
#include "base/arena_allocator.h"
#include "base/atomic.h"
#include "base/dumpable.h"
#include "base/enums.h"
#include "base/file_utils.h"
#include "base/flags.h"
#include "base/malloc_arena_pool.h"
#include "base/mem_map_arena_pool.h"
#include "base/memory_tool.h"
#include "base/mutex.h"
#include "base/os.h"
#include "base/quasi_atomic.h"
#include "base/sdk_version.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/unix_file/fd_file.h"
#include "base/utils.h"
#include "class_linker-inl.h"
#include "class_root-inl.h"
#include "compiler_callbacks.h"
#include "debugger.h"
#include "dex/art_dex_file_loader.h"
#include "dex/dex_file_loader.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "entrypoints/entrypoint_utils-inl.h"
#include "experimental_flags.h"
#include "fault_handler.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/heap.h"
#include "gc/scoped_gc_critical_section.h"
#include "gc/space/image_space.h"
#include "gc/space/space-inl.h"
#include "gc/system_weak.h"
#include "gc/task_processor.h"
#include "handle_scope-inl.h"
#include "hidden_api.h"
#include "indirect_reference_table.h"
#include "instrumentation.h"
#include "intern_table-inl.h"
#include "interpreter/interpreter.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jit/profile_saver.h"
#include "jni/java_vm_ext.h"
#include "jni/jni_id_manager.h"
#include "jni_id_type.h"
#include "linear_alloc.h"
#include "memory_representation.h"
#include "metrics/statsd.h"
#include "mirror/array.h"
#include "mirror/class-alloc-inl.h"
#include "mirror/class-inl.h"
#include "mirror/class_ext.h"
#include "mirror/class_loader-inl.h"
#include "mirror/emulated_stack_frame.h"
#include "mirror/field.h"
#include "mirror/method.h"
#include "mirror/method_handle_impl.h"
#include "mirror/method_handles_lookup.h"
#include "mirror/method_type.h"
#include "mirror/stack_trace_element.h"
#include "mirror/throwable.h"
#include "mirror/var_handle.h"
#include "monitor.h"
#include "native/dalvik_system_DexFile.h"
#include "native/dalvik_system_BaseDexClassLoader.h"
#include "native/dalvik_system_VMDebug.h"
#include "native/dalvik_system_VMRuntime.h"
#include "native/dalvik_system_VMStack.h"
#include "native/dalvik_system_ZygoteHooks.h"
#include "native/java_lang_Class.h"
#include "native/java_lang_Object.h"
#include "native/java_lang_StackStreamFactory.h"
#include "native/java_lang_String.h"
#include "native/java_lang_StringFactory.h"
#include "native/java_lang_System.h"
#include "native/java_lang_Thread.h"
#include "native/java_lang_Throwable.h"
#include "native/java_lang_VMClassLoader.h"
#include "native/java_lang_invoke_MethodHandle.h"
#include "native/java_lang_invoke_MethodHandleImpl.h"
#include "native/java_lang_ref_FinalizerReference.h"
#include "native/java_lang_ref_Reference.h"
#include "native/java_lang_reflect_Array.h"
#include "native/java_lang_reflect_Constructor.h"
#include "native/java_lang_reflect_Executable.h"
#include "native/java_lang_reflect_Field.h"
#include "native/java_lang_reflect_Method.h"
#include "native/java_lang_reflect_Parameter.h"
#include "native/java_lang_reflect_Proxy.h"
#include "native/java_util_concurrent_atomic_AtomicLong.h"
#include "native/libcore_io_Memory.h"
#include "native/libcore_util_CharsetUtils.h"
#include "native/org_apache_harmony_dalvik_ddmc_DdmServer.h"
#include "native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.h"
#include "native/sun_misc_Unsafe.h"
#include "native/jdk_internal_misc_Unsafe.h"
#include "native_bridge_art_interface.h"
#include "native_stack_dump.h"
#include "nativehelper/scoped_local_ref.h"
#include "nterp_helpers.h"
#include "oat/aot_class_linker.h"
#include "oat/elf_file.h"
#include "oat/image-inl.h"
#include "oat/oat.h"
#include "oat/oat_file_manager.h"
#include "oat/oat_quick_method_header.h"
#include "object_callbacks.h"
#include "odr_statslog/odr_statslog.h"
#include "parsed_options.h"
#include "quick/quick_method_frame_info.h"
#include "reflection.h"
#include "runtime_callbacks.h"
#include "runtime_common.h"
#include "runtime_image.h"
#include "runtime_intrinsics.h"
#include "runtime_options.h"
#include "scoped_thread_state_change-inl.h"
#include "sigchain.h"
#include "signal_catcher.h"
#include "signal_set.h"
#include "thread.h"
#include "thread_list.h"
#include "ti/agent.h"
#include "trace.h"
#include "transaction.h"
#include "vdex_file.h"
#include "verifier/class_verifier.h"
#include "well_known_classes-inl.h"
#ifdef ART_TARGET_ANDROID
#include <android/api-level.h>
#include <android/set_abort_message.h>
#include "com_android_apex.h"
namespace apex = com::android::apex;
#endif
// Static asserts to check the values of generated assembly-support macros.
#define ASM_DEFINE(NAME, EXPR) static_assert((NAME) == (EXPR), "Unexpected value of " #NAME);
#include "asm_defines.def"
#undef ASM_DEFINE
namespace art HIDDEN {
// If a signal isn't handled properly, enable a handler that attempts to dump the Java stack.
static constexpr bool kEnableJavaStackTraceHandler = false;
// Tuned by compiling GmsCore under perf and measuring time spent in DescriptorEquals for class
// linking.
static constexpr double kLowMemoryMinLoadFactor = 0.5;
static constexpr double kLowMemoryMaxLoadFactor = 0.8;
static constexpr double kNormalMinLoadFactor = 0.4;
static constexpr double kNormalMaxLoadFactor = 0.7;
#ifdef ART_PAGE_SIZE_AGNOSTIC
// Declare the constant as ALWAYS_HIDDEN to ensure it isn't visible from outside libart.so.
const size_t PageSize::value_ ALWAYS_HIDDEN = GetPageSizeSlow();
PageSize gPageSize ALWAYS_HIDDEN;
#endif
Runtime* Runtime::instance_ = nullptr;
struct TraceConfig {
Trace::TraceMode trace_mode;
TraceOutputMode trace_output_mode;
std::string trace_file;
size_t trace_file_size;
TraceClockSource clock_source;
};
namespace {
#ifdef __APPLE__
inline char** GetEnviron() {
// When Google Test is built as a framework on MacOS X, the environ variable
// is unavailable. Apple's documentation (man environ) recommends using
// _NSGetEnviron() instead.
return *_NSGetEnviron();
}
#else
// Some POSIX platforms expect you to declare environ. extern "C" makes
// it reside in the global namespace.
EXPORT extern "C" char** environ;
inline char** GetEnviron() { return environ; }
#endif
void CheckConstants() {
CHECK_EQ(mirror::Array::kFirstElementOffset, mirror::Array::FirstElementOffset());
}
} // namespace
Runtime::Runtime()
: resolution_method_(nullptr),
imt_conflict_method_(nullptr),
imt_unimplemented_method_(nullptr),
instruction_set_(InstructionSet::kNone),
compiler_callbacks_(nullptr),
is_zygote_(false),
is_primary_zygote_(false),
is_system_server_(false),
must_relocate_(false),
is_concurrent_gc_enabled_(true),
is_explicit_gc_disabled_(false),
is_eagerly_release_explicit_gc_disabled_(false),
image_dex2oat_enabled_(true),
default_stack_size_(0),
heap_(nullptr),
max_spins_before_thin_lock_inflation_(Monitor::kDefaultMaxSpinsBeforeThinLockInflation),
monitor_list_(nullptr),
monitor_pool_(nullptr),
thread_list_(nullptr),
intern_table_(nullptr),
class_linker_(nullptr),
signal_catcher_(nullptr),
java_vm_(nullptr),
thread_pool_ref_count_(0u),
fault_message_(nullptr),
threads_being_born_(0),
shutdown_cond_(new ConditionVariable("Runtime shutdown", *Locks::runtime_shutdown_lock_)),
shutting_down_(false),
shutting_down_started_(false),
started_(false),
finished_starting_(false),
vfprintf_(nullptr),
exit_(nullptr),
abort_(nullptr),
stats_enabled_(false),
is_running_on_memory_tool_(kRunningOnMemoryTool),
instrumentation_(),
main_thread_group_(nullptr),
system_thread_group_(nullptr),
system_class_loader_(nullptr),
dump_gc_performance_on_shutdown_(false),
preinitialization_transactions_(),
verify_(verifier::VerifyMode::kNone),
target_sdk_version_(static_cast<uint32_t>(SdkVersion::kUnset)),
compat_framework_(),
implicit_null_checks_(false),
implicit_so_checks_(false),
implicit_suspend_checks_(false),
no_sig_chain_(false),
force_native_bridge_(false),
is_native_bridge_loaded_(false),
is_native_debuggable_(false),
async_exceptions_thrown_(false),
non_standard_exits_enabled_(false),
runtime_debug_state_(RuntimeDebugState::kNonJavaDebuggable),
monitor_timeout_enable_(false),
monitor_timeout_ns_(0),
zygote_max_failed_boots_(0),
experimental_flags_(ExperimentalFlags::kNone),
oat_file_manager_(nullptr),
is_low_memory_mode_(false),
madvise_willneed_total_dex_size_(0),
madvise_willneed_odex_filesize_(0),
madvise_willneed_art_filesize_(0),
safe_mode_(false),
hidden_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
core_platform_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
test_api_policy_(hiddenapi::EnforcementPolicy::kDisabled),
dedupe_hidden_api_warnings_(true),
hidden_api_access_event_log_rate_(0),
dump_native_stack_on_sig_quit_(true),
// Initially assume we perceive jank in case the process state is never updated.
process_state_(kProcessStateJankPerceptible),
zygote_no_threads_(false),
verifier_logging_threshold_ms_(100),
verifier_missing_kthrow_fatal_(false),
perfetto_hprof_enabled_(false),
perfetto_javaheapprof_enabled_(false),
out_of_memory_error_hook_(nullptr) {
static_assert(Runtime::kCalleeSaveSize ==
static_cast<uint32_t>(CalleeSaveType::kLastCalleeSaveType), "Unexpected size");
CheckConstants();
std::fill(callee_save_methods_, callee_save_methods_ + arraysize(callee_save_methods_), 0u);
interpreter::CheckInterpreterAsmConstants();
callbacks_.reset(new RuntimeCallbacks());
for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
deoptimization_counts_[i] = 0u;
}
}
Runtime::~Runtime() {
ScopedTrace trace("Runtime shutdown");
if (is_native_bridge_loaded_) {
UnloadNativeBridge();
}
Thread* self = Thread::Current();
const bool attach_shutdown_thread = self == nullptr;
if (attach_shutdown_thread) {
// We can only create a peer if the runtime is actually started. This is only not true during
// some tests. If there is extreme memory pressure the allocation of the thread peer can fail.
// In this case we will just try again without allocating a peer so that shutdown can continue.
// Very few things are actually capable of distinguishing between the peer & peerless states so
// this should be fine.
// Running callbacks is prone to deadlocks in libjdwp tests that need an event handler lock to
// process any event. We also need to enter a GCCriticalSection when processing certain events
// (for ex: removing the last breakpoint). These two restrictions together make the tear down
// of the jdwp tests deadlock prone if we fail to finish Thread::Attach callback.
// (TODO:b/251163712) Remove this once we update deopt manager to not use GCCriticalSection.
bool thread_attached = AttachCurrentThread("Shutdown thread",
/* as_daemon= */ false,
GetSystemThreadGroup(),
/* create_peer= */ IsStarted(),
/* should_run_callbacks= */ false);
if (UNLIKELY(!thread_attached)) {
LOG(WARNING) << "Failed to attach shutdown thread. Trying again without a peer.";
CHECK(AttachCurrentThread("Shutdown thread (no java peer)",
/* as_daemon= */ false,
/* thread_group=*/ nullptr,
/* create_peer= */ false));
}
self = Thread::Current();
} else {
LOG(WARNING) << "Current thread not detached in Runtime shutdown";
}
if (dump_gc_performance_on_shutdown_) {
heap_->CalculatePreGcWeightedAllocatedBytes();
uint64_t process_cpu_end_time = ProcessCpuNanoTime();
ScopedLogSeverity sls(LogSeverity::INFO);
// This can't be called from the Heap destructor below because it
// could call RosAlloc::InspectAll() which needs the thread_list
// to be still alive.
heap_->DumpGcPerformanceInfo(LOG_STREAM(INFO));
uint64_t process_cpu_time = process_cpu_end_time - heap_->GetProcessCpuStartTime();
uint64_t gc_cpu_time = heap_->GetTotalGcCpuTime();
float ratio = static_cast<float>(gc_cpu_time) / process_cpu_time;
LOG_STREAM(INFO) << "GC CPU time " << PrettyDuration(gc_cpu_time)
<< " out of process CPU time " << PrettyDuration(process_cpu_time)
<< " (" << ratio << ")"
<< "\n";
double pre_gc_weighted_allocated_bytes =
heap_->GetPreGcWeightedAllocatedBytes() / process_cpu_time;
// Here we don't use process_cpu_time for normalization, because VM shutdown is not a real
// GC. Both numerator and denominator take into account until the end of the last GC,
// instead of the whole process life time like pre_gc_weighted_allocated_bytes.
double post_gc_weighted_allocated_bytes =
heap_->GetPostGcWeightedAllocatedBytes() /
(heap_->GetPostGCLastProcessCpuTime() - heap_->GetProcessCpuStartTime());
LOG_STREAM(INFO) << "Average bytes allocated at GC start, weighted by CPU time between GCs: "
<< static_cast<uint64_t>(pre_gc_weighted_allocated_bytes)
<< " (" << PrettySize(pre_gc_weighted_allocated_bytes) << ")";
LOG_STREAM(INFO) << "Average bytes allocated at GC end, weighted by CPU time between GCs: "
<< static_cast<uint64_t>(post_gc_weighted_allocated_bytes)
<< " (" << PrettySize(post_gc_weighted_allocated_bytes) << ")"
<< "\n";
}
// Wait for the workers of thread pools to be created since there can't be any
// threads attaching during shutdown.
WaitForThreadPoolWorkersToStart();
if (jit_ != nullptr) {
jit_->WaitForWorkersToBeCreated();
// Stop the profile saver thread before marking the runtime as shutting down.
// The saver will try to dump the profiles before being sopped and that
// requires holding the mutator lock.
jit_->StopProfileSaver();
// Delete thread pool before the thread list since we don't want to wait forever on the
// JIT compiler threads. Also this should be run before marking the runtime
// as shutting down as some tasks may require mutator access.
jit_->DeleteThreadPool();
}
if (oat_file_manager_ != nullptr) {
oat_file_manager_->WaitForWorkersToBeCreated();
}
// Disable GC before deleting the thread-pool and shutting down runtime as it
// restricts attaching new threads.
heap_->DisableGCForShutdown();
heap_->WaitForWorkersToBeCreated();
// Make sure to let the GC complete if it is running.
heap_->WaitForGcToComplete(gc::kGcCauseBackground, self);
// Shutdown any trace before SetShuttingDown. Trace uses thread pool workers to flush entries
// and we want to make sure they are fully created. Threads cannot attach while shutting down.
Trace::Shutdown();
{
ScopedTrace trace2("Wait for shutdown cond");
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
shutting_down_started_ = true;
while (threads_being_born_ > 0) {
shutdown_cond_->Wait(self);
}
SetShuttingDown();
}
// Shutdown and wait for the daemons.
CHECK(self != nullptr);
if (IsFinishedStarting()) {
ScopedTrace trace2("Waiting for Daemons");
self->ClearException();
ScopedObjectAccess soa(self);
WellKnownClasses::java_lang_Daemons_stop->InvokeStatic<'V'>(self);
}
// Report death. Clients may require a working thread, still, so do it before GC completes and
// all non-daemon threads are done.
{
ScopedObjectAccess soa(self);
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kDeath);
}
// Delete thread pools before detaching the current thread in case tasks
// getting deleted need to have access to Thread::Current.
heap_->DeleteThreadPool();
if (oat_file_manager_ != nullptr) {
oat_file_manager_->DeleteThreadPool();
}
DeleteThreadPool();
CHECK(thread_pool_ == nullptr);
if (attach_shutdown_thread) {
DetachCurrentThread(/* should_run_callbacks= */ false);
self = nullptr;
}
// Make sure our internal threads are dead before we start tearing down things they're using.
GetRuntimeCallbacks()->StopDebugger();
// Deletion ordering is tricky. Null out everything we've deleted.
delete signal_catcher_;
signal_catcher_ = nullptr;
// Shutdown metrics reporting.
metrics_reporter_.reset();
// Make sure all other non-daemon threads have terminated, and all daemon threads are suspended.
// Also wait for daemon threads to quiesce, so that in addition to being "suspended", they
// no longer access monitor and thread list data structures. We leak user daemon threads
// themselves, since we have no mechanism for shutting them down.
{
ScopedTrace trace2("Delete thread list");
thread_list_->ShutDown();
}
// TODO Maybe do some locking.
for (auto& agent : agents_) {
agent->Unload();
}
// TODO Maybe do some locking
for (auto& plugin : plugins_) {
plugin.Unload();
}
// Finally delete the thread list.
// Thread_list_ can be accessed by "suspended" threads, e.g. in InflateThinLocked.
