| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <algorithm> |
| #include <memory> |
| |
| #include "base/logging.h" |
| #include "base/scoped_arena_containers.h" |
| #include "dataflow_iterator-inl.h" |
| #include "compiler_ir.h" |
| #include "dex_flags.h" |
| #include "dex_instruction-inl.h" |
| #include "dex/mir_field_info.h" |
| #include "dex/verified_method.h" |
| #include "dex/quick/dex_file_method_inliner.h" |
| #include "dex/quick/dex_file_to_method_inliner_map.h" |
| #include "driver/compiler_driver.h" |
| #include "driver/compiler_options.h" |
| #include "driver/dex_compilation_unit.h" |
| |
| namespace art { |
| |
| enum InstructionAnalysisAttributeOps : uint8_t { |
| kUninterestingOp = 0, |
| kArithmeticOp, |
| kFpOp, |
| kSingleOp, |
| kDoubleOp, |
| kIntOp, |
| kLongOp, |
| kBranchOp, |
| kInvokeOp, |
| kArrayOp, |
| kHeavyweightOp, |
| kSimpleConstOp, |
| kMoveOp, |
| kSwitch |
| }; |
| |
| enum InstructionAnalysisAttributeMasks : uint16_t { |
| kAnNone = 1 << kUninterestingOp, |
| kAnMath = 1 << kArithmeticOp, |
| kAnFp = 1 << kFpOp, |
| kAnLong = 1 << kLongOp, |
| kAnInt = 1 << kIntOp, |
| kAnSingle = 1 << kSingleOp, |
| kAnDouble = 1 << kDoubleOp, |
| kAnFloatMath = 1 << kFpOp, |
| kAnBranch = 1 << kBranchOp, |
| kAnInvoke = 1 << kInvokeOp, |
| kAnArrayOp = 1 << kArrayOp, |
| kAnHeavyWeight = 1 << kHeavyweightOp, |
| kAnSimpleConst = 1 << kSimpleConstOp, |
| kAnMove = 1 << kMoveOp, |
| kAnSwitch = 1 << kSwitch, |
| kAnComputational = kAnMath | kAnArrayOp | kAnMove | kAnSimpleConst, |
| }; |
| |
| // Instruction characteristics used to statically identify computation-intensive methods. |
| static const uint16_t kAnalysisAttributes[kMirOpLast] = { |
| // 00 NOP |
| kAnNone, |
| |
| // 01 MOVE vA, vB |
| kAnMove, |
| |
| // 02 MOVE_FROM16 vAA, vBBBB |
| kAnMove, |
| |
| // 03 MOVE_16 vAAAA, vBBBB |
| kAnMove, |
| |
| // 04 MOVE_WIDE vA, vB |
| kAnMove, |
| |
| // 05 MOVE_WIDE_FROM16 vAA, vBBBB |
| kAnMove, |
| |
| // 06 MOVE_WIDE_16 vAAAA, vBBBB |
| kAnMove, |
| |
| // 07 MOVE_OBJECT vA, vB |
| kAnMove, |
| |
| // 08 MOVE_OBJECT_FROM16 vAA, vBBBB |
| kAnMove, |
| |
| // 09 MOVE_OBJECT_16 vAAAA, vBBBB |
| kAnMove, |
| |
| // 0A MOVE_RESULT vAA |
| kAnMove, |
| |
| // 0B MOVE_RESULT_WIDE vAA |
| kAnMove, |
| |
| // 0C MOVE_RESULT_OBJECT vAA |
| kAnMove, |
| |
| // 0D MOVE_EXCEPTION vAA |
| kAnMove, |
| |
| // 0E RETURN_VOID |
| kAnBranch, |
| |
| // 0F RETURN vAA |
| kAnBranch, |
| |
| // 10 RETURN_WIDE vAA |
| kAnBranch, |
| |
| // 11 RETURN_OBJECT vAA |
| kAnBranch, |
| |
| // 12 CONST_4 vA, #+B |
| kAnSimpleConst, |
| |
| // 13 CONST_16 vAA, #+BBBB |
| kAnSimpleConst, |
| |
| // 14 CONST vAA, #+BBBBBBBB |
| kAnSimpleConst, |
| |
| // 15 CONST_HIGH16 VAA, #+BBBB0000 |
| kAnSimpleConst, |
| |
| // 16 CONST_WIDE_16 vAA, #+BBBB |
| kAnSimpleConst, |
| |
| // 17 CONST_WIDE_32 vAA, #+BBBBBBBB |
| kAnSimpleConst, |
| |
| // 18 CONST_WIDE vAA, #+BBBBBBBBBBBBBBBB |
| kAnSimpleConst, |
| |
| // 19 CONST_WIDE_HIGH16 vAA, #+BBBB000000000000 |
| kAnSimpleConst, |
| |
| // 1A CONST_STRING vAA, string@BBBB |
| kAnNone, |
| |
| // 1B CONST_STRING_JUMBO vAA, string@BBBBBBBB |
| kAnNone, |
| |
| // 1C CONST_CLASS vAA, type@BBBB |
| kAnNone, |
| |
| // 1D MONITOR_ENTER vAA |
| kAnNone, |
| |
| // 1E MONITOR_EXIT vAA |
| kAnNone, |
| |
| // 1F CHK_CAST vAA, type@BBBB |
| kAnNone, |
| |
| // 20 INSTANCE_OF vA, vB, type@CCCC |
| kAnNone, |
| |
| // 21 ARRAY_LENGTH vA, vB |
| kAnArrayOp, |
| |
| // 22 NEW_INSTANCE vAA, type@BBBB |
| kAnHeavyWeight, |
| |
| // 23 NEW_ARRAY vA, vB, type@CCCC |
| kAnHeavyWeight, |
| |
| // 24 FILLED_NEW_ARRAY {vD, vE, vF, vG, vA} |
| kAnHeavyWeight, |
| |
| // 25 FILLED_NEW_ARRAY_RANGE {vCCCC .. vNNNN}, type@BBBB |
| kAnHeavyWeight, |
| |
| // 26 FILL_ARRAY_DATA vAA, +BBBBBBBB |
| kAnNone, |
| |
| // 27 THROW vAA |
| kAnHeavyWeight | kAnBranch, |
| |
| // 28 GOTO |
| kAnBranch, |
| |
| // 29 GOTO_16 |
| kAnBranch, |
| |
| // 2A GOTO_32 |
| kAnBranch, |
| |
| // 2B PACKED_SWITCH vAA, +BBBBBBBB |
| kAnSwitch, |
| |
| // 2C SPARSE_SWITCH vAA, +BBBBBBBB |
| kAnSwitch, |
| |
| // 2D CMPL_FLOAT vAA, vBB, vCC |
| kAnMath | kAnFp | kAnSingle, |
| |
| // 2E CMPG_FLOAT vAA, vBB, vCC |
| kAnMath | kAnFp | kAnSingle, |
| |
| // 2F CMPL_DOUBLE vAA, vBB, vCC |
| kAnMath | kAnFp | kAnDouble, |
| |
| // 30 CMPG_DOUBLE vAA, vBB, vCC |
| kAnMath | kAnFp | kAnDouble, |
| |
