| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dex_verifier.h" |
| |
| #include <iostream> |
| |
| #include "class_linker.h" |
| #include "compiler.h" |
| #include "dex_cache.h" |
| #include "dex_file.h" |
| #include "dex_instruction.h" |
| #include "dex_instruction_visitor.h" |
| #include "dex_verifier.h" |
| #include "intern_table.h" |
| #include "leb128.h" |
| #include "logging.h" |
| #include "object_utils.h" |
| #include "runtime.h" |
| #include "stringpiece.h" |
| |
| #if defined(ART_USE_LLVM_COMPILER) |
| #include "compiler_llvm/backend_types.h" |
| #include "compiler_llvm/inferred_reg_category_map.h" |
| using namespace art::compiler_llvm; |
| #endif |
| |
| namespace art { |
| namespace verifier { |
| |
| static const bool gDebugVerify = false; |
| |
| static const char* type_strings[] = { |
| "Unknown", |
| "Conflict", |
| "Boolean", |
| "Byte", |
| "Short", |
| "Char", |
| "Integer", |
| "Float", |
| "Long (Low Half)", |
| "Long (High Half)", |
| "Double (Low Half)", |
| "Double (High Half)", |
| "64-bit Constant (Low Half)", |
| "64-bit Constant (High Half)", |
| "32-bit Constant", |
| "Unresolved Reference", |
| "Uninitialized Reference", |
| "Uninitialized This Reference", |
| "Unresolved And Uninitialized Reference", |
| "Reference", |
| }; |
| |
| std::string RegType::Dump() const { |
| DCHECK(type_ >= kRegTypeUnknown && type_ <= kRegTypeReference); |
| std::string result; |
| if (IsConstant()) { |
| uint32_t val = ConstantValue(); |
| if (val == 0) { |
| result = "Zero"; |
| } else { |
| if (IsConstantShort()) { |
| result = StringPrintf("32-bit Constant: %d", val); |
| } else { |
| result = StringPrintf("32-bit Constant: 0x%x", val); |
| } |
| } |
| } else { |
| result = type_strings[type_]; |
| if (IsReferenceTypes()) { |
| result += ": "; |
| if (IsUnresolvedTypes()) { |
| result += PrettyDescriptor(GetDescriptor()); |
| } else { |
| result += PrettyDescriptor(GetClass()); |
| } |
| } |
| } |
| return result; |
| } |
| |
| const RegType& RegType::HighHalf(RegTypeCache* cache) const { |
| CHECK(IsLowHalf()); |
| if (type_ == kRegTypeLongLo) { |
| return cache->FromType(kRegTypeLongHi); |
| } else if (type_ == kRegTypeDoubleLo) { |
| return cache->FromType(kRegTypeDoubleHi); |
| } else { |
| return cache->FromType(kRegTypeConstHi); |
| } |
| } |
| |
| /* |
| * A basic Join operation on classes. For a pair of types S and T the Join, written S v T = J, is |
| * S <: J, T <: J and for-all U such that S <: U, T <: U then J <: U. That is J is the parent of |
| * S and T such that there isn't a parent of both S and T that isn't also the parent of J (ie J |
| * is the deepest (lowest upper bound) parent of S and T). |
| * |
| * This operation applies for regular classes and arrays, however, for interface types there needn't |
| * be a partial ordering on the types. We could solve the problem of a lack of a partial order by |
| * introducing sets of types, however, the only operation permissible on an interface is |
| * invoke-interface. In the tradition of Java verifiers we defer the verification of interface |
| * types until an invoke-interface call on the interface typed reference at runtime and allow |
| * the perversion of any Object being assignable to an interface type (note, however, that we don't |
| * allow assignment of Object or Interface to any concrete subclass of Object and are therefore type |
| * safe; further the Join on a Object cannot result in a sub-class by definition). |
| */ |
| Class* RegType::ClassJoin(Class* s, Class* t) { |
| DCHECK(!s->IsPrimitive()) << PrettyClass(s); |
| DCHECK(!t->IsPrimitive()) << PrettyClass(t); |
| if (s == t) { |
| return s; |
| } else if (s->IsAssignableFrom(t)) { |
| return s; |
| } else if (t->IsAssignableFrom(s)) { |
| return t; |
| } else if (s->IsArrayClass() && t->IsArrayClass()) { |
| Class* s_ct = s->GetComponentType(); |
| Class* t_ct = t->GetComponentType(); |
| if (s_ct->IsPrimitive() || t_ct->IsPrimitive()) { |
| // Given the types aren't the same, if either array is of primitive types then the only |
| // common parent is java.lang.Object |
| Class* result = s->GetSuperClass(); // short-cut to java.lang.Object |
| DCHECK(result->IsObjectClass()); |
| return result; |
| } |
| Class* common_elem = ClassJoin(s_ct, t_ct); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| const ClassLoader* class_loader = s->GetClassLoader(); |
| std::string descriptor("["); |
| descriptor += ClassHelper(common_elem).GetDescriptor(); |
| Class* array_class = class_linker->FindClass(descriptor.c_str(), class_loader); |
| DCHECK(array_class != NULL); |
| return array_class; |
| } else { |
| size_t s_depth = s->Depth(); |
| size_t t_depth = t->Depth(); |
| // Get s and t to the same depth in the hierarchy |
| if (s_depth > t_depth) { |
| while (s_depth > t_depth) { |
| s = s->GetSuperClass(); |
| s_depth--; |
| } |
| } else { |
| while (t_depth > s_depth) { |
| t = t->GetSuperClass(); |
| t_depth--; |
| } |
| } |
| // Go up the hierarchy until we get to the common parent |
| while (s != t) { |
| s = s->GetSuperClass(); |
| t = t->GetSuperClass(); |
| } |
| return s; |
| } |
| } |
| |
| bool RegType::IsAssignableFrom(const RegType& src) const { |
| if (Equals(src)) { |
| return true; |
| } else { |
| switch (GetType()) { |
| case RegType::kRegTypeBoolean: return src.IsBooleanTypes(); |
| case RegType::kRegTypeByte: return src.IsByteTypes(); |
| case RegType::kRegTypeShort: return src.IsShortTypes(); |
| case RegType::kRegTypeChar: return src.IsCharTypes(); |
| case RegType::kRegTypeInteger: return src.IsIntegralTypes(); |
| case RegType::kRegTypeFloat: return src.IsFloatTypes(); |
| case RegType::kRegTypeLongLo: return src.IsLongTypes(); |
| case RegType::kRegTypeDoubleLo: return src.IsDoubleTypes(); |
| default: |
| if (!IsReferenceTypes()) { |
| LOG(FATAL) << "Unexpected register type in IsAssignableFrom: '" << src << "'"; |
| } |
| if (src.IsZero()) { |
| return true; // all reference types can be assigned null |
| } else if (!src.IsReferenceTypes()) { |
| return false; // expect src to be a reference type |
| } else if (IsJavaLangObject()) { |
| return true; // all reference types can be assigned to Object |
| } else if (!IsUnresolvedTypes() && GetClass()->IsInterface()) { |
| return true; // We allow assignment to any interface, see comment in ClassJoin |
| } else if (IsJavaLangObjectArray()) { |
| return src.IsObjectArrayTypes(); // All reference arrays may be assigned to Object[] |
| } else if (!IsUnresolvedTypes() && !src.IsUnresolvedTypes() && |
| GetClass()->IsAssignableFrom(src.GetClass())) { |
| // We're assignable from the Class point-of-view |
| return true; |
| } else { |
| return false; |
| } |
| } |
| } |
| } |
| |
| static const RegType& SelectNonConstant(const RegType& a, const RegType& b) { |
| return a.IsConstant() ? b : a; |
| } |
| |
| const RegType& RegType::Merge(const RegType& incoming_type, RegTypeCache* reg_types) const { |
| DCHECK(!Equals(incoming_type)); // Trivial equality handled by caller |
| if (IsUnknown() && incoming_type.IsUnknown()) { |
| return *this; // Unknown MERGE Unknown => Unknown |
| } else if (IsConflict()) { |
| return *this; // Conflict MERGE * => Conflict |
| } else if (incoming_type.IsConflict()) { |
| return incoming_type; // * MERGE Conflict => Conflict |
| } else if (IsUnknown() || incoming_type.IsUnknown()) { |
| return reg_types->Conflict(); // Unknown MERGE * => Conflict |
| } else if (IsConstant() && incoming_type.IsConstant()) { |
| int32_t val1 = ConstantValue(); |
| int32_t val2 = incoming_type.ConstantValue(); |
| if (val1 >= 0 && val2 >= 0) { |
| // +ve1 MERGE +ve2 => MAX(+ve1, +ve2) |
| if (val1 >= val2) { |
| return *this; |
| } else { |
| return incoming_type; |
| } |
| } else if (val1 < 0 && val2 < 0) { |
| // -ve1 MERGE -ve2 => MIN(-ve1, -ve2) |
| if (val1 <= val2) { |
| return *this; |
| } else { |
| return incoming_type; |
| } |
| } else { |
| // Values are +ve and -ve, choose smallest signed type in which they both fit |
| if (IsConstantByte()) { |
| if (incoming_type.IsConstantByte()) { |
| return reg_types->ByteConstant(); |
| } else if (incoming_type.IsConstantShort()) { |
| return reg_types->ShortConstant(); |
| } else { |
| return reg_types->IntConstant(); |
| } |
| } else if (IsConstantShort()) { |
| if (incoming_type.IsConstantShort()) { |
| return reg_types->ShortConstant(); |
| } else { |
| return reg_types->IntConstant(); |
| } |
| } else { |
| return reg_types->IntConstant(); |
| } |
| } |
| } else if (IsIntegralTypes() && incoming_type.IsIntegralTypes()) { |
| if (IsBooleanTypes() && incoming_type.IsBooleanTypes()) { |
| return reg_types->Boolean(); // boolean MERGE boolean => boolean |
| } |
| if (IsByteTypes() && incoming_type.IsByteTypes()) { |
| return reg_types->Byte(); // byte MERGE byte => byte |
| } |
| if (IsShortTypes() && incoming_type.IsShortTypes()) { |
| return reg_types->Short(); // short MERGE short => short |
| } |
| if (IsCharTypes() && incoming_type.IsCharTypes()) { |
| return reg_types->Char(); // char MERGE char => char |
| } |
| return reg_types->Integer(); // int MERGE * => int |
| } else if ((IsFloatTypes() && incoming_type.IsFloatTypes()) || |
| (IsLongTypes() && incoming_type.IsLongTypes()) || |
| (IsLongHighTypes() && incoming_type.IsLongHighTypes()) || |
| (IsDoubleTypes() && incoming_type.IsDoubleTypes()) || |
| (IsDoubleHighTypes() && incoming_type.IsDoubleHighTypes())) { |
| // check constant case was handled prior to entry |
| DCHECK(!IsConstant() || !incoming_type.IsConstant()); |
| // float/long/double MERGE float/long/double_constant => float/long/double |
| return SelectNonConstant(*this, incoming_type); |
| } else if (IsReferenceTypes() && incoming_type.IsReferenceTypes()) { |
| if (IsZero() || incoming_type.IsZero()) { |
| return SelectNonConstant(*this, incoming_type); // 0 MERGE ref => ref |
| } else if (IsJavaLangObject() || incoming_type.IsJavaLangObject()) { |
| return reg_types->JavaLangObject(); // Object MERGE ref => Object |
| } else if (IsUninitializedTypes() || incoming_type.IsUninitializedTypes() || |
| IsUnresolvedTypes() || incoming_type.IsUnresolvedTypes()) { |
| // Can only merge an unresolved or uninitialized type with itself, 0 or Object, we've already |
| // checked these so => Conflict |
| return reg_types->Conflict(); |
| } else { // Two reference types, compute Join |
| Class* c1 = GetClass(); |
| Class* c2 = incoming_type.GetClass(); |
| DCHECK(c1 != NULL && !c1->IsPrimitive()); |
| DCHECK(c2 != NULL && !c2->IsPrimitive()); |
| Class* join_class = ClassJoin(c1, c2); |
| if (c1 == join_class) { |
| return *this; |
| } else if (c2 == join_class) { |
| return incoming_type; |
| } else { |
| return reg_types->FromClass(join_class); |
| } |
| } |
| } else { |
| return reg_types->Conflict(); // Unexpected types => Conflict |
| } |
| } |
| |
| static RegType::Type RegTypeFromPrimitiveType(Primitive::Type prim_type) { |
| switch (prim_type) { |
| case Primitive::kPrimBoolean: return RegType::kRegTypeBoolean; |
| case Primitive::kPrimByte: return RegType::kRegTypeByte; |
| case Primitive::kPrimShort: return RegType::kRegTypeShort; |
| case Primitive::kPrimChar: return RegType::kRegTypeChar; |
| case Primitive::kPrimInt: return RegType::kRegTypeInteger; |
| case Primitive::kPrimLong: return RegType::kRegTypeLongLo; |
| case Primitive::kPrimFloat: return RegType::kRegTypeFloat; |
| case Primitive::kPrimDouble: return RegType::kRegTypeDoubleLo; |
| case Primitive::kPrimVoid: |
| default: return RegType::kRegTypeUnknown; |
| } |
| } |
| |
| static RegType::Type RegTypeFromDescriptor(const std::string& descriptor) { |
| if (descriptor.length() == 1) { |
| switch (descriptor[0]) { |
| case 'Z': return RegType::kRegTypeBoolean; |
| case 'B': return RegType::kRegTypeByte; |
| case 'S': return RegType::kRegTypeShort; |
| case 'C': return RegType::kRegTypeChar; |
| case 'I': return RegType::kRegTypeInteger; |
| case 'J': return RegType::kRegTypeLongLo; |
| case 'F': return RegType::kRegTypeFloat; |
| case 'D': return RegType::kRegTypeDoubleLo; |
| case 'V': |
| default: return RegType::kRegTypeUnknown; |
| } |
| } else if (descriptor[0] == 'L' || descriptor[0] == '[') { |
| return RegType::kRegTypeReference; |
| } else { |
| return RegType::kRegTypeUnknown; |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const RegType& rhs) { |
| os << rhs.Dump(); |
| return os; |
| } |
| |
| const RegType& RegTypeCache::FromDescriptor(const ClassLoader* loader, |
| const char* descriptor) { |
| return From(RegTypeFromDescriptor(descriptor), loader, descriptor); |
| } |
| |
| const RegType& RegTypeCache::From(RegType::Type type, const ClassLoader* loader, |
| const char* descriptor) { |
| if (type <= RegType::kRegTypeLastFixedLocation) { |
| // entries should be sized greater than primitive types |
| DCHECK_GT(entries_.size(), static_cast<size_t>(type)); |
| RegType* entry = entries_[type]; |
| if (entry == NULL) { |
| Class* klass = NULL; |
| if (strlen(descriptor) != 0) { |
| klass = Runtime::Current()->GetClassLinker()->FindSystemClass(descriptor); |
| } |
| entry = new RegType(type, klass, 0, type); |
| entries_[type] = entry; |
| } |
| return *entry; |
| } else { |
| DCHECK(type == RegType::kRegTypeReference); |
| ClassHelper kh; |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| // check resolved and unresolved references, ignore uninitialized references |
| if (cur_entry->IsReference()) { |
| kh.ChangeClass(cur_entry->GetClass()); |
| if (strcmp(descriptor, kh.GetDescriptor()) == 0) { |
| return *cur_entry; |
| } |
| } else if (cur_entry->IsUnresolvedReference() && |
| cur_entry->GetDescriptor()->Equals(descriptor)) { |
| return *cur_entry; |
| } |
| } |
| Class* klass = Runtime::Current()->GetClassLinker()->FindClass(descriptor, loader); |
| if (klass != NULL) { |
| // Able to resolve so create resolved register type |
| RegType* entry = new RegType(type, klass, 0, entries_.size()); |
| entries_.push_back(entry); |
| return *entry; |
| } else { |
| // TODO: we assume unresolved, but we may be able to do better by validating whether the |
| // descriptor string is valid |
| // Unable to resolve so create unresolved register type |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| Thread::Current()->ClearException(); |
| if (IsValidDescriptor(descriptor)) { |
| String* string_descriptor = |
| Runtime::Current()->GetInternTable()->InternStrong(descriptor); |
| RegType* entry = new RegType(RegType::kRegTypeUnresolvedReference, string_descriptor, 0, |
| entries_.size()); |
| entries_.push_back(entry); |
| return *entry; |
| } else { |
| // The descriptor is broken return the unknown type as there's nothing sensible that |
| // could be done at runtime |
| return Unknown(); |
| } |
| } |
| } |
| } |
| |
| const RegType& RegTypeCache::FromClass(Class* klass) { |
| if (klass->IsPrimitive()) { |
| RegType::Type type = RegTypeFromPrimitiveType(klass->GetPrimitiveType()); |
| // entries should be sized greater than primitive types |
| DCHECK_GT(entries_.size(), static_cast<size_t>(type)); |
| RegType* entry = entries_[type]; |
| if (entry == NULL) { |
| entry = new RegType(type, klass, 0, type); |
| entries_[type] = entry; |
| } |
| return *entry; |
| } else { |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| if (cur_entry->IsReference() && cur_entry->GetClass() == klass) { |
| return *cur_entry; |
| } |
| } |
| RegType* entry = new RegType(RegType::kRegTypeReference, klass, 0, entries_.size()); |
| entries_.push_back(entry); |
| return *entry; |
| } |
| } |
| |
| const RegType& RegTypeCache::Uninitialized(const RegType& type, uint32_t allocation_pc) { |
| RegType* entry; |
| if (type.IsUnresolvedTypes()) { |
| String* descriptor = type.GetDescriptor(); |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| if (cur_entry->IsUnresolvedAndUninitializedReference() && |
| cur_entry->GetAllocationPc() == allocation_pc && |
| cur_entry->GetDescriptor() == descriptor) { |
| return *cur_entry; |
| } |
| } |
| entry = new RegType(RegType::kRegTypeUnresolvedAndUninitializedReference, |
| descriptor, allocation_pc, entries_.size()); |
| } else { |
| Class* klass = type.GetClass(); |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| if (cur_entry->IsUninitializedReference() && |
| cur_entry->GetAllocationPc() == allocation_pc && |
| cur_entry->GetClass() == klass) { |
| return *cur_entry; |
| } |
| } |
| entry = new RegType(RegType::kRegTypeUninitializedReference, |
| klass, allocation_pc, entries_.size()); |
| } |
| entries_.push_back(entry); |
| return *entry; |
| } |
| |
| const RegType& RegTypeCache::FromUninitialized(const RegType& uninit_type) { |
| RegType* entry; |
| if (uninit_type.IsUnresolvedTypes()) { |
| String* descriptor = uninit_type.GetDescriptor(); |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| if (cur_entry->IsUnresolvedReference() && cur_entry->GetDescriptor() == descriptor) { |
| return *cur_entry; |
| } |
| } |
| entry = new RegType(RegType::kRegTypeUnresolvedReference, descriptor, 0, entries_.size()); |
| } else { |
| Class* klass = uninit_type.GetClass(); |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| if (cur_entry->IsReference() && cur_entry->GetClass() == klass) { |
| return *cur_entry; |
| } |
| } |
| entry = new RegType(RegType::kRegTypeReference, klass, 0, entries_.size()); |
| } |
| entries_.push_back(entry); |
| return *entry; |
| } |
| |
| const RegType& RegTypeCache::UninitializedThisArgument(Class* klass) { |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| if (cur_entry->IsUninitializedThisReference() && cur_entry->GetClass() == klass) { |
| return *cur_entry; |
| } |
| } |
| RegType* entry = new RegType(RegType::kRegTypeUninitializedThisReference, klass, 0, |
| entries_.size()); |
| entries_.push_back(entry); |
| return *entry; |
| } |
| |
| const RegType& RegTypeCache::FromType(RegType::Type type) { |
| CHECK(type < RegType::kRegTypeReference); |
| switch (type) { |
| case RegType::kRegTypeBoolean: return From(type, NULL, "Z"); |