// We assume that by this point, we've waited long enough for things to quiesce.
delete thread_list_;
thread_list_ = nullptr;
// Delete the JIT after thread list to ensure that there is no remaining threads which could be
// accessing the instrumentation when we delete it.
if (jit_ != nullptr) {
VLOG(jit) << "Deleting jit";
jit_.reset(nullptr);
jit_code_cache_.reset(nullptr);
}
// Shutdown the fault manager if it was initialized.
fault_manager.Shutdown();
ScopedTrace trace2("Delete state");
delete monitor_list_;
monitor_list_ = nullptr;
delete monitor_pool_;
monitor_pool_ = nullptr;
delete class_linker_;
class_linker_ = nullptr;
delete small_lrt_allocator_;
small_lrt_allocator_ = nullptr;
delete heap_;
heap_ = nullptr;
delete intern_table_;
intern_table_ = nullptr;
delete oat_file_manager_;
oat_file_manager_ = nullptr;
Thread::Shutdown();
QuasiAtomic::Shutdown();
// Destroy allocators before shutting down the MemMap because they may use it.
java_vm_.reset();
linear_alloc_.reset();
delete ReleaseStartupLinearAlloc();
linear_alloc_arena_pool_.reset();
arena_pool_.reset();
jit_arena_pool_.reset();
protected_fault_page_.Reset();
MemMap::Shutdown();
// TODO: acquire a static mutex on Runtime to avoid racing.
CHECK(instance_ == nullptr || instance_ == this);
instance_ = nullptr;
// Well-known classes must be deleted or it is impossible to successfully start another Runtime
// instance. We rely on a small initialization order issue in Runtime::Start() that requires
// elements of WellKnownClasses to be null, see b/65500943.
WellKnownClasses::Clear();
#ifdef ART_PAGE_SIZE_AGNOSTIC
// This is added to ensure no test is able to access gPageSize prior to initializing Runtime just
// because a Runtime instance was created (and subsequently destroyed) by another test.
gPageSize.DisallowAccess();
#endif
}
struct AbortState {
void Dump(std::ostream& os) const {
if (gAborting > 1) {
os << "Runtime aborting --- recursively, so no thread-specific detail!\n";
DumpRecursiveAbort(os);
return;
}
gAborting++;
os << "Runtime aborting...\n";
if (Runtime::Current() == nullptr) {
os << "(Runtime does not yet exist!)\n";
DumpNativeStack(os, GetTid(), " native: ", nullptr);
return;
}
Thread* self = Thread::Current();
// Dump all threads first and then the aborting thread. While this is counter the logical flow,
// it improves the chance of relevant data surviving in the Android logs.
DumpAllThreads(os, self);
if (self == nullptr) {
os << "(Aborting thread was not attached to runtime!)\n";
DumpNativeStack(os, GetTid(), " native: ", nullptr);
} else {
os << "Aborting thread:\n";
if (Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self)) {
DumpThread(os, self);
} else {
if (Locks::mutator_lock_->SharedTryLock(self)) {
DumpThread(os, self);
Locks::mutator_lock_->SharedUnlock(self);
}
}
}
}
// No thread-safety analysis as we do explicitly test for holding the mutator lock.
void DumpThread(std::ostream& os, Thread* self) const NO_THREAD_SAFETY_ANALYSIS {
DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self) || Locks::mutator_lock_->IsSharedHeld(self));
self->Dump(os);
if (self->IsExceptionPending()) {
mirror::Throwable* exception = self->GetException();
os << "Pending exception " << exception->Dump();
}
}
void DumpAllThreads(std::ostream& os, Thread* self) const {
Runtime* runtime = Runtime::Current();
if (runtime != nullptr) {
ThreadList* thread_list = runtime->GetThreadList();
if (thread_list != nullptr) {
// Dump requires ThreadListLock and ThreadSuspendCountLock to not be held (they will be
// grabbed).
// TODO(b/134167395): Change Dump to work with the locks held, and have a loop with timeout
// acquiring the locks.
bool tll_already_held = Locks::thread_list_lock_->IsExclusiveHeld(self);
bool tscl_already_held = Locks::thread_suspend_count_lock_->IsExclusiveHeld(self);
if (tll_already_held || tscl_already_held) {
os << "Skipping all-threads dump as locks are held:"
<< (tll_already_held ? "" : " thread_list_lock")
<< (tscl_already_held ? "" : " thread_suspend_count_lock")
<< "\n";
return;
}
bool ml_already_exlusively_held = Locks::mutator_lock_->IsExclusiveHeld(self);
if (ml_already_exlusively_held) {
os << "Skipping all-threads dump as mutator lock is exclusively held.";
return;
}
bool ml_already_held = Locks::mutator_lock_->IsSharedHeld(self);
if (!ml_already_held) {
os << "Dumping all threads without mutator lock held\n";
}
os << "All threads:\n";
thread_list->Dump(os);
}
}
}
// For recursive aborts.
void DumpRecursiveAbort(std::ostream& os) const NO_THREAD_SAFETY_ANALYSIS {
// The only thing we'll attempt is dumping the native stack of the current thread. We will only
// try this if we haven't exceeded an arbitrary amount of recursions, to recover and actually
// die.
// Note: as we're using a global counter for the recursive abort detection, there is a potential
// race here and it is not OK to just print when the counter is "2" (one from
// Runtime::Abort(), one from previous Dump() call). Use a number that seems large enough.
static constexpr size_t kOnlyPrintWhenRecursionLessThan = 100u;
if (gAborting < kOnlyPrintWhenRecursionLessThan) {
gAborting++;
DumpNativeStack(os, GetTid());
}
}
};
void Runtime::SetAbortMessage(const char* msg) {
auto old_value = gAborting.fetch_add(1); // set before taking any locks
// Only set the first abort message.
if (old_value == 0) {
#ifdef ART_TARGET_ANDROID
android_set_abort_message(msg);
#endif
// Set the runtime fault message in case our unexpected-signal code will run.
Runtime* current = Runtime::Current();
if (current != nullptr) {
current->SetFaultMessage(msg);
}
}
}
void Runtime::Abort(const char* msg) {
SetAbortMessage(msg);
// May be coming from an unattached thread.
if (Thread::Current() == nullptr) {
Runtime* current = Runtime::Current();
if (current != nullptr && current->IsStarted() && !current->IsShuttingDownUnsafe()) {
// We do not flag this to the unexpected-signal handler so that that may dump the stack.
abort();
UNREACHABLE();
}
}
{
// Ensure that we don't have multiple threads trying to abort at once,
// which would result in significantly worse diagnostics.
ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNativeForAbort);
Locks::abort_lock_->ExclusiveLock(Thread::Current());
}
// Get any pending output out of the way.
fflush(nullptr);
// Many people have difficulty distinguish aborts from crashes,
// so be explicit.
// Note: use cerr on the host to print log lines immediately, so we get at least some output
// in case of recursive aborts. We lose annotation with the source file and line number
// here, which is a minor issue. The same is significantly more complicated on device,
// which is why we ignore the issue there.
AbortState state;
if (kIsTargetBuild) {
LOG(FATAL_WITHOUT_ABORT) << Dumpable<AbortState>(state);
} else {
std::cerr << Dumpable<AbortState>(state);
}
// Sometimes we dump long messages, and the Android abort message only retains the first line.
// In those cases, just log the message again, to avoid logcat limits.
if (msg != nullptr && strchr(msg, '\n') != nullptr) {
LOG(FATAL_WITHOUT_ABORT) << msg;
}
FlagRuntimeAbort();
// Call the abort hook if we have one.
if (Runtime::Current() != nullptr && Runtime::Current()->abort_ != nullptr) {
LOG(FATAL_WITHOUT_ABORT) << "Calling abort hook...";
Runtime::Current()->abort_();
// notreached
LOG(FATAL_WITHOUT_ABORT) << "Unexpectedly returned from abort hook!";
}
abort();
// notreached
}
/**
* Update entrypoints of methods before the first fork. This
* helps sharing pages where ArtMethods are allocated between the zygote and
* forked apps.
*/
class UpdateMethodsPreFirstForkVisitor : public ClassVisitor {
public:
explicit UpdateMethodsPreFirstForkVisitor(ClassLinker* class_linker)
: class_linker_(class_linker),
can_use_nterp_(interpreter::CanRuntimeUseNterp()) {}
bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) {
bool is_initialized = klass->IsVisiblyInitialized();
for (ArtMethod& method : klass->GetDeclaredMethods(kRuntimePointerSize)) {
if (!is_initialized && method.NeedsClinitCheckBeforeCall() && can_use_nterp_) {
const void* existing = method.GetEntryPointFromQuickCompiledCode();
if (class_linker_->IsQuickResolutionStub(existing) && CanMethodUseNterp(&method)) {
method.SetEntryPointFromQuickCompiledCode(interpreter::GetNterpWithClinitEntryPoint());
}
}
}
return true;
}
private:
ClassLinker* const class_linker_;
const bool can_use_nterp_;
DISALLOW_COPY_AND_ASSIGN(UpdateMethodsPreFirstForkVisitor);
};
// Wait until the kernel thinks we are single-threaded again.
static void WaitUntilSingleThreaded() {
#if defined(__linux__)
// Read num_threads field from /proc/self/stat, avoiding higher-level IO libraries that may
// break atomicity of the read.
static constexpr size_t kNumTries = 1000;
static constexpr size_t kNumThreadsIndex = 20;
static constexpr ssize_t BUF_SIZE = 500;
static constexpr ssize_t BUF_PRINT_SIZE = 150; // Only log this much on failure to limit length.
static_assert(BUF_SIZE > BUF_PRINT_SIZE);
char buf[BUF_SIZE];
ssize_t bytes_read = -1;
for (size_t tries = 0; tries < kNumTries; ++tries) {
int stat_fd = open("/proc/self/stat", O_RDONLY | O_CLOEXEC);
CHECK(stat_fd >= 0) << strerror(errno);
bytes_read = TEMP_FAILURE_RETRY(read(stat_fd, buf, BUF_SIZE));
CHECK(bytes_read >= 0) << strerror(errno);
int ret = close(stat_fd);
DCHECK(ret == 0) << strerror(errno);
ssize_t pos = 0;
while (pos < bytes_read && buf[pos++] != ')') {}
++pos;
// We're now positioned at the beginning of the third field. Don't count blanks embedded in
// second (command) field.
size_t blanks_seen = 2;
while (pos < bytes_read && blanks_seen < kNumThreadsIndex - 1) {
if (buf[pos++] == ' ') {
++blanks_seen;
}
}
CHECK(pos < bytes_read - 2);
// pos is first character of num_threads field.
CHECK_EQ(buf[pos + 1], ' '); // We never have more than single-digit threads here.
if (buf[pos] == '1') {
return; // num_threads == 1; success.
}
usleep(1000);
}
buf[std::min(BUF_PRINT_SIZE, bytes_read)] = '\0'; // Truncate buf before printing.
LOG(FATAL) << "Failed to reach single-threaded state: bytes_read = " << bytes_read
<< " stat contents = \"" << buf << "...\"";
#else // Not Linux; shouldn't matter, but this has a high probability of working slowly.
usleep(20'000);
#endif
}
void Runtime::PreZygoteFork() {
if (GetJit() != nullptr) {
GetJit()->PreZygoteFork();
}
// All other threads have already been joined, but they may not have finished
// removing themselves from the thread list. Wait until the other threads have completely
// finished, and are no longer in the thread list.
// TODO: Since the threads Unregister() themselves before exiting, the first wait should be
// unnecessary. But since we're reading from a /proc entry that's concurrently changing, for
// now we play this as safe as possible.
ThreadList* tl = GetThreadList();
{
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::thread_list_lock_);
tl->WaitForUnregisterToComplete(self);
if (kIsDebugBuild) {
auto list = tl->GetList();
if (list.size() != 1) {
for (Thread* t : list) {
std::string name;
t->GetThreadName(name);
LOG(ERROR) << "Remaining pre-fork thread: " << name;
}
}
}
CHECK_EQ(tl->Size(), 1u);
// And then wait until the kernel thinks the threads are gone.
WaitUntilSingleThreaded();
}
if (!heap_->HasZygoteSpace()) {
Thread* self = Thread::Current();
// This is the first fork. Update ArtMethods in the boot classpath now to
// avoid having forked apps dirty the memory.
// Ensure we call FixupStaticTrampolines on all methods that are
// initialized.
class_linker_->MakeInitializedClassesVisiblyInitialized(self, /*wait=*/ true);
ScopedObjectAccess soa(self);
UpdateMethodsPreFirstForkVisitor visitor(class_linker_);
class_linker_->VisitClasses(&visitor);
}
heap_->PreZygoteFork();
PreZygoteForkNativeBridge();
}
void Runtime::PostZygoteFork() {
jit::Jit* jit = GetJit();
if (jit != nullptr) {
jit->PostZygoteFork();
// Ensure that the threads in the JIT pool have been created with the right
// priority.
if (kIsDebugBuild && jit->GetThreadPool() != nullptr) {
jit->GetThreadPool()->CheckPthreadPriority(
IsZygote() ? jit->GetZygoteThreadPoolPthreadPriority()
: jit->GetThreadPoolPthreadPriority());
}
}
// Reset all stats.
ResetStats(0xFFFFFFFF);
}
void Runtime::CallExitHook(jint status) {
if (exit_ != nullptr) {
ScopedThreadStateChange tsc(Thread::Current(), ThreadState::kNative);
exit_(status);
LOG(WARNING) << "Exit hook returned instead of exiting!";
}
}
void Runtime::SweepSystemWeaks(IsMarkedVisitor* visitor) {
// Userfaultfd compaction updates weak intern-table page-by-page via
// LinearAlloc.
if (!GetHeap()->IsPerformingUffdCompaction()) {
GetInternTable()->SweepInternTableWeaks(visitor);
}
GetMonitorList()->SweepMonitorList(visitor);
GetJavaVM()->SweepJniWeakGlobals(visitor);
GetHeap()->SweepAllocationRecords(visitor);
// Sweep JIT tables only if the GC is moving as in other cases the entries are
// not updated.
if (GetJit() != nullptr && GetHeap()->IsMovingGc()) {
// Visit JIT literal tables. Objects in these tables are classes and strings
// and only classes can be affected by class unloading. The strings always
// stay alive as they are strongly interned.
// TODO: Move this closer to CleanupClassLoaders, to avoid blocking weak accesses
// from mutators. See b/32167580.
GetJit()->GetCodeCache()->SweepRootTables(visitor);
}
// All other generic system-weak holders.
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
holder->Sweep(visitor);
}
}
bool Runtime::ParseOptions(const RuntimeOptions& raw_options,
bool ignore_unrecognized,
RuntimeArgumentMap* runtime_options) {
Locks::Init();
InitLogging(/* argv= */ nullptr, Abort); // Calls Locks::Init() as a side effect.
bool parsed = ParsedOptions::Parse(raw_options, ignore_unrecognized, runtime_options);
if (!parsed) {
LOG(ERROR) << "Failed to parse options";
return false;
}
return true;
}
// Callback to check whether it is safe to call Abort (e.g., to use a call to
// LOG(FATAL)). It is only safe to call Abort if the runtime has been created,
// properly initialized, and has not shut down.
static bool IsSafeToCallAbort() NO_THREAD_SAFETY_ANALYSIS {
Runtime* runtime = Runtime::Current();
return runtime != nullptr && runtime->IsStarted() && !runtime->IsShuttingDownLocked();
}
void Runtime::AddGeneratedCodeRange(const void* start, size_t size) {
if (HandlesSignalsInCompiledCode()) {
fault_manager.AddGeneratedCodeRange(start, size);
}
}
void Runtime::RemoveGeneratedCodeRange(const void* start, size_t size) {
if (HandlesSignalsInCompiledCode()) {
fault_manager.RemoveGeneratedCodeRange(start, size);
}
}
bool Runtime::Create(RuntimeArgumentMap&& runtime_options) {
// TODO: acquire a static mutex on Runtime to avoid racing.
if (Runtime::instance_ != nullptr) {
return false;
}
instance_ = new Runtime;
Locks::SetClientCallback(IsSafeToCallAbort);
if (!instance_->Init(std::move(runtime_options))) {
// TODO: Currently deleting the instance will abort the runtime on destruction. Now This will
// leak memory, instead. Fix the destructor. b/19100793.
// delete instance_;
instance_ = nullptr;
return false;
}
return true;
}
bool Runtime::Create(const RuntimeOptions& raw_options, bool ignore_unrecognized) {
RuntimeArgumentMap runtime_options;
return ParseOptions(raw_options, ignore_unrecognized, &runtime_options) &&
Create(std::move(runtime_options));
}
static jobject CreateSystemClassLoader(Runtime* runtime) {
if (runtime->IsAotCompiler() && !runtime->GetCompilerCallbacks()->IsBootImage()) {
return nullptr;
}
ScopedObjectAccess soa(Thread::Current());
ClassLinker* cl = runtime->GetClassLinker();
auto pointer_size = cl->GetImagePointerSize();
ObjPtr<mirror::Class> class_loader_class = GetClassRoot<mirror::ClassLoader>(cl);
DCHECK(class_loader_class->IsInitialized()); // Class roots have been initialized.