| // 31 CMP_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // 32 IF_EQ vA, vB, +CCCC |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 33 IF_NE vA, vB, +CCCC |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 34 IF_LT vA, vB, +CCCC |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 35 IF_GE vA, vB, +CCCC |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 36 IF_GT vA, vB, +CCCC |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 37 IF_LE vA, vB, +CCCC |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 38 IF_EQZ vAA, +BBBB |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 39 IF_NEZ vAA, +BBBB |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 3A IF_LTZ vAA, +BBBB |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 3B IF_GEZ vAA, +BBBB |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 3C IF_GTZ vAA, +BBBB |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 3D IF_LEZ vAA, +BBBB |
| kAnMath | kAnBranch | kAnInt, |
| |
| // 3E UNUSED_3E |
| kAnNone, |
| |
| // 3F UNUSED_3F |
| kAnNone, |
| |
| // 40 UNUSED_40 |
| kAnNone, |
| |
| // 41 UNUSED_41 |
| kAnNone, |
| |
| // 42 UNUSED_42 |
| kAnNone, |
| |
| // 43 UNUSED_43 |
| kAnNone, |
| |
| // 44 AGET vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 45 AGET_WIDE vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 46 AGET_OBJECT vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 47 AGET_BOOLEAN vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 48 AGET_BYTE vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 49 AGET_CHAR vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 4A AGET_SHORT vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 4B APUT vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 4C APUT_WIDE vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 4D APUT_OBJECT vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 4E APUT_BOOLEAN vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 4F APUT_BYTE vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 50 APUT_CHAR vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 51 APUT_SHORT vAA, vBB, vCC |
| kAnArrayOp, |
| |
| // 52 IGET vA, vB, field@CCCC |
| kAnNone, |
| |
| // 53 IGET_WIDE vA, vB, field@CCCC |
| kAnNone, |
| |
| // 54 IGET_OBJECT vA, vB, field@CCCC |
| kAnNone, |
| |
| // 55 IGET_BOOLEAN vA, vB, field@CCCC |
| kAnNone, |
| |
| // 56 IGET_BYTE vA, vB, field@CCCC |
| kAnNone, |
| |
| // 57 IGET_CHAR vA, vB, field@CCCC |
| kAnNone, |
| |
| // 58 IGET_SHORT vA, vB, field@CCCC |
| kAnNone, |
| |
| // 59 IPUT vA, vB, field@CCCC |
| kAnNone, |
| |
| // 5A IPUT_WIDE vA, vB, field@CCCC |
| kAnNone, |
| |
| // 5B IPUT_OBJECT vA, vB, field@CCCC |
| kAnNone, |
| |
| // 5C IPUT_BOOLEAN vA, vB, field@CCCC |
| kAnNone, |
| |
| // 5D IPUT_BYTE vA, vB, field@CCCC |
| kAnNone, |
| |
| // 5E IPUT_CHAR vA, vB, field@CCCC |
| kAnNone, |
| |
| // 5F IPUT_SHORT vA, vB, field@CCCC |
| kAnNone, |
| |
| // 60 SGET vAA, field@BBBB |
| kAnNone, |
| |
| // 61 SGET_WIDE vAA, field@BBBB |
| kAnNone, |
| |
| // 62 SGET_OBJECT vAA, field@BBBB |
| kAnNone, |
| |
| // 63 SGET_BOOLEAN vAA, field@BBBB |
| kAnNone, |
| |
| // 64 SGET_BYTE vAA, field@BBBB |
| kAnNone, |
| |
| // 65 SGET_CHAR vAA, field@BBBB |
| kAnNone, |
| |
| // 66 SGET_SHORT vAA, field@BBBB |
| kAnNone, |
| |
| // 67 SPUT vAA, field@BBBB |
| kAnNone, |
| |
| // 68 SPUT_WIDE vAA, field@BBBB |
| kAnNone, |
| |
| // 69 SPUT_OBJECT vAA, field@BBBB |
| kAnNone, |
| |
| // 6A SPUT_BOOLEAN vAA, field@BBBB |
| kAnNone, |
| |
| // 6B SPUT_BYTE vAA, field@BBBB |
| kAnNone, |
| |
| // 6C SPUT_CHAR vAA, field@BBBB |
| kAnNone, |
| |
| // 6D SPUT_SHORT vAA, field@BBBB |
| kAnNone, |
| |
| // 6E INVOKE_VIRTUAL {vD, vE, vF, vG, vA} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 6F INVOKE_SUPER {vD, vE, vF, vG, vA} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 70 INVOKE_DIRECT {vD, vE, vF, vG, vA} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 71 INVOKE_STATIC {vD, vE, vF, vG, vA} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 72 INVOKE_INTERFACE {vD, vE, vF, vG, vA} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 73 RETURN_VOID_BARRIER |
| kAnBranch, |
| |
| // 74 INVOKE_VIRTUAL_RANGE {vCCCC .. vNNNN} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 75 INVOKE_SUPER_RANGE {vCCCC .. vNNNN} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 76 INVOKE_DIRECT_RANGE {vCCCC .. vNNNN} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 77 INVOKE_STATIC_RANGE {vCCCC .. vNNNN} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 78 INVOKE_INTERFACE_RANGE {vCCCC .. vNNNN} |
| kAnInvoke | kAnHeavyWeight, |
| |
| // 79 UNUSED_79 |
| kAnNone, |
| |
| // 7A UNUSED_7A |
| kAnNone, |
| |
| // 7B NEG_INT vA, vB |
| kAnMath | kAnInt, |
| |
| // 7C NOT_INT vA, vB |
| kAnMath | kAnInt, |
| |
| // 7D NEG_LONG vA, vB |
| kAnMath | kAnLong, |
| |
| // 7E NOT_LONG vA, vB |
| kAnMath | kAnLong, |
| |
| // 7F NEG_FLOAT vA, vB |
| kAnMath | kAnFp | kAnSingle, |