| case RegType::kRegTypeByte: return From(type, NULL, "B"); |
| case RegType::kRegTypeShort: return From(type, NULL, "S"); |
| case RegType::kRegTypeChar: return From(type, NULL, "C"); |
| case RegType::kRegTypeInteger: return From(type, NULL, "I"); |
| case RegType::kRegTypeFloat: return From(type, NULL, "F"); |
| case RegType::kRegTypeLongLo: |
| case RegType::kRegTypeLongHi: return From(type, NULL, "J"); |
| case RegType::kRegTypeDoubleLo: |
| case RegType::kRegTypeDoubleHi: return From(type, NULL, "D"); |
| default: return From(type, NULL, ""); |
| } |
| } |
| |
| const RegType& RegTypeCache::FromCat1Const(int32_t value) { |
| for (size_t i = RegType::kRegTypeLastFixedLocation + 1; i < entries_.size(); i++) { |
| RegType* cur_entry = entries_[i]; |
| if (cur_entry->IsConstant() && cur_entry->ConstantValue() == value) { |
| return *cur_entry; |
| } |
| } |
| RegType* entry = new RegType(RegType::kRegTypeConst, NULL, value, entries_.size()); |
| entries_.push_back(entry); |
| return *entry; |
| } |
| |
| const RegType& RegTypeCache::GetComponentType(const RegType& array, const ClassLoader* loader) { |
| CHECK(array.IsArrayTypes()); |
| if (array.IsUnresolvedTypes()) { |
| std::string descriptor(array.GetDescriptor()->ToModifiedUtf8()); |
| std::string component(descriptor.substr(1, descriptor.size() - 1)); |
| return FromDescriptor(loader, component.c_str()); |
| } else { |
| return FromClass(array.GetClass()->GetComponentType()); |
| } |
| } |
| |
| |
| bool RegisterLine::CheckConstructorReturn() const { |
| for (size_t i = 0; i < num_regs_; i++) { |
| if (GetRegisterType(i).IsUninitializedThisReference()) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) |
| << "Constructor returning without calling superclass constructor"; |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool RegisterLine::SetRegisterType(uint32_t vdst, const RegType& new_type) { |
| DCHECK(vdst < num_regs_); |
| if (new_type.IsLowHalf()) { |
| line_[vdst] = new_type.GetId(); |
| line_[vdst + 1] = new_type.HighHalf(verifier_->GetRegTypeCache()).GetId(); |
| } else if (new_type.IsHighHalf()) { |
| /* should never set these explicitly */ |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Explicit set of high register type"; |
| return false; |
| } else if (new_type.IsConflict()) { // should only be set during a merge |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "Set register to unknown type " << new_type; |
| return false; |
| } else { |
| line_[vdst] = new_type.GetId(); |
| } |
| // Clear the monitor entry bits for this register. |
| ClearAllRegToLockDepths(vdst); |
| return true; |
| } |
| |
| void RegisterLine::SetResultTypeToUnknown() { |
| uint16_t unknown_id = verifier_->GetRegTypeCache()->Unknown().GetId(); |
| result_[0] = unknown_id; |
| result_[1] = unknown_id; |
| } |
| |
| void RegisterLine::SetResultRegisterType(const RegType& new_type) { |
| result_[0] = new_type.GetId(); |
| if (new_type.IsLowHalf()) { |
| DCHECK_EQ(new_type.HighHalf(verifier_->GetRegTypeCache()).GetId(), new_type.GetId() + 1); |
| result_[1] = new_type.GetId() + 1; |
| } else { |
| result_[1] = verifier_->GetRegTypeCache()->Unknown().GetId(); |
| } |
| } |
| |
| const RegType& RegisterLine::GetRegisterType(uint32_t vsrc) const { |
| // The register index was validated during the static pass, so we don't need to check it here. |
| DCHECK_LT(vsrc, num_regs_); |
| return verifier_->GetRegTypeCache()->GetFromId(line_[vsrc]); |
| } |
| |
| const RegType& RegisterLine::GetInvocationThis(const DecodedInstruction& dec_insn) { |
| if (dec_insn.vA < 1) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke lacks 'this'"; |
| return verifier_->GetRegTypeCache()->Unknown(); |
| } |
| /* get the element type of the array held in vsrc */ |
| const RegType& this_type = GetRegisterType(dec_insn.vC); |
| if (!this_type.IsReferenceTypes()) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "tried to get class from non-reference register v" |
| << dec_insn.vC << " (type=" << this_type << ")"; |
| return verifier_->GetRegTypeCache()->Unknown(); |
| } |
| return this_type; |
| } |
| |
| bool RegisterLine::VerifyRegisterType(uint32_t vsrc, const RegType& check_type) { |
| // Verify the src register type against the check type refining the type of the register |
| const RegType& src_type = GetRegisterType(vsrc); |
| if (!check_type.IsAssignableFrom(src_type)) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "register v" << vsrc << " has type " << src_type |
| << " but expected " << check_type; |
| return false; |
| } |
| if (check_type.IsLowHalf()) { |
| const RegType& src_type_h = GetRegisterType(vsrc + 1); |
| if (!src_type.CheckWidePair(src_type_h)) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "wide register v" << vsrc << " has type " |
| << src_type << "/" << src_type_h; |
| return false; |
| } |
| } |
| // The register at vsrc has a defined type, we know the lower-upper-bound, but this is less |
| // precise than the subtype in vsrc so leave it for reference types. For primitive types |
| // if they are a defined type then they are as precise as we can get, however, for constant |
| // types we may wish to refine them. Unfortunately constant propagation has rendered this useless. |
| return true; |
| } |
| |
| void RegisterLine::MarkRefsAsInitialized(const RegType& uninit_type) { |
| DCHECK(uninit_type.IsUninitializedTypes()); |
| const RegType& init_type = verifier_->GetRegTypeCache()->FromUninitialized(uninit_type); |
| size_t changed = 0; |
| for (size_t i = 0; i < num_regs_; i++) { |
| if (GetRegisterType(i).Equals(uninit_type)) { |
| line_[i] = init_type.GetId(); |
| changed++; |
| } |
| } |
| DCHECK_GT(changed, 0u); |
| } |
| |
| void RegisterLine::MarkUninitRefsAsInvalid(const RegType& uninit_type) { |
| for (size_t i = 0; i < num_regs_; i++) { |
| if (GetRegisterType(i).Equals(uninit_type)) { |
| line_[i] = verifier_->GetRegTypeCache()->Conflict().GetId(); |
| ClearAllRegToLockDepths(i); |
| } |
| } |
| } |
| |
| void RegisterLine::CopyRegister1(uint32_t vdst, uint32_t vsrc, TypeCategory cat) { |
| DCHECK(cat == kTypeCategory1nr || cat == kTypeCategoryRef); |
| const RegType& type = GetRegisterType(vsrc); |
| if (!SetRegisterType(vdst, type)) { |
| return; |
| } |
| if ((cat == kTypeCategory1nr && !type.IsCategory1Types()) || |
| (cat == kTypeCategoryRef && !type.IsReferenceTypes())) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy1 v" << vdst << "<-v" << vsrc << " type=" << type |
| << " cat=" << static_cast<int>(cat); |
| } else if (cat == kTypeCategoryRef) { |
| CopyRegToLockDepth(vdst, vsrc); |
| } |
| } |
| |
| void RegisterLine::CopyRegister2(uint32_t vdst, uint32_t vsrc) { |
| const RegType& type_l = GetRegisterType(vsrc); |
| const RegType& type_h = GetRegisterType(vsrc + 1); |
| |
| if (!type_l.CheckWidePair(type_h)) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "copy2 v" << vdst << "<-v" << vsrc |
| << " type=" << type_l << "/" << type_h; |
| } else { |
| SetRegisterType(vdst, type_l); // implicitly sets the second half |
| } |
| } |
| |
| void RegisterLine::CopyResultRegister1(uint32_t vdst, bool is_reference) { |
| const RegType& type = verifier_->GetRegTypeCache()->GetFromId(result_[0]); |
| if ((!is_reference && !type.IsCategory1Types()) || |
| (is_reference && !type.IsReferenceTypes())) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "copyRes1 v" << vdst << "<- result0" << " type=" << type; |
| } else { |
| DCHECK(verifier_->GetRegTypeCache()->GetFromId(result_[1]).IsUnknown()); |
| SetRegisterType(vdst, type); |
| result_[0] = verifier_->GetRegTypeCache()->Unknown().GetId(); |
| } |
| } |
| |
| /* |
| * Implement "move-result-wide". Copy the category-2 value from the result |
| * register to another register, and reset the result register. |
| */ |
| void RegisterLine::CopyResultRegister2(uint32_t vdst) { |
| const RegType& type_l = verifier_->GetRegTypeCache()->GetFromId(result_[0]); |
| const RegType& type_h = verifier_->GetRegTypeCache()->GetFromId(result_[1]); |
| if (!type_l.IsCategory2Types()) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "copyRes2 v" << vdst << "<- result0" << " type=" << type_l; |
| } else { |
| DCHECK(type_l.CheckWidePair(type_h)); // Set should never allow this case |
| SetRegisterType(vdst, type_l); // also sets the high |
| result_[0] = verifier_->GetRegTypeCache()->Unknown().GetId(); |
| result_[1] = verifier_->GetRegTypeCache()->Unknown().GetId(); |
| } |
| } |
| |
| void RegisterLine::CheckUnaryOp(const DecodedInstruction& dec_insn, |
| const RegType& dst_type, const RegType& src_type) { |
| if (VerifyRegisterType(dec_insn.vB, src_type)) { |
| SetRegisterType(dec_insn.vA, dst_type); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOp(const DecodedInstruction& dec_insn, |
| const RegType& dst_type, |
| const RegType& src_type1, const RegType& src_type2, |
| bool check_boolean_op) { |
| if (VerifyRegisterType(dec_insn.vB, src_type1) && |
| VerifyRegisterType(dec_insn.vC, src_type2)) { |
| if (check_boolean_op) { |
| DCHECK(dst_type.IsInteger()); |
| if (GetRegisterType(dec_insn.vB).IsBooleanTypes() && |
| GetRegisterType(dec_insn.vC).IsBooleanTypes()) { |
| SetRegisterType(dec_insn.vA, verifier_->GetRegTypeCache()->Boolean()); |
| return; |
| } |
| } |
| SetRegisterType(dec_insn.vA, dst_type); |
| } |
| } |
| |
| void RegisterLine::CheckBinaryOp2addr(const DecodedInstruction& dec_insn, |
| const RegType& dst_type, const RegType& src_type1, |
| const RegType& src_type2, bool check_boolean_op) { |
| if (VerifyRegisterType(dec_insn.vA, src_type1) && |
| VerifyRegisterType(dec_insn.vB, src_type2)) { |
| if (check_boolean_op) { |
| DCHECK(dst_type.IsInteger()); |
| if (GetRegisterType(dec_insn.vA).IsBooleanTypes() && |
| GetRegisterType(dec_insn.vB).IsBooleanTypes()) { |
| SetRegisterType(dec_insn.vA, verifier_->GetRegTypeCache()->Boolean()); |
| return; |
| } |
| } |
| SetRegisterType(dec_insn.vA, dst_type); |
| } |
| } |
| |
| void RegisterLine::CheckLiteralOp(const DecodedInstruction& dec_insn, |
| const RegType& dst_type, const RegType& src_type, |
| bool check_boolean_op) { |
| if (VerifyRegisterType(dec_insn.vB, src_type)) { |
| if (check_boolean_op) { |
| DCHECK(dst_type.IsInteger()); |
| /* check vB with the call, then check the constant manually */ |
| if (GetRegisterType(dec_insn.vB).IsBooleanTypes() && |
| (dec_insn.vC == 0 || dec_insn.vC == 1)) { |
| SetRegisterType(dec_insn.vA, verifier_->GetRegTypeCache()->Boolean()); |
| return; |
| } |
| } |
| SetRegisterType(dec_insn.vA, dst_type); |
| } |
| } |
| |
| void RegisterLine::PushMonitor(uint32_t reg_idx, int32_t insn_idx) { |
| const RegType& reg_type = GetRegisterType(reg_idx); |
| if (!reg_type.IsReferenceTypes()) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter on non-object (" << reg_type << ")"; |
| } else if (monitors_.size() >= 32) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-enter stack overflow: " << monitors_.size(); |
| } else { |
| SetRegToLockDepth(reg_idx, monitors_.size()); |
| monitors_.push_back(insn_idx); |
| } |
| } |
| |
| void RegisterLine::PopMonitor(uint32_t reg_idx) { |
| const RegType& reg_type = GetRegisterType(reg_idx); |
| if (!reg_type.IsReferenceTypes()) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit on non-object (" << reg_type << ")"; |
| } else if (monitors_.empty()) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "monitor-exit stack underflow"; |
| } else { |
| monitors_.pop_back(); |
| if (!IsSetLockDepth(reg_idx, monitors_.size())) { |
| // Bug 3215458: Locks and unlocks are on objects, if that object is a literal then before |
| // format "036" the constant collector may create unlocks on the same object but referenced |
| // via different registers. |
| ((verifier_->DexFileVersion() >= 36) ? verifier_->Fail(VERIFY_ERROR_BAD_CLASS_SOFT) |
| : verifier_->LogVerifyInfo()) |
| << "monitor-exit not unlocking the top of the monitor stack"; |
| } else { |
| // Record the register was unlocked |
| ClearRegToLockDepth(reg_idx, monitors_.size()); |
| } |
| } |
| } |
| |
| bool RegisterLine::VerifyMonitorStackEmpty() { |
| if (MonitorStackDepth() != 0) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected empty monitor stack"; |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| bool RegisterLine::MergeRegisters(const RegisterLine* incoming_line) { |
| bool changed = false; |
| for (size_t idx = 0; idx < num_regs_; idx++) { |
| if (line_[idx] != incoming_line->line_[idx]) { |
| const RegType& incoming_reg_type = incoming_line->GetRegisterType(idx); |
| const RegType& cur_type = GetRegisterType(idx); |
| const RegType& new_type = cur_type.Merge(incoming_reg_type, verifier_->GetRegTypeCache()); |
| changed = changed || !cur_type.Equals(new_type); |
| line_[idx] = new_type.GetId(); |
| } |
| } |
| if (monitors_.size() != incoming_line->monitors_.size()) { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "mismatched stack depths (depth=" |
| << MonitorStackDepth() << ", incoming depth=" << incoming_line->MonitorStackDepth() << ")"; |
| } else if (reg_to_lock_depths_ != incoming_line->reg_to_lock_depths_) { |
| for (uint32_t idx = 0; idx < num_regs_; idx++) { |
| size_t depths = reg_to_lock_depths_.count(idx); |
| size_t incoming_depths = incoming_line->reg_to_lock_depths_.count(idx); |
| if (depths != incoming_depths) { |
| if (depths == 0 || incoming_depths == 0) { |
| reg_to_lock_depths_.erase(idx); |
| } else { |
| verifier_->Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "mismatched stack depths for register v" << idx |
| << ": " << depths << " != " << incoming_depths; |
| break; |
| } |
| } |
| } |
| } |
| return changed; |
| } |
| |
| void RegisterLine::WriteReferenceBitMap(std::vector<uint8_t>& data, size_t max_bytes) { |
| for (size_t i = 0; i < num_regs_; i += 8) { |
| uint8_t val = 0; |
| for (size_t j = 0; j < 8 && (i + j) < num_regs_; j++) { |
| // Note: we write 1 for a Reference but not for Null |
| if (GetRegisterType(i + j).IsNonZeroReferenceTypes()) { |
| val |= 1 << j; |
| } |
| } |
| if ((i / 8) >= max_bytes) { |
| DCHECK_EQ(0, val); |
| continue; |
| } |
| DCHECK_LT(i / 8, max_bytes) << "val=" << static_cast<uint32_t>(val); |
| data.push_back(val); |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const RegisterLine& rhs) { |
| os << rhs.Dump(); |
| return os; |
| } |
| |
| |
| void PcToRegisterLineTable::Init(RegisterTrackingMode mode, InsnFlags* flags, |
| uint32_t insns_size, uint16_t registers_size, |
| DexVerifier* verifier) { |
| DCHECK_GT(insns_size, 0U); |
| |
| for (uint32_t i = 0; i < insns_size; i++) { |
| bool interesting = false; |
| switch (mode) { |
| case kTrackRegsAll: |
| interesting = flags[i].IsOpcode(); |
| break; |
| case kTrackRegsGcPoints: |
| interesting = flags[i].IsGcPoint() || flags[i].IsBranchTarget(); |
| break; |
| case kTrackRegsBranches: |
| interesting = flags[i].IsBranchTarget(); |
| break; |
| default: |
| break; |
| } |
| if (interesting) { |
| pc_to_register_line_[i] = new RegisterLine(registers_size, verifier); |
| } |
| } |
| } |
| |
| bool DexVerifier::VerifyClass(const Class* klass, std::string& error) { |
| if (klass->IsVerified()) { |
| return true; |
| } |
| Class* super = klass->GetSuperClass(); |
| if (super == NULL && StringPiece(ClassHelper(klass).GetDescriptor()) != "Ljava/lang/Object;") { |
| error = "Verifier rejected class "; |
| error += PrettyDescriptor(klass); |
| error += " that has no super class"; |
| return false; |
| } |
| if (super != NULL && super->IsFinal()) { |
| error = "Verifier rejected class "; |
| error += PrettyDescriptor(klass); |
| error += " that attempts to sub-class final class "; |
| error += PrettyDescriptor(super); |
| return false; |
| } |
| for (size_t i = 0; i < klass->NumDirectMethods(); ++i) { |
| Method* method = klass->GetDirectMethod(i); |
| if (!VerifyMethod(method)) { |
| error = "Verifier rejected class "; |
| error += PrettyDescriptor(klass); |
| error += " due to bad method "; |
| error += PrettyMethod(method, true); |
| return false; |
| } |
| } |
| for (size_t i = 0; i < klass->NumVirtualMethods(); ++i) { |
| Method* method = klass->GetVirtualMethod(i); |
| if (!VerifyMethod(method)) { |
| error = "Verifier rejected class "; |
| error += PrettyDescriptor(klass); |
| error += " due to bad method "; |
| error += PrettyMethod(method, true); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| bool DexVerifier::VerifyMethod(Method* method) { |
| DexVerifier verifier(method); |
| bool success = verifier.VerifyAll(); |
| CHECK_EQ(success, verifier.failure_ == VERIFY_ERROR_NONE); |
| |
| // We expect either success and no verification error, or failure and a generic failure to |
| // reject the class. |
| if (success) { |
| if (verifier.failure_ != VERIFY_ERROR_NONE) { |
| LOG(FATAL) << "Unhandled failure in verification of " << PrettyMethod(method) << std::endl |
| << verifier.fail_messages_; |
| } |
| } else { |
| LOG(INFO) << "Verification error in " << PrettyMethod(method) << " " |
| << verifier.fail_messages_.str(); |
| if (gDebugVerify) { |
| std::cout << std::endl << verifier.info_messages_.str(); |
| verifier.Dump(std::cout); |
| } |
| DCHECK((verifier.failure_ == VERIFY_ERROR_BAD_CLASS_SOFT) || |
| (verifier.failure_ == VERIFY_ERROR_BAD_CLASS_HARD)) << verifier.failure_; |
| } |
| return success; |
| } |
| |
| void DexVerifier::VerifyMethodAndDump(Method* method) { |
| DexVerifier verifier(method); |
| verifier.VerifyAll(); |
| |
| LOG(INFO) << "Dump of method " << PrettyMethod(method) << " " |
| << verifier.fail_messages_.str() << std::endl |
| << verifier.info_messages_.str() << Dumpable<DexVerifier>(verifier); |
| } |
| |
| bool DexVerifier::VerifyClass(const DexFile* dex_file, DexCache* dex_cache, |
| const ClassLoader* class_loader, uint32_t class_def_idx, std::string& error) { |
| const DexFile::ClassDef& class_def = dex_file->GetClassDef(class_def_idx); |
| const byte* class_data = dex_file->GetClassData(class_def); |
| ClassDataItemIterator it(*dex_file, class_data); |
| while (it.HasNextStaticField() || it.HasNextInstanceField()) { |