ArtMethod* getSystemClassLoader = class_loader_class->FindClassMethod(
"getSystemClassLoader", "()Ljava/lang/ClassLoader;", pointer_size);
CHECK(getSystemClassLoader != nullptr);
CHECK(getSystemClassLoader->IsStatic());
ObjPtr<mirror::Object> system_class_loader = getSystemClassLoader->InvokeStatic<'L'>(soa.Self());
CHECK(system_class_loader != nullptr)
<< (soa.Self()->IsExceptionPending() ? soa.Self()->GetException()->Dump() : "<null>");
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
jobject g_system_class_loader =
runtime->GetJavaVM()->AddGlobalRef(soa.Self(), system_class_loader);
soa.Self()->SetClassLoaderOverride(g_system_class_loader);
ObjPtr<mirror::Class> thread_class = WellKnownClasses::java_lang_Thread.Get();
ArtField* contextClassLoader =
thread_class->FindDeclaredInstanceField("contextClassLoader", "Ljava/lang/ClassLoader;");
CHECK(contextClassLoader != nullptr);
// We can't run in a transaction yet.
contextClassLoader->SetObject<false>(soa.Self()->GetPeer(), system_class_loader);
return g_system_class_loader;
}
std::string Runtime::GetCompilerExecutable() const {
if (!compiler_executable_.empty()) {
return compiler_executable_;
}
std::string compiler_executable = GetArtBinDir() + "/dex2oat";
if (kIsDebugBuild) {
compiler_executable += 'd';
}
if (kIsTargetBuild) {
compiler_executable += Is64BitInstructionSet(kRuntimeISA) ? "64" : "32";
}
return compiler_executable;
}
void Runtime::RunRootClinits(Thread* self) {
class_linker_->RunRootClinits(self);
GcRoot<mirror::Throwable>* exceptions[] = {
&pre_allocated_OutOfMemoryError_when_throwing_exception_,
// &pre_allocated_OutOfMemoryError_when_throwing_oome_, // Same class as above.
// &pre_allocated_OutOfMemoryError_when_handling_stack_overflow_, // Same class as above.
&pre_allocated_NoClassDefFoundError_,
};
for (GcRoot<mirror::Throwable>* exception : exceptions) {
StackHandleScope<1> hs(self);
Handle<mirror::Class> klass = hs.NewHandle<mirror::Class>(exception->Read()->GetClass());
class_linker_->EnsureInitialized(self, klass, true, true);
self->AssertNoPendingException();
}
}
bool Runtime::Start() {
VLOG(startup) << "Runtime::Start entering";
CHECK(!no_sig_chain_) << "A started runtime should have sig chain enabled";
// If a debug host build, disable ptrace restriction for debugging and test timeout thread dump.
// Only 64-bit as prctl() may fail in 32 bit userspace on a 64-bit kernel.
#if defined(__linux__) && !defined(ART_TARGET_ANDROID) && defined(__x86_64__)
if (kIsDebugBuild) {
if (prctl(PR_SET_PTRACER, PR_SET_PTRACER_ANY) != 0) {
PLOG(WARNING) << "Failed setting PR_SET_PTRACER to PR_SET_PTRACER_ANY";
}
}
#endif
// Restore main thread state to kNative as expected by native code.
Thread* self = Thread::Current();
started_ = true;
// Before running any clinit, set up the native methods provided by the runtime itself.
RegisterRuntimeNativeMethods(self->GetJniEnv());
class_linker_->RunEarlyRootClinits(self);
InitializeIntrinsics();
self->TransitionFromRunnableToSuspended(ThreadState::kNative);
// InitNativeMethods needs to be after started_ so that the classes
// it touches will have methods linked to the oat file if necessary.
{
ScopedTrace trace2("InitNativeMethods");
InitNativeMethods();
}
// InitializeCorePlatformApiPrivateFields() needs to be called after well known class
// initializtion in InitNativeMethods().
art::hiddenapi::InitializeCorePlatformApiPrivateFields();
// Initialize well known thread group values that may be accessed threads while attaching.
InitThreadGroups(self);
Thread::FinishStartup();
// Create the JIT either if we have to use JIT compilation or save profiling info. This is
// done after FinishStartup as the JIT pool needs Java thread peers, which require the main
// ThreadGroup to exist.
//
// TODO(calin): We use the JIT class as a proxy for JIT compilation and for
// recoding profiles. Maybe we should consider changing the name to be more clear it's
// not only about compiling. b/28295073.
if (jit_options_->UseJitCompilation() || jit_options_->GetSaveProfilingInfo()) {
CreateJit();
#ifdef ADDRESS_SANITIZER
// (b/238730394): In older implementations of sanitizer + glibc there is a race between
// pthread_create and dlopen that could cause a deadlock. pthread_create interceptor in ASAN
// uses dl_pthread_iterator with a callback that could request a dl_load_lock via call to
// __tls_get_addr [1]. dl_pthread_iterate would already hold dl_load_lock so this could cause a
// deadlock. __tls_get_addr needs a dl_load_lock only when there is a dlopen happening in
// parallel. As a workaround we wait for the pthread_create (i.e JIT thread pool creation) to
// finish before going to the next phase. Creating a system class loader could need a dlopen so
// we wait here till threads are initialized.
// [1] https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/sanitizer_common/sanitizer_linux_libcdep.cpp#L408
// See this for more context: https://reviews.llvm.org/D98926
// TODO(b/238730394): Revisit this workaround once we migrate to musl libc.
if (jit_ != nullptr) {
jit_->GetThreadPool()->WaitForWorkersToBeCreated();
}
#endif
}
// Send the start phase event. We have to wait till here as this is when the main thread peer
// has just been generated, important root clinits have been run and JNI is completely functional.
{
ScopedObjectAccess soa(self);
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kStart);
}
system_class_loader_ = CreateSystemClassLoader(this);
if (!is_zygote_) {
if (is_native_bridge_loaded_) {
PreInitializeNativeBridge(".");
}
NativeBridgeAction action = force_native_bridge_
? NativeBridgeAction::kInitialize
: NativeBridgeAction::kUnload;
InitNonZygoteOrPostFork(self->GetJniEnv(),
/* is_system_server= */ false,
/* is_child_zygote= */ false,
action,
GetInstructionSetString(kRuntimeISA));
}
{
ScopedObjectAccess soa(self);
StartDaemonThreads();
self->GetJniEnv()->AssertLocalsEmpty();
// Send the initialized phase event. Send it after starting the Daemon threads so that agents
// cannot delay the daemon threads from starting forever.
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInit);
self->GetJniEnv()->AssertLocalsEmpty();
}
VLOG(startup) << "Runtime::Start exiting";
finished_starting_ = true;
if (trace_config_.get() != nullptr && trace_config_->trace_file != "") {
ScopedThreadStateChange tsc(self, ThreadState::kWaitingForMethodTracingStart);
int flags = 0;
if (trace_config_->clock_source == TraceClockSource::kDual) {
flags = Trace::TraceFlag::kTraceClockSourceWallClock |
Trace::TraceFlag::kTraceClockSourceThreadCpu;
} else if (trace_config_->clock_source == TraceClockSource::kWall) {
flags = Trace::TraceFlag::kTraceClockSourceWallClock;
} else if (TraceClockSource::kThreadCpu == trace_config_->clock_source) {
flags = Trace::TraceFlag::kTraceClockSourceThreadCpu;
} else {
LOG(ERROR) << "Unexpected clock source";
}
Trace::Start(trace_config_->trace_file.c_str(),
static_cast<int>(trace_config_->trace_file_size),
flags,
trace_config_->trace_output_mode,
trace_config_->trace_mode,
0);
}
// In case we have a profile path passed as a command line argument,
// register the current class path for profiling now. Note that we cannot do
// this before we create the JIT and having it here is the most convenient way.
// This is used when testing profiles with dalvikvm command as there is no
// framework to register the dex files for profiling.
if (jit_.get() != nullptr && jit_options_->GetSaveProfilingInfo() &&
!jit_options_->GetProfileSaverOptions().GetProfilePath().empty()) {
std::vector<std::string> dex_filenames;
Split(class_path_string_, ':', &dex_filenames);
// We pass "" as the package name because at this point we don't know it. It could be the
// Zygote or it could be a dalvikvm cmd line execution. The package name will be re-set during
// post-fork or during RegisterAppInfo.
//
// Also, it's ok to pass "" to the ref profile filename. It indicates we don't have
// a reference profile.
RegisterAppInfo(
/*package_name=*/ "",
dex_filenames,
jit_options_->GetProfileSaverOptions().GetProfilePath(),
/*ref_profile_filename=*/ "",
kVMRuntimePrimaryApk);
}
return true;
}
void Runtime::EndThreadBirth() REQUIRES(Locks::runtime_shutdown_lock_) {
DCHECK_GT(threads_being_born_, 0U);
threads_being_born_--;
if (shutting_down_started_ && threads_being_born_ == 0) {
shutdown_cond_->Broadcast(Thread::Current());
}
}
void Runtime::InitNonZygoteOrPostFork(
JNIEnv* env,
bool is_system_server,
// This is true when we are initializing a child-zygote. It requires
// native bridge initialization to be able to run guest native code in
// doPreload().
bool is_child_zygote,
NativeBridgeAction action,
const char* isa,
bool profile_system_server) {
if (is_native_bridge_loaded_) {
switch (action) {
case NativeBridgeAction::kUnload:
UnloadNativeBridge();
is_native_bridge_loaded_ = false;
break;
case NativeBridgeAction::kInitialize:
InitializeNativeBridge(env, isa);
break;
}
}
if (is_child_zygote) {
// If creating a child-zygote we only initialize native bridge. The rest of
// runtime post-fork logic would spin up threads for Binder and JDWP.
// Instead, the Java side of the child process will call a static main in a
// class specified by the parent.
return;
}
DCHECK(!IsZygote());
if (is_system_server) {
// Register the system server code paths.
// TODO: Ideally this should be done by the VMRuntime#RegisterAppInfo. However, right now
// the method is only called when we set up the profile. It should be called all the time
// (simillar to the apps). Once that's done this manual registration can be removed.
const char* system_server_classpath = getenv("SYSTEMSERVERCLASSPATH");
if (system_server_classpath == nullptr || (strlen(system_server_classpath) == 0)) {
LOG(WARNING) << "System server class path not set";
} else {
std::vector<std::string> jars = android::base::Split(system_server_classpath, ":");
app_info_.RegisterAppInfo("android",
jars,
/*profile_output_filename=*/ "",
/*ref_profile_filename=*/ "",
AppInfo::CodeType::kPrimaryApk);
}
// Set the system server package name to "android".
// This is used to tell the difference between samples provided by system server
// and samples generated by other apps when processing boot image profiles.
SetProcessPackageName("android");
if (profile_system_server) {
jit_options_->SetWaitForJitNotificationsToSaveProfile(false);
VLOG(profiler) << "Enabling system server profiles";
}
}
// Create the thread pools.
// Avoid creating the runtime thread pool for system server since it will not be used and would
// waste memory.
if (!is_system_server) {
ScopedTrace timing("CreateThreadPool");
constexpr size_t kStackSize = 64 * KB;
constexpr size_t kMaxRuntimeWorkers = 4u;
const size_t num_workers =
std::min(static_cast<size_t>(std::thread::hardware_concurrency()), kMaxRuntimeWorkers);
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
CHECK(thread_pool_ == nullptr);
thread_pool_.reset(
ThreadPool::Create("Runtime", num_workers, /*create_peers=*/false, kStackSize));
thread_pool_->StartWorkers(Thread::Current());
}
// Reset the gc performance data and metrics at zygote fork so that the events from
// before fork aren't attributed to an app.
heap_->ResetGcPerformanceInfo();
GetMetrics()->Reset();
if (metrics_reporter_ != nullptr) {
// Now that we know if we are an app or system server, reload the metrics reporter config
// in case there are any difference.
metrics::ReportingConfig metrics_config =
metrics::ReportingConfig::FromFlags(is_system_server);
metrics_reporter_->ReloadConfig(metrics_config);
metrics::SessionData session_data{metrics::SessionData::CreateDefault()};
// Start the session id from 1 to avoid clashes with the default value.
// (better for debugability)
session_data.session_id = GetRandomNumber<int64_t>(1, std::numeric_limits<int64_t>::max());
// TODO: set session_data.compilation_reason and session_data.compiler_filter
metrics_reporter_->MaybeStartBackgroundThread(session_data);
// Also notify about any updates to the app info.
metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
}
StartSignalCatcher();
ScopedObjectAccess soa(Thread::Current());
if (IsPerfettoHprofEnabled() &&
(Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
Runtime::Current()->IsSystemServer())) {
std::string err;
ScopedTrace tr("perfetto_hprof init.");
ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
if (!EnsurePerfettoPlugin(&err)) {
LOG(WARNING) << "Failed to load perfetto_hprof: " << err;
}
}
if (IsPerfettoJavaHeapStackProfEnabled() &&
(Dbg::IsJdwpAllowed() || IsProfileable() || IsProfileableFromShell() || IsJavaDebuggable() ||
Runtime::Current()->IsSystemServer())) {
// Marker used for dev tracing similar to above markers.
ScopedTrace tr("perfetto_javaheapprof init.");
}
if (Runtime::Current()->IsSystemServer()) {
std::string err;
ScopedTrace tr("odrefresh and device stats logging");
ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
// Report stats if available. This should be moved into ART Services when they are ready.
if (!odrefresh::UploadStatsIfAvailable(&err)) {
LOG(WARNING) << "Failed to upload odrefresh metrics: " << err;
}
metrics::ReportDeviceMetrics();
}
if (LIKELY(automatically_set_jni_ids_indirection_) && CanSetJniIdType()) {
if (IsJavaDebuggable()) {
SetJniIdType(JniIdType::kIndices);
} else {
SetJniIdType(JniIdType::kPointer);
}
}
ATraceIntegerValue(
"profilebootclasspath",
static_cast<int>(jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()));
// Start the JDWP thread. If the command-line debugger flags specified "suspend=y",
// this will pause the runtime (in the internal debugger implementation), so we probably want
// this to come last.
GetRuntimeCallbacks()->StartDebugger();
}
void Runtime::StartSignalCatcher() {
if (!is_zygote_) {
signal_catcher_ = new SignalCatcher();
}
}
bool Runtime::IsShuttingDown(Thread* self) {
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
return IsShuttingDownLocked();
}
void Runtime::StartDaemonThreads() {
ScopedTrace trace(__FUNCTION__);
VLOG(startup) << "Runtime::StartDaemonThreads entering";
Thread* self = Thread::Current();
DCHECK_EQ(self->GetState(), ThreadState::kRunnable);
WellKnownClasses::java_lang_Daemons_start->InvokeStatic<'V'>(self);
if (UNLIKELY(self->IsExceptionPending())) {
LOG(FATAL) << "Error starting java.lang.Daemons: " << self->GetException()->Dump();
}
VLOG(startup) << "Runtime::StartDaemonThreads exiting";
}
static size_t OpenBootDexFiles(ArrayRef<const std::string> dex_filenames,
ArrayRef<const std::string> dex_locations,
ArrayRef<File> dex_files,
std::vector<std::unique_ptr<const DexFile>>* out_dex_files) {
DCHECK(out_dex_files != nullptr) << "OpenDexFiles: out-param is nullptr";
size_t failure_count = 0;
for (size_t i = 0; i < dex_filenames.size(); i++) {
const char* dex_filename = dex_filenames[i].c_str();
const char* dex_location = dex_locations[i].c_str();
File noFile;
File* file = i < dex_files.size() ? &dex_files[i] : &noFile;
static constexpr bool kVerifyChecksum = true;
std::string error_msg;
if (!OS::FileExists(dex_filename) && file->IsValid()) {
LOG(WARNING) << "Skipping non-existent dex file '" << dex_filename << "'";
continue;
}
bool verify = Runtime::Current()->IsVerificationEnabled();
ArtDexFileLoader dex_file_loader(dex_filename, file, dex_location);
if (!dex_file_loader.Open(verify, kVerifyChecksum, &error_msg, out_dex_files)) {
LOG(WARNING) << "Failed to open .dex from file '" << dex_filename << "' / fd " << file->Fd()
<< ": " << error_msg;
++failure_count;
}
if (file->IsValid()) {
bool close_ok = file->Close();
DCHECK(close_ok) << dex_filename;
}
}
return failure_count;
}
void Runtime::SetSentinel(ObjPtr<mirror::Object> sentinel) {
CHECK(sentinel_.Read() == nullptr);
CHECK(sentinel != nullptr);
CHECK(!heap_->IsMovableObject(sentinel));
sentinel_ = GcRoot<mirror::Object>(sentinel);
}
GcRoot<mirror::Object> Runtime::GetSentinel() {
return sentinel_;
}
static inline void CreatePreAllocatedException(Thread* self,
Runtime* runtime,
GcRoot<mirror::Throwable>* exception,
const char* exception_class_descriptor,
const char* msg)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK_EQ(self, Thread::Current());
ClassLinker* class_linker = runtime->GetClassLinker();
// Allocate an object without initializing the class to allow non-trivial Throwable.<clinit>().
ObjPtr<mirror::Class> klass = class_linker->FindSystemClass(self, exception_class_descriptor);
CHECK(klass != nullptr);
gc::AllocatorType allocator_type = runtime->GetHeap()->GetCurrentAllocator();
ObjPtr<mirror::Throwable> exception_object = ObjPtr<mirror::Throwable>::DownCast(
klass->Alloc(self, allocator_type));
CHECK(exception_object != nullptr);
*exception = GcRoot<mirror::Throwable>(exception_object);
// Initialize the "detailMessage" field.