| |
| // 80 NEG_DOUBLE vA, vB |
| kAnMath | kAnFp | kAnDouble, |
| |
| // 81 INT_TO_LONG vA, vB |
| kAnMath | kAnInt | kAnLong, |
| |
| // 82 INT_TO_FLOAT vA, vB |
| kAnMath | kAnFp | kAnInt | kAnSingle, |
| |
| // 83 INT_TO_DOUBLE vA, vB |
| kAnMath | kAnFp | kAnInt | kAnDouble, |
| |
| // 84 LONG_TO_INT vA, vB |
| kAnMath | kAnInt | kAnLong, |
| |
| // 85 LONG_TO_FLOAT vA, vB |
| kAnMath | kAnFp | kAnLong | kAnSingle, |
| |
| // 86 LONG_TO_DOUBLE vA, vB |
| kAnMath | kAnFp | kAnLong | kAnDouble, |
| |
| // 87 FLOAT_TO_INT vA, vB |
| kAnMath | kAnFp | kAnInt | kAnSingle, |
| |
| // 88 FLOAT_TO_LONG vA, vB |
| kAnMath | kAnFp | kAnLong | kAnSingle, |
| |
| // 89 FLOAT_TO_DOUBLE vA, vB |
| kAnMath | kAnFp | kAnSingle | kAnDouble, |
| |
| // 8A DOUBLE_TO_INT vA, vB |
| kAnMath | kAnFp | kAnInt | kAnDouble, |
| |
| // 8B DOUBLE_TO_LONG vA, vB |
| kAnMath | kAnFp | kAnLong | kAnDouble, |
| |
| // 8C DOUBLE_TO_FLOAT vA, vB |
| kAnMath | kAnFp | kAnSingle | kAnDouble, |
| |
| // 8D INT_TO_BYTE vA, vB |
| kAnMath | kAnInt, |
| |
| // 8E INT_TO_CHAR vA, vB |
| kAnMath | kAnInt, |
| |
| // 8F INT_TO_SHORT vA, vB |
| kAnMath | kAnInt, |
| |
| // 90 ADD_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 91 SUB_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 92 MUL_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 93 DIV_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 94 REM_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 95 AND_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 96 OR_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 97 XOR_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 98 SHL_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 99 SHR_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 9A USHR_INT vAA, vBB, vCC |
| kAnMath | kAnInt, |
| |
| // 9B ADD_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // 9C SUB_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // 9D MUL_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // 9E DIV_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // 9F REM_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // A0 AND_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // A1 OR_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // A2 XOR_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // A3 SHL_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // A4 SHR_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // A5 USHR_LONG vAA, vBB, vCC |
| kAnMath | kAnLong, |
| |
| // A6 ADD_FLOAT vAA, vBB, vCC |
| kAnMath | kAnFp | kAnSingle, |
| |
| // A7 SUB_FLOAT vAA, vBB, vCC |
| kAnMath | kAnFp | kAnSingle, |
| |
| // A8 MUL_FLOAT vAA, vBB, vCC |
| kAnMath | kAnFp | kAnSingle, |
| |
| // A9 DIV_FLOAT vAA, vBB, vCC |
| kAnMath | kAnFp | kAnSingle, |
| |
| // AA REM_FLOAT vAA, vBB, vCC |
| kAnMath | kAnFp | kAnSingle, |
| |
| // AB ADD_DOUBLE vAA, vBB, vCC |
| kAnMath | kAnFp | kAnDouble, |
| |
| // AC SUB_DOUBLE vAA, vBB, vCC |
| kAnMath | kAnFp | kAnDouble, |
| |
| // AD MUL_DOUBLE vAA, vBB, vCC |
| kAnMath | kAnFp | kAnDouble, |
| |
| // AE DIV_DOUBLE vAA, vBB, vCC |
| kAnMath | kAnFp | kAnDouble, |
| |
| // AF REM_DOUBLE vAA, vBB, vCC |
| kAnMath | kAnFp | kAnDouble, |
| |
| // B0 ADD_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B1 SUB_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B2 MUL_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B3 DIV_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B4 REM_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B5 AND_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B6 OR_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B7 XOR_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B8 SHL_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // B9 SHR_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // BA USHR_INT_2ADDR vA, vB |
| kAnMath | kAnInt, |
| |
| // BB ADD_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // BC SUB_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // BD MUL_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // BE DIV_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // BF REM_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // C0 AND_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // C1 OR_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // C2 XOR_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // C3 SHL_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // C4 SHR_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // C5 USHR_LONG_2ADDR vA, vB |
| kAnMath | kAnLong, |
| |
| // C6 ADD_FLOAT_2ADDR vA, vB |
| kAnMath | kAnFp | kAnSingle, |
| |