| it.Next(); |
| } |
| while (it.HasNextDirectMethod()) { |
| uint32_t method_idx = it.GetMemberIndex(); |
| if (!VerifyMethod(method_idx, dex_file, dex_cache, class_loader, class_def_idx, |
| it.GetMethodCodeItem())) { |
| error = "Verifier rejected class"; |
| error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def)); |
| error += " due to bad method "; |
| error += PrettyMethod(method_idx, *dex_file); |
| return false; |
| } |
| it.Next(); |
| } |
| while (it.HasNextVirtualMethod()) { |
| uint32_t method_idx = it.GetMemberIndex(); |
| if (!VerifyMethod(method_idx, dex_file, dex_cache, class_loader, class_def_idx, |
| it.GetMethodCodeItem())) { |
| error = "Verifier rejected class"; |
| error += PrettyDescriptor(dex_file->GetClassDescriptor(class_def)); |
| error += " due to bad method "; |
| error += PrettyMethod(method_idx, *dex_file); |
| return false; |
| } |
| it.Next(); |
| } |
| return true; |
| } |
| |
| bool DexVerifier::VerifyMethod(uint32_t method_idx, const DexFile* dex_file, DexCache* dex_cache, |
| const ClassLoader* class_loader, uint32_t class_def_idx, const DexFile::CodeItem* code_item) { |
| DexVerifier verifier(dex_file, dex_cache, class_loader, class_def_idx, code_item); |
| |
| // Without a method*, we can only verify the struture. |
| bool success = verifier.VerifyStructure(); |
| CHECK_EQ(success, verifier.failure_ == VERIFY_ERROR_NONE); |
| |
| // We expect either success and no verification error, or failure and a generic failure to |
| // reject the class. |
| if (success) { |
| if (verifier.failure_ != VERIFY_ERROR_NONE) { |
| LOG(FATAL) << "Unhandled failure in verification of " << PrettyMethod(method_idx, *dex_file) |
| << std::endl << verifier.fail_messages_; |
| } |
| } else { |
| LOG(INFO) << "Verification error in " << PrettyMethod(method_idx, *dex_file) << " " |
| << verifier.fail_messages_.str(); |
| if (gDebugVerify) { |
| std::cout << std::endl << verifier.info_messages_.str(); |
| verifier.Dump(std::cout); |
| } |
| DCHECK((verifier.failure_ == VERIFY_ERROR_BAD_CLASS_SOFT) || |
| (verifier.failure_ == VERIFY_ERROR_BAD_CLASS_HARD)) << verifier.failure_; |
| } |
| return success; |
| } |
| |
| DexVerifier::DexVerifier(Method* method) |
| : work_insn_idx_(-1), |
| method_(method), |
| failure_(VERIFY_ERROR_NONE), |
| new_instance_count_(0), |
| monitor_enter_count_(0) { |
| CHECK(method != NULL); |
| dex_cache_ = method->GetDeclaringClass()->GetDexCache(); |
| class_loader_ = method->GetDeclaringClass()->GetClassLoader(); |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| dex_file_ = &class_linker->FindDexFile(dex_cache_); |
| code_item_ = dex_file_->GetCodeItem(method->GetCodeItemOffset()); |
| const DexFile::ClassDef* class_def = ClassHelper(method_->GetDeclaringClass()).GetClassDef(); |
| class_def_idx_ = dex_file_->GetIndexForClassDef(*class_def); |
| } |
| |
| DexVerifier::DexVerifier(const DexFile* dex_file, DexCache* dex_cache, |
| const ClassLoader* class_loader, uint32_t class_def_idx, const DexFile::CodeItem* code_item) |
| : work_insn_idx_(-1), |
| method_(NULL), |
| dex_file_(dex_file), |
| dex_cache_(dex_cache), |
| class_loader_(class_loader), |
| class_def_idx_(class_def_idx), |
| code_item_(code_item), |
| failure_(VERIFY_ERROR_NONE), |
| new_instance_count_(0), |
| monitor_enter_count_(0) { |
| } |
| |
| bool DexVerifier::VerifyAll() { |
| CHECK(method_ != NULL); |
| // If there aren't any instructions, make sure that's expected, then exit successfully. |
| if (code_item_ == NULL) { |
| if (!method_->IsNative() && !method_->IsAbstract()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "zero-length code in concrete non-native method"; |
| return false; |
| } else { |
| return true; |
| } |
| } |
| return VerifyStructure() && VerifyCodeFlow(); |
| } |
| |
| bool DexVerifier::VerifyStructure() { |
| if (code_item_ == NULL) { |
| return true; |
| } |
| // Sanity-check the register counts. ins + locals = registers, so make sure that ins <= registers. |
| if (code_item_->ins_size_ > code_item_->registers_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad register counts (ins=" << code_item_->ins_size_ |
| << " regs=" << code_item_->registers_size_; |
| return false; |
| } |
| // Allocate and initialize an array to hold instruction data. |
| insn_flags_.reset(new InsnFlags[code_item_->insns_size_in_code_units_]()); |
| // Run through the instructions and see if the width checks out. |
| bool result = ComputeWidthsAndCountOps(); |
| // Flag instructions guarded by a "try" block and check exception handlers. |
| result = result && ScanTryCatchBlocks(); |
| // Perform static instruction verification. |
| result = result && VerifyInstructions(); |
| return result; |
| } |
| |
| std::ostream& DexVerifier::Fail(VerifyError error) { |
| CHECK_EQ(failure_, VERIFY_ERROR_NONE); |
| if (Runtime::Current()->IsCompiler()) { |
| switch (error) { |
| // If we're optimistically running verification at compile time, turn NO_xxx and ACCESS_xxx |
| // errors into soft verification errors so that we re-verify at runtime. We may fail to find |
| // or to agree on access because of not yet available class loaders, or class loaders that |
| // will differ at runtime. |
| case VERIFY_ERROR_NO_CLASS: |
| case VERIFY_ERROR_NO_FIELD: |
| case VERIFY_ERROR_NO_METHOD: |
| case VERIFY_ERROR_ACCESS_CLASS: |
| case VERIFY_ERROR_ACCESS_FIELD: |
| case VERIFY_ERROR_ACCESS_METHOD: |
| error = VERIFY_ERROR_BAD_CLASS_SOFT; |
| break; |
| // Hard verification failures at compile time will still fail at runtime, so the class is |
| // marked as rejected to prevent it from being compiled. |
| case VERIFY_ERROR_BAD_CLASS_HARD: { |
| Compiler::ClassReference ref(dex_file_, class_def_idx_); |
| AddRejectedClass(ref); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| failure_ = error; |
| return fail_messages_ << "VFY: " << PrettyMethod(method_) |
| << '[' << reinterpret_cast<void*>(work_insn_idx_) << "] : "; |
| } |
| |
| bool DexVerifier::ComputeWidthsAndCountOps() { |
| const uint16_t* insns = code_item_->insns_; |
| size_t insns_size = code_item_->insns_size_in_code_units_; |
| const Instruction* inst = Instruction::At(insns); |
| size_t new_instance_count = 0; |
| size_t monitor_enter_count = 0; |
| size_t dex_pc = 0; |
| |
| while (dex_pc < insns_size) { |
| Instruction::Code opcode = inst->Opcode(); |
| if (opcode == Instruction::NEW_INSTANCE) { |
| new_instance_count++; |
| } else if (opcode == Instruction::MONITOR_ENTER) { |
| monitor_enter_count++; |
| } |
| size_t inst_size = inst->SizeInCodeUnits(); |
| insn_flags_[dex_pc].SetLengthInCodeUnits(inst_size); |
| dex_pc += inst_size; |
| inst = inst->Next(); |
| } |
| |
| if (dex_pc != insns_size) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "code did not end where expected (" |
| << dex_pc << " vs. " << insns_size << ")"; |
| return false; |
| } |
| |
| new_instance_count_ = new_instance_count; |
| monitor_enter_count_ = monitor_enter_count; |
| return true; |
| } |
| |
| bool DexVerifier::ScanTryCatchBlocks() { |
| uint32_t tries_size = code_item_->tries_size_; |
| if (tries_size == 0) { |
| return true; |
| } |
| uint32_t insns_size = code_item_->insns_size_in_code_units_; |
| const DexFile::TryItem* tries = DexFile::GetTryItems(*code_item_, 0); |
| |
| for (uint32_t idx = 0; idx < tries_size; idx++) { |
| const DexFile::TryItem* try_item = &tries[idx]; |
| uint32_t start = try_item->start_addr_; |
| uint32_t end = start + try_item->insn_count_; |
| if ((start >= end) || (start >= insns_size) || (end > insns_size)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad exception entry: startAddr=" << start |
| << " endAddr=" << end << " (size=" << insns_size << ")"; |
| return false; |
| } |
| if (!insn_flags_[start].IsOpcode()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'try' block starts inside an instruction (" << start << ")"; |
| return false; |
| } |
| for (uint32_t dex_pc = start; dex_pc < end; |
| dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) { |
| insn_flags_[dex_pc].SetInTry(); |
| } |
| } |
| // Iterate over each of the handlers to verify target addresses. |
| const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| for (uint32_t idx = 0; idx < handlers_size; idx++) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| uint32_t dex_pc= iterator.GetHandlerAddress(); |
| if (!insn_flags_[dex_pc].IsOpcode()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "exception handler starts at bad address (" << dex_pc << ")"; |
| return false; |
| } |
| const Instruction* inst = Instruction::At(code_item_->insns_ + dex_pc); |
| if (inst->Opcode() != Instruction::MOVE_EXCEPTION) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "exception handler doesn't start with move-exception (" |
| << dex_pc << ")"; |
| return false; |
| } |
| insn_flags_[dex_pc].SetBranchTarget(); |
| // Ensure exception types are resolved so that they don't need resolution to be delivered, |
| // unresolved exception types will be ignored by exception delivery |
| if (iterator.GetHandlerTypeIndex() != DexFile::kDexNoIndex16) { |
| Class* exception_type = linker->ResolveType(*dex_file_, iterator.GetHandlerTypeIndex(), |
| dex_cache_, class_loader_); |
| if (exception_type == NULL) { |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| Thread::Current()->ClearException(); |
| } |
| } |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| return true; |
| } |
| |
| bool DexVerifier::VerifyInstructions() { |
| const Instruction* inst = Instruction::At(code_item_->insns_); |
| |
| /* Flag the start of the method as a branch target. */ |
| insn_flags_[0].SetBranchTarget(); |
| |
| uint32_t insns_size = code_item_->insns_size_in_code_units_; |
| for (uint32_t dex_pc = 0; dex_pc < insns_size;) { |
| if (!VerifyInstruction(inst, dex_pc)) { |
| DCHECK_NE(failure_, VERIFY_ERROR_NONE); |
| fail_messages_ << "Rejecting opcode " << inst->Name() << " at " << dex_pc; |
| return false; |
| } |
| /* Flag instructions that are garbage collection points */ |
| if (inst->IsBranch() || inst->IsSwitch() || inst->IsThrow() || inst->IsReturn()) { |
| insn_flags_[dex_pc].SetGcPoint(); |
| } |
| dex_pc += inst->SizeInCodeUnits(); |
| inst = inst->Next(); |
| } |
| return true; |
| } |
| |
| bool DexVerifier::VerifyInstruction(const Instruction* inst, uint32_t code_offset) { |
| DecodedInstruction dec_insn(inst); |
| bool result = true; |
| switch (inst->GetVerifyTypeArgumentA()) { |
| case Instruction::kVerifyRegA: |
| result = result && CheckRegisterIndex(dec_insn.vA); |
| break; |
| case Instruction::kVerifyRegAWide: |
| result = result && CheckWideRegisterIndex(dec_insn.vA); |
| break; |
| } |
| switch (inst->GetVerifyTypeArgumentB()) { |
| case Instruction::kVerifyRegB: |
| result = result && CheckRegisterIndex(dec_insn.vB); |
| break; |
| case Instruction::kVerifyRegBField: |
| result = result && CheckFieldIndex(dec_insn.vB); |
| break; |
| case Instruction::kVerifyRegBMethod: |
| result = result && CheckMethodIndex(dec_insn.vB); |
| break; |
| case Instruction::kVerifyRegBNewInstance: |
| result = result && CheckNewInstance(dec_insn.vB); |
| break; |
| case Instruction::kVerifyRegBString: |
| result = result && CheckStringIndex(dec_insn.vB); |
| break; |
| case Instruction::kVerifyRegBType: |
| result = result && CheckTypeIndex(dec_insn.vB); |
| break; |
| case Instruction::kVerifyRegBWide: |
| result = result && CheckWideRegisterIndex(dec_insn.vB); |
| break; |
| } |
| switch (inst->GetVerifyTypeArgumentC()) { |
| case Instruction::kVerifyRegC: |
| result = result && CheckRegisterIndex(dec_insn.vC); |
| break; |
| case Instruction::kVerifyRegCField: |
| result = result && CheckFieldIndex(dec_insn.vC); |
| break; |
| case Instruction::kVerifyRegCNewArray: |
| result = result && CheckNewArray(dec_insn.vC); |
| break; |
| case Instruction::kVerifyRegCType: |
| result = result && CheckTypeIndex(dec_insn.vC); |
| break; |
| case Instruction::kVerifyRegCWide: |
| result = result && CheckWideRegisterIndex(dec_insn.vC); |
| break; |
| } |
| switch (inst->GetVerifyExtraFlags()) { |
| case Instruction::kVerifyArrayData: |
| result = result && CheckArrayData(code_offset); |
| break; |
| case Instruction::kVerifyBranchTarget: |
| result = result && CheckBranchTarget(code_offset); |
| break; |
| case Instruction::kVerifySwitchTargets: |
| result = result && CheckSwitchTargets(code_offset); |
| break; |
| case Instruction::kVerifyVarArg: |
| result = result && CheckVarArgRegs(dec_insn.vA, dec_insn.arg); |
| break; |
| case Instruction::kVerifyVarArgRange: |
| result = result && CheckVarArgRangeRegs(dec_insn.vA, dec_insn.vC); |
| break; |
| case Instruction::kVerifyError: |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected opcode " << inst->Name(); |
| result = false; |
| break; |
| } |
| return result; |
| } |
| |
| bool DexVerifier::CheckRegisterIndex(uint32_t idx) { |
| if (idx >= code_item_->registers_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "register index out of range (" << idx << " >= " |
| << code_item_->registers_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckWideRegisterIndex(uint32_t idx) { |
| if (idx + 1 >= code_item_->registers_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "wide register index out of range (" << idx |
| << "+1 >= " << code_item_->registers_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckFieldIndex(uint32_t idx) { |
| if (idx >= dex_file_->GetHeader().field_ids_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad field index " << idx << " (max " |
| << dex_file_->GetHeader().field_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckMethodIndex(uint32_t idx) { |
| if (idx >= dex_file_->GetHeader().method_ids_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad method index " << idx << " (max " |
| << dex_file_->GetHeader().method_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckNewInstance(uint32_t idx) { |
| if (idx >= dex_file_->GetHeader().type_ids_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max " |
| << dex_file_->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| // We don't need the actual class, just a pointer to the class name. |
| const char* descriptor = dex_file_->StringByTypeIdx(idx); |
| if (descriptor[0] != 'L') { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't call new-instance on type '" << descriptor << "'"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckStringIndex(uint32_t idx) { |
| if (idx >= dex_file_->GetHeader().string_ids_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad string index " << idx << " (max " |
| << dex_file_->GetHeader().string_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckTypeIndex(uint32_t idx) { |
| if (idx >= dex_file_->GetHeader().type_ids_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max " |
| << dex_file_->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckNewArray(uint32_t idx) { |
| if (idx >= dex_file_->GetHeader().type_ids_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad type index " << idx << " (max " |
| << dex_file_->GetHeader().type_ids_size_ << ")"; |
| return false; |
| } |
| int bracket_count = 0; |
| const char* descriptor = dex_file_->StringByTypeIdx(idx); |
| const char* cp = descriptor; |
| while (*cp++ == '[') { |
| bracket_count++; |
| } |
| if (bracket_count == 0) { |
| /* The given class must be an array type. */ |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't new-array class '" << descriptor << "' (not an array)"; |
| return false; |
| } else if (bracket_count > 255) { |
| /* It is illegal to create an array of more than 255 dimensions. */ |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "can't new-array class '" << descriptor << "' (exceeds limit)"; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckArrayData(uint32_t cur_offset) { |
| const uint32_t insn_count = code_item_->insns_size_in_code_units_; |
| const uint16_t* insns = code_item_->insns_ + cur_offset; |
| const uint16_t* array_data; |
| int32_t array_data_offset; |
| |
| DCHECK_LT(cur_offset, insn_count); |
| /* make sure the start of the array data table is in range */ |
| array_data_offset = insns[1] | (((int32_t) insns[2]) << 16); |
| if ((int32_t) cur_offset + array_data_offset < 0 || |
| cur_offset + array_data_offset + 2 >= insn_count) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data start: at " << cur_offset |
| << ", data offset " << array_data_offset << ", count " << insn_count; |
| return false; |
| } |
| /* offset to array data table is a relative branch-style offset */ |
| array_data = insns + array_data_offset; |
| /* make sure the table is 32-bit aligned */ |
| if ((((uint32_t) array_data) & 0x03) != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned array data table: at " << cur_offset |
| << ", data offset " << array_data_offset; |
| return false; |
| } |
| uint32_t value_width = array_data[1]; |
| uint32_t value_count = *reinterpret_cast<const uint32_t*>(&array_data[2]); |
| uint32_t table_size = 4 + (value_width * value_count + 1) / 2; |
| /* make sure the end of the switch is in range */ |
| if (cur_offset + array_data_offset + table_size > insn_count) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid array data end: at " << cur_offset |
| << ", data offset " << array_data_offset << ", end " |
| << cur_offset + array_data_offset + table_size |
| << ", count " << insn_count; |
| return false; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckBranchTarget(uint32_t cur_offset) { |
| int32_t offset; |
| bool isConditional, selfOkay; |
| if (!GetBranchOffset(cur_offset, &offset, &isConditional, &selfOkay)) { |
| return false; |
| } |
| if (!selfOkay && offset == 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch offset of zero not allowed at" << reinterpret_cast<void*>(cur_offset); |
| return false; |
| } |
| // Check for 32-bit overflow. This isn't strictly necessary if we can depend on the runtime |
| // to have identical "wrap-around" behavior, but it's unwise to depend on that. |