ObjPtr<mirror::String> message = mirror::String::AllocFromModifiedUtf8(self, msg);
CHECK(message != nullptr);
ObjPtr<mirror::Class> throwable = GetClassRoot<mirror::Throwable>(class_linker);
ArtField* detailMessageField =
throwable->FindDeclaredInstanceField("detailMessage", "Ljava/lang/String;");
CHECK(detailMessageField != nullptr);
detailMessageField->SetObject</* kTransactionActive= */ false>(exception->Read(), message);
}
std::string Runtime::GetApexVersions(ArrayRef<const std::string> boot_class_path_locations) {
std::vector<std::string_view> bcp_apexes;
for (std::string_view jar : boot_class_path_locations) {
std::string_view apex = ApexNameFromLocation(jar);
if (!apex.empty()) {
bcp_apexes.push_back(apex);
}
}
static const char* kApexFileName = "/apex/apex-info-list.xml";
// Start with empty markers.
std::string empty_apex_versions(bcp_apexes.size(), '/');
// When running on host or chroot, we just use empty markers.
if (!kIsTargetBuild || !OS::FileExists(kApexFileName)) {
return empty_apex_versions;
}
#ifdef ART_TARGET_ANDROID
if (access(kApexFileName, R_OK) != 0) {
PLOG(WARNING) << "Failed to read " << kApexFileName;
return empty_apex_versions;
}
auto info_list = apex::readApexInfoList(kApexFileName);
if (!info_list.has_value()) {
LOG(WARNING) << "Failed to parse " << kApexFileName;
return empty_apex_versions;
}
std::string result;
std::map<std::string_view, const apex::ApexInfo*> apex_infos;
for (const apex::ApexInfo& info : info_list->getApexInfo()) {
if (info.getIsActive()) {
apex_infos.emplace(info.getModuleName(), &info);
}
}
for (const std::string_view& str : bcp_apexes) {
auto info = apex_infos.find(str);
if (info == apex_infos.end() || info->second->getIsFactory()) {
result += '/';
} else {
// In case lastUpdateMillis field is populated in apex-info-list.xml, we
// prefer to use it as version scheme. If the field is missing we
// fallback to the version code of the APEX.
uint64_t version = info->second->hasLastUpdateMillis()
? info->second->getLastUpdateMillis()
: info->second->getVersionCode();
android::base::StringAppendF(&result, "/%" PRIu64, version);
}
}
return result;
#else
return empty_apex_versions; // Not an Android build.
#endif
}
void Runtime::InitializeApexVersions() {
apex_versions_ =
GetApexVersions(ArrayRef<const std::string>(Runtime::Current()->GetBootClassPathLocations()));
}
void Runtime::ReloadAllFlags(const std::string& caller) {
FlagBase::ReloadAllFlags(caller);
}
static std::vector<File> FileFdsToFileObjects(std::vector<int>&& fds) {
std::vector<File> files;
files.reserve(fds.size());
for (int fd : fds) {
files.push_back(File(fd, /*check_usage=*/false));
}
return files;
}
bool Runtime::Init(RuntimeArgumentMap&& runtime_options_in) {
// (b/30160149): protect subprocesses from modifications to LD_LIBRARY_PATH, etc.
// Take a snapshot of the environment at the time the runtime was created, for use by Exec, etc.
env_snapshot_.TakeSnapshot();
#ifdef ART_PAGE_SIZE_AGNOSTIC
gPageSize.AllowAccess();
#endif
using Opt = RuntimeArgumentMap;
Opt runtime_options(std::move(runtime_options_in));
ScopedTrace trace(__FUNCTION__);
CHECK_EQ(static_cast<size_t>(sysconf(_SC_PAGE_SIZE)), gPageSize);
// Reload all the flags value (from system properties and device configs).
ReloadAllFlags(__FUNCTION__);
deny_art_apex_data_files_ = runtime_options.Exists(Opt::DenyArtApexDataFiles);
if (deny_art_apex_data_files_) {
// We will run slower without those files if the system has taken an ART APEX update.
LOG(WARNING) << "ART APEX data files are untrusted.";
}
// Early override for logging output.
if (runtime_options.Exists(Opt::UseStderrLogger)) {
android::base::SetLogger(android::base::StderrLogger);
}
MemMap::Init();
verifier_missing_kthrow_fatal_ = runtime_options.GetOrDefault(Opt::VerifierMissingKThrowFatal);
force_java_zygote_fork_loop_ = runtime_options.GetOrDefault(Opt::ForceJavaZygoteForkLoop);
perfetto_hprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoHprof);
perfetto_javaheapprof_enabled_ = runtime_options.GetOrDefault(Opt::PerfettoJavaHeapStackProf);
// Try to reserve a dedicated fault page. This is allocated for clobbered registers and sentinels.
// If we cannot reserve it, log a warning.
// Note: We allocate this first to have a good chance of grabbing the page. The address (0xebad..)
// is out-of-the-way enough that it should not collide with boot image mapping.
// Note: Don't request an error message. That will lead to a maps dump in the case of failure,
// leading to logspam.
{
const uintptr_t sentinel_addr =
RoundDown(static_cast<uintptr_t>(Context::kBadGprBase), gPageSize);
protected_fault_page_ = MemMap::MapAnonymous("Sentinel fault page",
reinterpret_cast<uint8_t*>(sentinel_addr),
gPageSize,
PROT_NONE,
/*low_4gb=*/ true,
/*reuse=*/ false,
/*reservation=*/ nullptr,
/*error_msg=*/ nullptr);
if (!protected_fault_page_.IsValid()) {
LOG(WARNING) << "Could not reserve sentinel fault page";
} else if (reinterpret_cast<uintptr_t>(protected_fault_page_.Begin()) != sentinel_addr) {
LOG(WARNING) << "Could not reserve sentinel fault page at the right address.";
protected_fault_page_.Reset();
}
}
VLOG(startup) << "Runtime::Init -verbose:startup enabled";
QuasiAtomic::Startup();
oat_file_manager_ = new OatFileManager();
jni_id_manager_.reset(new jni::JniIdManager());
Thread::SetSensitiveThreadHook(runtime_options.GetOrDefault(Opt::HookIsSensitiveThread));
Monitor::Init(runtime_options.GetOrDefault(Opt::LockProfThreshold),
runtime_options.GetOrDefault(Opt::StackDumpLockProfThreshold));
image_locations_ = runtime_options.ReleaseOrDefault(Opt::Image);
SetInstructionSet(runtime_options.GetOrDefault(Opt::ImageInstructionSet));
boot_class_path_ = runtime_options.ReleaseOrDefault(Opt::BootClassPath);
boot_class_path_locations_ = runtime_options.ReleaseOrDefault(Opt::BootClassPathLocations);
DCHECK(boot_class_path_locations_.empty() ||
boot_class_path_locations_.size() == boot_class_path_.size());
if (boot_class_path_.empty()) {
LOG(ERROR) << "Boot classpath is empty";
return false;
}
boot_class_path_files_ =
FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathFds));
if (!boot_class_path_files_.empty() && boot_class_path_files_.size() != boot_class_path_.size()) {
LOG(ERROR) << "Number of FDs specified in -Xbootclasspathfds must match the number of JARs in "
<< "-Xbootclasspath.";
return false;
}
boot_class_path_image_files_ =
FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathImageFds));
boot_class_path_vdex_files_ =
FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathVdexFds));
boot_class_path_oat_files_ =
FileFdsToFileObjects(runtime_options.ReleaseOrDefault(Opt::BootClassPathOatFds));
CHECK(boot_class_path_image_files_.empty() ||
boot_class_path_image_files_.size() == boot_class_path_.size());
CHECK(boot_class_path_vdex_files_.empty() ||
boot_class_path_vdex_files_.size() == boot_class_path_.size());
CHECK(boot_class_path_oat_files_.empty() ||
boot_class_path_oat_files_.size() == boot_class_path_.size());
class_path_string_ = runtime_options.ReleaseOrDefault(Opt::ClassPath);
properties_ = runtime_options.ReleaseOrDefault(Opt::PropertiesList);
compiler_callbacks_ = runtime_options.GetOrDefault(Opt::CompilerCallbacksPtr);
must_relocate_ = runtime_options.GetOrDefault(Opt::Relocate);
is_zygote_ = runtime_options.Exists(Opt::Zygote);
is_primary_zygote_ = runtime_options.Exists(Opt::PrimaryZygote);
is_explicit_gc_disabled_ = runtime_options.Exists(Opt::DisableExplicitGC);
is_eagerly_release_explicit_gc_disabled_ =
runtime_options.Exists(Opt::DisableEagerlyReleaseExplicitGC);
image_dex2oat_enabled_ = runtime_options.GetOrDefault(Opt::ImageDex2Oat);
dump_native_stack_on_sig_quit_ = runtime_options.GetOrDefault(Opt::DumpNativeStackOnSigQuit);
allow_in_memory_compilation_ = runtime_options.Exists(Opt::AllowInMemoryCompilation);
if (is_zygote_ || runtime_options.Exists(Opt::OnlyUseTrustedOatFiles)) {
oat_file_manager_->SetOnlyUseTrustedOatFiles();
}
vfprintf_ = runtime_options.GetOrDefault(Opt::HookVfprintf);
exit_ = runtime_options.GetOrDefault(Opt::HookExit);
abort_ = runtime_options.GetOrDefault(Opt::HookAbort);
default_stack_size_ = runtime_options.GetOrDefault(Opt::StackSize);
compiler_executable_ = runtime_options.ReleaseOrDefault(Opt::Compiler);
compiler_options_ = runtime_options.ReleaseOrDefault(Opt::CompilerOptions);
for (const std::string& option : Runtime::Current()->GetCompilerOptions()) {
if (option == "--debuggable") {
SetRuntimeDebugState(RuntimeDebugState::kJavaDebuggableAtInit);
break;
}
}
image_compiler_options_ = runtime_options.ReleaseOrDefault(Opt::ImageCompilerOptions);
finalizer_timeout_ms_ = runtime_options.GetOrDefault(Opt::FinalizerTimeoutMs);
max_spins_before_thin_lock_inflation_ =
runtime_options.GetOrDefault(Opt::MaxSpinsBeforeThinLockInflation);
monitor_list_ = new MonitorList;
monitor_pool_ = MonitorPool::Create();
thread_list_ = new ThreadList(runtime_options.GetOrDefault(Opt::ThreadSuspendTimeout));
intern_table_ = new InternTable;
monitor_timeout_enable_ = runtime_options.GetOrDefault(Opt::MonitorTimeoutEnable);
int monitor_timeout_ms = runtime_options.GetOrDefault(Opt::MonitorTimeout);
if (monitor_timeout_ms < Monitor::kMonitorTimeoutMinMs) {
LOG(WARNING) << "Monitor timeout too short: Increasing";
monitor_timeout_ms = Monitor::kMonitorTimeoutMinMs;
}
if (monitor_timeout_ms >= Monitor::kMonitorTimeoutMaxMs) {
LOG(WARNING) << "Monitor timeout too long: Decreasing";
monitor_timeout_ms = Monitor::kMonitorTimeoutMaxMs - 1;
}
monitor_timeout_ns_ = MsToNs(monitor_timeout_ms);
verify_ = runtime_options.GetOrDefault(Opt::Verify);
target_sdk_version_ = runtime_options.GetOrDefault(Opt::TargetSdkVersion);
// Set hidden API enforcement policy. The checks are disabled by default and
// we only enable them if:
// (a) runtime was started with a command line flag that enables the checks, or
// (b) Zygote forked a new process that is not exempt (see ZygoteHooks).
hidden_api_policy_ = runtime_options.GetOrDefault(Opt::HiddenApiPolicy);
DCHECK_IMPLIES(is_zygote_, hidden_api_policy_ == hiddenapi::EnforcementPolicy::kDisabled);
// Set core platform API enforcement policy. The checks are disabled by default and
// can be enabled with a command line flag. AndroidRuntime will pass the flag if
// a system property is set.
core_platform_api_policy_ = runtime_options.GetOrDefault(Opt::CorePlatformApiPolicy);
if (core_platform_api_policy_ != hiddenapi::EnforcementPolicy::kDisabled) {
LOG(INFO) << "Core platform API reporting enabled, enforcing="
<< (core_platform_api_policy_ == hiddenapi::EnforcementPolicy::kEnabled ? "true" : "false");
}
// Dex2Oat's Runtime does not need the signal chain or the fault handler
// and it passes the `NoSigChain` option to `Runtime` to indicate this.
no_sig_chain_ = runtime_options.Exists(Opt::NoSigChain);
force_native_bridge_ = runtime_options.Exists(Opt::ForceNativeBridge);
Split(runtime_options.GetOrDefault(Opt::CpuAbiList), ',', &cpu_abilist_);
fingerprint_ = runtime_options.ReleaseOrDefault(Opt::Fingerprint);
if (runtime_options.GetOrDefault(Opt::Interpret)) {
GetInstrumentation()->ForceInterpretOnly();
}
zygote_max_failed_boots_ = runtime_options.GetOrDefault(Opt::ZygoteMaxFailedBoots);
experimental_flags_ = runtime_options.GetOrDefault(Opt::Experimental);
is_low_memory_mode_ = runtime_options.Exists(Opt::LowMemoryMode);
madvise_willneed_total_dex_size_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedVdexFileSize);
madvise_willneed_odex_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedOdexFileSize);
madvise_willneed_art_filesize_ = runtime_options.GetOrDefault(Opt::MadviseWillNeedArtFileSize);
jni_ids_indirection_ = runtime_options.GetOrDefault(Opt::OpaqueJniIds);
automatically_set_jni_ids_indirection_ =
runtime_options.GetOrDefault(Opt::AutoPromoteOpaqueJniIds);
plugins_ = runtime_options.ReleaseOrDefault(Opt::Plugins);
agent_specs_ = runtime_options.ReleaseOrDefault(Opt::AgentPath);
// TODO Add back in -agentlib
// for (auto lib : runtime_options.ReleaseOrDefault(Opt::AgentLib)) {
// agents_.push_back(lib);
// }
float foreground_heap_growth_multiplier;
if (is_low_memory_mode_ && !runtime_options.Exists(Opt::ForegroundHeapGrowthMultiplier)) {
// If low memory mode, use 1.0 as the multiplier by default.
foreground_heap_growth_multiplier = 1.0f;
} else {
// Extra added to the default heap growth multiplier for concurrent GC
// compaction algorithms. This is done for historical reasons.
// TODO: remove when we revisit heap configurations.
foreground_heap_growth_multiplier =
runtime_options.GetOrDefault(Opt::ForegroundHeapGrowthMultiplier) + 1.0f;
}
XGcOption xgc_option = runtime_options.GetOrDefault(Opt::GcOption);
// Generational CC collection is currently only compatible with Baker read barriers.
bool use_generational_cc = kUseBakerReadBarrier && xgc_option.generational_cc;
// Cache the apex versions.
InitializeApexVersions();
BackgroundGcOption background_gc =
gUseReadBarrier ? BackgroundGcOption(gc::kCollectorTypeCCBackground) :
(gUseUserfaultfd ? BackgroundGcOption(gc::kCollectorTypeCMCBackground) :
runtime_options.GetOrDefault(Opt::BackgroundGc));
heap_ = new gc::Heap(runtime_options.GetOrDefault(Opt::MemoryInitialSize),
runtime_options.GetOrDefault(Opt::HeapGrowthLimit),
runtime_options.GetOrDefault(Opt::HeapMinFree),
runtime_options.GetOrDefault(Opt::HeapMaxFree),
runtime_options.GetOrDefault(Opt::HeapTargetUtilization),
foreground_heap_growth_multiplier,
runtime_options.GetOrDefault(Opt::StopForNativeAllocs),
runtime_options.GetOrDefault(Opt::MemoryMaximumSize),
runtime_options.GetOrDefault(Opt::NonMovingSpaceCapacity),
GetBootClassPath(),
GetBootClassPathLocations(),
GetBootClassPathFiles(),
GetBootClassPathImageFiles(),
GetBootClassPathVdexFiles(),
GetBootClassPathOatFiles(),
image_locations_,
instruction_set_,
// Override the collector type to CC if the read barrier config.
gUseReadBarrier ? gc::kCollectorTypeCC : xgc_option.collector_type_,
background_gc,
runtime_options.GetOrDefault(Opt::LargeObjectSpace),
runtime_options.GetOrDefault(Opt::LargeObjectThreshold),
runtime_options.GetOrDefault(Opt::ParallelGCThreads),
runtime_options.GetOrDefault(Opt::ConcGCThreads),
runtime_options.Exists(Opt::LowMemoryMode),
runtime_options.GetOrDefault(Opt::LongPauseLogThreshold),
runtime_options.GetOrDefault(Opt::LongGCLogThreshold),
runtime_options.Exists(Opt::IgnoreMaxFootprint),
runtime_options.GetOrDefault(Opt::AlwaysLogExplicitGcs),
runtime_options.GetOrDefault(Opt::UseTLAB),
xgc_option.verify_pre_gc_heap_,
xgc_option.verify_pre_sweeping_heap_,
xgc_option.verify_post_gc_heap_,
xgc_option.verify_pre_gc_rosalloc_,
xgc_option.verify_pre_sweeping_rosalloc_,
xgc_option.verify_post_gc_rosalloc_,
xgc_option.gcstress_,
xgc_option.measure_,
runtime_options.GetOrDefault(Opt::EnableHSpaceCompactForOOM),
use_generational_cc,
runtime_options.GetOrDefault(Opt::HSpaceCompactForOOMMinIntervalsMs),
runtime_options.Exists(Opt::DumpRegionInfoBeforeGC),
runtime_options.Exists(Opt::DumpRegionInfoAfterGC));
dump_gc_performance_on_shutdown_ = runtime_options.Exists(Opt::DumpGCPerformanceOnShutdown);
bool has_explicit_jdwp_options = runtime_options.Get(Opt::JdwpOptions) != nullptr;
jdwp_options_ = runtime_options.GetOrDefault(Opt::JdwpOptions);
jdwp_provider_ = CanonicalizeJdwpProvider(runtime_options.GetOrDefault(Opt::JdwpProvider),
IsJavaDebuggable());
switch (jdwp_provider_) {
case JdwpProvider::kNone: {
VLOG(jdwp) << "Disabling all JDWP support.";
if (!jdwp_options_.empty()) {
bool has_transport = jdwp_options_.find("transport") != std::string::npos;
std::string adb_connection_args =
std::string(" -XjdwpProvider:adbconnection -XjdwpOptions:") + jdwp_options_;
if (has_explicit_jdwp_options) {
LOG(WARNING) << "Jdwp options given when jdwp is disabled! You probably want to enable "
<< "jdwp with one of:" << std::endl
<< " -Xplugin:libopenjdkjvmti" << (kIsDebugBuild ? "d" : "") << ".so "
<< "-agentpath:libjdwp.so=" << jdwp_options_ << std::endl
<< (has_transport ? "" : adb_connection_args);
}
}
break;
}
case JdwpProvider::kAdbConnection: {
constexpr const char* plugin_name = kIsDebugBuild ? "libadbconnectiond.so"
: "libadbconnection.so";
plugins_.push_back(Plugin::Create(plugin_name));
break;
}
case JdwpProvider::kUnset: {
LOG(FATAL) << "Illegal jdwp provider " << jdwp_provider_ << " was not filtered out!";
}
}
callbacks_->AddThreadLifecycleCallback(Dbg::GetThreadLifecycleCallback());
jit_options_.reset(jit::JitOptions::CreateFromRuntimeArguments(runtime_options));
if (IsAotCompiler()) {
// If we are already the compiler at this point, we must be dex2oat. Don't create the jit in
// this case.