| // C7 SUB_FLOAT_2ADDR vA, vB |
| kAnMath | kAnFp | kAnSingle, |
| |
| // C8 MUL_FLOAT_2ADDR vA, vB |
| kAnMath | kAnFp | kAnSingle, |
| |
| // C9 DIV_FLOAT_2ADDR vA, vB |
| kAnMath | kAnFp | kAnSingle, |
| |
| // CA REM_FLOAT_2ADDR vA, vB |
| kAnMath | kAnFp | kAnSingle, |
| |
| // CB ADD_DOUBLE_2ADDR vA, vB |
| kAnMath | kAnFp | kAnDouble, |
| |
| // CC SUB_DOUBLE_2ADDR vA, vB |
| kAnMath | kAnFp | kAnDouble, |
| |
| // CD MUL_DOUBLE_2ADDR vA, vB |
| kAnMath | kAnFp | kAnDouble, |
| |
| // CE DIV_DOUBLE_2ADDR vA, vB |
| kAnMath | kAnFp | kAnDouble, |
| |
| // CF REM_DOUBLE_2ADDR vA, vB |
| kAnMath | kAnFp | kAnDouble, |
| |
| // D0 ADD_INT_LIT16 vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D1 RSUB_INT vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D2 MUL_INT_LIT16 vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D3 DIV_INT_LIT16 vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D4 REM_INT_LIT16 vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D5 AND_INT_LIT16 vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D6 OR_INT_LIT16 vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D7 XOR_INT_LIT16 vA, vB, #+CCCC |
| kAnMath | kAnInt, |
| |
| // D8 ADD_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // D9 RSUB_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // DA MUL_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // DB DIV_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // DC REM_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // DD AND_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // DE OR_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // DF XOR_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // E0 SHL_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // E1 SHR_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // E2 USHR_INT_LIT8 vAA, vBB, #+CC |
| kAnMath | kAnInt, |
| |
| // E3 IGET_QUICK |
| kAnNone, |
| |
| // E4 IGET_WIDE_QUICK |
| kAnNone, |
| |
| // E5 IGET_OBJECT_QUICK |
| kAnNone, |
| |
| // E6 IPUT_QUICK |
| kAnNone, |
| |
| // E7 IPUT_WIDE_QUICK |
| kAnNone, |
| |
| // E8 IPUT_OBJECT_QUICK |
| kAnNone, |
| |
| // E9 INVOKE_VIRTUAL_QUICK |
| kAnInvoke | kAnHeavyWeight, |
| |
| // EA INVOKE_VIRTUAL_RANGE_QUICK |
| kAnInvoke | kAnHeavyWeight, |
| |
| // EB IPUT_BOOLEAN_QUICK |
| kAnNone, |
| |
| // EC IPUT_BYTE_QUICK |
| kAnNone, |
| |
| // ED IPUT_CHAR_QUICK |
| kAnNone, |
| |
| // EE IPUT_SHORT_QUICK |
| kAnNone, |
| |
| // EF IGET_BOOLEAN_QUICK |
| kAnNone, |
| |
| // F0 IGET_BYTE_QUICK |
| kAnNone, |
| |
| // F1 IGET_CHAR_QUICK |
| kAnNone, |
| |
| // F2 IGET_SHORT_QUICK |
| kAnNone, |
| |
| // F3 UNUSED_F3 |
| kAnNone, |
| |
| // F4 UNUSED_F4 |
| kAnNone, |
| |
| // F5 UNUSED_F5 |
| kAnNone, |
| |
| // F6 UNUSED_F6 |
| kAnNone, |
| |
| // F7 UNUSED_F7 |
| kAnNone, |
| |
| // F8 UNUSED_F8 |
| kAnNone, |
| |
| // F9 UNUSED_F9 |
| kAnNone, |
| |
| // FA UNUSED_FA |
| kAnNone, |
| |
| // FB UNUSED_FB |
| kAnNone, |
| |
| // FC UNUSED_FC |
| kAnNone, |
| |
| // FD UNUSED_FD |
| kAnNone, |
| |
| // FE UNUSED_FE |
| kAnNone, |
| |
| // FF UNUSED_FF |
| kAnNone, |
| |
| // Beginning of extended MIR opcodes |
| // 100 MIR_PHI |
| kAnNone, |
| |
| // 101 MIR_COPY |
| kAnNone, |
| |
| // 102 MIR_FUSED_CMPL_FLOAT |
| kAnNone, |
| |
| // 103 MIR_FUSED_CMPG_FLOAT |
| kAnNone, |
| |
| // 104 MIR_FUSED_CMPL_DOUBLE |
| kAnNone, |
| |
| // 105 MIR_FUSED_CMPG_DOUBLE |
| kAnNone, |
| |
| // 106 MIR_FUSED_CMP_LONG |
| kAnNone, |
| |
| // 107 MIR_NOP |
| kAnNone, |
| |
| // 108 MIR_NULL_CHECK |
| kAnNone, |
| |
| // 109 MIR_RANGE_CHECK |
| kAnNone, |
| |
| // 10A MIR_DIV_ZERO_CHECK |
| kAnNone, |
| |
| // 10B MIR_CHECK |
| kAnNone, |
| |
| // 10C MIR_CHECKPART2 |
| kAnNone, |
| |
| // 10D MIR_SELECT |
| kAnNone, |
| |
| // 10E MirOpConstVector |
| kAnNone, |
| |
| // 10F MirOpMoveVector |
| kAnNone, |
| |
| // 110 MirOpPackedMultiply |
| kAnNone, |
| |
| // 111 MirOpPackedAddition |
| kAnNone, |
| |
| // 112 MirOpPackedSubtract |
| kAnNone, |
| |
| // 113 MirOpPackedShiftLeft |
| kAnNone, |
| |
| // 114 MirOpPackedSignedShiftRight |
| kAnNone, |
| |
| // 115 MirOpPackedUnsignedShiftRight |
| kAnNone, |
| |
| // 116 MirOpPackedAnd |
| kAnNone, |
| |
| // 117 MirOpPackedOr |
| kAnNone, |
| |
| // 118 MirOpPackedXor |
| kAnNone, |
| |
| // 119 MirOpPackedAddReduce |
| kAnNone, |
| |
| // 11A MirOpPackedReduce |
| kAnNone, |
| |
| // 11B MirOpPackedSet |
| kAnNone, |
| |
| // 11C MirOpReserveVectorRegisters |
| kAnNone, |
| |
| // 11D MirOpReturnVectorRegisters |
| kAnNone, |
| |
| // 11E MirOpMemBarrier |
| kAnNone, |
| |
| // 11F MirOpPackedArrayGet |
| kAnArrayOp, |
| |
| // 120 MirOpPackedArrayPut |