| if (((int64_t) cur_offset + (int64_t) offset) != (int64_t) (cur_offset + offset)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "branch target overflow " << reinterpret_cast<void*>(cur_offset) << " +" << offset; |
| return false; |
| } |
| const uint32_t insn_count = code_item_->insns_size_in_code_units_; |
| int32_t abs_offset = cur_offset + offset; |
| if (abs_offset < 0 || (uint32_t) abs_offset >= insn_count || !insn_flags_[abs_offset].IsOpcode()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid branch target " << offset << " (-> " |
| << reinterpret_cast<void*>(abs_offset) << ") at " |
| << reinterpret_cast<void*>(cur_offset); |
| return false; |
| } |
| insn_flags_[abs_offset].SetBranchTarget(); |
| return true; |
| } |
| |
| bool DexVerifier::GetBranchOffset(uint32_t cur_offset, int32_t* pOffset, bool* pConditional, |
| bool* selfOkay) { |
| const uint16_t* insns = code_item_->insns_ + cur_offset; |
| *pConditional = false; |
| *selfOkay = false; |
| switch (*insns & 0xff) { |
| case Instruction::GOTO: |
| *pOffset = ((int16_t) *insns) >> 8; |
| break; |
| case Instruction::GOTO_32: |
| *pOffset = insns[1] | (((uint32_t) insns[2]) << 16); |
| *selfOkay = true; |
| break; |
| case Instruction::GOTO_16: |
| *pOffset = (int16_t) insns[1]; |
| break; |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: |
| *pOffset = (int16_t) insns[1]; |
| *pConditional = true; |
| break; |
| default: |
| return false; |
| break; |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckSwitchTargets(uint32_t cur_offset) { |
| const uint32_t insn_count = code_item_->insns_size_in_code_units_; |
| DCHECK_LT(cur_offset, insn_count); |
| const uint16_t* insns = code_item_->insns_ + cur_offset; |
| /* make sure the start of the switch is in range */ |
| int32_t switch_offset = insns[1] | ((int32_t) insns[2]) << 16; |
| if ((int32_t) cur_offset + switch_offset < 0 || cur_offset + switch_offset + 2 >= insn_count) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch start: at " << cur_offset |
| << ", switch offset " << switch_offset << ", count " << insn_count; |
| return false; |
| } |
| /* offset to switch table is a relative branch-style offset */ |
| const uint16_t* switch_insns = insns + switch_offset; |
| /* make sure the table is 32-bit aligned */ |
| if ((((uint32_t) switch_insns) & 0x03) != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unaligned switch table: at " << cur_offset |
| << ", switch offset " << switch_offset; |
| return false; |
| } |
| uint32_t switch_count = switch_insns[1]; |
| int32_t keys_offset, targets_offset; |
| uint16_t expected_signature; |
| if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { |
| /* 0=sig, 1=count, 2/3=firstKey */ |
| targets_offset = 4; |
| keys_offset = -1; |
| expected_signature = Instruction::kPackedSwitchSignature; |
| } else { |
| /* 0=sig, 1=count, 2..count*2 = keys */ |
| keys_offset = 2; |
| targets_offset = 2 + 2 * switch_count; |
| expected_signature = Instruction::kSparseSwitchSignature; |
| } |
| uint32_t table_size = targets_offset + switch_count * 2; |
| if (switch_insns[0] != expected_signature) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << StringPrintf("wrong signature for switch table (%x, wanted %x)", |
| switch_insns[0], expected_signature); |
| return false; |
| } |
| /* make sure the end of the switch is in range */ |
| if (cur_offset + switch_offset + table_size > (uint32_t) insn_count) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch end: at " << cur_offset << ", switch offset " |
| << switch_offset << ", end " |
| << (cur_offset + switch_offset + table_size) |
| << ", count " << insn_count; |
| return false; |
| } |
| /* for a sparse switch, verify the keys are in ascending order */ |
| if (keys_offset > 0 && switch_count > 1) { |
| int32_t last_key = switch_insns[keys_offset] | (switch_insns[keys_offset + 1] << 16); |
| for (uint32_t targ = 1; targ < switch_count; targ++) { |
| int32_t key = (int32_t) switch_insns[keys_offset + targ * 2] | |
| (int32_t) (switch_insns[keys_offset + targ * 2 + 1] << 16); |
| if (key <= last_key) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid packed switch: last key=" << last_key |
| << ", this=" << key; |
| return false; |
| } |
| last_key = key; |
| } |
| } |
| /* verify each switch target */ |
| for (uint32_t targ = 0; targ < switch_count; targ++) { |
| int32_t offset = (int32_t) switch_insns[targets_offset + targ * 2] | |
| (int32_t) (switch_insns[targets_offset + targ * 2 + 1] << 16); |
| int32_t abs_offset = cur_offset + offset; |
| if (abs_offset < 0 || abs_offset >= (int32_t) insn_count || !insn_flags_[abs_offset].IsOpcode()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid switch target " << offset << " (-> " |
| << reinterpret_cast<void*>(abs_offset) << ") at " |
| << reinterpret_cast<void*>(cur_offset) << "[" << targ << "]"; |
| return false; |
| } |
| insn_flags_[abs_offset].SetBranchTarget(); |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CheckVarArgRegs(uint32_t vA, uint32_t arg[]) { |
| if (vA > 5) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid arg count (" << vA << ") in non-range invoke)"; |
| return false; |
| } |
| uint16_t registers_size = code_item_->registers_size_; |
| for (uint32_t idx = 0; idx < vA; idx++) { |
| if (arg[idx] >= registers_size) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index (" << arg[idx] |
| << ") in non-range invoke (>= " << registers_size << ")"; |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| bool DexVerifier::CheckVarArgRangeRegs(uint32_t vA, uint32_t vC) { |
| uint16_t registers_size = code_item_->registers_size_; |
| // vA/vC are unsigned 8-bit/16-bit quantities for /range instructions, so there's no risk of |
| // integer overflow when adding them here. |
| if (vA + vC > registers_size) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid reg index " << vA << "+" << vC << " in range invoke (> " |
| << registers_size << ")"; |
| return false; |
| } |
| return true; |
| } |
| |
| const std::vector<uint8_t>* CreateLengthPrefixedGcMap(const std::vector<uint8_t>& gc_map) { |
| std::vector<uint8_t>* length_prefixed_gc_map = new std::vector<uint8_t>; |
| length_prefixed_gc_map->push_back((gc_map.size() & 0xff000000) >> 24); |
| length_prefixed_gc_map->push_back((gc_map.size() & 0x00ff0000) >> 16); |
| length_prefixed_gc_map->push_back((gc_map.size() & 0x0000ff00) >> 8); |
| length_prefixed_gc_map->push_back((gc_map.size() & 0x000000ff) >> 0); |
| length_prefixed_gc_map->insert(length_prefixed_gc_map->end(), |
| gc_map.begin(), |
| gc_map.end()); |
| DCHECK_EQ(gc_map.size() + 4, length_prefixed_gc_map->size()); |
| DCHECK_EQ(gc_map.size(), |
| static_cast<size_t>((length_prefixed_gc_map->at(0) << 24) | |
| (length_prefixed_gc_map->at(1) << 16) | |
| (length_prefixed_gc_map->at(2) << 8) | |
| (length_prefixed_gc_map->at(3) << 0))); |
| return length_prefixed_gc_map; |
| } |
| |
| bool DexVerifier::VerifyCodeFlow() { |
| uint16_t registers_size = code_item_->registers_size_; |
| uint32_t insns_size = code_item_->insns_size_in_code_units_; |
| |
| if (registers_size * insns_size > 4*1024*1024) { |
| LOG(WARNING) << "warning: method is huge (regs=" << registers_size |
| << " insns_size=" << insns_size << ")"; |
| } |
| /* Create and initialize table holding register status */ |
| reg_table_.Init(kTrackRegsGcPoints, insn_flags_.get(), insns_size, registers_size, this); |
| |
| work_line_.reset(new RegisterLine(registers_size, this)); |
| saved_line_.reset(new RegisterLine(registers_size, this)); |
| |
| /* Initialize register types of method arguments. */ |
| if (!SetTypesFromSignature()) { |
| DCHECK_NE(failure_, VERIFY_ERROR_NONE); |
| fail_messages_ << "Bad signature in " << PrettyMethod(method_); |
| return false; |
| } |
| /* Perform code flow verification. */ |
| if (!CodeFlowVerifyMethod()) { |
| DCHECK_NE(failure_, VERIFY_ERROR_NONE); |
| return false; |
| } |
| |
| /* Generate a register map and add it to the method. */ |
| UniquePtr<const std::vector<uint8_t> > map(GenerateGcMap()); |
| if (map.get() == NULL) { |
| DCHECK_NE(failure_, VERIFY_ERROR_NONE); |
| return false; // Not a real failure, but a failure to encode |
| } |
| #ifndef NDEBUG |
| VerifyGcMap(*map); |
| #endif |
| const std::vector<uint8_t>* gc_map = CreateLengthPrefixedGcMap(*(map.get())); |
| Compiler::MethodReference ref(dex_file_, method_->GetDexMethodIndex()); |
| verifier::DexVerifier::SetGcMap(ref, *gc_map); |
| |
| method_->SetGcMap(&gc_map->at(0)); |
| |
| #if defined(ART_USE_LLVM_COMPILER) |
| /* Generate Inferred Register Category for LLVM-based Code Generator */ |
| const InferredRegCategoryMap* table = GenerateInferredRegCategoryMap(); |
| verifier::DexVerifier::SetInferredRegCategoryMap(ref, *table); |
| #endif |
| |
| return true; |
| } |
| |
| void DexVerifier::Dump(std::ostream& os) { |
| if (code_item_ == NULL) { |
| os << "Native method" << std::endl; |
| return; |
| } |
| DCHECK(code_item_ != NULL); |
| const Instruction* inst = Instruction::At(code_item_->insns_); |
| for (size_t dex_pc = 0; dex_pc < code_item_->insns_size_in_code_units_; |
| dex_pc += insn_flags_[dex_pc].GetLengthInCodeUnits()) { |
| os << StringPrintf("0x%04zx", dex_pc) << ": " << insn_flags_[dex_pc].Dump() |
| << " " << inst->DumpHex(5) << " " << inst->DumpString(dex_file_) << std::endl; |
| RegisterLine* reg_line = reg_table_.GetLine(dex_pc); |
| if (reg_line != NULL) { |
| os << reg_line->Dump() << std::endl; |
| } |
| inst = inst->Next(); |
| } |
| } |
| |
| static bool IsPrimitiveDescriptor(char descriptor) { |
| switch (descriptor) { |
| case 'I': |
| case 'C': |
| case 'S': |
| case 'B': |
| case 'Z': |
| case 'F': |
| case 'D': |
| case 'J': |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| bool DexVerifier::SetTypesFromSignature() { |
| RegisterLine* reg_line = reg_table_.GetLine(0); |
| int arg_start = code_item_->registers_size_ - code_item_->ins_size_; |
| size_t expected_args = code_item_->ins_size_; /* long/double count as two */ |
| |
| DCHECK_GE(arg_start, 0); /* should have been verified earlier */ |
| //Include the "this" pointer. |
| size_t cur_arg = 0; |
| if (!method_->IsStatic()) { |
| // If this is a constructor for a class other than java.lang.Object, mark the first ("this") |
| // argument as uninitialized. This restricts field access until the superclass constructor is |
| // called. |
| Class* declaring_class = method_->GetDeclaringClass(); |
| if (method_->IsConstructor() && !declaring_class->IsObjectClass()) { |
| reg_line->SetRegisterType(arg_start + cur_arg, |
| reg_types_.UninitializedThisArgument(declaring_class)); |
| } else { |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.FromClass(declaring_class)); |
| } |
| cur_arg++; |
| } |
| |
| const DexFile::ProtoId& proto_id = |
| dex_file_->GetMethodPrototype(dex_file_->GetMethodId(method_->GetDexMethodIndex())); |
| DexFileParameterIterator iterator(*dex_file_, proto_id); |
| |
| for (; iterator.HasNext(); iterator.Next()) { |
| const char* descriptor = iterator.GetDescriptor(); |
| if (descriptor == NULL) { |
| LOG(FATAL) << "Null descriptor"; |
| } |
| if (cur_arg >= expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args |
| << " args, found more (" << descriptor << ")"; |
| return false; |
| } |
| switch (descriptor[0]) { |
| case 'L': |
| case '[': |
| // We assume that reference arguments are initialized. The only way it could be otherwise |
| // (assuming the caller was verified) is if the current method is <init>, but in that case |
| // it's effectively considered initialized the instant we reach here (in the sense that we |
| // can return without doing anything or call virtual methods). |
| { |
| const RegType& reg_type = |
| reg_types_.FromDescriptor(method_->GetDeclaringClass()->GetClassLoader(), descriptor); |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_type); |
| } |
| break; |
| case 'Z': |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Boolean()); |
| break; |
| case 'C': |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Char()); |
| break; |
| case 'B': |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Byte()); |
| break; |
| case 'I': |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Integer()); |
| break; |
| case 'S': |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Short()); |
| break; |
| case 'F': |
| reg_line->SetRegisterType(arg_start + cur_arg, reg_types_.Float()); |
| break; |
| case 'J': |
| case 'D': { |
| const RegType& low_half = descriptor[0] == 'J' ? reg_types_.Long() : reg_types_.Double(); |
| reg_line->SetRegisterType(arg_start + cur_arg, low_half); // implicitly sets high-register |
| cur_arg++; |
| break; |
| } |
| default: |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected signature type char '" << descriptor << "'"; |
| return false; |
| } |
| cur_arg++; |
| } |
| if (cur_arg != expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected " << expected_args << " arguments, found " << cur_arg; |
| return false; |
| } |
| const char* descriptor = dex_file_->GetReturnTypeDescriptor(proto_id); |
| // Validate return type. We don't do the type lookup; just want to make sure that it has the right |
| // format. Only major difference from the method argument format is that 'V' is supported. |
| bool result; |
| if (IsPrimitiveDescriptor(descriptor[0]) || descriptor[0] == 'V') { |
| result = descriptor[1] == '\0'; |
| } else if (descriptor[0] == '[') { // single/multi-dimensional array of object/primitive |
| size_t i = 0; |
| do { |
| i++; |
| } while (descriptor[i] == '['); // process leading [ |
| if (descriptor[i] == 'L') { // object array |
| do { |
| i++; // find closing ; |
| } while (descriptor[i] != ';' && descriptor[i] != '\0'); |
| result = descriptor[i] == ';'; |
| } else { // primitive array |
| result = IsPrimitiveDescriptor(descriptor[i]) && descriptor[i + 1] == '\0'; |
| } |
| } else if (descriptor[0] == 'L') { |
| // could be more thorough here, but shouldn't be required |
| size_t i = 0; |
| do { |
| i++; |
| } while (descriptor[i] != ';' && descriptor[i] != '\0'); |
| result = descriptor[i] == ';'; |
| } else { |
| result = false; |
| } |
| if (!result) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected char in return type descriptor '" |
| << descriptor << "'"; |
| } |
| return result; |
| } |
| |
| bool DexVerifier::CodeFlowVerifyMethod() { |
| const uint16_t* insns = code_item_->insns_; |
| const uint32_t insns_size = code_item_->insns_size_in_code_units_; |
| |
| /* Begin by marking the first instruction as "changed". */ |
| insn_flags_[0].SetChanged(); |
| uint32_t start_guess = 0; |
| |
| /* Continue until no instructions are marked "changed". */ |
| while (true) { |
| // Find the first marked one. Use "start_guess" as a way to find one quickly. |
| uint32_t insn_idx = start_guess; |
| for (; insn_idx < insns_size; insn_idx++) { |
| if (insn_flags_[insn_idx].IsChanged()) |
| break; |
| } |
| if (insn_idx == insns_size) { |
| if (start_guess != 0) { |
| /* try again, starting from the top */ |
| start_guess = 0; |
| continue; |
| } else { |
| /* all flags are clear */ |
| break; |
| } |
| } |
| // We carry the working set of registers from instruction to instruction. If this address can |
| // be the target of a branch (or throw) instruction, or if we're skipping around chasing |
| // "changed" flags, we need to load the set of registers from the table. |
| // Because we always prefer to continue on to the next instruction, we should never have a |
| // situation where we have a stray "changed" flag set on an instruction that isn't a branch |
| // target. |
| work_insn_idx_ = insn_idx; |
| if (insn_flags_[insn_idx].IsBranchTarget()) { |
| work_line_->CopyFromLine(reg_table_.GetLine(insn_idx)); |
| } else { |
| #ifndef NDEBUG |
| /* |
| * Sanity check: retrieve the stored register line (assuming |
| * a full table) and make sure it actually matches. |
| */ |
| RegisterLine* register_line = reg_table_.GetLine(insn_idx); |
| if (register_line != NULL) { |
| if (work_line_->CompareLine(register_line) != 0) { |
| Dump(std::cout); |
| std::cout << info_messages_.str(); |
| LOG(FATAL) << "work_line diverged in " << PrettyMethod(method_) |
| << "@" << reinterpret_cast<void*>(work_insn_idx_) << std::endl |
| << " work_line=" << *work_line_ << std::endl |
| << " expected=" << *register_line; |
| } |
| } |
| #endif |
| } |
| if (!CodeFlowVerifyInstruction(&start_guess)) { |
| fail_messages_ << std::endl << PrettyMethod(method_) << " failed to verify"; |
| return false; |
| } |
| /* Clear "changed" and mark as visited. */ |
| insn_flags_[insn_idx].SetVisited(); |
| insn_flags_[insn_idx].ClearChanged(); |
| } |
| |
| if (DEAD_CODE_SCAN && ((method_->GetAccessFlags() & kAccWritable) == 0)) { |
| /* |
| * Scan for dead code. There's nothing "evil" about dead code |
| * (besides the wasted space), but it indicates a flaw somewhere |
| * down the line, possibly in the verifier. |
| * |
| * If we've substituted "always throw" instructions into the stream, |
| * we are almost certainly going to have some dead code. |
| */ |
| int dead_start = -1; |
| uint32_t insn_idx = 0; |
| for (; insn_idx < insns_size; insn_idx += insn_flags_[insn_idx].GetLengthInCodeUnits()) { |
| /* |
| * Switch-statement data doesn't get "visited" by scanner. It |
| * may or may not be preceded by a padding NOP (for alignment). |
| */ |
| if (insns[insn_idx] == Instruction::kPackedSwitchSignature || |
| insns[insn_idx] == Instruction::kSparseSwitchSignature || |
| insns[insn_idx] == Instruction::kArrayDataSignature || |
| (insns[insn_idx] == Instruction::NOP && |
| (insns[insn_idx + 1] == Instruction::kPackedSwitchSignature || |
| insns[insn_idx + 1] == Instruction::kSparseSwitchSignature || |
| insns[insn_idx + 1] == Instruction::kArrayDataSignature))) { |
| insn_flags_[insn_idx].SetVisited(); |
| } |
| |
| if (!insn_flags_[insn_idx].IsVisited()) { |
| if (dead_start < 0) |
| dead_start = insn_idx; |
| } else if (dead_start >= 0) { |
| LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start) << "-" << reinterpret_cast<void*>(insn_idx - 1); |