// If runtime_options doesn't have UseJIT set to true then CreateFromRuntimeArguments returns
// null and we don't create the jit.
jit_options_->SetUseJitCompilation(false);
jit_options_->SetSaveProfilingInfo(false);
}
// Use MemMap arena pool for jit, malloc otherwise. Malloc arenas are faster to allocate but
// can't be trimmed as easily.
const bool use_malloc = IsAotCompiler();
if (use_malloc) {
arena_pool_.reset(new MallocArenaPool());
jit_arena_pool_.reset(new MallocArenaPool());
} else {
arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false));
jit_arena_pool_.reset(new MemMapArenaPool(/* low_4gb= */ false, "CompilerMetadata"));
}
// For 64 bit compilers, it needs to be in low 4GB in the case where we are cross compiling for a
// 32 bit target. In this case, we have 32 bit pointers in the dex cache arrays which can't hold
// when we have 64 bit ArtMethod pointers.
const bool low_4gb = IsAotCompiler() && Is64BitInstructionSet(kRuntimeISA);
if (gUseUserfaultfd) {
linear_alloc_arena_pool_.reset(new GcVisitedArenaPool(low_4gb, IsZygote()));
} else if (low_4gb) {
linear_alloc_arena_pool_.reset(new MemMapArenaPool(low_4gb));
}
linear_alloc_.reset(CreateLinearAlloc());
startup_linear_alloc_.store(CreateLinearAlloc(), std::memory_order_relaxed);
small_lrt_allocator_ = new jni::SmallLrtAllocator();
BlockSignals();
InitPlatformSignalHandlers();
// Change the implicit checks flags based on runtime architecture.
switch (kRuntimeISA) {
case InstructionSet::kArm64:
implicit_suspend_checks_ = true;
FALLTHROUGH_INTENDED;
case InstructionSet::kArm:
case InstructionSet::kThumb2:
case InstructionSet::kRiscv64:
case InstructionSet::kX86:
case InstructionSet::kX86_64:
implicit_null_checks_ = true;
// Historical note: Installing stack protection was not playing well with Valgrind.
implicit_so_checks_ = true;
break;
default:
// Keep the defaults.
break;
}
fault_manager.Init(!no_sig_chain_);
if (!no_sig_chain_) {
if (HandlesSignalsInCompiledCode()) {
// These need to be in a specific order. The null point check handler must be
// after the suspend check and stack overflow check handlers.
//
// Note: the instances attach themselves to the fault manager and are handled by it. The
// manager will delete the instance on Shutdown().
if (implicit_suspend_checks_) {
new SuspensionHandler(&fault_manager);
}
if (implicit_so_checks_) {
new StackOverflowHandler(&fault_manager);
}
if (implicit_null_checks_) {
new NullPointerHandler(&fault_manager);
}
if (kEnableJavaStackTraceHandler) {
new JavaStackTraceHandler(&fault_manager);
}
if (interpreter::CanRuntimeUseNterp()) {
// Nterp code can use signal handling just like the compiled managed code.
OatQuickMethodHeader* nterp_header = OatQuickMethodHeader::NterpMethodHeader;
fault_manager.AddGeneratedCodeRange(nterp_header->GetCode(), nterp_header->GetCodeSize());
}
}
}
verifier_logging_threshold_ms_ = runtime_options.GetOrDefault(Opt::VerifierLoggingThreshold);
std::string error_msg;
java_vm_ = JavaVMExt::Create(this, runtime_options, &error_msg);
if (java_vm_.get() == nullptr) {
LOG(ERROR) << "Could not initialize JavaVMExt: " << error_msg;
return false;
}
// Add the JniEnv handler.
// TODO Refactor this stuff.
java_vm_->AddEnvironmentHook(JNIEnvExt::GetEnvHandler);
Thread::Startup();
// ClassLinker needs an attached thread, but we can't fully attach a thread without creating
// objects. We can't supply a thread group yet; it will be fixed later. Since we are the main
// thread, we do not get a java peer.
Thread* self = Thread::Attach("main", false, nullptr, false, /* should_run_callbacks= */ true);
CHECK_EQ(self->GetThreadId(), ThreadList::kMainThreadId);
CHECK(self != nullptr);
self->SetIsRuntimeThread(IsAotCompiler());
// Set us to runnable so tools using a runtime can allocate and GC by default
self->TransitionFromSuspendedToRunnable();
// Now we're attached, we can take the heap locks and validate the heap.
GetHeap()->EnableObjectValidation();
CHECK_GE(GetHeap()->GetContinuousSpaces().size(), 1U);
if (UNLIKELY(IsAotCompiler())) {
class_linker_ = new AotClassLinker(intern_table_);
} else {
class_linker_ = new ClassLinker(
intern_table_,
runtime_options.GetOrDefault(Opt::FastClassNotFoundException));
}
if (GetHeap()->HasBootImageSpace()) {
bool result = class_linker_->InitFromBootImage(&error_msg);
if (!result) {
LOG(ERROR) << "Could not initialize from image: " << error_msg;
return false;
}
if (kIsDebugBuild) {
for (auto image_space : GetHeap()->GetBootImageSpaces()) {
image_space->VerifyImageAllocations();
}
}
{
ScopedTrace trace2("AddImageStringsToTable");
for (gc::space::ImageSpace* image_space : heap_->GetBootImageSpaces()) {
GetInternTable()->AddImageStringsToTable(image_space, VoidFunctor());
}
}
const size_t total_components = gc::space::ImageSpace::GetNumberOfComponents(
ArrayRef<gc::space::ImageSpace* const>(heap_->GetBootImageSpaces()));
if (total_components != GetBootClassPath().size()) {
// The boot image did not contain all boot class path components. Load the rest.
CHECK_LT(total_components, GetBootClassPath().size());
size_t start = total_components;
DCHECK_LT(start, GetBootClassPath().size());
std::vector<std::unique_ptr<const DexFile>> extra_boot_class_path;
if (runtime_options.Exists(Opt::BootClassPathDexList)) {
extra_boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
} else {
ArrayRef<File> bcp_files = start < GetBootClassPathFiles().size() ?
ArrayRef<File>(GetBootClassPathFiles()).SubArray(start) :
ArrayRef<File>();
OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()).SubArray(start),
ArrayRef<const std::string>(GetBootClassPathLocations()).SubArray(start),
bcp_files,
&extra_boot_class_path);
}
class_linker_->AddExtraBootDexFiles(self, std::move(extra_boot_class_path));
}
if (IsJavaDebuggable() || jit_options_->GetProfileSaverOptions().GetProfileBootClassPath()) {
// Deoptimize the boot image if debuggable as the code may have been compiled non-debuggable.
// Also deoptimize if we are profiling the boot class path.
ScopedThreadSuspension sts(self, ThreadState::kNative);
ScopedSuspendAll ssa(__FUNCTION__);
DeoptimizeBootImage();
}
} else {
std::vector<std::unique_ptr<const DexFile>> boot_class_path;
if (runtime_options.Exists(Opt::BootClassPathDexList)) {
boot_class_path.swap(*runtime_options.GetOrDefault(Opt::BootClassPathDexList));
} else {
OpenBootDexFiles(ArrayRef<const std::string>(GetBootClassPath()),
ArrayRef<const std::string>(GetBootClassPathLocations()),
ArrayRef<File>(GetBootClassPathFiles()),
&boot_class_path);
}
if (!class_linker_->InitWithoutImage(std::move(boot_class_path), &error_msg)) {
LOG(ERROR) << "Could not initialize without image: " << error_msg;
return false;
}
// TODO: Should we move the following to InitWithoutImage?
SetInstructionSet(instruction_set_);
for (uint32_t i = 0; i < kCalleeSaveSize; i++) {
CalleeSaveType type = CalleeSaveType(i);
if (!HasCalleeSaveMethod(type)) {
SetCalleeSaveMethod(CreateCalleeSaveMethod(), type);
}
}
}
// Now that the boot image space is set, cache the boot classpath checksums,
// to be used when validating oat files.
ArrayRef<gc::space::ImageSpace* const> image_spaces(GetHeap()->GetBootImageSpaces());
ArrayRef<const DexFile* const> bcp_dex_files(GetClassLinker()->GetBootClassPath());
boot_class_path_checksums_ = gc::space::ImageSpace::GetBootClassPathChecksums(image_spaces,
bcp_dex_files);
CHECK(class_linker_ != nullptr);
if (runtime_options.Exists(Opt::MethodTrace)) {
trace_config_.reset(new TraceConfig());
trace_config_->trace_file = runtime_options.ReleaseOrDefault(Opt::MethodTraceFile);
trace_config_->trace_file_size = runtime_options.ReleaseOrDefault(Opt::MethodTraceFileSize);
trace_config_->trace_mode = Trace::TraceMode::kMethodTracing;
trace_config_->trace_output_mode = runtime_options.Exists(Opt::MethodTraceStreaming) ?
TraceOutputMode::kStreaming :
TraceOutputMode::kFile;
trace_config_->clock_source = runtime_options.GetOrDefault(Opt::MethodTraceClock);
}
// TODO: Remove this in a follow up CL. This isn't used anywhere.
Trace::SetDefaultClockSource(runtime_options.GetOrDefault(Opt::ProfileClock));
if (GetHeap()->HasBootImageSpace()) {
const ImageHeader& image_header = GetHeap()->GetBootImageSpaces()[0]->GetImageHeader();
ObjPtr<mirror::ObjectArray<mirror::Object>> boot_image_live_objects =
ObjPtr<mirror::ObjectArray<mirror::Object>>::DownCast(
image_header.GetImageRoot(ImageHeader::kBootImageLiveObjects));
pre_allocated_OutOfMemoryError_when_throwing_exception_ = GcRoot<mirror::Throwable>(
boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingException)->AsThrowable());
DCHECK(pre_allocated_OutOfMemoryError_when_throwing_exception_.Read()->GetClass()
->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
pre_allocated_OutOfMemoryError_when_throwing_oome_ = GcRoot<mirror::Throwable>(
boot_image_live_objects->Get(ImageHeader::kOomeWhenThrowingOome)->AsThrowable());
DCHECK(pre_allocated_OutOfMemoryError_when_throwing_oome_.Read()->GetClass()
->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
pre_allocated_OutOfMemoryError_when_handling_stack_overflow_ = GcRoot<mirror::Throwable>(
boot_image_live_objects->Get(ImageHeader::kOomeWhenHandlingStackOverflow)->AsThrowable());
DCHECK(pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read()->GetClass()
->DescriptorEquals("Ljava/lang/OutOfMemoryError;"));
pre_allocated_NoClassDefFoundError_ = GcRoot<mirror::Throwable>(
boot_image_live_objects->Get(ImageHeader::kNoClassDefFoundError)->AsThrowable());
DCHECK(pre_allocated_NoClassDefFoundError_.Read()->GetClass()
->DescriptorEquals("Ljava/lang/NoClassDefFoundError;"));
} else {
// Pre-allocate an OutOfMemoryError for the case when we fail to
// allocate the exception to be thrown.
CreatePreAllocatedException(self,
this,
&pre_allocated_OutOfMemoryError_when_throwing_exception_,
"Ljava/lang/OutOfMemoryError;",
"OutOfMemoryError thrown while trying to throw an exception; "
"no stack trace available");
// Pre-allocate an OutOfMemoryError for the double-OOME case.
CreatePreAllocatedException(self,
this,
&pre_allocated_OutOfMemoryError_when_throwing_oome_,
"Ljava/lang/OutOfMemoryError;",
"OutOfMemoryError thrown while trying to throw OutOfMemoryError; "
"no stack trace available");
// Pre-allocate an OutOfMemoryError for the case when we fail to
// allocate while handling a stack overflow.
CreatePreAllocatedException(self,
this,
&pre_allocated_OutOfMemoryError_when_handling_stack_overflow_,
"Ljava/lang/OutOfMemoryError;",
"OutOfMemoryError thrown while trying to handle a stack overflow; "
"no stack trace available");
// Pre-allocate a NoClassDefFoundError for the common case of failing to find a system class
// ahead of checking the application's class loader.
CreatePreAllocatedException(self,
this,
&pre_allocated_NoClassDefFoundError_,
"Ljava/lang/NoClassDefFoundError;",
"Class not found using the boot class loader; "
"no stack trace available");
}
// Class-roots are setup, we can now finish initializing the JniIdManager.
GetJniIdManager()->Init(self);
InitMetrics();
// Runtime initialization is largely done now.
// We load plugins first since that can modify the runtime state slightly.
// Load all plugins
{
// The init method of plugins expect the state of the thread to be non runnable.
ScopedThreadSuspension sts(self, ThreadState::kNative);
for (auto& plugin : plugins_) {
std::string err;
if (!plugin.Load(&err)) {
LOG(FATAL) << plugin << " failed to load: " << err;
}
}
}
// Look for a native bridge.
//
// The intended flow here is, in the case of a running system:
//
// Runtime::Init() (zygote):
// LoadNativeBridge -> dlopen from cmd line parameter.
// |
// V
// Runtime::Start() (zygote):
// No-op wrt native bridge.
// |
// | start app
// V
// DidForkFromZygote(action)
// action = kUnload -> dlclose native bridge.
// action = kInitialize -> initialize library
//
//
// The intended flow here is, in the case of a simple dalvikvm call:
//
// Runtime::Init():
// LoadNativeBridge -> dlopen from cmd line parameter.
// |
// V
// Runtime::Start():
// DidForkFromZygote(kInitialize) -> try to initialize any native bridge given.
// No-op wrt native bridge.
{
std::string native_bridge_file_name = runtime_options.ReleaseOrDefault(Opt::NativeBridge);
is_native_bridge_loaded_ = LoadNativeBridge(native_bridge_file_name);
}
// Startup agents
// TODO Maybe we should start a new thread to run these on. Investigate RI behavior more.
for (auto& agent_spec : agent_specs_) {
// TODO Check err
int res = 0;
std::string err = "";
ti::LoadError error;
std::unique_ptr<ti::Agent> agent = agent_spec.Load(&res, &error, &err);
if (agent != nullptr) {
agents_.push_back(std::move(agent));
continue;
}
switch (error) {
case ti::LoadError::kInitializationError:
LOG(FATAL) << "Unable to initialize agent!";
UNREACHABLE();
case ti::LoadError::kLoadingError:
LOG(ERROR) << "Unable to load an agent: " << err;
continue;
case ti::LoadError::kNoError:
break;
}
LOG(FATAL) << "Unreachable";
UNREACHABLE();
}
{
ScopedObjectAccess soa(self);
callbacks_->NextRuntimePhase(RuntimePhaseCallback::RuntimePhase::kInitialAgents);
}
if (IsZygote() && IsPerfettoHprofEnabled()) {
constexpr const char* plugin_name = kIsDebugBuild ?
"libperfetto_hprofd.so" : "libperfetto_hprof.so";
// Load eagerly in Zygote to improve app startup times. This will make
// subsequent dlopens for the library no-ops.
dlopen(plugin_name, RTLD_NOW | RTLD_LOCAL);
}
VLOG(startup) << "Runtime::Init exiting";
return true;
}
void Runtime::InitMetrics() {
metrics::ReportingConfig metrics_config = metrics::ReportingConfig::FromFlags();
metrics_reporter_ = metrics::MetricsReporter::Create(metrics_config, this);
}
void Runtime::RequestMetricsReport(bool synchronous) {
if (metrics_reporter_) {
metrics_reporter_->RequestMetricsReport(synchronous);
}
}
bool Runtime::EnsurePluginLoaded(const char* plugin_name, std::string* error_msg) {
// Is the plugin already loaded?
for (const Plugin& p : plugins_) {
if (p.GetLibrary() == plugin_name) {
return true;
}
}
Plugin new_plugin = Plugin::Create(plugin_name);
if (!new_plugin.Load(error_msg)) {
return false;
}
plugins_.push_back(std::move(new_plugin));
return true;
}
bool Runtime::EnsurePerfettoPlugin(std::string* error_msg) {
constexpr const char* plugin_name = kIsDebugBuild ?