| kAnArrayOp, |
| }; |
| |
| struct MethodStats { |
| int dex_instructions; |
| int math_ops; |
| int fp_ops; |
| int array_ops; |
| int branch_ops; |
| int heavyweight_ops; |
| bool has_computational_loop; |
| bool has_switch; |
| float math_ratio; |
| float fp_ratio; |
| float array_ratio; |
| float branch_ratio; |
| float heavyweight_ratio; |
| }; |
| |
| void MIRGraph::AnalyzeBlock(BasicBlock* bb, MethodStats* stats) { |
| if (bb->visited || (bb->block_type != kDalvikByteCode)) { |
| return; |
| } |
| bool computational_block = true; |
| bool has_math = false; |
| /* |
| * For the purposes of this scan, we want to treat the set of basic blocks broken |
| * by an exception edge as a single basic block. We'll scan forward along the fallthrough |
| * edges until we reach an explicit branch or return. |
| */ |
| BasicBlock* ending_bb = bb; |
| if (ending_bb->last_mir_insn != NULL) { |
| uint32_t ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode]; |
| while ((ending_flags & kAnBranch) == 0) { |
| ending_bb = GetBasicBlock(ending_bb->fall_through); |
| ending_flags = kAnalysisAttributes[ending_bb->last_mir_insn->dalvikInsn.opcode]; |
| } |
| } |
| /* |
| * Ideally, we'd weight the operations by loop nesting level, but to do so we'd |
| * first need to do some expensive loop detection - and the point of this is to make |
| * an informed guess before investing in computation. However, we can cheaply detect |
| * many simple loop forms without having to do full dataflow analysis. |
| */ |
| int loop_scale_factor = 1; |
| // Simple for and while loops |
| if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->fall_through == NullBasicBlockId)) { |
| if ((GetBasicBlock(ending_bb->taken)->taken == bb->id) || |
| (GetBasicBlock(ending_bb->taken)->fall_through == bb->id)) { |
| loop_scale_factor = 25; |
| } |
| } |
| // Simple do-while loop |
| if ((ending_bb->taken != NullBasicBlockId) && (ending_bb->taken == bb->id)) { |
| loop_scale_factor = 25; |
| } |
| |
| BasicBlock* tbb = bb; |
| bool done = false; |
| while (!done) { |
| tbb->visited = true; |
| for (MIR* mir = tbb->first_mir_insn; mir != NULL; mir = mir->next) { |
| if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) { |
| // Skip any MIR pseudo-op. |
| continue; |
| } |
| uint16_t flags = kAnalysisAttributes[mir->dalvikInsn.opcode]; |
| stats->dex_instructions += loop_scale_factor; |
| if ((flags & kAnBranch) == 0) { |
| computational_block &= ((flags & kAnComputational) != 0); |
| } else { |
| stats->branch_ops += loop_scale_factor; |
| } |
| if ((flags & kAnMath) != 0) { |
| stats->math_ops += loop_scale_factor; |
| has_math = true; |
| } |
| if ((flags & kAnFp) != 0) { |
| stats->fp_ops += loop_scale_factor; |
| } |
| if ((flags & kAnArrayOp) != 0) { |
| stats->array_ops += loop_scale_factor; |
| } |
| if ((flags & kAnHeavyWeight) != 0) { |
| stats->heavyweight_ops += loop_scale_factor; |
| } |
| if ((flags & kAnSwitch) != 0) { |
| stats->has_switch = true; |
| } |
| } |
| if (tbb == ending_bb) { |
| done = true; |
| } else { |
| tbb = GetBasicBlock(tbb->fall_through); |
| } |
| } |
| if (has_math && computational_block && (loop_scale_factor > 1)) { |
| stats->has_computational_loop = true; |
| } |
| } |
| |
| bool MIRGraph::ComputeSkipCompilation(MethodStats* stats, bool skip_default, |
| std::string* skip_message) { |
| float count = stats->dex_instructions; |
| stats->math_ratio = stats->math_ops / count; |
| stats->fp_ratio = stats->fp_ops / count; |
| stats->branch_ratio = stats->branch_ops / count; |
| stats->array_ratio = stats->array_ops / count; |
| stats->heavyweight_ratio = stats->heavyweight_ops / count; |
| |
| if (cu_->enable_debug & (1 << kDebugShowFilterStats)) { |
| LOG(INFO) << "STATS " << stats->dex_instructions << ", math:" |
| << stats->math_ratio << ", fp:" |
| << stats->fp_ratio << ", br:" |
| << stats->branch_ratio << ", hw:" |
| << stats->heavyweight_ratio << ", arr:" |
| << stats->array_ratio << ", hot:" |
| << stats->has_computational_loop << ", " |
| << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| } |
| |
| // Computation intensive? |
| if (stats->has_computational_loop && (stats->heavyweight_ratio < 0.04)) { |
| return false; |
| } |
| |
| // Complex, logic-intensive? |
| if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) && |
| stats->branch_ratio > 0.3) { |
| return false; |
| } |
| |
| // Significant floating point? |
| if (stats->fp_ratio > 0.05) { |
| return false; |
| } |
| |
| // Significant generic math? |
| if (stats->math_ratio > 0.3) { |
| return false; |
| } |
| |
| // If array-intensive, compiling is probably worthwhile. |
| if (stats->array_ratio > 0.1) { |