| dead_start = -1; |
| } |
| } |
| if (dead_start >= 0) { |
| LogVerifyInfo() << "dead code " << reinterpret_cast<void*>(dead_start) << "-" << reinterpret_cast<void*>(insn_idx - 1); |
| } |
| } |
| return true; |
| } |
| |
| bool DexVerifier::CodeFlowVerifyInstruction(uint32_t* start_guess) { |
| #ifdef VERIFIER_STATS |
| if (CurrentInsnFlags().IsVisited()) { |
| gDvm.verifierStats.instrsReexamined++; |
| } else { |
| gDvm.verifierStats.instrsExamined++; |
| } |
| #endif |
| |
| /* |
| * Once we finish decoding the instruction, we need to figure out where |
| * we can go from here. There are three possible ways to transfer |
| * control to another statement: |
| * |
| * (1) Continue to the next instruction. Applies to all but |
| * unconditional branches, method returns, and exception throws. |
| * (2) Branch to one or more possible locations. Applies to branches |
| * and switch statements. |
| * (3) Exception handlers. Applies to any instruction that can |
| * throw an exception that is handled by an encompassing "try" |
| * block. |
| * |
| * We can also return, in which case there is no successor instruction |
| * from this point. |
| * |
| * The behavior can be determined from the opcode flags. |
| */ |
| const uint16_t* insns = code_item_->insns_ + work_insn_idx_; |
| const Instruction* inst = Instruction::At(insns); |
| DecodedInstruction dec_insn(inst); |
| int opcode_flags = Instruction::Flags(inst->Opcode()); |
| |
| int32_t branch_target = 0; |
| bool just_set_result = false; |
| if (gDebugVerify) { |
| // Generate processing back trace to debug verifier |
| LogVerifyInfo() << "Processing " << inst->DumpString(dex_file_) << std::endl |
| << *work_line_.get() << std::endl; |
| } |
| |
| /* |
| * Make a copy of the previous register state. If the instruction |
| * can throw an exception, we will copy/merge this into the "catch" |
| * address rather than work_line, because we don't want the result |
| * from the "successful" code path (e.g. a check-cast that "improves" |
| * a type) to be visible to the exception handler. |
| */ |
| if ((opcode_flags & Instruction::kThrow) != 0 && CurrentInsnFlags().IsInTry()) { |
| saved_line_->CopyFromLine(work_line_.get()); |
| } else { |
| #ifndef NDEBUG |
| saved_line_->FillWithGarbage(); |
| #endif |
| } |
| |
| switch (dec_insn.opcode) { |
| case Instruction::NOP: |
| /* |
| * A "pure" NOP has no effect on anything. Data tables start with |
| * a signature that looks like a NOP; if we see one of these in |
| * the course of executing code then we have a problem. |
| */ |
| if (dec_insn.vA != 0) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "encountered data table in instruction stream"; |
| } |
| break; |
| |
| case Instruction::MOVE: |
| case Instruction::MOVE_FROM16: |
| case Instruction::MOVE_16: |
| work_line_->CopyRegister1(dec_insn.vA, dec_insn.vB, kTypeCategory1nr); |
| break; |
| case Instruction::MOVE_WIDE: |
| case Instruction::MOVE_WIDE_FROM16: |
| case Instruction::MOVE_WIDE_16: |
| work_line_->CopyRegister2(dec_insn.vA, dec_insn.vB); |
| break; |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_FROM16: |
| case Instruction::MOVE_OBJECT_16: |
| work_line_->CopyRegister1(dec_insn.vA, dec_insn.vB, kTypeCategoryRef); |
| break; |
| |
| /* |
| * The move-result instructions copy data out of a "pseudo-register" |
| * with the results from the last method invocation. In practice we |
| * might want to hold the result in an actual CPU register, so the |
| * Dalvik spec requires that these only appear immediately after an |
| * invoke or filled-new-array. |
| * |
| * These calls invalidate the "result" register. (This is now |
| * redundant with the reset done below, but it can make the debug info |
| * easier to read in some cases.) |
| */ |
| case Instruction::MOVE_RESULT: |
| work_line_->CopyResultRegister1(dec_insn.vA, false); |
| break; |
| case Instruction::MOVE_RESULT_WIDE: |
| work_line_->CopyResultRegister2(dec_insn.vA); |
| break; |
| case Instruction::MOVE_RESULT_OBJECT: |
| work_line_->CopyResultRegister1(dec_insn.vA, true); |
| break; |
| |
| case Instruction::MOVE_EXCEPTION: { |
| /* |
| * This statement can only appear as the first instruction in an exception handler. We verify |
| * that as part of extracting the exception type from the catch block list. |
| */ |
| const RegType& res_type = GetCaughtExceptionType(); |
| work_line_->SetRegisterType(dec_insn.vA, res_type); |
| break; |
| } |
| case Instruction::RETURN_VOID: |
| if (!method_->IsConstructor() || work_line_->CheckConstructorReturn()) { |
| if (!GetMethodReturnType().IsUnknown()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-void not expected"; |
| } |
| } |
| break; |
| case Instruction::RETURN: |
| if (!method_->IsConstructor() || work_line_->CheckConstructorReturn()) { |
| /* check the method signature */ |
| const RegType& return_type = GetMethodReturnType(); |
| if (!return_type.IsCategory1Types()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected non-category 1 return type " << return_type; |
| } else { |
| // Compilers may generate synthetic functions that write byte values into boolean fields. |
| // Also, it may use integer values for boolean, byte, short, and character return types. |
| const RegType& src_type = work_line_->GetRegisterType(dec_insn.vA); |
| bool use_src = ((return_type.IsBoolean() && src_type.IsByte()) || |
| ((return_type.IsBoolean() || return_type.IsByte() || |
| return_type.IsShort() || return_type.IsChar()) && |
| src_type.IsInteger())); |
| /* check the register contents */ |
| work_line_->VerifyRegisterType(dec_insn.vA, use_src ? src_type : return_type); |
| if (failure_ != VERIFY_ERROR_NONE) { |
| fail_messages_ << " return-1nr on invalid register v" << dec_insn.vA; |
| } |
| } |
| } |
| break; |
| case Instruction::RETURN_WIDE: |
| if (!method_->IsConstructor() || work_line_->CheckConstructorReturn()) { |
| /* check the method signature */ |
| const RegType& return_type = GetMethodReturnType(); |
| if (!return_type.IsCategory2Types()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-wide not expected"; |
| } else { |
| /* check the register contents */ |
| work_line_->VerifyRegisterType(dec_insn.vA, return_type); |
| if (failure_ != VERIFY_ERROR_NONE) { |
| fail_messages_ << " return-wide on invalid register pair v" << dec_insn.vA; |
| } |
| } |
| } |
| break; |
| case Instruction::RETURN_OBJECT: |
| if (!method_->IsConstructor() || work_line_->CheckConstructorReturn()) { |
| const RegType& return_type = GetMethodReturnType(); |
| if (!return_type.IsReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "return-object not expected"; |
| } else { |
| /* return_type is the *expected* return type, not register value */ |
| DCHECK(!return_type.IsZero()); |
| DCHECK(!return_type.IsUninitializedReference()); |
| const RegType& reg_type = work_line_->GetRegisterType(dec_insn.vA); |
| // Disallow returning uninitialized values and verify that the reference in vAA is an |
| // instance of the "return_type" |
| if (reg_type.IsUninitializedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "returning uninitialized object '" << reg_type << "'"; |
| } else if (!return_type.IsAssignableFrom(reg_type)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "returning '" << reg_type |
| << "', but expected from declaration '" << return_type << "'"; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::CONST_4: |
| case Instruction::CONST_16: |
| case Instruction::CONST: |
| /* could be boolean, int, float, or a null reference */ |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.FromCat1Const((int32_t) dec_insn.vB)); |
| break; |
| case Instruction::CONST_HIGH16: |
| /* could be boolean, int, float, or a null reference */ |
| work_line_->SetRegisterType(dec_insn.vA, |
| reg_types_.FromCat1Const((int32_t) dec_insn.vB << 16)); |
| break; |
| case Instruction::CONST_WIDE_16: |
| case Instruction::CONST_WIDE_32: |
| case Instruction::CONST_WIDE: |
| case Instruction::CONST_WIDE_HIGH16: |
| /* could be long or double; resolved upon use */ |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.ConstLo()); |
| break; |
| case Instruction::CONST_STRING: |
| case Instruction::CONST_STRING_JUMBO: |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.JavaLangString()); |
| break; |
| case Instruction::CONST_CLASS: { |
| // Get type from instruction if unresolved then we need an access check |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| const RegType& res_type = ResolveClassAndCheckAccess(dec_insn.vB); |
| // Register holds class, ie its type is class, but on error we keep it Unknown |
| work_line_->SetRegisterType(dec_insn.vA, |
| res_type.IsUnknown() ? res_type : reg_types_.JavaLangClass()); |
| break; |
| } |
| case Instruction::MONITOR_ENTER: |
| work_line_->PushMonitor(dec_insn.vA, work_insn_idx_); |
| break; |
| case Instruction::MONITOR_EXIT: |
| /* |
| * monitor-exit instructions are odd. They can throw exceptions, |
| * but when they do they act as if they succeeded and the PC is |
| * pointing to the following instruction. (This behavior goes back |
| * to the need to handle asynchronous exceptions, a now-deprecated |
| * feature that Dalvik doesn't support.) |
| * |
| * In practice we don't need to worry about this. The only |
| * exceptions that can be thrown from monitor-exit are for a |
| * null reference and -exit without a matching -enter. If the |
| * structured locking checks are working, the former would have |
| * failed on the -enter instruction, and the latter is impossible. |
| * |
| * This is fortunate, because issue 3221411 prevents us from |
| * chasing the "can throw" path when monitor verification is |
| * enabled. If we can fully verify the locking we can ignore |
| * some catch blocks (which will show up as "dead" code when |
| * we skip them here); if we can't, then the code path could be |
| * "live" so we still need to check it. |
| */ |
| opcode_flags &= ~Instruction::kThrow; |
| work_line_->PopMonitor(dec_insn.vA); |
| break; |
| |
| case Instruction::CHECK_CAST: |
| case Instruction::INSTANCE_OF: { |
| /* |
| * If this instruction succeeds, we will "downcast" register vA to the type in vB. (This |
| * could be a "upcast" -- not expected, so we don't try to address it.) |
| * |
| * If it fails, an exception is thrown, which we deal with later by ignoring the update to |
| * dec_insn.vA when branching to a handler. |
| */ |
| bool is_checkcast = dec_insn.opcode == Instruction::CHECK_CAST; |
| const RegType& res_type = |
| ResolveClassAndCheckAccess(is_checkcast ? dec_insn.vB : dec_insn.vC); |
| if (res_type.IsUnknown()) { |
| CHECK_NE(failure_, VERIFY_ERROR_NONE); |
| break; // couldn't resolve class |
| } |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| const RegType& orig_type = |
| work_line_->GetRegisterType(is_checkcast ? dec_insn.vA : dec_insn.vB); |
| if (!res_type.IsNonZeroReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on unexpected class " << res_type; |
| } else if (!orig_type.IsReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "check-cast on non-reference in v" << dec_insn.vA; |
| } else { |
| if (is_checkcast) { |
| work_line_->SetRegisterType(dec_insn.vA, res_type); |
| } else { |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Boolean()); |
| } |
| } |
| break; |
| } |
| case Instruction::ARRAY_LENGTH: { |
| const RegType& res_type = work_line_->GetRegisterType(dec_insn.vB); |
| if (res_type.IsReferenceTypes()) { |
| if (!res_type.IsArrayTypes() && !res_type.IsZero()) { // ie not an array or null |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-length on non-array " << res_type; |
| } else { |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Integer()); |
| } |
| } |
| break; |
| } |
| case Instruction::NEW_INSTANCE: { |
| const RegType& res_type = ResolveClassAndCheckAccess(dec_insn.vB); |
| if (res_type.IsUnknown()) { |
| CHECK_NE(failure_, VERIFY_ERROR_NONE); |
| break; // couldn't resolve class |
| } |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| // can't create an instance of an interface or abstract class */ |
| if (!res_type.IsInstantiableTypes()) { |
| Fail(VERIFY_ERROR_INSTANTIATION) |
| << "new-instance on primitive, interface or abstract class" << res_type; |
| } else { |
| const RegType& uninit_type = reg_types_.Uninitialized(res_type, work_insn_idx_); |
| // Any registers holding previous allocations from this address that have not yet been |
| // initialized must be marked invalid. |
| work_line_->MarkUninitRefsAsInvalid(uninit_type); |
| // add the new uninitialized reference to the register state |
| work_line_->SetRegisterType(dec_insn.vA, uninit_type); |
| } |
| break; |
| } |
| case Instruction::NEW_ARRAY: |
| VerifyNewArray(dec_insn, false, false); |
| break; |
| case Instruction::FILLED_NEW_ARRAY: |
| VerifyNewArray(dec_insn, true, false); |
| just_set_result = true; // Filled new array sets result register |
| break; |
| case Instruction::FILLED_NEW_ARRAY_RANGE: |
| VerifyNewArray(dec_insn, true, true); |
| just_set_result = true; // Filled new array range sets result register |
| break; |
| case Instruction::CMPL_FLOAT: |
| case Instruction::CMPG_FLOAT: |
| if (!work_line_->VerifyRegisterType(dec_insn.vB, reg_types_.Float())) { |
| break; |
| } |
| if (!work_line_->VerifyRegisterType(dec_insn.vC, reg_types_.Float())) { |
| break; |
| } |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Integer()); |
| break; |
| case Instruction::CMPL_DOUBLE: |
| case Instruction::CMPG_DOUBLE: |
| if (!work_line_->VerifyRegisterType(dec_insn.vB, reg_types_.Double())) { |
| break; |
| } |
| if (!work_line_->VerifyRegisterType(dec_insn.vC, reg_types_.Double())) { |
| break; |
| } |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Integer()); |
| break; |
| case Instruction::CMP_LONG: |
| if (!work_line_->VerifyRegisterType(dec_insn.vB, reg_types_.Long())) { |
| break; |
| } |
| if (!work_line_->VerifyRegisterType(dec_insn.vC, reg_types_.Long())) { |
| break; |
| } |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Integer()); |
| break; |
| case Instruction::THROW: { |
| const RegType& res_type = work_line_->GetRegisterType(dec_insn.vA); |
| if (!reg_types_.JavaLangThrowable().IsAssignableFrom(res_type)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "thrown class " << res_type << " not instanceof Throwable"; |
| } |
| break; |
| } |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| /* no effect on or use of registers */ |
| break; |
| |
| case Instruction::PACKED_SWITCH: |
| case Instruction::SPARSE_SWITCH: |
| /* verify that vAA is an integer, or can be converted to one */ |
| work_line_->VerifyRegisterType(dec_insn.vA, reg_types_.Integer()); |
| break; |
| |
| case Instruction::FILL_ARRAY_DATA: { |
| /* Similar to the verification done for APUT */ |
| const RegType& array_type = work_line_->GetRegisterType(dec_insn.vA); |
| /* array_type can be null if the reg type is Zero */ |
| if (!array_type.IsZero()) { |
| if (!array_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with array type " << array_type; |
| } else { |
| const RegType& component_type = reg_types_.GetComponentType(array_type, |
| method_->GetDeclaringClass()->GetClassLoader()); |
| DCHECK(!component_type.IsUnknown()); |
| if (component_type.IsNonZeroReferenceTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid fill-array-data with component type " |
| << component_type; |
| } else { |
| // Now verify if the element width in the table matches the element width declared in |
| // the array |
| const uint16_t* array_data = insns + (insns[1] | (((int32_t) insns[2]) << 16)); |
| if (array_data[0] != Instruction::kArrayDataSignature) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid magic for array-data"; |
| } else { |
| size_t elem_width = Primitive::ComponentSize(component_type.GetPrimitiveType()); |
| // Since we don't compress the data in Dex, expect to see equal width of data stored |
| // in the table and expected from the array class. |
| if (array_data[1] != elem_width) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array-data size mismatch (" << array_data[1] |
| << " vs " << elem_width << ")"; |
| } |
| } |
| } |
| } |
| } |
| break; |
| } |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: { |
| const RegType& reg_type1 = work_line_->GetRegisterType(dec_insn.vA); |
| const RegType& reg_type2 = work_line_->GetRegisterType(dec_insn.vB); |
| bool mismatch = false; |
| if (reg_type1.IsZero()) { // zero then integral or reference expected |
| mismatch = !reg_type2.IsReferenceTypes() && !reg_type2.IsIntegralTypes(); |
| } else if (reg_type1.IsReferenceTypes()) { // both references? |
| mismatch = !reg_type2.IsReferenceTypes(); |
| } else { // both integral? |
| mismatch = !reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes(); |
| } |
| if (mismatch) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to if-eq/if-ne (" << reg_type1 << "," << reg_type2 |
| << ") must both be references or integral"; |
| } |
| break; |
| } |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: { |
| const RegType& reg_type1 = work_line_->GetRegisterType(dec_insn.vA); |
| const RegType& reg_type2 = work_line_->GetRegisterType(dec_insn.vB); |
| if (!reg_type1.IsIntegralTypes() || !reg_type2.IsIntegralTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "args to 'if' (" << reg_type1 << "," |
| << reg_type2 << ") must be integral"; |
| } |
| break; |
| } |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: { |
| const RegType& reg_type = work_line_->GetRegisterType(dec_insn.vA); |
| if (!reg_type.IsReferenceTypes() && !reg_type.IsIntegralTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type << " unexpected as arg to if-eqz/if-nez"; |
| } |
| break; |
| } |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: { |
| const RegType& reg_type = work_line_->GetRegisterType(dec_insn.vA); |
| if (!reg_type.IsIntegralTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "type " << reg_type |