"libperfetto_hprofd.so" : "libperfetto_hprof.so";
return EnsurePluginLoaded(plugin_name, error_msg);
}
static bool EnsureJvmtiPlugin(Runtime* runtime,
std::string* error_msg) {
// TODO Rename Dbg::IsJdwpAllowed is IsDebuggingAllowed.
DCHECK(Dbg::IsJdwpAllowed() || !runtime->IsJavaDebuggable())
<< "Being debuggable requires that jdwp (i.e. debugging) is allowed.";
// Is the process debuggable? Otherwise, do not attempt to load the plugin unless we are
// specifically allowed.
if (!Dbg::IsJdwpAllowed()) {
*error_msg = "Process is not allowed to load openjdkjvmti plugin. Process must be debuggable";
return false;
}
constexpr const char* plugin_name = kIsDebugBuild ? "libopenjdkjvmtid.so" : "libopenjdkjvmti.so";
return runtime->EnsurePluginLoaded(plugin_name, error_msg);
}
// Attach a new agent and add it to the list of runtime agents
//
// TODO: once we decide on the threading model for agents,
// revisit this and make sure we're doing this on the right thread
// (and we synchronize access to any shared data structures like "agents_")
//
void Runtime::AttachAgent(JNIEnv* env, const std::string& agent_arg, jobject class_loader) {
std::string error_msg;
if (!EnsureJvmtiPlugin(this, &error_msg)) {
LOG(WARNING) << "Could not load plugin: " << error_msg;
ScopedObjectAccess soa(Thread::Current());
ThrowIOException("%s", error_msg.c_str());
return;
}
ti::AgentSpec agent_spec(agent_arg);
int res = 0;
ti::LoadError error;
std::unique_ptr<ti::Agent> agent = agent_spec.Attach(env, class_loader, &res, &error, &error_msg);
if (agent != nullptr) {
agents_.push_back(std::move(agent));
} else {
LOG(WARNING) << "Agent attach failed (result=" << error << ") : " << error_msg;
ScopedObjectAccess soa(Thread::Current());
ThrowIOException("%s", error_msg.c_str());
}
}
void Runtime::InitNativeMethods() {
VLOG(startup) << "Runtime::InitNativeMethods entering";
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
// Must be in the kNative state for calling native methods (JNI_OnLoad code).
CHECK_EQ(self->GetState(), ThreadState::kNative);
// Then set up libjavacore / libopenjdk / libicu_jni ,which are just
// a regular JNI libraries with a regular JNI_OnLoad. Most JNI libraries can
// just use System.loadLibrary, but libcore can't because it's the library
// that implements System.loadLibrary!
//
// By setting calling class to java.lang.Object, the caller location for these
// JNI libs is core-oj.jar in the ART APEX, and hence they are loaded from the
// com_android_art linker namespace.
jclass java_lang_Object;
{
// Use global JNI reference to keep the local references empty. If we allocated a
// local reference here, the `PushLocalFrame(128)` that these internal libraries do
// in their `JNI_OnLoad()` would reserve a lot of unnecessary space due to rounding.
ScopedObjectAccess soa(self);
java_lang_Object = reinterpret_cast<jclass>(
GetJavaVM()->AddGlobalRef(self, GetClassRoot<mirror::Object>(GetClassLinker())));
}
// libicu_jni has to be initialized before libopenjdk{d} due to runtime dependency from
// libopenjdk{d} to Icu4cMetadata native methods in libicu_jni. See http://b/143888405
{
std::string error_msg;
if (!java_vm_->LoadNativeLibrary(
env, "libicu_jni.so", nullptr, java_lang_Object, &error_msg)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"libicu_jni.so\": " << error_msg;
}
}
{
std::string error_msg;
if (!java_vm_->LoadNativeLibrary(
env, "libjavacore.so", nullptr, java_lang_Object, &error_msg)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"libjavacore.so\": " << error_msg;
}
}
{
constexpr const char* kOpenJdkLibrary = kIsDebugBuild
? "libopenjdkd.so"
: "libopenjdk.so";
std::string error_msg;
if (!java_vm_->LoadNativeLibrary(
env, kOpenJdkLibrary, nullptr, java_lang_Object, &error_msg)) {
LOG(FATAL) << "LoadNativeLibrary failed for \"" << kOpenJdkLibrary << "\": " << error_msg;
}
}
env->DeleteGlobalRef(java_lang_Object);
// Initialize well known classes that may invoke runtime native methods.
WellKnownClasses::LateInit(env);
VLOG(startup) << "Runtime::InitNativeMethods exiting";
}
void Runtime::ReclaimArenaPoolMemory() {
arena_pool_->LockReclaimMemory();
}
void Runtime::InitThreadGroups(Thread* self) {
ScopedObjectAccess soa(self);
ArtField* main_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_mainThreadGroup;
ArtField* system_thread_group_field = WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup;
// Note: This is running before `ClassLinker::RunRootClinits()`, so we cannot rely on
// `ThreadGroup` and `Thread` being initialized.
// TODO: Clean up initialization order after all well-known methods are converted to `ArtMethod*`
// (and therefore the `WellKnownClasses::Init()` shall not initialize any classes).
StackHandleScope<2u> hs(self);
Handle<mirror::Class> thread_group_class =
hs.NewHandle(main_thread_group_field->GetDeclaringClass());
bool initialized = GetClassLinker()->EnsureInitialized(
self, thread_group_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
CHECK(initialized);
Handle<mirror::Class> thread_class = hs.NewHandle(WellKnownClasses::java_lang_Thread.Get());
initialized = GetClassLinker()->EnsureInitialized(
self, thread_class, /*can_init_fields=*/ true, /*can_init_parents=*/ true);
CHECK(initialized);
main_thread_group_ =
soa.Vm()->AddGlobalRef(self, main_thread_group_field->GetObject(thread_group_class.Get()));
CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
system_thread_group_ =
soa.Vm()->AddGlobalRef(self, system_thread_group_field->GetObject(thread_group_class.Get()));
CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
}
jobject Runtime::GetMainThreadGroup() const {
CHECK_IMPLIES(main_thread_group_ == nullptr, IsAotCompiler());
return main_thread_group_;
}
jobject Runtime::GetSystemThreadGroup() const {
CHECK_IMPLIES(system_thread_group_ == nullptr, IsAotCompiler());
return system_thread_group_;
}
jobject Runtime::GetSystemClassLoader() const {
CHECK_IMPLIES(system_class_loader_ == nullptr, IsAotCompiler());
return system_class_loader_;
}
void Runtime::RegisterRuntimeNativeMethods(JNIEnv* env) {
register_dalvik_system_DexFile(env);
register_dalvik_system_BaseDexClassLoader(env);
register_dalvik_system_VMDebug(env);
register_dalvik_system_VMRuntime(env);
register_dalvik_system_VMStack(env);
register_dalvik_system_ZygoteHooks(env);
register_java_lang_Class(env);
register_java_lang_Object(env);
register_java_lang_invoke_MethodHandle(env);
register_java_lang_invoke_MethodHandleImpl(env);
register_java_lang_ref_FinalizerReference(env);
register_java_lang_reflect_Array(env);
register_java_lang_reflect_Constructor(env);
register_java_lang_reflect_Executable(env);
register_java_lang_reflect_Field(env);
register_java_lang_reflect_Method(env);
register_java_lang_reflect_Parameter(env);
register_java_lang_reflect_Proxy(env);
register_java_lang_ref_Reference(env);
register_java_lang_StackStreamFactory(env);
register_java_lang_String(env);
register_java_lang_StringFactory(env);
register_java_lang_System(env);
register_java_lang_Thread(env);
register_java_lang_Throwable(env);
register_java_lang_VMClassLoader(env);
register_java_util_concurrent_atomic_AtomicLong(env);
register_jdk_internal_misc_Unsafe(env);
register_libcore_io_Memory(env);
register_libcore_util_CharsetUtils(env);
register_org_apache_harmony_dalvik_ddmc_DdmServer(env);
register_org_apache_harmony_dalvik_ddmc_DdmVmInternal(env);
register_sun_misc_Unsafe(env);
}
std::ostream& operator<<(std::ostream& os, const DeoptimizationKind& kind) {
os << GetDeoptimizationKindName(kind);
return os;
}
void Runtime::DumpDeoptimizations(std::ostream& os) {
for (size_t i = 0; i <= static_cast<size_t>(DeoptimizationKind::kLast); ++i) {
if (deoptimization_counts_[i] != 0) {
os << "Number of "
<< GetDeoptimizationKindName(static_cast<DeoptimizationKind>(i))
<< " deoptimizations: "
<< deoptimization_counts_[i]
<< "\n";
}
}
}
std::optional<uint64_t> Runtime::SiqQuitNanoTime() const {
return signal_catcher_ != nullptr ? signal_catcher_->SiqQuitNanoTime() : std::nullopt;
}
void Runtime::DumpForSigQuit(std::ostream& os) {
// Print backtraces first since they are important do diagnose ANRs,
// and ANRs can often be trimmed to limit upload size.
thread_list_->DumpForSigQuit(os);
GetClassLinker()->DumpForSigQuit(os);
GetInternTable()->DumpForSigQuit(os);
GetJavaVM()->DumpForSigQuit(os);
GetHeap()->DumpForSigQuit(os);
oat_file_manager_->DumpForSigQuit(os);
if (GetJit() != nullptr) {
GetJit()->DumpForSigQuit(os);
} else {
os << "Running non JIT\n";
}
DumpDeoptimizations(os);
TrackedAllocators::Dump(os);
GetMetrics()->DumpForSigQuit(os);
os << "\n";
BaseMutex::DumpAll(os);
// Inform anyone else who is interested in SigQuit.
{
ScopedObjectAccess soa(Thread::Current());
callbacks_->SigQuit();
}
}
void Runtime::DumpLockHolders(std::ostream& os) {
pid_t mutator_lock_owner = Locks::mutator_lock_->GetExclusiveOwnerTid();
pid_t thread_list_lock_owner = GetThreadList()->GetLockOwner();
pid_t classes_lock_owner = GetClassLinker()->GetClassesLockOwner();
pid_t dex_lock_owner = GetClassLinker()->GetDexLockOwner();
if ((mutator_lock_owner | thread_list_lock_owner | classes_lock_owner | dex_lock_owner) != 0) {
os << "Mutator lock exclusive owner tid: " << mutator_lock_owner << "\n"
<< "ThreadList lock owner tid: " << thread_list_lock_owner << "\n"
<< "ClassLinker classes lock owner tid: " << classes_lock_owner << "\n"
<< "ClassLinker dex lock owner tid: " << dex_lock_owner << "\n";
}
}
void Runtime::SetStatsEnabled(bool new_state) {
Thread* self = Thread::Current();
MutexLock mu(self, *Locks::instrument_entrypoints_lock_);
if (new_state == true) {
GetStats()->Clear(~0);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
self->GetStats()->Clear(~0);
if (stats_enabled_ != new_state) {
GetInstrumentation()->InstrumentQuickAllocEntryPointsLocked();
}
} else if (stats_enabled_ != new_state) {
GetInstrumentation()->UninstrumentQuickAllocEntryPointsLocked();
}
stats_enabled_ = new_state;
}
void Runtime::ResetStats(int kinds) {
GetStats()->Clear(kinds & 0xffff);
// TODO: wouldn't it make more sense to clear _all_ threads' stats?
Thread::Current()->GetStats()->Clear(kinds >> 16);
}
uint64_t Runtime::GetStat(int kind) {
RuntimeStats* stats;
if (kind < (1<<16)) {
stats = GetStats();
} else {
stats = Thread::Current()->GetStats();
kind >>= 16;
}
switch (kind) {
case KIND_ALLOCATED_OBJECTS:
return stats->allocated_objects;
case KIND_ALLOCATED_BYTES:
return stats->allocated_bytes;
case KIND_FREED_OBJECTS:
return stats->freed_objects;
case KIND_FREED_BYTES:
return stats->freed_bytes;
case KIND_GC_INVOCATIONS:
return stats->gc_for_alloc_count;
case KIND_CLASS_INIT_COUNT:
return stats->class_init_count;
case KIND_CLASS_INIT_TIME:
return stats->class_init_time_ns;
case KIND_EXT_ALLOCATED_OBJECTS:
case KIND_EXT_ALLOCATED_BYTES:
case KIND_EXT_FREED_OBJECTS:
case KIND_EXT_FREED_BYTES:
return 0; // backward compatibility
default:
LOG(FATAL) << "Unknown statistic " << kind;
UNREACHABLE();
}
}
void Runtime::BlockSignals() {
SignalSet signals;
signals.Add(SIGPIPE);
// SIGQUIT is used to dump the runtime's state (including stack traces).
signals.Add(SIGQUIT);
// SIGUSR1 is used to initiate a GC.
signals.Add(SIGUSR1);
signals.Block();
}
bool Runtime::AttachCurrentThread(const char* thread_name, bool as_daemon, jobject thread_group,
bool create_peer, bool should_run_callbacks) {
ScopedTrace trace(__FUNCTION__);
Thread* self = Thread::Attach(thread_name,
as_daemon,
thread_group,
create_peer,
should_run_callbacks);
// Run ThreadGroup.add to notify the group that this thread is now started.
if (self != nullptr && create_peer && !IsAotCompiler()) {
ScopedObjectAccess soa(self);
self->NotifyThreadGroup(soa, thread_group);
}
return self != nullptr;
}
void Runtime::DetachCurrentThread(bool should_run_callbacks) {
ScopedTrace trace(__FUNCTION__);
Thread* self = Thread::Current();
if (self == nullptr) {
LOG(FATAL) << "attempting to detach thread that is not attached";
}
if (self->HasManagedStack()) {
LOG(FATAL) << *Thread::Current() << " attempting to detach while still running code";
}
thread_list_->Unregister(self, should_run_callbacks);
}
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingException() {
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_exception_.Read();
if (oome == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-exception";
}
return oome;
}
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME() {
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_throwing_oome_.Read();
if (oome == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated OOME-when-throwing-OOME";
}
return oome;
}
mirror::Throwable* Runtime::GetPreAllocatedOutOfMemoryErrorWhenHandlingStackOverflow() {
mirror::Throwable* oome = pre_allocated_OutOfMemoryError_when_handling_stack_overflow_.Read();
if (oome == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated OOME-when-handling-stack-overflow";
}
return oome;
}
mirror::Throwable* Runtime::GetPreAllocatedNoClassDefFoundError() {
mirror::Throwable* ncdfe = pre_allocated_NoClassDefFoundError_.Read();
if (ncdfe == nullptr) {
LOG(ERROR) << "Failed to return pre-allocated NoClassDefFoundError";
}
return ncdfe;
}
void Runtime::VisitConstantRoots(RootVisitor* visitor) {
// Visiting the roots of these ArtMethods is not currently required since all the GcRoots are
// null.
BufferedRootVisitor<16> buffered_visitor(visitor, RootInfo(kRootVMInternal));
const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
if (HasResolutionMethod()) {
resolution_method_->VisitRoots(buffered_visitor, pointer_size);
}
if (HasImtConflictMethod()) {
imt_conflict_method_->VisitRoots(buffered_visitor, pointer_size);
}
if (imt_unimplemented_method_ != nullptr) {
imt_unimplemented_method_->VisitRoots(buffered_visitor, pointer_size);
}
for (uint32_t i = 0; i < kCalleeSaveSize; ++i) {
auto* m = reinterpret_cast<ArtMethod*>(callee_save_methods_[i]);
if (m != nullptr) {
m->VisitRoots(buffered_visitor, pointer_size);
}
}
}
void Runtime::VisitConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
// Userfaultfd compaction updates intern-tables and class-tables page-by-page
// via LinearAlloc. So don't visit them here.
if (GetHeap()->IsPerformingUffdCompaction()) {
class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/false);
} else {
intern_table_->VisitRoots(visitor, flags);
class_linker_->VisitRoots(visitor, flags, /*visit_class_roots=*/true);
}
jni_id_manager_->VisitRoots(visitor);
heap_->VisitAllocationRecords(visitor);
if (jit_ != nullptr) {
jit_->VisitRoots(visitor);
}
if ((flags & kVisitRootFlagNewRoots) == 0) {
// Guaranteed to have no new roots in the constant roots.