| return false; |
| } |
| |
| // Switch operations benefit greatly from compilation, so go ahead and spend the cycles. |
| if (stats->has_switch) { |
| return false; |
| } |
| |
| // If significant in size and high proportion of expensive operations, skip. |
| if (cu_->compiler_driver->GetCompilerOptions().IsSmallMethod(GetNumDalvikInsns()) && |
| (stats->heavyweight_ratio > 0.3)) { |
| *skip_message = "Is a small method with heavyweight ratio " + |
| std::to_string(stats->heavyweight_ratio); |
| return true; |
| } |
| |
| return skip_default; |
| } |
| |
| /* |
| * Will eventually want this to be a bit more sophisticated and happen at verification time. |
| */ |
| bool MIRGraph::SkipCompilation(std::string* skip_message) { |
| const CompilerOptions& compiler_options = cu_->compiler_driver->GetCompilerOptions(); |
| CompilerOptions::CompilerFilter compiler_filter = compiler_options.GetCompilerFilter(); |
| if (compiler_filter == CompilerOptions::kEverything) { |
| return false; |
| } |
| |
| // Contains a pattern we don't want to compile? |
| if (PuntToInterpreter()) { |
| *skip_message = "Punt to interpreter set"; |
| return true; |
| } |
| |
| DCHECK(compiler_options.IsCompilationEnabled()); |
| |
| // Set up compilation cutoffs based on current filter mode. |
| size_t small_cutoff; |
| size_t default_cutoff; |
| switch (compiler_filter) { |
| case CompilerOptions::kBalanced: |
| small_cutoff = compiler_options.GetSmallMethodThreshold(); |
| default_cutoff = compiler_options.GetLargeMethodThreshold(); |
| break; |
| case CompilerOptions::kSpace: |
| small_cutoff = compiler_options.GetTinyMethodThreshold(); |
| default_cutoff = compiler_options.GetSmallMethodThreshold(); |
| break; |
| case CompilerOptions::kSpeed: |
| case CompilerOptions::kTime: |
| small_cutoff = compiler_options.GetHugeMethodThreshold(); |
| default_cutoff = compiler_options.GetHugeMethodThreshold(); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected compiler_filter_: " << compiler_filter; |
| UNREACHABLE(); |
| } |
| |
| // If size < cutoff, assume we'll compile - but allow removal. |
| bool skip_compilation = (GetNumDalvikInsns() >= default_cutoff); |
| if (skip_compilation) { |
| *skip_message = "#Insns >= default_cutoff: " + std::to_string(GetNumDalvikInsns()); |
| } |
| |
| /* |
| * Filter 1: Huge methods are likely to be machine generated, but some aren't. |
| * If huge, assume we won't compile, but allow futher analysis to turn it back on. |
| */ |
| if (compiler_options.IsHugeMethod(GetNumDalvikInsns())) { |
| skip_compilation = true; |
| *skip_message = "Huge method: " + std::to_string(GetNumDalvikInsns()); |
| // If we're got a huge number of basic blocks, don't bother with further analysis. |
| if (static_cast<size_t>(GetNumBlocks()) > (compiler_options.GetHugeMethodThreshold() / 2)) { |
| return true; |
| } |
| } else if (compiler_options.IsLargeMethod(GetNumDalvikInsns()) && |
| /* If it's large and contains no branches, it's likely to be machine generated initialization */ |
| (GetBranchCount() == 0)) { |
| *skip_message = "Large method with no branches"; |
| return true; |
| } else if (compiler_filter == CompilerOptions::kSpeed) { |
| // If not huge, compile. |
| return false; |
| } |
| |
| // Filter 2: Skip class initializers. |
| if (((cu_->access_flags & kAccConstructor) != 0) && ((cu_->access_flags & kAccStatic) != 0)) { |
| *skip_message = "Class initializer"; |
| return true; |
| } |
| |
| // Filter 3: if this method is a special pattern, go ahead and emit the canned pattern. |
| if (cu_->compiler_driver->GetMethodInlinerMap() != nullptr && |
| cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) |
| ->IsSpecial(cu_->method_idx)) { |
| return false; |
| } |
| |
| // Filter 4: if small, just compile. |
| if (GetNumDalvikInsns() < small_cutoff) { |
| return false; |
| } |
| |
| // Analyze graph for: |
| // o floating point computation |
| // o basic blocks contained in loop with heavy arithmetic. |
| // o proportion of conditional branches. |
| |
| MethodStats stats; |
| memset(&stats, 0, sizeof(stats)); |
| |
| ClearAllVisitedFlags(); |
| AllNodesIterator iter(this); |
| for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) { |
| AnalyzeBlock(bb, &stats); |
| } |
| |
| return ComputeSkipCompilation(&stats, skip_compilation, skip_message); |
| } |
| |
| void MIRGraph::DoCacheFieldLoweringInfo() { |
| static constexpr uint32_t kFieldIndexFlagQuickened = 0x80000000; |
| // All IGET/IPUT/SGET/SPUT instructions take 2 code units and there must also be a RETURN. |
| const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 2u; |
| ScopedArenaAllocator allocator(&cu_->arena_stack); |