| << " unexpected as arg to if-ltz/if-gez/if-gtz/if-lez"; |
| } |
| break; |
| } |
| case Instruction::AGET_BOOLEAN: |
| VerifyAGet(dec_insn, reg_types_.Boolean(), true); |
| break; |
| case Instruction::AGET_BYTE: |
| VerifyAGet(dec_insn, reg_types_.Byte(), true); |
| break; |
| case Instruction::AGET_CHAR: |
| VerifyAGet(dec_insn, reg_types_.Char(), true); |
| break; |
| case Instruction::AGET_SHORT: |
| VerifyAGet(dec_insn, reg_types_.Short(), true); |
| break; |
| case Instruction::AGET: |
| VerifyAGet(dec_insn, reg_types_.Integer(), true); |
| break; |
| case Instruction::AGET_WIDE: |
| VerifyAGet(dec_insn, reg_types_.Long(), true); |
| break; |
| case Instruction::AGET_OBJECT: |
| VerifyAGet(dec_insn, reg_types_.JavaLangObject(), false); |
| break; |
| |
| case Instruction::APUT_BOOLEAN: |
| VerifyAPut(dec_insn, reg_types_.Boolean(), true); |
| break; |
| case Instruction::APUT_BYTE: |
| VerifyAPut(dec_insn, reg_types_.Byte(), true); |
| break; |
| case Instruction::APUT_CHAR: |
| VerifyAPut(dec_insn, reg_types_.Char(), true); |
| break; |
| case Instruction::APUT_SHORT: |
| VerifyAPut(dec_insn, reg_types_.Short(), true); |
| break; |
| case Instruction::APUT: |
| VerifyAPut(dec_insn, reg_types_.Integer(), true); |
| break; |
| case Instruction::APUT_WIDE: |
| VerifyAPut(dec_insn, reg_types_.Long(), true); |
| break; |
| case Instruction::APUT_OBJECT: |
| VerifyAPut(dec_insn, reg_types_.JavaLangObject(), false); |
| break; |
| |
| case Instruction::IGET_BOOLEAN: |
| VerifyISGet(dec_insn, reg_types_.Boolean(), true, false); |
| break; |
| case Instruction::IGET_BYTE: |
| VerifyISGet(dec_insn, reg_types_.Byte(), true, false); |
| break; |
| case Instruction::IGET_CHAR: |
| VerifyISGet(dec_insn, reg_types_.Char(), true, false); |
| break; |
| case Instruction::IGET_SHORT: |
| VerifyISGet(dec_insn, reg_types_.Short(), true, false); |
| break; |
| case Instruction::IGET: |
| VerifyISGet(dec_insn, reg_types_.Integer(), true, false); |
| break; |
| case Instruction::IGET_WIDE: |
| VerifyISGet(dec_insn, reg_types_.Long(), true, false); |
| break; |
| case Instruction::IGET_OBJECT: |
| VerifyISGet(dec_insn, reg_types_.JavaLangObject(), false, false); |
| break; |
| |
| case Instruction::IPUT_BOOLEAN: |
| VerifyISPut(dec_insn, reg_types_.Boolean(), true, false); |
| break; |
| case Instruction::IPUT_BYTE: |
| VerifyISPut(dec_insn, reg_types_.Byte(), true, false); |
| break; |
| case Instruction::IPUT_CHAR: |
| VerifyISPut(dec_insn, reg_types_.Char(), true, false); |
| break; |
| case Instruction::IPUT_SHORT: |
| VerifyISPut(dec_insn, reg_types_.Short(), true, false); |
| break; |
| case Instruction::IPUT: |
| VerifyISPut(dec_insn, reg_types_.Integer(), true, false); |
| break; |
| case Instruction::IPUT_WIDE: |
| VerifyISPut(dec_insn, reg_types_.Long(), true, false); |
| break; |
| case Instruction::IPUT_OBJECT: |
| VerifyISPut(dec_insn, reg_types_.JavaLangObject(), false, false); |
| break; |
| |
| case Instruction::SGET_BOOLEAN: |
| VerifyISGet(dec_insn, reg_types_.Boolean(), true, true); |
| break; |
| case Instruction::SGET_BYTE: |
| VerifyISGet(dec_insn, reg_types_.Byte(), true, true); |
| break; |
| case Instruction::SGET_CHAR: |
| VerifyISGet(dec_insn, reg_types_.Char(), true, true); |
| break; |
| case Instruction::SGET_SHORT: |
| VerifyISGet(dec_insn, reg_types_.Short(), true, true); |
| break; |
| case Instruction::SGET: |
| VerifyISGet(dec_insn, reg_types_.Integer(), true, true); |
| break; |
| case Instruction::SGET_WIDE: |
| VerifyISGet(dec_insn, reg_types_.Long(), true, true); |
| break; |
| case Instruction::SGET_OBJECT: |
| VerifyISGet(dec_insn, reg_types_.JavaLangObject(), false, true); |
| break; |
| |
| case Instruction::SPUT_BOOLEAN: |
| VerifyISPut(dec_insn, reg_types_.Boolean(), true, true); |
| break; |
| case Instruction::SPUT_BYTE: |
| VerifyISPut(dec_insn, reg_types_.Byte(), true, true); |
| break; |
| case Instruction::SPUT_CHAR: |
| VerifyISPut(dec_insn, reg_types_.Char(), true, true); |
| break; |
| case Instruction::SPUT_SHORT: |
| VerifyISPut(dec_insn, reg_types_.Short(), true, true); |
| break; |
| case Instruction::SPUT: |
| VerifyISPut(dec_insn, reg_types_.Integer(), true, true); |
| break; |
| case Instruction::SPUT_WIDE: |
| VerifyISPut(dec_insn, reg_types_.Long(), true, true); |
| break; |
| case Instruction::SPUT_OBJECT: |
| VerifyISPut(dec_insn, reg_types_.JavaLangObject(), false, true); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_SUPER_RANGE: { |
| bool is_range = (dec_insn.opcode == Instruction::INVOKE_VIRTUAL_RANGE || |
| dec_insn.opcode == Instruction::INVOKE_SUPER_RANGE); |
| bool is_super = (dec_insn.opcode == Instruction::INVOKE_SUPER || |
| dec_insn.opcode == Instruction::INVOKE_SUPER_RANGE); |
| Method* called_method = VerifyInvocationArgs(dec_insn, METHOD_VIRTUAL, is_range, is_super); |
| if (failure_ == VERIFY_ERROR_NONE) { |
| const char* descriptor; |
| if (called_method == NULL) { |
| uint32_t method_idx = dec_insn.vB; |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| } else { |
| descriptor = MethodHelper(called_method).GetReturnTypeDescriptor(); |
| } |
| const RegType& return_type = |
| reg_types_.FromDescriptor(method_->GetDeclaringClass()->GetClassLoader(), descriptor); |
| work_line_->SetResultRegisterType(return_type); |
| just_set_result = true; |
| } |
| break; |
| } |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: { |
| bool is_range = (dec_insn.opcode == Instruction::INVOKE_DIRECT_RANGE); |
| Method* called_method = VerifyInvocationArgs(dec_insn, METHOD_DIRECT, is_range, false); |
| if (failure_ == VERIFY_ERROR_NONE) { |
| /* |
| * Some additional checks when calling a constructor. We know from the invocation arg check |
| * that the "this" argument is an instance of called_method->klass. Now we further restrict |
| * that to require that called_method->klass is the same as this->klass or this->super, |
| * allowing the latter only if the "this" argument is the same as the "this" argument to |
| * this method (which implies that we're in a constructor ourselves). |
| */ |
| bool is_constructor; |
| if (called_method != NULL) { |
| is_constructor = called_method->IsConstructor(); |
| } else { |
| uint32_t method_idx = dec_insn.vB; |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| const char* name = dex_file_->GetMethodName(method_id); |
| is_constructor = strcmp(name, "<init>") == 0; |
| } |
| if (is_constructor) { |
| const RegType& this_type = work_line_->GetInvocationThis(dec_insn); |
| if (failure_ != VERIFY_ERROR_NONE) |
| break; |
| |
| /* no null refs allowed (?) */ |
| if (this_type.IsZero()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unable to initialize null ref"; |
| break; |
| } |
| if (called_method != NULL) { |
| Class* this_class = this_type.GetClass(); |
| DCHECK(this_class != NULL); |
| /* must be in same class or in superclass */ |
| if (called_method->GetDeclaringClass() == this_class->GetSuperClass()) { |
| if (this_class != method_->GetDeclaringClass()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "invoke-direct <init> on super only allowed for 'this' in <init>"; |
| break; |
| } |
| } else if (called_method->GetDeclaringClass() != this_class) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-direct <init> must be on current class or super"; |
| break; |
| } |
| } |
| |
| /* arg must be an uninitialized reference */ |
| if (!this_type.IsUninitializedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Expected initialization on uninitialized reference " |
| << this_type; |
| break; |
| } |
| |
| /* |
| * Replace the uninitialized reference with an initialized one. We need to do this for all |
| * registers that have the same object instance in them, not just the "this" register. |
| */ |
| work_line_->MarkRefsAsInitialized(this_type); |
| if (failure_ != VERIFY_ERROR_NONE) |
| break; |
| } |
| const char* descriptor; |
| if (called_method == NULL) { |
| uint32_t method_idx = dec_insn.vB; |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| } else { |
| descriptor = MethodHelper(called_method).GetReturnTypeDescriptor(); |
| } |
| const RegType& return_type = |
| reg_types_.FromDescriptor(method_->GetDeclaringClass()->GetClassLoader(), descriptor); |
| work_line_->SetResultRegisterType(return_type); |
| just_set_result = true; |
| } |
| break; |
| } |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: { |
| bool is_range = (dec_insn.opcode == Instruction::INVOKE_STATIC_RANGE); |
| Method* called_method = VerifyInvocationArgs(dec_insn, METHOD_STATIC, is_range, false); |
| if (failure_ == VERIFY_ERROR_NONE) { |
| const char* descriptor; |
| if (called_method == NULL) { |
| uint32_t method_idx = dec_insn.vB; |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| } else { |
| descriptor = MethodHelper(called_method).GetReturnTypeDescriptor(); |
| } |
| const RegType& return_type = |
| reg_types_.FromDescriptor(method_->GetDeclaringClass()->GetClassLoader(), descriptor); |
| work_line_->SetResultRegisterType(return_type); |
| just_set_result = true; |
| } |
| } |
| break; |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: { |
| bool is_range = (dec_insn.opcode == Instruction::INVOKE_INTERFACE_RANGE); |
| Method* abs_method = VerifyInvocationArgs(dec_insn, METHOD_INTERFACE, is_range, false); |
| if (failure_ == VERIFY_ERROR_NONE) { |
| if (abs_method != NULL) { |
| Class* called_interface = abs_method->GetDeclaringClass(); |
| if (!called_interface->IsInterface() && !called_interface->IsObjectClass()) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected interface class in invoke-interface '" |
| << PrettyMethod(abs_method) << "'"; |
| break; |
| } |
| } |
| /* Get the type of the "this" arg, which should either be a sub-interface of called |
| * interface or Object (see comments in RegType::JoinClass). |
| */ |
| const RegType& this_type = work_line_->GetInvocationThis(dec_insn); |
| if (failure_ == VERIFY_ERROR_NONE) { |
| if (this_type.IsZero()) { |
| /* null pointer always passes (and always fails at runtime) */ |
| } else { |
| if (this_type.IsUninitializedTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "interface call on uninitialized object " |
| << this_type; |
| break; |
| } |
| // In the past we have tried to assert that "called_interface" is assignable |
| // from "this_type.GetClass()", however, as we do an imprecise Join |
| // (RegType::JoinClass) we don't have full information on what interfaces are |
| // implemented by "this_type". For example, two classes may implement the same |
| // interfaces and have a common parent that doesn't implement the interface. The |
| // join will set "this_type" to the parent class and a test that this implements |
| // the interface will incorrectly fail. |
| } |
| } |
| /* |
| * We don't have an object instance, so we can't find the concrete method. However, all of |
| * the type information is in the abstract method, so we're good. |
| */ |
| const char* descriptor; |
| if (abs_method == NULL) { |
| uint32_t method_idx = dec_insn.vB; |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| uint32_t return_type_idx = dex_file_->GetProtoId(method_id.proto_idx_).return_type_idx_; |
| descriptor = dex_file_->StringByTypeIdx(return_type_idx); |
| } else { |
| descriptor = MethodHelper(abs_method).GetReturnTypeDescriptor(); |
| } |
| const RegType& return_type = |
| reg_types_.FromDescriptor(method_->GetDeclaringClass()->GetClassLoader(), descriptor); |
| work_line_->SetResultRegisterType(return_type); |
| work_line_->SetResultRegisterType(return_type); |
| just_set_result = true; |
| } |
| break; |
| } |
| case Instruction::NEG_INT: |
| case Instruction::NOT_INT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Integer(), reg_types_.Integer()); |
| break; |
| case Instruction::NEG_LONG: |
| case Instruction::NOT_LONG: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Long(), reg_types_.Long()); |
| break; |
| case Instruction::NEG_FLOAT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Float(), reg_types_.Float()); |
| break; |
| case Instruction::NEG_DOUBLE: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Double(), reg_types_.Double()); |
| break; |
| case Instruction::INT_TO_LONG: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Long(), reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_FLOAT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Float(), reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_DOUBLE: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Double(), reg_types_.Integer()); |
| break; |
| case Instruction::LONG_TO_INT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Integer(), reg_types_.Long()); |
| break; |
| case Instruction::LONG_TO_FLOAT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Float(), reg_types_.Long()); |
| break; |
| case Instruction::LONG_TO_DOUBLE: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Double(), reg_types_.Long()); |
| break; |
| case Instruction::FLOAT_TO_INT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Integer(), reg_types_.Float()); |
| break; |
| case Instruction::FLOAT_TO_LONG: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Long(), reg_types_.Float()); |
| break; |
| case Instruction::FLOAT_TO_DOUBLE: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Double(), reg_types_.Float()); |
| break; |
| case Instruction::DOUBLE_TO_INT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Integer(), reg_types_.Double()); |
| break; |
| case Instruction::DOUBLE_TO_LONG: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Long(), reg_types_.Double()); |
| break; |
| case Instruction::DOUBLE_TO_FLOAT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Float(), reg_types_.Double()); |
| break; |
| case Instruction::INT_TO_BYTE: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Byte(), reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_CHAR: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Char(), reg_types_.Integer()); |
| break; |
| case Instruction::INT_TO_SHORT: |
| work_line_->CheckUnaryOp(dec_insn, reg_types_.Short(), reg_types_.Integer()); |
| break; |
| |
| case Instruction::ADD_INT: |
| case Instruction::SUB_INT: |
| case Instruction::MUL_INT: |
| case Instruction::REM_INT: |
| case Instruction::DIV_INT: |
| case Instruction::SHL_INT: |
| case Instruction::SHR_INT: |
| case Instruction::USHR_INT: |
| work_line_->CheckBinaryOp(dec_insn, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), false); |
| break; |
| case Instruction::AND_INT: |
| case Instruction::OR_INT: |
| case Instruction::XOR_INT: |
| work_line_->CheckBinaryOp(dec_insn, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), true); |
| break; |
| case Instruction::ADD_LONG: |
| case Instruction::SUB_LONG: |
| case Instruction::MUL_LONG: |
| case Instruction::DIV_LONG: |
| case Instruction::REM_LONG: |
| case Instruction::AND_LONG: |
| case Instruction::OR_LONG: |
| case Instruction::XOR_LONG: |
| work_line_->CheckBinaryOp(dec_insn, reg_types_.Long(), reg_types_.Long(), reg_types_.Long(), false); |
| break; |
| case Instruction::SHL_LONG: |
| case Instruction::SHR_LONG: |
| case Instruction::USHR_LONG: |
| /* shift distance is Int, making these different from other binary operations */ |
| work_line_->CheckBinaryOp(dec_insn, reg_types_.Long(), reg_types_.Long(), reg_types_.Integer(), false); |
| break; |
| case Instruction::ADD_FLOAT: |
| case Instruction::SUB_FLOAT: |
| case Instruction::MUL_FLOAT: |
| case Instruction::DIV_FLOAT: |
| case Instruction::REM_FLOAT: |
| work_line_->CheckBinaryOp(dec_insn, reg_types_.Float(), reg_types_.Float(), reg_types_.Float(), false); |
| break; |
| case Instruction::ADD_DOUBLE: |
| case Instruction::SUB_DOUBLE: |
| case Instruction::MUL_DOUBLE: |
| case Instruction::DIV_DOUBLE: |
| case Instruction::REM_DOUBLE: |
| work_line_->CheckBinaryOp(dec_insn, reg_types_.Double(), reg_types_.Double(), reg_types_.Double(), false); |
| break; |
| case Instruction::ADD_INT_2ADDR: |
| case Instruction::SUB_INT_2ADDR: |
| case Instruction::MUL_INT_2ADDR: |
| case Instruction::REM_INT_2ADDR: |
| case Instruction::SHL_INT_2ADDR: |
| case Instruction::SHR_INT_2ADDR: |
| case Instruction::USHR_INT_2ADDR: |
| work_line_->CheckBinaryOp2addr(dec_insn, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), false); |
| break; |
| case Instruction::AND_INT_2ADDR: |
| case Instruction::OR_INT_2ADDR: |
| case Instruction::XOR_INT_2ADDR: |
| work_line_->CheckBinaryOp2addr(dec_insn, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), true); |
| break; |
| case Instruction::DIV_INT_2ADDR: |
| work_line_->CheckBinaryOp2addr(dec_insn, reg_types_.Integer(), reg_types_.Integer(), reg_types_.Integer(), false); |
| break; |
| case Instruction::ADD_LONG_2ADDR: |
| case Instruction::SUB_LONG_2ADDR: |
| case Instruction::MUL_LONG_2ADDR: |
| case Instruction::DIV_LONG_2ADDR: |
| case Instruction::REM_LONG_2ADDR: |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::OR_LONG_2ADDR: |
| case Instruction::XOR_LONG_2ADDR: |
| work_line_->CheckBinaryOp2addr(dec_insn, reg_types_.Long(), reg_types_.Long(), reg_types_.Long(), false); |
| break; |
| case Instruction::SHL_LONG_2ADDR: |
| case Instruction::SHR_LONG_2ADDR: |
| case Instruction::USHR_LONG_2ADDR: |
| work_line_->CheckBinaryOp2addr(dec_insn, reg_types_.Long(), reg_types_.Long(), reg_types_.Integer(), false); |
| break; |
| case Instruction::ADD_FLOAT_2ADDR: |
| case Instruction::SUB_FLOAT_2ADDR: |
| case Instruction::MUL_FLOAT_2ADDR: |
| case Instruction::DIV_FLOAT_2ADDR: |
| case Instruction::REM_FLOAT_2ADDR: |
| work_line_->CheckBinaryOp2addr(dec_insn, reg_types_.Float(), reg_types_.Float(), reg_types_.Float(), false); |
| break; |
| case Instruction::ADD_DOUBLE_2ADDR: |
| case Instruction::SUB_DOUBLE_2ADDR: |
| case Instruction::MUL_DOUBLE_2ADDR: |
| case Instruction::DIV_DOUBLE_2ADDR: |
| case Instruction::REM_DOUBLE_2ADDR: |
| work_line_->CheckBinaryOp2addr(dec_insn, reg_types_.Double(), reg_types_.Double(), reg_types_.Double(), false); |
| break; |
| case Instruction::ADD_INT_LIT16: |