VisitConstantRoots(visitor);
}
}
void Runtime::VisitTransactionRoots(RootVisitor* visitor) {
for (Transaction& transaction : preinitialization_transactions_) {
transaction.VisitRoots(visitor);
}
}
void Runtime::VisitNonThreadRoots(RootVisitor* visitor) {
java_vm_->VisitRoots(visitor);
sentinel_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
pre_allocated_OutOfMemoryError_when_throwing_exception_
.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
pre_allocated_OutOfMemoryError_when_throwing_oome_
.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
pre_allocated_OutOfMemoryError_when_handling_stack_overflow_
.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
pre_allocated_NoClassDefFoundError_.VisitRootIfNonNull(visitor, RootInfo(kRootVMInternal));
VisitImageRoots(visitor);
VisitTransactionRoots(visitor);
}
void Runtime::VisitNonConcurrentRoots(RootVisitor* visitor, VisitRootFlags flags) {
VisitThreadRoots(visitor, flags);
VisitNonThreadRoots(visitor);
}
void Runtime::VisitThreadRoots(RootVisitor* visitor, VisitRootFlags flags) {
thread_list_->VisitRoots(visitor, flags);
}
void Runtime::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
VisitNonConcurrentRoots(visitor, flags);
VisitConcurrentRoots(visitor, flags);
}
void Runtime::VisitReflectiveTargets(ReflectiveValueVisitor *visitor) {
thread_list_->VisitReflectiveTargets(visitor);
heap_->VisitReflectiveTargets(visitor);
jni_id_manager_->VisitReflectiveTargets(visitor);
callbacks_->VisitReflectiveTargets(visitor);
}
void Runtime::VisitImageRoots(RootVisitor* visitor) {
// We only confirm that image roots are unchanged.
if (kIsDebugBuild) {
for (auto* space : GetHeap()->GetContinuousSpaces()) {
if (space->IsImageSpace()) {
auto* image_space = space->AsImageSpace();
const auto& image_header = image_space->GetImageHeader();
for (int32_t i = 0, size = image_header.GetImageRoots()->GetLength(); i != size; ++i) {
mirror::Object* obj =
image_header.GetImageRoot(static_cast<ImageHeader::ImageRoot>(i)).Ptr();
if (obj != nullptr) {
mirror::Object* after_obj = obj;
visitor->VisitRoot(&after_obj, RootInfo(kRootStickyClass));
CHECK_EQ(after_obj, obj);
}
}
}
}
}
}
static ArtMethod* CreateRuntimeMethod(ClassLinker* class_linker, LinearAlloc* linear_alloc)
REQUIRES_SHARED(Locks::mutator_lock_) {
const PointerSize image_pointer_size = class_linker->GetImagePointerSize();
const size_t method_alignment = ArtMethod::Alignment(image_pointer_size);
const size_t method_size = ArtMethod::Size(image_pointer_size);
LengthPrefixedArray<ArtMethod>* method_array = class_linker->AllocArtMethodArray(
Thread::Current(),
linear_alloc,
1);
ArtMethod* method = &method_array->At(0, method_size, method_alignment);
CHECK(method != nullptr);
method->SetDexMethodIndex(dex::kDexNoIndex);
CHECK(method->IsRuntimeMethod());
return method;
}
ArtMethod* Runtime::CreateImtConflictMethod(LinearAlloc* linear_alloc) {
ClassLinker* const class_linker = GetClassLinker();
ArtMethod* method = CreateRuntimeMethod(class_linker, linear_alloc);
// When compiling, the code pointer will get set later when the image is loaded.
const PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
if (IsAotCompiler()) {
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
} else {
method->SetEntryPointFromQuickCompiledCode(GetQuickImtConflictStub());
}
// Create empty conflict table.
method->SetImtConflictTable(class_linker->CreateImtConflictTable(/*count=*/0u, linear_alloc),
pointer_size);
return method;
}
void Runtime::SetImtConflictMethod(ArtMethod* method) {
CHECK(method != nullptr);
CHECK(method->IsRuntimeMethod());
imt_conflict_method_ = method;
}
ArtMethod* Runtime::CreateResolutionMethod() {
auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
// When compiling, the code pointer will get set later when the image is loaded.
if (IsAotCompiler()) {
PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
method->SetEntryPointFromJniPtrSize(nullptr, pointer_size);
} else {
method->SetEntryPointFromQuickCompiledCode(GetQuickResolutionStub());
method->SetEntryPointFromJni(GetJniDlsymLookupCriticalStub());
}
return method;
}
ArtMethod* Runtime::CreateCalleeSaveMethod() {
auto* method = CreateRuntimeMethod(GetClassLinker(), GetLinearAlloc());
PointerSize pointer_size = GetInstructionSetPointerSize(instruction_set_);
method->SetEntryPointFromQuickCompiledCodePtrSize(nullptr, pointer_size);
DCHECK_NE(instruction_set_, InstructionSet::kNone);
DCHECK(method->IsRuntimeMethod());
return method;
}
void Runtime::DisallowNewSystemWeaks() {
CHECK(!gUseReadBarrier);
monitor_list_->DisallowNewMonitors();
intern_table_->ChangeWeakRootState(gc::kWeakRootStateNoReadsOrWrites);
java_vm_->DisallowNewWeakGlobals();
heap_->DisallowNewAllocationRecords();
if (GetJit() != nullptr) {
GetJit()->GetCodeCache()->DisallowInlineCacheAccess();
}
// All other generic system-weak holders.
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
holder->Disallow();
}
}
void Runtime::AllowNewSystemWeaks() {
CHECK(!gUseReadBarrier);
monitor_list_->AllowNewMonitors();
intern_table_->ChangeWeakRootState(gc::kWeakRootStateNormal); // TODO: Do this in the sweeping.
java_vm_->AllowNewWeakGlobals();
heap_->AllowNewAllocationRecords();
if (GetJit() != nullptr) {
GetJit()->GetCodeCache()->AllowInlineCacheAccess();
}
// All other generic system-weak holders.
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
holder->Allow();
}
}
void Runtime::BroadcastForNewSystemWeaks(bool broadcast_for_checkpoint) {
// This is used for the read barrier case that uses the thread-local
// Thread::GetWeakRefAccessEnabled() flag and the checkpoint while weak ref access is disabled
// (see ThreadList::RunCheckpoint).
monitor_list_->BroadcastForNewMonitors();
intern_table_->BroadcastForNewInterns();
java_vm_->BroadcastForNewWeakGlobals();
heap_->BroadcastForNewAllocationRecords();
if (GetJit() != nullptr) {
GetJit()->GetCodeCache()->BroadcastForInlineCacheAccess();
}
// All other generic system-weak holders.
for (gc::AbstractSystemWeakHolder* holder : system_weak_holders_) {
holder->Broadcast(broadcast_for_checkpoint);
}
}
void Runtime::SetInstructionSet(InstructionSet instruction_set) {
instruction_set_ = instruction_set;
switch (instruction_set) {
case InstructionSet::kThumb2:
// kThumb2 is the same as kArm, use the canonical value.
instruction_set_ = InstructionSet::kArm;
break;
case InstructionSet::kArm:
case InstructionSet::kArm64:
case InstructionSet::kRiscv64:
case InstructionSet::kX86:
case InstructionSet::kX86_64:
break;
default:
UNIMPLEMENTED(FATAL) << instruction_set_;
UNREACHABLE();
}
}
void Runtime::ClearInstructionSet() {
instruction_set_ = InstructionSet::kNone;
}
void Runtime::SetCalleeSaveMethod(ArtMethod* method, CalleeSaveType type) {
DCHECK_LT(static_cast<uint32_t>(type), kCalleeSaveSize);
CHECK(method != nullptr);
callee_save_methods_[static_cast<size_t>(type)] = reinterpret_cast<uintptr_t>(method);
}
void Runtime::ClearCalleeSaveMethods() {
for (size_t i = 0; i < kCalleeSaveSize; ++i) {
callee_save_methods_[i] = reinterpret_cast<uintptr_t>(nullptr);
}
}
void Runtime::RegisterAppInfo(const std::string& package_name,
const std::vector<std::string>& code_paths,
const std::string& profile_output_filename,
const std::string& ref_profile_filename,
int32_t code_type) {
app_info_.RegisterAppInfo(
package_name,
code_paths,
profile_output_filename,
ref_profile_filename,
AppInfo::FromVMRuntimeConstants(code_type));
if (metrics_reporter_ != nullptr) {
metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
}
if (jit_.get() == nullptr) {
// We are not JITing. Nothing to do.
return;
}
VLOG(profiler) << "Register app with " << profile_output_filename
<< " " << android::base::Join(code_paths, ':');
VLOG(profiler) << "Reference profile is: " << ref_profile_filename;
if (profile_output_filename.empty()) {
LOG(WARNING) << "JIT profile information will not be recorded: profile filename is empty.";
return;
}
if (code_paths.empty()) {
LOG(WARNING) << "JIT profile information will not be recorded: code paths is empty.";
return;
}
// Framework calls this method for all split APKs. Ignore the calls for the ones with no dex code
// so that we don't unnecessarily create profiles for them or write bootclasspath profiling info
// to those profiles.
bool has_code = false;
for (const std::string& path : code_paths) {
std::string error_msg;
std::optional<uint32_t> checksum;
std::vector<std::string> dex_locations;
DexFileLoader loader(path);
if (!loader.GetMultiDexChecksum(&checksum, &error_msg)) {
LOG(WARNING) << error_msg;
continue;
}
if (checksum.has_value()) {
has_code = true;
break;
}
}
if (!has_code) {
VLOG(profiler) << ART_FORMAT(
"JIT profile information will not be recorded: no dex code in '{}'.",
android::base::Join(code_paths, ','));
return;
}
jit_->StartProfileSaver(profile_output_filename, code_paths, ref_profile_filename);
}
// Transaction support.
bool Runtime::IsActiveTransaction() const {
return !preinitialization_transactions_.empty() && !GetTransaction()->IsRollingBack();
}
void Runtime::EnterTransactionMode(bool strict, mirror::Class* root) {
DCHECK(IsAotCompiler());
ArenaPool* arena_pool = nullptr;
ArenaStack* arena_stack = nullptr;
if (preinitialization_transactions_.empty()) { // Top-level transaction?
// Make initialized classes visibly initialized now. If that happened during the transaction
// and then the transaction was aborted, we would roll back the status update but not the
// ClassLinker's bookkeeping structures, so these classes would never be visibly initialized.
{
Thread* self = Thread::Current();
StackHandleScope<1> hs(self);
HandleWrapper<mirror::Class> h(hs.NewHandleWrapper(&root));
ScopedThreadSuspension sts(self, ThreadState::kNative);
GetClassLinker()->MakeInitializedClassesVisiblyInitialized(Thread::Current(), /*wait=*/ true);
}
// Pass the runtime `ArenaPool` to the transaction.
arena_pool = GetArenaPool();
} else {
// Pass the `ArenaStack` from previous transaction to the new one.
arena_stack = preinitialization_transactions_.front().GetArenaStack();
}
preinitialization_transactions_.emplace_front(strict, root, arena_stack, arena_pool);
}
void Runtime::ExitTransactionMode() {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transactions_.pop_front();
}
void Runtime::RollbackAndExitTransactionMode() {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
preinitialization_transactions_.front().Rollback();
preinitialization_transactions_.pop_front();
}
bool Runtime::IsTransactionAborted() const {
if (!IsActiveTransaction()) {
return false;
} else {
DCHECK(IsAotCompiler());
return GetTransaction()->IsAborted();
}
}
void Runtime::RollbackAllTransactions() {
// If transaction is aborted, all transactions will be kept in the list.
// Rollback and exit all of them.
while (IsActiveTransaction()) {
RollbackAndExitTransactionMode();
}
}
bool Runtime::IsActiveStrictTransactionMode() const {
return IsActiveTransaction() && GetTransaction()->IsStrict();
}
const Transaction* Runtime::GetTransaction() const {
DCHECK(!preinitialization_transactions_.empty());
return &preinitialization_transactions_.front();
}
Transaction* Runtime::GetTransaction() {
DCHECK(!preinitialization_transactions_.empty());
return &preinitialization_transactions_.front();
}
void Runtime::AbortTransactionAndThrowAbortError(Thread* self, const std::string& abort_message) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
// Throwing an exception may cause its class initialization. If we mark the transaction
// aborted before that, we may warn with a false alarm. Throwing the exception before
// marking the transaction aborted avoids that.
// But now the transaction can be nested, and abort the transaction will relax the constraints
// for constructing stack trace.
GetTransaction()->Abort(abort_message);
GetTransaction()->ThrowAbortError(self, &abort_message);
}
void Runtime::ThrowTransactionAbortError(Thread* self) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
// Passing nullptr means we rethrow an exception with the earlier transaction abort message.
GetTransaction()->ThrowAbortError(self, nullptr);
}
void Runtime::RecordWriteFieldBoolean(mirror::Object* obj,
MemberOffset field_offset,
uint8_t value,
bool is_volatile) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteFieldBoolean(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldByte(mirror::Object* obj,
MemberOffset field_offset,
int8_t value,
bool is_volatile) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteFieldByte(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldChar(mirror::Object* obj,
MemberOffset field_offset,
uint16_t value,
bool is_volatile) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteFieldChar(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldShort(mirror::Object* obj,
MemberOffset field_offset,
int16_t value,
bool is_volatile) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteFieldShort(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteField32(mirror::Object* obj,
MemberOffset field_offset,
uint32_t value,
bool is_volatile) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteField32(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteField64(mirror::Object* obj,
MemberOffset field_offset,
uint64_t value,
bool is_volatile) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteField64(obj, field_offset, value, is_volatile);
}
void Runtime::RecordWriteFieldReference(mirror::Object* obj,
MemberOffset field_offset,
ObjPtr<mirror::Object> value,
bool is_volatile) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteFieldReference(obj, field_offset, value.Ptr(), is_volatile);
}
void Runtime::RecordWriteArray(mirror::Array* array, size_t index, uint64_t value) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWriteArray(array, index, value);
}
void Runtime::RecordStrongStringInsertion(ObjPtr<mirror::String> s) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordStrongStringInsertion(s);
}
void Runtime::RecordWeakStringInsertion(ObjPtr<mirror::String> s) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWeakStringInsertion(s);
}
void Runtime::RecordStrongStringRemoval(ObjPtr<mirror::String> s) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordStrongStringRemoval(s);
}
void Runtime::RecordWeakStringRemoval(ObjPtr<mirror::String> s) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordWeakStringRemoval(s);
}
void Runtime::RecordResolveString(ObjPtr<mirror::DexCache> dex_cache,
dex::StringIndex string_idx) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordResolveString(dex_cache, string_idx);
}
void Runtime::RecordResolveMethodType(ObjPtr<mirror::DexCache> dex_cache,
dex::ProtoIndex proto_idx) {
DCHECK(IsAotCompiler());
DCHECK(IsActiveTransaction());
GetTransaction()->RecordResolveMethodType(dex_cache, proto_idx);
}
void Runtime::SetFaultMessage(const std::string& message) {
std::string* new_msg = new std::string(message);
std::string* cur_msg = fault_message_.exchange(new_msg);
delete cur_msg;
}
std::string Runtime::GetFaultMessage() {
// Retrieve the message. Temporarily replace with null so that SetFaultMessage will not delete
// the string in parallel.
std::string* cur_msg = fault_message_.exchange(nullptr);
// Make a copy of the string.
std::string ret = cur_msg == nullptr ? "" : *cur_msg;
// Put the message back if it hasn't been updated.
std::string* null_str = nullptr;
if (!fault_message_.compare_exchange_strong(null_str, cur_msg)) {
// Already replaced.
delete cur_msg;
}
return ret;
}
void Runtime::AddCurrentRuntimeFeaturesAsDex2OatArguments(std::vector<std::string>* argv)
const {
if (GetInstrumentation()->InterpretOnly()) {
argv->push_back("--compiler-filter=verify");
}
// Make the dex2oat instruction set match that of the launching runtime. If we have multiple
// architecture support, dex2oat may be compiled as a different instruction-set than that
// currently being executed.
std::string instruction_set("--instruction-set=");
instruction_set += GetInstructionSetString(kRuntimeISA);
argv->push_back(instruction_set);
if (InstructionSetFeatures::IsRuntimeDetectionSupported()) {
argv->push_back("--instruction-set-features=runtime");
} else {
std::unique_ptr<const InstructionSetFeatures> features(
InstructionSetFeatures::FromCppDefines());
std::string feature_string("--instruction-set-features=");
feature_string += features->GetFeatureString();
argv->push_back(feature_string);
}
}
void Runtime::CreateJit() {
DCHECK(jit_code_cache_ == nullptr);
DCHECK(jit_ == nullptr);
if (kIsDebugBuild && GetInstrumentation()->IsForcedInterpretOnly()) {
DCHECK(!jit_options_->UseJitCompilation());
}
if (!jit_options_->UseJitCompilation() && !jit_options_->GetSaveProfilingInfo()) {
return;
}
if (IsSafeMode()) {
LOG(INFO) << "Not creating JIT because of SafeMode.";
return;
}
std::string error_msg;
bool profiling_only = !jit_options_->UseJitCompilation();
jit_code_cache_.reset(jit::JitCodeCache::Create(profiling_only,
/*rwx_memory_allowed=*/ true,
IsZygote(),
&error_msg));
if (jit_code_cache_.get() == nullptr) {
LOG(WARNING) << "Failed to create JIT Code Cache: " << error_msg;
return;
}
jit_ = jit::Jit::Create(jit_code_cache_.get(), jit_options_.get());
jit_->CreateThreadPool();
}
bool Runtime::CanRelocate() const {
return !IsAotCompiler();
}
bool Runtime::IsCompilingBootImage() const {
return IsCompiler() && compiler_callbacks_->IsBootImage();
}
void Runtime::SetResolutionMethod(ArtMethod* method) {
CHECK(method != nullptr);
CHECK(method->IsRuntimeMethod()) << method;
resolution_method_ = method;
}
void Runtime::SetImtUnimplementedMethod(ArtMethod* method) {
CHECK(method != nullptr);
CHECK(method->IsRuntimeMethod());
imt_unimplemented_method_ = method;
}
void Runtime::FixupConflictTables() {
// We can only do this after the class linker is created.
const PointerSize pointer_size = GetClassLinker()->GetImagePointerSize();
if (imt_unimplemented_method_->GetImtConflictTable(pointer_size) == nullptr) {
imt_unimplemented_method_->SetImtConflictTable(
ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
pointer_size);
}
if (imt_conflict_method_->GetImtConflictTable(pointer_size) == nullptr) {
imt_conflict_method_->SetImtConflictTable(
ClassLinker::CreateImtConflictTable(/*count=*/0u, GetLinearAlloc(), pointer_size),
pointer_size);
}
}
void Runtime::DisableVerifier() {
verify_ = verifier::VerifyMode::kNone;
}
bool Runtime::IsVerificationEnabled() const {
return verify_ == verifier::VerifyMode::kEnable ||
verify_ == verifier::VerifyMode::kSoftFail;
}
bool Runtime::IsVerificationSoftFail() const {
return verify_ == verifier::VerifyMode::kSoftFail;
}
bool Runtime::IsAsyncDeoptimizeable(ArtMethod* method, uintptr_t code) const {
if (OatQuickMethodHeader::NterpMethodHeader != nullptr) {
if (OatQuickMethodHeader::NterpMethodHeader->Contains(code)) {
return true;
}
}
// We only support async deopt (ie the compiled code is not explicitly asking for
// deopt, but something else like the debugger) in debuggable JIT code.
