| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_UTILS_ASSEMBLER_H_ |
| #define ART_COMPILER_UTILS_ASSEMBLER_H_ |
| |
| #include <vector> |
| |
| #include "arch/instruction_set.h" |
| #include "arch/instruction_set_features.h" |
| #include "arm/constants_arm.h" |
| #include "base/arena_allocator.h" |
| #include "base/arena_object.h" |
| #include "base/array_ref.h" |
| #include "base/enums.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "debug/dwarf/debug_frame_opcode_writer.h" |
| #include "label.h" |
| #include "managed_register.h" |
| #include "memory_region.h" |
| #include "mips/constants_mips.h" |
| #include "offsets.h" |
| #include "x86/constants_x86.h" |
| #include "x86_64/constants_x86_64.h" |
| |
| namespace art { |
| |
| class Assembler; |
| class AssemblerBuffer; |
| |
| // Assembler fixups are positions in generated code that require processing |
| // after the code has been copied to executable memory. This includes building |
| // relocation information. |
| class AssemblerFixup { |
| public: |
| virtual void Process(const MemoryRegion& region, int position) = 0; |
| virtual ~AssemblerFixup() {} |
| |
| private: |
| AssemblerFixup* previous_; |
| int position_; |
| |
| AssemblerFixup* previous() const { return previous_; } |
| void set_previous(AssemblerFixup* previous_in) { previous_ = previous_in; } |
| |
| int position() const { return position_; } |
| void set_position(int position_in) { position_ = position_in; } |
| |
| friend class AssemblerBuffer; |
| }; |
| |
| // Parent of all queued slow paths, emitted during finalization |
| class SlowPath : public DeletableArenaObject<kArenaAllocAssembler> { |
| public: |
| SlowPath() : next_(nullptr) {} |
| virtual ~SlowPath() {} |
| |
| Label* Continuation() { return &continuation_; } |
| Label* Entry() { return &entry_; } |
| // Generate code for slow path |
| virtual void Emit(Assembler *sp_asm) = 0; |
| |
| protected: |
| // Entry branched to by fast path |
| Label entry_; |
| // Optional continuation that is branched to at the end of the slow path |
| Label continuation_; |
| // Next in linked list of slow paths |
| SlowPath *next_; |
| |
| private: |
| friend class AssemblerBuffer; |
| DISALLOW_COPY_AND_ASSIGN(SlowPath); |
| }; |
| |
| class AssemblerBuffer { |
| public: |
| explicit AssemblerBuffer(ArenaAllocator* allocator); |
| ~AssemblerBuffer(); |
| |
| ArenaAllocator* GetAllocator() { |
| return allocator_; |
| } |
| |
| // Basic support for emitting, loading, and storing. |
| template<typename T> void Emit(T value) { |
| CHECK(HasEnsuredCapacity()); |
| *reinterpret_cast<T*>(cursor_) = value; |
| cursor_ += sizeof(T); |
| } |
| |
| template<typename T> T Load(size_t position) { |
| CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); |
| return *reinterpret_cast<T*>(contents_ + position); |
| } |
| |
| template<typename T> void Store(size_t position, T value) { |
| CHECK_LE(position, Size() - static_cast<int>(sizeof(T))); |
| *reinterpret_cast<T*>(contents_ + position) = value; |
| } |
| |
| void Resize(size_t new_size) { |
| if (new_size > Capacity()) { |
| ExtendCapacity(new_size); |
| } |
| cursor_ = contents_ + new_size; |
| } |
| |
| void Move(size_t newposition, size_t oldposition, size_t size) { |
| // Move a chunk of the buffer from oldposition to newposition. |
| DCHECK_LE(oldposition + size, Size()); |
| DCHECK_LE(newposition + size, Size()); |
| memmove(contents_ + newposition, contents_ + oldposition, size); |
| } |
| |
| // Emit a fixup at the current location. |
| void EmitFixup(AssemblerFixup* fixup) { |
| fixup->set_previous(fixup_); |
| fixup->set_position(Size()); |
| fixup_ = fixup; |
| } |
| |
| void EnqueueSlowPath(SlowPath* slowpath) { |
| if (slow_path_ == nullptr) { |
| slow_path_ = slowpath; |
| } else { |
| SlowPath* cur = slow_path_; |
| for ( ; cur->next_ != nullptr ; cur = cur->next_) {} |
| cur->next_ = slowpath; |
| } |
| } |
| |
| void EmitSlowPaths(Assembler* sp_asm) { |
| SlowPath* cur = slow_path_; |
| SlowPath* next = nullptr; |
| slow_path_ = nullptr; |
| for ( ; cur != nullptr ; cur = next) { |
| cur->Emit(sp_asm); |
| next = cur->next_; |
| delete cur; |
| } |
| } |
| |
| // Get the size of the emitted code. |
| size_t Size() const { |
| CHECK_GE(cursor_, contents_); |
| return cursor_ - contents_; |
| } |
| |
| uint8_t* contents() const { return contents_; } |