| case Instruction::RSUB_INT: |
| case Instruction::MUL_INT_LIT16: |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::REM_INT_LIT16: |
| work_line_->CheckLiteralOp(dec_insn, reg_types_.Integer(), reg_types_.Integer(), false); |
| break; |
| case Instruction::AND_INT_LIT16: |
| case Instruction::OR_INT_LIT16: |
| case Instruction::XOR_INT_LIT16: |
| work_line_->CheckLiteralOp(dec_insn, reg_types_.Integer(), reg_types_.Integer(), true); |
| break; |
| case Instruction::ADD_INT_LIT8: |
| case Instruction::RSUB_INT_LIT8: |
| case Instruction::MUL_INT_LIT8: |
| case Instruction::DIV_INT_LIT8: |
| case Instruction::REM_INT_LIT8: |
| case Instruction::SHL_INT_LIT8: |
| case Instruction::SHR_INT_LIT8: |
| case Instruction::USHR_INT_LIT8: |
| work_line_->CheckLiteralOp(dec_insn, reg_types_.Integer(), reg_types_.Integer(), false); |
| break; |
| case Instruction::AND_INT_LIT8: |
| case Instruction::OR_INT_LIT8: |
| case Instruction::XOR_INT_LIT8: |
| work_line_->CheckLiteralOp(dec_insn, reg_types_.Integer(), reg_types_.Integer(), true); |
| break; |
| |
| /* |
| * This falls into the general category of "optimized" instructions, |
| * which don't generally appear during verification. Because it's |
| * inserted in the course of verification, we can expect to see it here. |
| */ |
| case Instruction::THROW_VERIFICATION_ERROR: |
| break; |
| |
| /* These should never appear during verification. */ |
| case Instruction::UNUSED_EE: |
| case Instruction::UNUSED_EF: |
| case Instruction::UNUSED_F2: |
| case Instruction::UNUSED_F3: |
| case Instruction::UNUSED_F4: |
| case Instruction::UNUSED_F5: |
| case Instruction::UNUSED_F6: |
| case Instruction::UNUSED_F7: |
| case Instruction::UNUSED_F8: |
| case Instruction::UNUSED_F9: |
| case Instruction::UNUSED_FA: |
| case Instruction::UNUSED_FB: |
| case Instruction::UNUSED_F0: |
| case Instruction::UNUSED_F1: |
| case Instruction::UNUSED_E3: |
| case Instruction::UNUSED_E8: |
| case Instruction::UNUSED_E7: |
| case Instruction::UNUSED_E4: |
| case Instruction::UNUSED_E9: |
| case Instruction::UNUSED_FC: |
| case Instruction::UNUSED_E5: |
| case Instruction::UNUSED_EA: |
| case Instruction::UNUSED_FD: |
| case Instruction::UNUSED_E6: |
| case Instruction::UNUSED_EB: |
| case Instruction::UNUSED_FE: |
| case Instruction::UNUSED_3E: |
| case Instruction::UNUSED_3F: |
| case Instruction::UNUSED_40: |
| case Instruction::UNUSED_41: |
| case Instruction::UNUSED_42: |
| case Instruction::UNUSED_43: |
| case Instruction::UNUSED_73: |
| case Instruction::UNUSED_79: |
| case Instruction::UNUSED_7A: |
| case Instruction::UNUSED_EC: |
| case Instruction::UNUSED_FF: |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Unexpected opcode " << inst->DumpString(dex_file_); |
| break; |
| |
| /* |
| * DO NOT add a "default" clause here. Without it the compiler will |
| * complain if an instruction is missing (which is desirable). |
| */ |
| } // end - switch (dec_insn.opcode) |
| |
| if (failure_ != VERIFY_ERROR_NONE) { |
| if (failure_ == VERIFY_ERROR_BAD_CLASS_HARD || failure_ == VERIFY_ERROR_BAD_CLASS_SOFT) { |
| /* immediate failure, reject class */ |
| fail_messages_ << std::endl << "Rejecting opcode " << inst->DumpString(dex_file_); |
| return false; |
| } else { |
| /* replace opcode and continue on */ |
| fail_messages_ << std::endl << "Replacing opcode " << inst->DumpString(dex_file_); |
| ReplaceFailingInstruction(); |
| /* IMPORTANT: method->insns may have been changed */ |
| insns = code_item_->insns_ + work_insn_idx_; |
| /* continue on as if we just handled a throw-verification-error */ |
| failure_ = VERIFY_ERROR_NONE; |
| opcode_flags = Instruction::kThrow; |
| } |
| } |
| /* |
| * If we didn't just set the result register, clear it out. This ensures that you can only use |
| * "move-result" immediately after the result is set. (We could check this statically, but it's |
| * not expensive and it makes our debugging output cleaner.) |
| */ |
| if (!just_set_result) { |
| work_line_->SetResultTypeToUnknown(); |
| } |
| |
| /* Handle "continue". Tag the next consecutive instruction. */ |
| if ((opcode_flags & Instruction::kContinue) != 0) { |
| uint32_t next_insn_idx = work_insn_idx_ + CurrentInsnFlags().GetLengthInCodeUnits(); |
| if (next_insn_idx >= code_item_->insns_size_in_code_units_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Execution can walk off end of code area"; |
| return false; |
| } |
| // The only way to get to a move-exception instruction is to get thrown there. Make sure the |
| // next instruction isn't one. |
| if (!CheckNotMoveException(code_item_->insns_, next_insn_idx)) { |
| return false; |
| } |
| RegisterLine* next_line = reg_table_.GetLine(next_insn_idx); |
| if (next_line != NULL) { |
| // Merge registers into what we have for the next instruction, and set the "changed" flag if |
| // needed. |
| if (!UpdateRegisters(next_insn_idx, work_line_.get())) { |
| return false; |
| } |
| } else { |
| /* |
| * We're not recording register data for the next instruction, so we don't know what the prior |
| * state was. We have to assume that something has changed and re-evaluate it. |
| */ |
| insn_flags_[next_insn_idx].SetChanged(); |
| } |
| } |
| |
| /* |
| * Handle "branch". Tag the branch target. |
| * |
| * NOTE: instructions like Instruction::EQZ provide information about the |
| * state of the register when the branch is taken or not taken. For example, |
| * somebody could get a reference field, check it for zero, and if the |
| * branch is taken immediately store that register in a boolean field |
| * since the value is known to be zero. We do not currently account for |
| * that, and will reject the code. |
| * |
| * TODO: avoid re-fetching the branch target |
| */ |
| if ((opcode_flags & Instruction::kBranch) != 0) { |
| bool isConditional, selfOkay; |
| if (!GetBranchOffset(work_insn_idx_, &branch_target, &isConditional, &selfOkay)) { |
| /* should never happen after static verification */ |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "bad branch"; |
| return false; |
| } |
| DCHECK_EQ(isConditional, (opcode_flags & Instruction::kContinue) != 0); |
| if (!CheckNotMoveException(code_item_->insns_, work_insn_idx_ + branch_target)) { |
| return false; |
| } |
| /* update branch target, set "changed" if appropriate */ |
| if (!UpdateRegisters(work_insn_idx_ + branch_target, work_line_.get())) { |
| return false; |
| } |
| } |
| |
| /* |
| * Handle "switch". Tag all possible branch targets. |
| * |
| * We've already verified that the table is structurally sound, so we |
| * just need to walk through and tag the targets. |
| */ |
| if ((opcode_flags & Instruction::kSwitch) != 0) { |
| int offset_to_switch = insns[1] | (((int32_t) insns[2]) << 16); |
| const uint16_t* switch_insns = insns + offset_to_switch; |
| int switch_count = switch_insns[1]; |
| int offset_to_targets, targ; |
| |
| if ((*insns & 0xff) == Instruction::PACKED_SWITCH) { |
| /* 0 = sig, 1 = count, 2/3 = first key */ |
| offset_to_targets = 4; |
| } else { |
| /* 0 = sig, 1 = count, 2..count * 2 = keys */ |
| DCHECK((*insns & 0xff) == Instruction::SPARSE_SWITCH); |
| offset_to_targets = 2 + 2 * switch_count; |
| } |
| |
| /* verify each switch target */ |
| for (targ = 0; targ < switch_count; targ++) { |
| int offset; |
| uint32_t abs_offset; |
| |
| /* offsets are 32-bit, and only partly endian-swapped */ |
| offset = switch_insns[offset_to_targets + targ * 2] | |
| (((int32_t) switch_insns[offset_to_targets + targ * 2 + 1]) << 16); |
| abs_offset = work_insn_idx_ + offset; |
| DCHECK_LT(abs_offset, code_item_->insns_size_in_code_units_); |
| if (!CheckNotMoveException(code_item_->insns_, abs_offset)) { |
| return false; |
| } |
| if (!UpdateRegisters(abs_offset, work_line_.get())) |
| return false; |
| } |
| } |
| |
| /* |
| * Handle instructions that can throw and that are sitting in a "try" block. (If they're not in a |
| * "try" block when they throw, control transfers out of the method.) |
| */ |
| if ((opcode_flags & Instruction::kThrow) != 0 && insn_flags_[work_insn_idx_].IsInTry()) { |
| bool within_catch_all = false; |
| CatchHandlerIterator iterator(*code_item_, work_insn_idx_); |
| |
| for (; iterator.HasNext(); iterator.Next()) { |
| if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) { |
| within_catch_all = true; |
| } |
| /* |
| * Merge registers into the "catch" block. We want to use the "savedRegs" rather than |
| * "work_regs", because at runtime the exception will be thrown before the instruction |
| * modifies any registers. |
| */ |
| if (!UpdateRegisters(iterator.GetHandlerAddress(), saved_line_.get())) { |
| return false; |
| } |
| } |
| |
| /* |
| * If the monitor stack depth is nonzero, there must be a "catch all" handler for this |
| * instruction. This does apply to monitor-exit because of async exception handling. |
| */ |
| if (work_line_->MonitorStackDepth() > 0 && !within_catch_all) { |
| /* |
| * The state in work_line reflects the post-execution state. If the current instruction is a |
| * monitor-enter and the monitor stack was empty, we don't need a catch-all (if it throws, |
| * it will do so before grabbing the lock). |
| */ |
| if (dec_insn.opcode != Instruction::MONITOR_ENTER || work_line_->MonitorStackDepth() != 1) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) |
| << "expected to be within a catch-all for an instruction where a monitor is held"; |
| return false; |
| } |
| } |
| } |
| |
| /* If we're returning from the method, make sure monitor stack is empty. */ |
| if ((opcode_flags & Instruction::kReturn) != 0) { |
| if (!work_line_->VerifyMonitorStackEmpty()) { |
| return false; |
| } |
| } |
| |
| /* |
| * Update start_guess. Advance to the next instruction of that's |
| * possible, otherwise use the branch target if one was found. If |
| * neither of those exists we're in a return or throw; leave start_guess |
| * alone and let the caller sort it out. |
| */ |
| if ((opcode_flags & Instruction::kContinue) != 0) { |
| *start_guess = work_insn_idx_ + insn_flags_[work_insn_idx_].GetLengthInCodeUnits(); |
| } else if ((opcode_flags & Instruction::kBranch) != 0) { |
| /* we're still okay if branch_target is zero */ |
| *start_guess = work_insn_idx_ + branch_target; |
| } |
| |
| DCHECK_LT(*start_guess, code_item_->insns_size_in_code_units_); |
| DCHECK(insn_flags_[*start_guess].IsOpcode()); |
| |
| return true; |
| } |
| |
| const RegType& DexVerifier::ResolveClassAndCheckAccess(uint32_t class_idx) { |
| const char* descriptor = dex_file_->StringByTypeIdx(class_idx); |
| Class* referrer = method_->GetDeclaringClass(); |
| Class* klass = method_->GetDexCacheResolvedTypes()->Get(class_idx); |
| const RegType& result = |
| klass != NULL ? reg_types_.FromClass(klass) |
| : reg_types_.FromDescriptor(referrer->GetClassLoader(), descriptor); |
| if (klass == NULL && !result.IsUnresolvedTypes()) { |
| method_->GetDexCacheResolvedTypes()->Set(class_idx, result.GetClass()); |
| } |
| if (result.IsUnknown()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "accessing unknown class in " << PrettyDescriptor(referrer); |
| return result; |
| } |
| // Check if access is allowed. Unresolved types use AllocObjectFromCodeWithAccessCheck to |
| // check at runtime if access is allowed and so pass here. |
| if (!result.IsUnresolvedTypes() && !referrer->CanAccess(result.GetClass())) { |
| Fail(VERIFY_ERROR_ACCESS_CLASS) << "illegal class access: '" |
| << PrettyDescriptor(referrer) << "' -> '" |
| << result << "'"; |
| return reg_types_.Unknown(); |
| } else { |
| return result; |
| } |
| } |
| |
| const RegType& DexVerifier::GetCaughtExceptionType() { |
| const RegType* common_super = NULL; |
| if (code_item_->tries_size_ != 0) { |
| const byte* handlers_ptr = DexFile::GetCatchHandlerData(*code_item_, 0); |
| uint32_t handlers_size = DecodeUnsignedLeb128(&handlers_ptr); |
| for (uint32_t i = 0; i < handlers_size; i++) { |
| CatchHandlerIterator iterator(handlers_ptr); |
| for (; iterator.HasNext(); iterator.Next()) { |
| if (iterator.GetHandlerAddress() == (uint32_t) work_insn_idx_) { |
| if (iterator.GetHandlerTypeIndex() == DexFile::kDexNoIndex16) { |
| common_super = ®_types_.JavaLangThrowable(); |
| } else { |
| const RegType& exception = ResolveClassAndCheckAccess(iterator.GetHandlerTypeIndex()); |
| if (common_super == NULL) { |
| // Unconditionally assign for the first handler. We don't assert this is a Throwable |
| // as that is caught at runtime |
| common_super = &exception; |
| } else if (!reg_types_.JavaLangThrowable().IsAssignableFrom(exception)) { |
| // We don't know enough about the type and the common path merge will result in |
| // Conflict. Fail here knowing the correct thing can be done at runtime. |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unexpected non-exception class " << exception; |
| return reg_types_.Unknown(); |
| } else if (common_super->Equals(exception)) { |
| // odd case, but nothing to do |
| } else { |
| common_super = &common_super->Merge(exception, ®_types_); |
| CHECK(reg_types_.JavaLangThrowable().IsAssignableFrom(*common_super)); |
| } |
| } |
| } |
| } |
| handlers_ptr = iterator.EndDataPointer(); |
| } |
| } |
| if (common_super == NULL) { |
| /* no catch blocks, or no catches with classes we can find */ |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "unable to find exception handler"; |
| return reg_types_.Unknown(); |
| } |
| return *common_super; |
| } |
| |
| Method* DexVerifier::ResolveMethodAndCheckAccess(uint32_t method_idx, MethodType method_type) { |
| const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); |
| const RegType& klass_type = ResolveClassAndCheckAccess(method_id.class_idx_); |
| if (failure_ != VERIFY_ERROR_NONE) { |
| fail_messages_ << " in attempt to access method " << dex_file_->GetMethodName(method_id); |
| return NULL; |
| } |
| if (klass_type.IsUnresolvedTypes()) { |
| return NULL; // Can't resolve Class so no more to do here |
| } |
| Class* klass = klass_type.GetClass(); |
| Class* referrer = method_->GetDeclaringClass(); |
| DexCache* dex_cache = referrer->GetDexCache(); |
| Method* res_method = dex_cache->GetResolvedMethod(method_idx); |
| if (res_method == NULL) { |
| const char* name = dex_file_->GetMethodName(method_id); |
| std::string signature(dex_file_->CreateMethodSignature(method_id.proto_idx_, NULL)); |
| |
| if (method_type == METHOD_DIRECT || method_type == METHOD_STATIC) { |
| res_method = klass->FindDirectMethod(name, signature); |
| } else if (method_type == METHOD_INTERFACE) { |
| res_method = klass->FindInterfaceMethod(name, signature); |
| } else { |
| res_method = klass->FindVirtualMethod(name, signature); |
| } |
| if (res_method != NULL) { |
| dex_cache->SetResolvedMethod(method_idx, res_method); |
| } else { |
| // If a virtual or interface method wasn't found with the expected type, look in |
| // the direct methods. This can happen when the wrong invoke type is used or when |
| // a class has changed, and will be flagged as an error in later checks. |
| if (method_type == METHOD_INTERFACE || method_type == METHOD_VIRTUAL) { |
| res_method = klass->FindDirectMethod(name, signature); |
| } |
| if (res_method == NULL) { |
| Fail(VERIFY_ERROR_NO_METHOD) << "couldn't find method " |
| << PrettyDescriptor(klass) << "." << name |
| << " " << signature; |
| return NULL; |
| } |
| } |
| } |
| // Make sure calls to constructors are "direct". There are additional restrictions but we don't |
| // enforce them here. |
| if (res_method->IsConstructor() && method_type != METHOD_DIRECT) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting non-direct call to constructor " |
| << PrettyMethod(res_method); |
| return NULL; |
| } |
| // Disallow any calls to class initializers. |
| if (MethodHelper(res_method).IsClassInitializer()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "rejecting call to class initializer " |
| << PrettyMethod(res_method); |
| return NULL; |
| } |
| // Check if access is allowed. |
| if (!referrer->CanAccessMember(res_method->GetDeclaringClass(), res_method->GetAccessFlags())) { |
| Fail(VERIFY_ERROR_ACCESS_METHOD) << "illegal method access (call " << PrettyMethod(res_method) |
| << " from " << PrettyDescriptor(referrer) << ")"; |
| return NULL; |
| } |
| // Check that invoke-virtual and invoke-super are not used on private methods of the same class. |
| if (res_method->IsPrivate() && method_type == METHOD_VIRTUAL) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invoke-super/virtual can't be used on private method " |
| << PrettyMethod(res_method); |
| return NULL; |
| } |
| // Check that interface methods match interface classes. |
| if (klass->IsInterface() && method_type != METHOD_INTERFACE) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "non-interface method " << PrettyMethod(res_method) |
| << " is in an interface class " << PrettyClass(klass); |
| return NULL; |
| } else if (!klass->IsInterface() && method_type == METHOD_INTERFACE) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "interface method " << PrettyMethod(res_method) |
| << " is in a non-interface class " << PrettyClass(klass); |
| return NULL; |
| } |
| // See if the method type implied by the invoke instruction matches the access flags for the |
| // target method. |
| if ((method_type == METHOD_DIRECT && !res_method->IsDirect()) || |
| (method_type == METHOD_STATIC && !res_method->IsStatic()) || |
| ((method_type == METHOD_VIRTUAL || method_type == METHOD_INTERFACE) && res_method->IsDirect()) |
| ) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "invoke type does not match method type of " |
| << PrettyMethod(res_method); |
| return NULL; |
| } |
| return res_method; |
| } |
| |
| Method* DexVerifier::VerifyInvocationArgs(const DecodedInstruction& dec_insn, |
| MethodType method_type, bool is_range, bool is_super) { |
| // Resolve the method. This could be an abstract or concrete method depending on what sort of call |
| // we're making. |
| Method* res_method = ResolveMethodAndCheckAccess(dec_insn.vB, method_type); |
