blob: 9d32071285f5097768616c44ed736c6bb5c6ca7b [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_JNI_MACRO_ASSEMBLER_H_
#define ART_COMPILER_UTILS_JNI_MACRO_ASSEMBLER_H_
#include <vector>
#include <android-base/logging.h>
#include "arch/instruction_set.h"
#include "base/arena_allocator.h"
#include "base/arena_object.h"
#include "base/array_ref.h"
#include "base/enums.h"
#include "base/macros.h"
#include "managed_register.h"
#include "offsets.h"
namespace art HIDDEN {
class ArenaAllocator;
class DebugFrameOpCodeWriterForAssembler;
class InstructionSetFeatures;
class MemoryRegion;
class JNIMacroLabel;
enum class JNIMacroUnaryCondition {
kZero,
kNotZero
};
class ArgumentLocation {
public:
ArgumentLocation(ManagedRegister reg, size_t size)
: reg_(reg), frame_offset_(0u), size_(size) {
DCHECK(reg.IsRegister());
}
ArgumentLocation(FrameOffset frame_offset, size_t size)
: reg_(ManagedRegister::NoRegister()), frame_offset_(frame_offset), size_(size) {}
bool IsRegister() const {
return reg_.IsRegister();
}
ManagedRegister GetRegister() const {
DCHECK(IsRegister());
return reg_;
}
FrameOffset GetFrameOffset() const {
DCHECK(!IsRegister());
return frame_offset_;
}
size_t GetSize() const {
return size_;
}
private:
ManagedRegister reg_;
FrameOffset frame_offset_;
size_t size_;
};
template <PointerSize kPointerSize>
class JNIMacroAssembler : public DeletableArenaObject<kArenaAllocAssembler> {
public:
static std::unique_ptr<JNIMacroAssembler<kPointerSize>> Create(
ArenaAllocator* allocator,
InstructionSet instruction_set,
const InstructionSetFeatures* instruction_set_features = nullptr);
// Finalize the code; emit slow paths, fixup branches, add literal pool, etc.
virtual void FinalizeCode() = 0;
// Size of generated code
virtual size_t CodeSize() const = 0;
// Copy instructions out of assembly buffer into the given region of memory
virtual void CopyInstructions(const MemoryRegion& region) = 0;
// Emit code that will create an activation on the stack
virtual void BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> callee_save_regs) = 0;
// Emit code that will remove an activation from the stack
//
// Argument `may_suspend` must be `true` if the compiled method may be
// suspended during its execution (otherwise `false`, if it is impossible
// to suspend during its execution).
virtual void RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> callee_save_regs,
bool may_suspend) = 0;
virtual void IncreaseFrameSize(size_t adjust) = 0;
virtual void DecreaseFrameSize(size_t adjust) = 0;
// Return the same core register but with correct size if the architecture-specific
// ManagedRegister has different representation for different sizes.
virtual ManagedRegister CoreRegisterWithSize(ManagedRegister src, size_t size) = 0;
// Store routines
virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0;
virtual void Store(ManagedRegister base, MemberOffset offs, ManagedRegister src, size_t size) = 0;
virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0;
// Stores stack pointer by tagging it if required so we can walk the stack. In debuggable runtimes
// we use tag to tell if we are using JITed code or AOT code. In non-debuggable runtimes we never
// use JITed code when AOT code is present. So checking for AOT code is sufficient to detect which
// code is being executed. We avoid tagging in non-debuggable runtimes to reduce instructions.
virtual void StoreStackPointerToThread(ThreadOffset<kPointerSize> thr_offs, bool tag_sp) = 0;
// Load routines
virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0;
virtual void Load(ManagedRegister dest, ManagedRegister base, MemberOffset offs, size_t size) = 0;
virtual void LoadRawPtrFromThread(ManagedRegister dest, ThreadOffset<kPointerSize> offs) = 0;
// Load reference from a `GcRoot<>`. The default is to load as `jint`. Some architectures
// (say, RISC-V) override this to provide a different sign- or zero-extension.
virtual void LoadGcRootWithoutReadBarrier(ManagedRegister dest,
ManagedRegister base,
MemberOffset offs);
// Load reference from a `StackReference<>`. The default is to load as `jint`. Some architectures
// (say, RISC-V) override this to provide a different sign- or zero-extension.
virtual void LoadStackReference(ManagedRegister dest, FrameOffset offs);
// Copying routines
// Move arguments from `srcs` locations to `dests` locations.
//
// References shall be spilled to `refs` frame offsets (kInvalidReferenceOffset indicates
// a non-reference type) if they are in registers and corresponding `dests` shall be
// filled with `jobject` replacements. If the first argument is a reference, it is
// assumed to be `this` and cannot be null, all other reference arguments can be null.
virtual void MoveArguments(ArrayRef<ArgumentLocation> dests,
ArrayRef<ArgumentLocation> srcs,
ArrayRef<FrameOffset> refs) = 0;
virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0;
virtual void Move(ManagedRegister dst, size_t value) = 0;
// Sign extension
virtual void SignExtend(ManagedRegister mreg, size_t size) = 0;
// Zero extension
virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0;
// Exploit fast access in managed code to Thread::Current()
virtual void GetCurrentThread(ManagedRegister dest) = 0;
virtual void GetCurrentThread(FrameOffset dest_offset) = 0;
// Manipulating local reference table states.