| |
| // Copy the assembled instructions into the specified memory block |
| // and apply all fixups. |
| void FinalizeInstructions(const MemoryRegion& region); |
| |
| // To emit an instruction to the assembler buffer, the EnsureCapacity helper |
| // must be used to guarantee that the underlying data area is big enough to |
| // hold the emitted instruction. Usage: |
| // |
| // AssemblerBuffer buffer; |
| // AssemblerBuffer::EnsureCapacity ensured(&buffer); |
| // ... emit bytes for single instruction ... |
| |
| #ifndef NDEBUG |
| |
| class EnsureCapacity { |
| public: |
| explicit EnsureCapacity(AssemblerBuffer* buffer) { |
| if (buffer->cursor() > buffer->limit()) { |
| buffer->ExtendCapacity(buffer->Size() + kMinimumGap); |
| } |
| // In debug mode, we save the assembler buffer along with the gap |
| // size before we start emitting to the buffer. This allows us to |
| // check that any single generated instruction doesn't overflow the |
| // limit implied by the minimum gap size. |
| buffer_ = buffer; |
| gap_ = ComputeGap(); |
| // Make sure that extending the capacity leaves a big enough gap |
| // for any kind of instruction. |
| CHECK_GE(gap_, kMinimumGap); |
| // Mark the buffer as having ensured the capacity. |
| CHECK(!buffer->HasEnsuredCapacity()); // Cannot nest. |
| buffer->has_ensured_capacity_ = true; |
| } |
| |
| ~EnsureCapacity() { |
| // Unmark the buffer, so we cannot emit after this. |
| buffer_->has_ensured_capacity_ = false; |
| // Make sure the generated instruction doesn't take up more |
| // space than the minimum gap. |
| int delta = gap_ - ComputeGap(); |
| CHECK_LE(delta, kMinimumGap); |
| } |
| |
| private: |
| AssemblerBuffer* buffer_; |
| int gap_; |
| |
| int ComputeGap() { return buffer_->Capacity() - buffer_->Size(); } |
| }; |
| |
| bool has_ensured_capacity_; |
| bool HasEnsuredCapacity() const { return has_ensured_capacity_; } |
| |
| #else |
| |
| class EnsureCapacity { |
| public: |
| explicit EnsureCapacity(AssemblerBuffer* buffer) { |
| if (buffer->cursor() > buffer->limit()) { |
| buffer->ExtendCapacity(buffer->Size() + kMinimumGap); |
| } |
| } |
| }; |
| |
| // When building the C++ tests, assertion code is enabled. To allow |
| // asserting that the user of the assembler buffer has ensured the |
| // capacity needed for emitting, we add a dummy method in non-debug mode. |
| bool HasEnsuredCapacity() const { return true; } |
| |
| #endif |
| |
| // Returns the position in the instruction stream. |
| int GetPosition() { return cursor_ - contents_; } |
| |
| size_t Capacity() const { |
| CHECK_GE(limit_, contents_); |
| return (limit_ - contents_) + kMinimumGap; |
| } |
| |
| // Unconditionally increase the capacity. |
| // The provided `min_capacity` must be higher than current `Capacity()`. |
| void ExtendCapacity(size_t min_capacity); |
| |
| private: |
| // The limit is set to kMinimumGap bytes before the end of the data area. |
| // This leaves enough space for the longest possible instruction and allows |
| // for a single, fast space check per instruction. |
| static const int kMinimumGap = 32; |
| |
| ArenaAllocator* allocator_; |
| uint8_t* contents_; |
| uint8_t* cursor_; |
| uint8_t* limit_; |
| AssemblerFixup* fixup_; |
| #ifndef NDEBUG |
| bool fixups_processed_; |
| #endif |
| |
| // Head of linked list of slow paths |
| SlowPath* slow_path_; |
| |
| uint8_t* cursor() const { return cursor_; } |
| uint8_t* limit() const { return limit_; } |
| |
| // Process the fixup chain starting at the given fixup. The offset is |
| // non-zero for fixups in the body if the preamble is non-empty. |
| void ProcessFixups(const MemoryRegion& region); |
| |
| // Compute the limit based on the data area and the capacity. See |
| // description of kMinimumGap for the reasoning behind the value. |
| static uint8_t* ComputeLimit(uint8_t* data, size_t capacity) { |
| return data + capacity - kMinimumGap; |
| } |
| |
| friend class AssemblerFixup; |
| }; |
| |
| // The purpose of this class is to ensure that we do not have to explicitly |
| // call the AdvancePC method (which is good for convenience and correctness). |
| class DebugFrameOpCodeWriterForAssembler FINAL |
| : public dwarf::DebugFrameOpCodeWriter<> { |
| public: |
| struct DelayedAdvancePC { |
| uint32_t stream_pos; |
| uint32_t pc; |
| }; |