// We could look at the oat file where `code` is being defined,
// and check whether it's been compiled debuggable, but we decided to
// only rely on the JIT for debuggable apps.
// The JIT-zygote is not debuggable so we need to be sure to exclude code from the non-private
// region as well.
if (GetJit() != nullptr &&
GetJit()->GetCodeCache()->PrivateRegionContainsPc(reinterpret_cast<const void*>(code))) {
// If the code is JITed code then check if it was compiled as debuggable.
const OatQuickMethodHeader* header = method->GetOatQuickMethodHeader(code);
return CodeInfo::IsDebuggable(header->GetOptimizedCodeInfoPtr());
}
return false;
}
LinearAlloc* Runtime::CreateLinearAlloc() {
ArenaPool* pool = linear_alloc_arena_pool_.get();
return pool != nullptr
? new LinearAlloc(pool, gUseUserfaultfd)
: new LinearAlloc(arena_pool_.get(), /*track_allocs=*/ false);
}
class Runtime::SetupLinearAllocForZygoteFork : public AllocatorVisitor {
public:
explicit SetupLinearAllocForZygoteFork(Thread* self) : self_(self) {}
bool Visit(LinearAlloc* alloc) override {
alloc->SetupForPostZygoteFork(self_);
return true;
}
private:
Thread* self_;
};
void Runtime::SetupLinearAllocForPostZygoteFork(Thread* self) {
if (gUseUserfaultfd) {
// Setup all the linear-allocs out there for post-zygote fork. This will
// basically force the arena allocator to ask for a new arena for the next
// allocation. All arenas allocated from now on will be in the userfaultfd
// visited space.
if (GetLinearAlloc() != nullptr) {
GetLinearAlloc()->SetupForPostZygoteFork(self);
}
if (GetStartupLinearAlloc() != nullptr) {
GetStartupLinearAlloc()->SetupForPostZygoteFork(self);
}
{
Locks::mutator_lock_->AssertNotHeld(self);
ReaderMutexLock mu2(self, *Locks::mutator_lock_);
ReaderMutexLock mu3(self, *Locks::classlinker_classes_lock_);
SetupLinearAllocForZygoteFork visitor(self);
GetClassLinker()->VisitAllocators(&visitor);
}
static_cast<GcVisitedArenaPool*>(GetLinearAllocArenaPool())->SetupPostZygoteMode();
}
}
double Runtime::GetHashTableMinLoadFactor() const {
return is_low_memory_mode_ ? kLowMemoryMinLoadFactor : kNormalMinLoadFactor;
}
double Runtime::GetHashTableMaxLoadFactor() const {
return is_low_memory_mode_ ? kLowMemoryMaxLoadFactor : kNormalMaxLoadFactor;
}
void Runtime::UpdateProcessState(ProcessState process_state) {
ProcessState old_process_state = process_state_;
process_state_ = process_state;
GetHeap()->UpdateProcessState(old_process_state, process_state);
}
void Runtime::RegisterSensitiveThread() const {
Thread::SetJitSensitiveThread();
}
// Returns true if JIT compilations are enabled. GetJit() will be not null in this case.
bool Runtime::UseJitCompilation() const {
return (jit_ != nullptr) && jit_->UseJitCompilation();
}
void Runtime::EnvSnapshot::TakeSnapshot() {
char** env = GetEnviron();
for (size_t i = 0; env[i] != nullptr; ++i) {
name_value_pairs_.emplace_back(new std::string(env[i]));
}
// The strings in name_value_pairs_ retain ownership of the c_str, but we assign pointers
// for quick use by GetSnapshot. This avoids allocation and copying cost at Exec.
c_env_vector_.reset(new char*[name_value_pairs_.size() + 1]);
for (size_t i = 0; env[i] != nullptr; ++i) {
c_env_vector_[i] = const_cast<char*>(name_value_pairs_[i]->c_str());
}
c_env_vector_[name_value_pairs_.size()] = nullptr;
}
char** Runtime::EnvSnapshot::GetSnapshot() const {
return c_env_vector_.get();
}
void Runtime::AddSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
gc::ScopedGCCriticalSection gcs(Thread::Current(),
gc::kGcCauseAddRemoveSystemWeakHolder,
gc::kCollectorTypeAddRemoveSystemWeakHolder);
// Note: The ScopedGCCriticalSection also ensures that the rest of the function is in
// a critical section.
system_weak_holders_.push_back(holder);
}
void Runtime::RemoveSystemWeakHolder(gc::AbstractSystemWeakHolder* holder) {
gc::ScopedGCCriticalSection gcs(Thread::Current(),
gc::kGcCauseAddRemoveSystemWeakHolder,
gc::kCollectorTypeAddRemoveSystemWeakHolder);
auto it = std::find(system_weak_holders_.begin(), system_weak_holders_.end(), holder);
if (it != system_weak_holders_.end()) {
system_weak_holders_.erase(it);
}
}
RuntimeCallbacks* Runtime::GetRuntimeCallbacks() {
return callbacks_.get();
}
// Used to update boot image to not use AOT code. This is used when transitioning the runtime to
// java debuggable. This visitor re-initializes the entry points without using AOT code. This also
// disables shared hotness counters so the necessary methods can be JITed more efficiently.
class DeoptimizeBootImageClassVisitor : public ClassVisitor {
public:
explicit DeoptimizeBootImageClassVisitor(instrumentation::Instrumentation* instrumentation)
: instrumentation_(instrumentation) {}
bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES(Locks::mutator_lock_) {
DCHECK(Locks::mutator_lock_->IsExclusiveHeld(Thread::Current()));
auto pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
for (auto& m : klass->GetMethods(pointer_size)) {
const void* code = m.GetEntryPointFromQuickCompiledCode();
if (!m.IsInvokable()) {
continue;
}
// For java debuggable runtimes we also deoptimize native methods. For other cases (boot
// image profiling) we don't need to deoptimize native methods. If this changes also
// update Instrumentation::CanUseAotCode.
bool deoptimize_native_methods = Runtime::Current()->IsJavaDebuggable();
if (Runtime::Current()->GetHeap()->IsInBootImageOatFile(code) &&
(!m.IsNative() || deoptimize_native_methods) &&
!m.IsProxyMethod()) {
instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
}
if (Runtime::Current()->GetJit() != nullptr &&
Runtime::Current()->GetJit()->GetCodeCache()->IsInZygoteExecSpace(code) &&
(!m.IsNative() || deoptimize_native_methods)) {
DCHECK(!m.IsProxyMethod());
instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
}
if (m.IsPreCompiled()) {
// Precompilation is incompatible with debuggable, so clear the flag
// and update the entrypoint in case it has been compiled.
m.ClearPreCompiled();
instrumentation_->InitializeMethodsCode(&m, /*aot_code=*/ nullptr);
}
// Clear MemorySharedAccessFlags so the boot class methods can be JITed better.
m.ClearMemorySharedMethod();
}
return true;
}
private:
instrumentation::Instrumentation* const instrumentation_;
};
void Runtime::SetRuntimeDebugState(RuntimeDebugState state) {
if (state != RuntimeDebugState::kJavaDebuggableAtInit) {
// We never change the state if we started as a debuggable runtime.
DCHECK(runtime_debug_state_ != RuntimeDebugState::kJavaDebuggableAtInit);
}
runtime_debug_state_ = state;
}
void Runtime::DeoptimizeBootImage() {
// If we've already started and we are setting this runtime to debuggable,
// we patch entry points of methods in boot image to interpreter bridge, as
// boot image code may be AOT compiled as not debuggable.
DeoptimizeBootImageClassVisitor visitor(GetInstrumentation());
GetClassLinker()->VisitClasses(&visitor);
jit::Jit* jit = GetJit();
if (jit != nullptr) {
// Code previously compiled may not be compiled debuggable.
jit->GetCodeCache()->TransitionToDebuggable();
}
}
Runtime::ScopedThreadPoolUsage::ScopedThreadPoolUsage()
: thread_pool_(Runtime::Current()->AcquireThreadPool()) {}
Runtime::ScopedThreadPoolUsage::~ScopedThreadPoolUsage() {
Runtime::Current()->ReleaseThreadPool();
}
bool Runtime::DeleteThreadPool() {
// Make sure workers are started to prevent thread shutdown errors.
WaitForThreadPoolWorkersToStart();
std::unique_ptr<ThreadPool> thread_pool;
{
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
if (thread_pool_ref_count_ == 0) {
thread_pool = std::move(thread_pool_);
}
}
return thread_pool != nullptr;
}
ThreadPool* Runtime::AcquireThreadPool() {
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
++thread_pool_ref_count_;
return thread_pool_.get();
}
void Runtime::ReleaseThreadPool() {
MutexLock mu(Thread::Current(), *Locks::runtime_thread_pool_lock_);
CHECK_GT(thread_pool_ref_count_, 0u);
--thread_pool_ref_count_;
}
void Runtime::WaitForThreadPoolWorkersToStart() {
// Need to make sure workers are created before deleting the pool.
ScopedThreadPoolUsage stpu;
if (stpu.GetThreadPool() != nullptr) {
stpu.GetThreadPool()->WaitForWorkersToBeCreated();
}
}
void Runtime::ResetStartupCompleted() {
startup_completed_.store(false, std::memory_order_seq_cst);
}
bool Runtime::NotifyStartupCompleted() {
DCHECK(!IsZygote());
bool expected = false;
if (!startup_completed_.compare_exchange_strong(expected, true, std::memory_order_seq_cst)) {
// Right now NotifyStartupCompleted will be called up to twice, once from profiler and up to
// once externally. For this reason there are no asserts.
return false;
}
VLOG(startup) << app_info_;
ProfileSaver::NotifyStartupCompleted();
if (metrics_reporter_ != nullptr) {
metrics_reporter_->NotifyStartupCompleted();
}
return true;
}
void Runtime::NotifyDexFileLoaded() {
if (metrics_reporter_ != nullptr) {
metrics_reporter_->NotifyAppInfoUpdated(&app_info_);
}
}
bool Runtime::GetStartupCompleted() const {
return startup_completed_.load(std::memory_order_seq_cst);
}
void Runtime::SetSignalHookDebuggable(bool value) {
SkipAddSignalHandler(value);
}
void Runtime::SetJniIdType(JniIdType t) {
CHECK(CanSetJniIdType()) << "Not allowed to change id type!";
if (t == GetJniIdType()) {
return;
}
jni_ids_indirection_ = t;
JNIEnvExt::ResetFunctionTable();
WellKnownClasses::HandleJniIdTypeChange(Thread::Current()->GetJniEnv());
}
bool Runtime::IsSystemServerProfiled() const {
return IsSystemServer() && jit_options_->GetSaveProfilingInfo();
}
bool Runtime::GetOatFilesExecutable() const {
return !IsAotCompiler() && !IsSystemServerProfiled();
}
void Runtime::MadviseFileForRange(size_t madvise_size_limit_bytes,
size_t map_size_bytes,
const uint8_t* map_begin,
const uint8_t* map_end,
const std::string& file_name) {
map_begin = AlignDown(map_begin, gPageSize);
map_size_bytes = RoundUp(map_size_bytes, gPageSize);
#ifdef ART_TARGET_ANDROID
// Short-circuit the madvise optimization for background processes. This
// avoids IO and memory contention with foreground processes, particularly
// those involving app startup.
// Note: We can only safely short-circuit the madvise on T+, as it requires
// the framework to always immediately notify ART of process states.
static const int kApiLevel = android_get_device_api_level();
const bool accurate_process_state_at_startup = kApiLevel >= __ANDROID_API_T__;
if (accurate_process_state_at_startup) {
const Runtime* runtime = Runtime::Current();
if (runtime != nullptr && !runtime->InJankPerceptibleProcessState()) {
return;
}
}
#endif // ART_TARGET_ANDROID
// Ideal blockTransferSize for madvising files (128KiB)
static constexpr size_t kIdealIoTransferSizeBytes = 128*1024;
size_t target_size_bytes = std::min<size_t>(map_size_bytes, madvise_size_limit_bytes);
if (target_size_bytes > 0) {
ScopedTrace madvising_trace("madvising "
+ file_name
+ " size="
+ std::to_string(target_size_bytes));
// Based on requested size (target_size_bytes)
const uint8_t* target_pos = map_begin + target_size_bytes;
// Clamp endOfFile if its past map_end
if (target_pos > map_end) {
target_pos = map_end;
}
// Madvise the whole file up to target_pos in chunks of
// kIdealIoTransferSizeBytes (to MADV_WILLNEED)
// Note:
// madvise(MADV_WILLNEED) will prefetch max(fd readahead size, optimal
// block size for device) per call, hence the need for chunks. (128KB is a
// good default.)
for (const uint8_t* madvise_start = map_begin;
madvise_start < target_pos;
madvise_start += kIdealIoTransferSizeBytes) {
void* madvise_addr = const_cast<void*>(reinterpret_cast<const void*>(madvise_start));
size_t madvise_length = std::min(kIdealIoTransferSizeBytes,
static_cast<size_t>(target_pos - madvise_start));
int status = madvise(madvise_addr, madvise_length, MADV_WILLNEED);
// In case of error we stop madvising rest of the file
if (status < 0) {
LOG(ERROR) << "Failed to madvise file " << file_name
<< " for size:" << map_size_bytes
<< ": " << strerror(errno);
break;
}
}
}
}
// Return whether a boot image has a profile. This means we'll need to pre-JIT
// methods in that profile for performance.
bool Runtime::HasImageWithProfile() const {
for (gc::space::ImageSpace* space : GetHeap()->GetBootImageSpaces()) {
if (!space->GetProfileFiles().empty()) {
return true;
}
}
return false;
}
void Runtime::AppendToBootClassPath(const std::string& filename, const std::string& location) {
DCHECK(!DexFileLoader::IsMultiDexLocation(filename));
boot_class_path_.push_back(filename);
if (!boot_class_path_locations_.empty()) {
DCHECK(!DexFileLoader::IsMultiDexLocation(location));
boot_class_path_locations_.push_back(location);
}
}
void Runtime::AppendToBootClassPath(
const std::string& filename,
const std::string& location,
const std::vector<std::unique_ptr<const art::DexFile>>& dex_files) {
AppendToBootClassPath(filename, location);
ScopedObjectAccess soa(Thread::Current());
for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
// The first element must not be at a multi-dex location, while other elements must be.
DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
dex_file.get() == dex_files.begin()->get());
GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file.get());
}
}
void Runtime::AppendToBootClassPath(const std::string& filename,
const std::string& location,
const std::vector<const art::DexFile*>& dex_files) {
AppendToBootClassPath(filename, location);
ScopedObjectAccess soa(Thread::Current());
for (const art::DexFile* dex_file : dex_files) {
// The first element must not be at a multi-dex location, while other elements must be.
DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
dex_file == *dex_files.begin());
GetClassLinker()->AppendToBootClassPath(Thread::Current(), dex_file);
}
}
void Runtime::AppendToBootClassPath(
const std::string& filename,
const std::string& location,
const std::vector<std::pair<const art::DexFile*, ObjPtr<mirror::DexCache>>>&
dex_files_and_cache) {
AppendToBootClassPath(filename, location);
ScopedObjectAccess soa(Thread::Current());
for (const auto& [dex_file, dex_cache] : dex_files_and_cache) {
// The first element must not be at a multi-dex location, while other elements must be.
DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
dex_file == dex_files_and_cache.begin()->first);
GetClassLinker()->AppendToBootClassPath(dex_file, dex_cache);
}
}
void Runtime::AddExtraBootDexFiles(const std::string& filename,
const std::string& location,
std::vector<std::unique_ptr<const art::DexFile>>&& dex_files) {
AppendToBootClassPath(filename, location);
ScopedObjectAccess soa(Thread::Current());
if (kIsDebugBuild) {
for (const std::unique_ptr<const art::DexFile>& dex_file : dex_files) {
// The first element must not be at a multi-dex location, while other elements must be.
DCHECK_NE(DexFileLoader::IsMultiDexLocation(dex_file->GetLocation()),
dex_file.get() == dex_files.begin()->get());
}
}
GetClassLinker()->AddExtraBootDexFiles(Thread::Current(), std::move(dex_files));
}
} // namespace art