//
// These have a default implementation but they can be overridden to use register pair
// load/store instructions on architectures that support them (arm, arm64).
virtual void LoadLocalReferenceTableStates(ManagedRegister jni_env_reg,
ManagedRegister previous_state_reg,
ManagedRegister current_state_reg);
virtual void StoreLocalReferenceTableStates(ManagedRegister jni_env_reg,
ManagedRegister previous_state_reg,
ManagedRegister current_state_reg);
// Decode JNI transition or local `jobject`. For (weak) global `jobject`, jump to slow path.
virtual void DecodeJNITransitionOrLocalJObject(ManagedRegister reg,
JNIMacroLabel* slow_path,
JNIMacroLabel* resume) = 0;
// Heap::VerifyObject on src. In some cases (such as a reference to this) we
// know that src may not be null.
virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0;
virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0;
// Jump to address held at [base+offset] (used for tail calls).
virtual void Jump(ManagedRegister base, Offset offset) = 0;
// Call to address held at [base+offset]
virtual void Call(ManagedRegister base, Offset offset) = 0;
virtual void CallFromThread(ThreadOffset<kPointerSize> offset) = 0;
// Generate fast-path for transition to Native. Go to `label` if any thread flag is set.
// The implementation can use `scratch_regs` which should be callee save core registers
// (already saved before this call) and must preserve all argument registers.
virtual void TryToTransitionFromRunnableToNative(
JNIMacroLabel* label, ArrayRef<const ManagedRegister> scratch_regs) = 0;
// Generate fast-path for transition to Runnable. Go to `label` if any thread flag is set.
// The implementation can use `scratch_regs` which should be core argument registers
// not used as return registers and it must preserve the `return_reg` if any.
virtual void TryToTransitionFromNativeToRunnable(JNIMacroLabel* label,
ArrayRef<const ManagedRegister> scratch_regs,
ManagedRegister return_reg) = 0;
// Generate suspend check and branch to `label` if there is a pending suspend request.
virtual void SuspendCheck(JNIMacroLabel* label) = 0;
// Generate code to check if Thread::Current()->exception_ is non-null
// and branch to the `label` if it is.
virtual void ExceptionPoll(JNIMacroLabel* label) = 0;
// Deliver pending exception.
virtual void DeliverPendingException() = 0;
// Create a new label that can be used with Jump/Bind calls.
virtual std::unique_ptr<JNIMacroLabel> CreateLabel() = 0;
// Emit an unconditional jump to the label.
virtual void Jump(JNIMacroLabel* label) = 0;
// Emit a conditional jump to the label by applying a unary condition test to the GC marking flag.
virtual void TestGcMarking(JNIMacroLabel* label, JNIMacroUnaryCondition cond) = 0;
// Emit a conditional jump to the label by applying a unary condition test to object's mark bit.
virtual void TestMarkBit(ManagedRegister ref,
JNIMacroLabel* label,
JNIMacroUnaryCondition cond) = 0;
// Emit a conditional jump to label if the loaded value from specified locations is not zero.
virtual void TestByteAndJumpIfNotZero(uintptr_t address, JNIMacroLabel* label) = 0;
// Code at this offset will serve as the target for the Jump call.
virtual void Bind(JNIMacroLabel* label) = 0;
virtual ~JNIMacroAssembler() {}
/**
* @brief Buffer of DWARF's Call Frame Information opcodes.
* @details It is used by debuggers and other tools to unwind the call stack.
*/
virtual DebugFrameOpCodeWriterForAssembler& cfi() = 0;
void SetEmitRunTimeChecksInDebugMode(bool value) {
emit_run_time_checks_in_debug_mode_ = value;
}
static constexpr FrameOffset kInvalidReferenceOffset = FrameOffset(0);
protected:
JNIMacroAssembler() {}
// Should run-time checks be emitted in debug mode?
bool emit_run_time_checks_in_debug_mode_ = false;
};
// A "Label" class used with the JNIMacroAssembler
// allowing one to use branches (jumping from one place to another).
//
// This is just an interface, so every platform must provide
// its own implementation of it.
//
// It is only safe to use a label created
// via JNIMacroAssembler::CreateLabel with that same macro assembler.
class JNIMacroLabel {
public:
virtual ~JNIMacroLabel() = 0;
const InstructionSet isa_;
protected:
explicit JNIMacroLabel(InstructionSet isa) : isa_(isa) {}
};
inline JNIMacroLabel::~JNIMacroLabel() {
// Compulsory definition for a pure virtual destructor
// to avoid linking errors.
}
template <typename T, PointerSize kPointerSize>
class JNIMacroAssemblerFwd : public JNIMacroAssembler<kPointerSize> {
public:
void FinalizeCode() override {
asm_.FinalizeCode();
}
size_t CodeSize() const override {
return asm_.CodeSize();
}
void CopyInstructions(const MemoryRegion& region) override {
asm_.CopyInstructions(region);
}
DebugFrameOpCodeWriterForAssembler& cfi() override {
return asm_.cfi();
}
protected:
explicit JNIMacroAssemblerFwd(ArenaAllocator* allocator) : asm_(allocator) {}
T asm_;
};
template <typename Self, typename PlatformLabel, InstructionSet kIsa>
class JNIMacroLabelCommon : public JNIMacroLabel {
public:
static Self* Cast(JNIMacroLabel* label) {
CHECK(label != nullptr);
CHECK_EQ(kIsa, label->isa_);
return reinterpret_cast<Self*>(label);
}
protected:
PlatformLabel* AsPlatformLabel() {
return &label_;
}
JNIMacroLabelCommon() : JNIMacroLabel(kIsa) {
}
~JNIMacroLabelCommon() override {}
private:
PlatformLabel label_;
};
} // namespace art
#endif // ART_COMPILER_UTILS_JNI_MACRO_ASSEMBLER_H_