| |
| // This method is called the by the opcode writers. |
| virtual void ImplicitlyAdvancePC() FINAL; |
| |
| explicit DebugFrameOpCodeWriterForAssembler(Assembler* buffer) |
| : dwarf::DebugFrameOpCodeWriter<>(false /* enabled */), |
| assembler_(buffer), |
| delay_emitting_advance_pc_(false), |
| delayed_advance_pcs_() { |
| } |
| |
| ~DebugFrameOpCodeWriterForAssembler() { |
| DCHECK(delayed_advance_pcs_.empty()); |
| } |
| |
| // Tell the writer to delay emitting advance PC info. |
| // The assembler must explicitly process all the delayed advances. |
| void DelayEmittingAdvancePCs() { |
| delay_emitting_advance_pc_ = true; |
| } |
| |
| // Override the last delayed PC. The new PC can be out of order. |
| void OverrideDelayedPC(size_t pc) { |
| DCHECK(delay_emitting_advance_pc_); |
| if (enabled_) { |
| DCHECK(!delayed_advance_pcs_.empty()); |
| delayed_advance_pcs_.back().pc = pc; |
| } |
| } |
| |
| // Return the number of delayed advance PC entries. |
| size_t NumberOfDelayedAdvancePCs() const { |
| return delayed_advance_pcs_.size(); |
| } |
| |
| // Release the CFI stream and advance PC infos so that the assembler can patch it. |
| std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> |
| ReleaseStreamAndPrepareForDelayedAdvancePC() { |
| DCHECK(delay_emitting_advance_pc_); |
| delay_emitting_advance_pc_ = false; |
| std::pair<std::vector<uint8_t>, std::vector<DelayedAdvancePC>> result; |
| result.first.swap(opcodes_); |
| result.second.swap(delayed_advance_pcs_); |
| return result; |
| } |
| |
| // Reserve space for the CFI stream. |
| void ReserveCFIStream(size_t capacity) { |
| opcodes_.reserve(capacity); |
| } |
| |
| // Append raw data to the CFI stream. |
| void AppendRawData(const std::vector<uint8_t>& raw_data, size_t first, size_t last) { |
| DCHECK_LE(0u, first); |
| DCHECK_LE(first, last); |
| DCHECK_LE(last, raw_data.size()); |
| opcodes_.insert(opcodes_.end(), raw_data.begin() + first, raw_data.begin() + last); |
| } |
| |
| private: |
| Assembler* assembler_; |
| bool delay_emitting_advance_pc_; |
| std::vector<DelayedAdvancePC> delayed_advance_pcs_; |
| }; |
| |
| class Assembler : public DeletableArenaObject<kArenaAllocAssembler> { |
| public: |
| // Finalize the code; emit slow paths, fixup branches, add literal pool, etc. |
| virtual void FinalizeCode() { buffer_.EmitSlowPaths(this); } |
| |
| // Size of generated code |
| virtual size_t CodeSize() const { return buffer_.Size(); } |
| virtual const uint8_t* CodeBufferBaseAddress() const { return buffer_.contents(); } |
| // CodePosition() is a non-const method similar to CodeSize(), which is used to |
| // record positions within the code buffer for the purpose of signal handling |
| // (stack overflow checks and implicit null checks may trigger signals and the |
| // signal handlers expect them right before the recorded positions). |
| // On most architectures CodePosition() should be equivalent to CodeSize(), but |
| // the MIPS assembler needs to be aware of this recording, so it doesn't put |
| // the instructions that can trigger signals into branch delay slots. Handling |
| // signals from instructions in delay slots is a bit problematic and should be |
| // avoided. |
| virtual size_t CodePosition() { return CodeSize(); } |
| |
| // Copy instructions out of assembly buffer into the given region of memory |
| virtual void FinalizeInstructions(const MemoryRegion& region) { |
| buffer_.FinalizeInstructions(region); |
| } |
| |
| // TODO: Implement with disassembler. |
| virtual void Comment(const char* format ATTRIBUTE_UNUSED, ...) {} |
| |
| virtual void Bind(Label* label) = 0; |
| virtual void Jump(Label* label) = 0; |
| |
| virtual ~Assembler() {} |
| |
| /** |
| * @brief Buffer of DWARF's Call Frame Information opcodes. |
| * @details It is used by debuggers and other tools to unwind the call stack. |
| */ |
| DebugFrameOpCodeWriterForAssembler& cfi() { return cfi_; } |
| |
| ArenaAllocator* GetAllocator() { |
| return buffer_.GetAllocator(); |
| } |
| |
| AssemblerBuffer* GetBuffer() { |
| return &buffer_; |
| } |
| |
| protected: |
| explicit Assembler(ArenaAllocator* allocator) : buffer_(allocator), cfi_(this) {} |
| |
| AssemblerBuffer buffer_; |
| |
| DebugFrameOpCodeWriterForAssembler cfi_; |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_UTILS_ASSEMBLER_H_ |