| auto* field_idxs = allocator.AllocArray<uint32_t>(max_refs, kArenaAllocMisc); |
| DexMemAccessType* field_types = allocator.AllocArray<DexMemAccessType>( |
| max_refs, kArenaAllocMisc); |
| // Find IGET/IPUT/SGET/SPUT insns, store IGET/IPUT fields at the beginning, SGET/SPUT at the end. |
| size_t ifield_pos = 0u; |
| size_t sfield_pos = max_refs; |
| AllNodesIterator iter(this); |
| for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { |
| if (bb->block_type != kDalvikByteCode) { |
| continue; |
| } |
| for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { |
| // Get field index and try to find it among existing indexes. If found, it's usually among |
| // the last few added, so we'll start the search from ifield_pos/sfield_pos. Though this |
| // is a linear search, it actually performs much better than map based approach. |
| const bool is_iget_or_iput = IsInstructionIGetOrIPut(mir->dalvikInsn.opcode); |
| const bool is_iget_or_iput_quick = IsInstructionIGetQuickOrIPutQuick(mir->dalvikInsn.opcode); |
| if (is_iget_or_iput || is_iget_or_iput_quick) { |
| uint32_t field_idx; |
| DexMemAccessType access_type; |
| if (is_iget_or_iput) { |
| field_idx = mir->dalvikInsn.vC; |
| access_type = IGetOrIPutMemAccessType(mir->dalvikInsn.opcode); |
| } else { |
| DCHECK(is_iget_or_iput_quick); |
| // Set kFieldIndexFlagQuickened so that we don't deduplicate against non quickened field |
| // indexes. |
| field_idx = mir->offset | kFieldIndexFlagQuickened; |
| access_type = IGetQuickOrIPutQuickMemAccessType(mir->dalvikInsn.opcode); |
| } |
| size_t i = ifield_pos; |
| while (i != 0u && field_idxs[i - 1] != field_idx) { |
| --i; |
| } |
| if (i != 0u) { |
| mir->meta.ifield_lowering_info = i - 1; |
| DCHECK_EQ(field_types[i - 1], access_type); |
| } else { |
| mir->meta.ifield_lowering_info = ifield_pos; |
| field_idxs[ifield_pos] = field_idx; |
| field_types[ifield_pos] = access_type; |
| ++ifield_pos; |
| } |
| } else if (IsInstructionSGetOrSPut(mir->dalvikInsn.opcode)) { |
| auto field_idx = mir->dalvikInsn.vB; |
| size_t i = sfield_pos; |
| while (i != max_refs && field_idxs[i] != field_idx) { |
| ++i; |
| } |
| if (i != max_refs) { |
| mir->meta.sfield_lowering_info = max_refs - i - 1u; |
| DCHECK_EQ(field_types[i], SGetOrSPutMemAccessType(mir->dalvikInsn.opcode)); |
| } else { |
| mir->meta.sfield_lowering_info = max_refs - sfield_pos; |
| --sfield_pos; |
| field_idxs[sfield_pos] = field_idx; |
| field_types[sfield_pos] = SGetOrSPutMemAccessType(mir->dalvikInsn.opcode); |
| } |
| } |
| DCHECK_LE(ifield_pos, sfield_pos); |
| } |
| } |
| |
| if (ifield_pos != 0u) { |
| // Resolve instance field infos. |
| DCHECK_EQ(ifield_lowering_infos_.size(), 0u); |
| ifield_lowering_infos_.reserve(ifield_pos); |
| for (size_t pos = 0u; pos != ifield_pos; ++pos) { |
| const uint32_t field_idx = field_idxs[pos]; |
| const bool is_quickened = (field_idx & kFieldIndexFlagQuickened) != 0; |
| const uint32_t masked_field_idx = field_idx & ~kFieldIndexFlagQuickened; |
| CHECK_LT(masked_field_idx, 1u << 16); |
| ifield_lowering_infos_.push_back( |
| MirIFieldLoweringInfo(masked_field_idx, field_types[pos], is_quickened)); |
| } |
| MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), |
| ifield_lowering_infos_.data(), ifield_pos); |
| } |
| |
| if (sfield_pos != max_refs) { |
| // Resolve static field infos. |
| DCHECK_EQ(sfield_lowering_infos_.size(), 0u); |
| sfield_lowering_infos_.reserve(max_refs - sfield_pos); |
| for (size_t pos = max_refs; pos != sfield_pos;) { |
| --pos; |
| sfield_lowering_infos_.push_back(MirSFieldLoweringInfo(field_idxs[pos], field_types[pos])); |
| } |
| MirSFieldLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), |
| sfield_lowering_infos_.data(), max_refs - sfield_pos); |
| } |
| } |
| |
| void MIRGraph::DoCacheMethodLoweringInfo() { |
| static constexpr uint16_t invoke_types[] = { kVirtual, kSuper, kDirect, kStatic, kInterface }; |
| static constexpr uint32_t kMethodIdxFlagQuickened = 0x80000000; |
| |
| // Embed the map value in the entry to avoid extra padding in 64-bit builds. |
| struct MapEntry { |
| // Map key: target_method_idx, invoke_type, devirt_target. Ordered to avoid padding. |
| const MethodReference* devirt_target; |
| uint32_t target_method_idx; |
| uint32_t vtable_idx; |
| uint16_t invoke_type; |
| // Map value. |
| uint32_t lowering_info_index; |
| }; |
| |
| struct MapEntryComparator { |
| bool operator()(const MapEntry& lhs, const MapEntry& rhs) const { |
| if (lhs.target_method_idx != rhs.target_method_idx) { |
| return lhs.target_method_idx < rhs.target_method_idx; |
| } |
| if (lhs.invoke_type != rhs.invoke_type) { |
| return lhs.invoke_type < rhs.invoke_type; |
| } |
| if (lhs.vtable_idx != rhs.vtable_idx) { |
| return lhs.vtable_idx < rhs.vtable_idx; |
| } |
| if (lhs.devirt_target != rhs.devirt_target) { |
| if (lhs.devirt_target == nullptr) { |
| return true; |
| } |
| if (rhs.devirt_target == nullptr) { |
| return false; |
| } |
| return devirt_cmp(*lhs.devirt_target, *rhs.devirt_target); |
| } |
| return false; |
| } |
| MethodReferenceComparator devirt_cmp; |
| }; |
| |
| ScopedArenaAllocator allocator(&cu_->arena_stack); |
| |
| // All INVOKE instructions take 3 code units and there must also be a RETURN. |
| const uint32_t max_refs = (GetNumDalvikInsns() - 1u) / 3u; |
| |
| // Map invoke key (see MapEntry) to lowering info index and vice versa. |
| // The invoke_map and sequential entries are essentially equivalent to Boost.MultiIndex's |
| // multi_index_container with one ordered index and one sequential index. |
| ScopedArenaSet<MapEntry, MapEntryComparator> invoke_map(MapEntryComparator(), |
| allocator.Adapter()); |
| const MapEntry** sequential_entries = |
| allocator.AllocArray<const MapEntry*>(max_refs, kArenaAllocMisc); |
| |
| // Find INVOKE insns and their devirtualization targets. |
| const VerifiedMethod* verified_method = GetCurrentDexCompilationUnit()->GetVerifiedMethod(); |
| AllNodesIterator iter(this); |
| for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) { |
| if (bb->block_type != kDalvikByteCode) { |
| continue; |
| } |
| for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) { |
| const bool is_quick_invoke = IsInstructionQuickInvoke(mir->dalvikInsn.opcode); |
| const bool is_invoke = IsInstructionInvoke(mir->dalvikInsn.opcode); |
| if (is_quick_invoke || is_invoke) { |
| uint32_t vtable_index = 0; |
| uint32_t target_method_idx = 0; |
| uint32_t invoke_type_idx = 0; // Default to virtual (in case of quickened). |
| DCHECK_EQ(invoke_types[invoke_type_idx], kVirtual); |
| if (is_quick_invoke) { |
| // We need to store the vtable index since we can't necessarily recreate it at resolve |
| // phase if the dequickening resolved to an interface method. |
| vtable_index = mir->dalvikInsn.vB; |
| // Fake up the method index by storing the mir offset so that we can read the dequicken |
| // info in resolve. |
| target_method_idx = mir->offset | kMethodIdxFlagQuickened; |
| } else { |
| DCHECK(is_invoke); |
| // Decode target method index and invoke type. |
| invoke_type_idx = InvokeInstructionType(mir->dalvikInsn.opcode); |
| target_method_idx = mir->dalvikInsn.vB; |
| } |
| // Find devirtualization target. |
| // TODO: The devirt map is ordered by the dex pc here. Is there a way to get INVOKEs |
| // ordered by dex pc as well? That would allow us to keep an iterator to devirt targets |
| // and increment it as needed instead of making O(log n) lookups. |
| const MethodReference* devirt_target = verified_method->GetDevirtTarget(mir->offset); |
| // Try to insert a new entry. If the insertion fails, we will have found an old one. |
| MapEntry entry = { |
| devirt_target, |
| target_method_idx, |
| vtable_index, |
| invoke_types[invoke_type_idx], |
| static_cast<uint32_t>(invoke_map.size()) |
| }; |
| auto it = invoke_map.insert(entry).first; // Iterator to either the old or the new entry. |
| mir->meta.method_lowering_info = it->lowering_info_index; |
| // If we didn't actually insert, this will just overwrite an existing value with the same. |
| sequential_entries[it->lowering_info_index] = &*it; |
| } |
| } |
| } |
| if (invoke_map.empty()) { |
| return; |
| } |
| // Prepare unique method infos, set method info indexes for their MIRs. |
| const size_t count = invoke_map.size(); |
| method_lowering_infos_.reserve(count); |
| for (size_t pos = 0u; pos != count; ++pos) { |
| const MapEntry* entry = sequential_entries[pos]; |
| const bool is_quick = (entry->target_method_idx & kMethodIdxFlagQuickened) != 0; |
| const uint32_t masked_method_idx = entry->target_method_idx & ~kMethodIdxFlagQuickened; |
| MirMethodLoweringInfo method_info(masked_method_idx, |
| static_cast<InvokeType>(entry->invoke_type), is_quick); |
| if (entry->devirt_target != nullptr) { |
| method_info.SetDevirtualizationTarget(*entry->devirt_target); |
| } |
| if (is_quick) { |
| method_info.SetVTableIndex(entry->vtable_idx); |
| } |
| method_lowering_infos_.push_back(method_info); |
| } |
| MirMethodLoweringInfo::Resolve(cu_->compiler_driver, GetCurrentDexCompilationUnit(), |
| method_lowering_infos_.data(), count); |
| } |
| |
| bool MIRGraph::SkipCompilationByName(const std::string& methodname) { |
| return cu_->compiler_driver->SkipCompilation(methodname); |
| } |
| |
| } // namespace art |