| if (res_method == NULL) { // error or class is unresolved |
| return NULL; |
| } |
| |
| // If we're using invoke-super(method), make sure that the executing method's class' superclass |
| // has a vtable entry for the target method. |
| if (is_super) { |
| DCHECK(method_type == METHOD_VIRTUAL); |
| Class* super = method_->GetDeclaringClass()->GetSuperClass(); |
| if (super == NULL || res_method->GetMethodIndex() >= super->GetVTable()->GetLength()) { |
| if (super == NULL) { // Only Object has no super class |
| Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from " << PrettyMethod(method_) |
| << " to super " << PrettyMethod(res_method); |
| } else { |
| MethodHelper mh(res_method); |
| Fail(VERIFY_ERROR_NO_METHOD) << "invalid invoke-super from " << PrettyMethod(method_) |
| << " to super " << PrettyDescriptor(super) |
| << "." << mh.GetName() |
| << mh.GetSignature(); |
| } |
| return NULL; |
| } |
| } |
| // We use vAA as our expected arg count, rather than res_method->insSize, because we need to |
| // match the call to the signature. Also, we might might be calling through an abstract method |
| // definition (which doesn't have register count values). |
| size_t expected_args = dec_insn.vA; |
| /* caught by static verifier */ |
| DCHECK(is_range || expected_args <= 5); |
| if (expected_args > code_item_->outs_size_) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid argument count (" << expected_args |
| << ") exceeds outsSize (" << code_item_->outs_size_ << ")"; |
| return NULL; |
| } |
| |
| /* |
| * Check the "this" argument, which must be an instance of the class |
| * that declared the method. For an interface class, we don't do the |
| * full interface merge, so we can't do a rigorous check here (which |
| * is okay since we have to do it at runtime). |
| */ |
| size_t actual_args = 0; |
| if (!res_method->IsStatic()) { |
| const RegType& actual_arg_type = work_line_->GetInvocationThis(dec_insn); |
| if (failure_ != VERIFY_ERROR_NONE) { |
| return NULL; |
| } |
| if (actual_arg_type.IsUninitializedReference() && !res_method->IsConstructor()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "'this' arg must be initialized"; |
| return NULL; |
| } |
| if (method_type != METHOD_INTERFACE && !actual_arg_type.IsZero()) { |
| const RegType& res_method_class = reg_types_.FromClass(res_method->GetDeclaringClass()); |
| if (!res_method_class.IsAssignableFrom(actual_arg_type)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "'this' argument '" << actual_arg_type |
| << "' not instance of '" << res_method_class << "'"; |
| return NULL; |
| } |
| } |
| actual_args++; |
| } |
| /* |
| * Process the target method's signature. This signature may or may not |
| * have been verified, so we can't assume it's properly formed. |
| */ |
| MethodHelper mh(res_method); |
| const DexFile::TypeList* params = mh.GetParameterTypeList(); |
| size_t params_size = params == NULL ? 0 : params->Size(); |
| for (size_t param_index = 0; param_index < params_size; param_index++) { |
| if (actual_args >= expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invalid call to '" << PrettyMethod(res_method) |
| << "'. Expected " << expected_args << " arguments, processing argument " << actual_args |
| << " (where longs/doubles count twice)."; |
| return NULL; |
| } |
| const char* descriptor = |
| mh.GetTypeDescriptorFromTypeIdx(params->GetTypeItem(param_index).type_idx_); |
| if (descriptor == NULL) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method) |
| << " missing signature component"; |
| return NULL; |
| } |
| const RegType& reg_type = |
| reg_types_.FromDescriptor(method_->GetDeclaringClass()->GetClassLoader(), descriptor); |
| uint32_t get_reg = is_range ? dec_insn.vC + actual_args : dec_insn.arg[actual_args]; |
| if (!work_line_->VerifyRegisterType(get_reg, reg_type)) { |
| return NULL; |
| } |
| actual_args = reg_type.IsLongOrDoubleTypes() ? actual_args + 2 : actual_args + 1; |
| } |
| if (actual_args != expected_args) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Rejecting invocation of " << PrettyMethod(res_method) |
| << " expected " << expected_args << " arguments, found " << actual_args; |
| return NULL; |
| } else { |
| return res_method; |
| } |
| } |
| |
| const RegType& DexVerifier::GetMethodReturnType() { |
| return reg_types_.FromDescriptor(method_->GetDeclaringClass()->GetClassLoader(), |
| MethodHelper(method_).GetReturnTypeDescriptor()); |
| } |
| |
| void DexVerifier::VerifyNewArray(const DecodedInstruction& dec_insn, bool is_filled, |
| bool is_range) { |
| const RegType& res_type = ResolveClassAndCheckAccess(is_filled ? dec_insn.vB : dec_insn.vC); |
| if (res_type.IsUnknown()) { |
| CHECK_NE(failure_, VERIFY_ERROR_NONE); |
| } else { |
| // TODO: check Compiler::CanAccessTypeWithoutChecks returns false when res_type is unresolved |
| if (!res_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "new-array on non-array class " << res_type; |
| } else if (!is_filled) { |
| /* make sure "size" register is valid type */ |
| work_line_->VerifyRegisterType(dec_insn.vB, reg_types_.Integer()); |
| /* set register type to array class */ |
| work_line_->SetRegisterType(dec_insn.vA, res_type); |
| } else { |
| // Verify each register. If "arg_count" is bad, VerifyRegisterType() will run off the end of |
| // the list and fail. It's legal, if silly, for arg_count to be zero. |
| const RegType& expected_type = reg_types_.GetComponentType(res_type, |
| method_->GetDeclaringClass()->GetClassLoader()); |
| uint32_t arg_count = dec_insn.vA; |
| for (size_t ui = 0; ui < arg_count; ui++) { |
| uint32_t get_reg = is_range ? dec_insn.vC + ui : dec_insn.arg[ui]; |
| if (!work_line_->VerifyRegisterType(get_reg, expected_type)) { |
| work_line_->SetResultRegisterType(reg_types_.Unknown()); |
| return; |
| } |
| } |
| // filled-array result goes into "result" register |
| work_line_->SetResultRegisterType(res_type); |
| } |
| } |
| } |
| |
| void DexVerifier::VerifyAGet(const DecodedInstruction& dec_insn, |
| const RegType& insn_type, bool is_primitive) { |
| const RegType& index_type = work_line_->GetRegisterType(dec_insn.vC); |
| if (!index_type.IsArrayIndexTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")"; |
| } else { |
| const RegType& array_type = work_line_->GetRegisterType(dec_insn.vB); |
| if (array_type.IsZero()) { |
| // Null array class; this code path will fail at runtime. Infer a merge-able type from the |
| // instruction type. TODO: have a proper notion of bottom here. |
| if (!is_primitive || insn_type.IsCategory1Types()) { |
| // Reference or category 1 |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Zero()); |
| } else { |
| // Category 2 |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.ConstLo()); |
| } |
| } else if (!array_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aget"; |
| } else { |
| /* verify the class */ |
| const RegType& component_type = reg_types_.GetComponentType(array_type, |
| method_->GetDeclaringClass()->GetClassLoader()); |
| if (!component_type.IsReferenceTypes() && !is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type |
| << " source for aget-object"; |
| } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type |
| << " source for category 1 aget"; |
| } else if (is_primitive && !insn_type.Equals(component_type) && |
| !((insn_type.IsInteger() && component_type.IsFloat()) || |
| (insn_type.IsLong() && component_type.IsDouble()))) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type |
| << " incompatible with aget of type " << insn_type; |
| } else { |
| // Use knowledge of the field type which is stronger than the type inferred from the |
| // instruction, which can't differentiate object types and ints from floats, longs from |
| // doubles. |
| work_line_->SetRegisterType(dec_insn.vA, component_type); |
| } |
| } |
| } |
| } |
| |
| void DexVerifier::VerifyAPut(const DecodedInstruction& dec_insn, |
| const RegType& insn_type, bool is_primitive) { |
| const RegType& index_type = work_line_->GetRegisterType(dec_insn.vC); |
| if (!index_type.IsArrayIndexTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Invalid reg type for array index (" << index_type << ")"; |
| } else { |
| const RegType& array_type = work_line_->GetRegisterType(dec_insn.vB); |
| if (array_type.IsZero()) { |
| // Null array type; this code path will fail at runtime. Infer a merge-able type from the |
| // instruction type. |
| } else if (!array_type.IsArrayTypes()) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "not array type " << array_type << " with aput"; |
| } else { |
| /* verify the class */ |
| const RegType& component_type = reg_types_.GetComponentType(array_type, |
| method_->GetDeclaringClass()->GetClassLoader()); |
| if (!component_type.IsReferenceTypes() && !is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "primitive array type " << array_type |
| << " source for aput-object"; |
| } else if (component_type.IsNonZeroReferenceTypes() && is_primitive) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "reference array type " << array_type |
| << " source for category 1 aput"; |
| } else if (is_primitive && !insn_type.Equals(component_type) && |
| !((insn_type.IsInteger() && component_type.IsFloat()) || |
| (insn_type.IsLong() && component_type.IsDouble()))) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "array type " << array_type |
| << " incompatible with aput of type " << insn_type; |
| } else { |
| // The instruction agrees with the type of array, confirm the value to be stored does too |
| // Note: we use the instruction type (rather than the component type) for aput-object as |
| // incompatible classes will be caught at runtime as an array store exception |
| work_line_->VerifyRegisterType(dec_insn.vA, is_primitive ? component_type : insn_type); |
| } |
| } |
| } |
| } |
| |
| Field* DexVerifier::GetStaticField(int field_idx) { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| // Check access to class |
| const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_); |
| if (failure_ != VERIFY_ERROR_NONE) { |
| fail_messages_ << " in attempt to access static field " << field_idx << " (" |
| << dex_file_->GetFieldName(field_id) << ") in " |
| << dex_file_->GetFieldDeclaringClassDescriptor(field_id); |
| return NULL; |
| } |
| if (klass_type.IsUnresolvedTypes()) { |
| return NULL; // Can't resolve Class so no more to do here |
| } |
| Field* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(field_idx, method_); |
| if (field == NULL) { |
| LOG(INFO) << "unable to resolve static field " << field_idx << " (" |
| << dex_file_->GetFieldName(field_id) << ") in " |
| << dex_file_->GetFieldDeclaringClassDescriptor(field_id); |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| Thread::Current()->ClearException(); |
| return NULL; |
| } else if (!method_->GetDeclaringClass()->CanAccessMember(field->GetDeclaringClass(), |
| field->GetAccessFlags())) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access static field " << PrettyField(field) |
| << " from " << PrettyClass(method_->GetDeclaringClass()); |
| return NULL; |
| } else if (!field->IsStatic()) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) << " to be static"; |
| return NULL; |
| } else { |
| return field; |
| } |
| } |
| |
| Field* DexVerifier::GetInstanceField(const RegType& obj_type, int field_idx) { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| // Check access to class |
| const RegType& klass_type = ResolveClassAndCheckAccess(field_id.class_idx_); |
| if (failure_ != VERIFY_ERROR_NONE) { |
| fail_messages_ << " in attempt to access instance field " << field_idx << " (" |
| << dex_file_->GetFieldName(field_id) << ") in " |
| << dex_file_->GetFieldDeclaringClassDescriptor(field_id); |
| return NULL; |
| } |
| if (klass_type.IsUnresolvedTypes()) { |
| return NULL; // Can't resolve Class so no more to do here |
| } |
| Field* field = Runtime::Current()->GetClassLinker()->ResolveFieldJLS(field_idx, method_); |
| if (field == NULL) { |
| LOG(INFO) << "unable to resolve instance field " << field_idx << " (" |
| << dex_file_->GetFieldName(field_id) << ") in " |
| << dex_file_->GetFieldDeclaringClassDescriptor(field_id); |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| Thread::Current()->ClearException(); |
| return NULL; |
| } else if (!method_->GetDeclaringClass()->CanAccessMember(field->GetDeclaringClass(), |
| field->GetAccessFlags())) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot access instance field " << PrettyField(field) |
| << " from " << PrettyClass(method_->GetDeclaringClass()); |
| return NULL; |
| } else if (field->IsStatic()) { |
| Fail(VERIFY_ERROR_CLASS_CHANGE) << "expected field " << PrettyField(field) |
| << " to not be static"; |
| return NULL; |
| } else if (obj_type.IsZero()) { |
| // Cannot infer and check type, however, access will cause null pointer exception |
| return field; |
| } else if (obj_type.IsUninitializedTypes() && |
| (!method_->IsConstructor() || method_->GetDeclaringClass() != obj_type.GetClass() || |
| field->GetDeclaringClass() != method_->GetDeclaringClass())) { |
| // Field accesses through uninitialized references are only allowable for constructors where |
| // the field is declared in this class |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "cannot access instance field " << PrettyField(field) |
| << " of a not fully initialized object within the context of " |
| << PrettyMethod(method_); |
| return NULL; |
| } else if (!field->GetDeclaringClass()->IsAssignableFrom(obj_type.GetClass())) { |
| // Trying to access C1.field1 using reference of type C2, which is neither C1 or a sub-class |
| // of C1. For resolution to occur the declared class of the field must be compatible with |
| // obj_type, we've discovered this wasn't so, so report the field didn't exist. |
| Fail(VERIFY_ERROR_NO_FIELD) << "cannot access instance field " << PrettyField(field) |
| << " from object of type " << PrettyClass(obj_type.GetClass()); |
| return NULL; |
| } else { |
| return field; |
| } |
| } |
| |
| void DexVerifier::VerifyISGet(const DecodedInstruction& dec_insn, |
| const RegType& insn_type, bool is_primitive, bool is_static) { |
| uint32_t field_idx = is_static ? dec_insn.vB : dec_insn.vC; |
| Field* field; |
| if (is_static) { |
| field = GetStaticField(field_idx); |
| } else { |
| const RegType& object_type = work_line_->GetRegisterType(dec_insn.vB); |
| field = GetInstanceField(object_type, field_idx); |
| } |
| if (failure_ != VERIFY_ERROR_NONE) { |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Unknown()); |
| } else { |
| const char* descriptor; |
| const ClassLoader* loader; |
| if (field != NULL) { |
| descriptor = FieldHelper(field).GetTypeDescriptor(); |
| loader = field->GetDeclaringClass()->GetClassLoader(); |
| } else { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| descriptor = dex_file_->GetFieldTypeDescriptor(field_id); |
| loader = method_->GetDeclaringClass()->GetClassLoader(); |
| } |
| const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor); |
| if (is_primitive) { |
| if (field_type.Equals(insn_type) || |
| (field_type.IsFloat() && insn_type.IsIntegralTypes()) || |
| (field_type.IsDouble() && insn_type.IsLongTypes())) { |
| // expected that read is of the correct primitive type or that int reads are reading |
| // floats or long reads are reading doubles |
| } else { |
| // This is a global failure rather than a class change failure as the instructions and |
| // the descriptors for the type should have been consistent within the same file at |
| // compile time |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field) |
| << " to be of type '" << insn_type |
| << "' but found type '" << field_type << "' in get"; |
| return; |
| } |
| } else { |
| if (!insn_type.IsAssignableFrom(field_type)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field) |
| << " to be compatible with type '" << insn_type |
| << "' but found type '" << field_type |
| << "' in get-object"; |
| return; |
| } |
| } |
| work_line_->SetRegisterType(dec_insn.vA, field_type); |
| } |
| } |
| |
| void DexVerifier::VerifyISPut(const DecodedInstruction& dec_insn, |
| const RegType& insn_type, bool is_primitive, bool is_static) { |
| uint32_t field_idx = is_static ? dec_insn.vB : dec_insn.vC; |
| Field* field; |
| if (is_static) { |
| field = GetStaticField(field_idx); |
| } else { |
| const RegType& object_type = work_line_->GetRegisterType(dec_insn.vB); |
| field = GetInstanceField(object_type, field_idx); |
| } |
| if (failure_ != VERIFY_ERROR_NONE) { |
| work_line_->SetRegisterType(dec_insn.vA, reg_types_.Unknown()); |
| } else { |
| const char* descriptor; |
| const ClassLoader* loader; |
| if (field != NULL) { |
| descriptor = FieldHelper(field).GetTypeDescriptor(); |
| loader = field->GetDeclaringClass()->GetClassLoader(); |
| } else { |
| const DexFile::FieldId& field_id = dex_file_->GetFieldId(field_idx); |
| descriptor = dex_file_->GetFieldTypeDescriptor(field_id); |
| loader = method_->GetDeclaringClass()->GetClassLoader(); |
| } |
| const RegType& field_type = reg_types_.FromDescriptor(loader, descriptor); |
| if (field != NULL) { |
| if (field->IsFinal() && field->GetDeclaringClass() != method_->GetDeclaringClass()) { |
| Fail(VERIFY_ERROR_ACCESS_FIELD) << "cannot modify final field " << PrettyField(field) |
| << " from other class " << PrettyClass(method_->GetDeclaringClass()); |
| return; |
| } |
| } |
| if (is_primitive) { |
| // Primitive field assignability rules are weaker than regular assignability rules |
| bool instruction_compatible; |
| bool value_compatible; |
| const RegType& value_type = work_line_->GetRegisterType(dec_insn.vA); |
| if (field_type.IsIntegralTypes()) { |
| instruction_compatible = insn_type.IsIntegralTypes(); |
| value_compatible = value_type.IsIntegralTypes(); |
| } else if (field_type.IsFloat()) { |
| instruction_compatible = insn_type.IsInteger(); // no [is]put-float, so expect [is]put-int |
| value_compatible = value_type.IsFloatTypes(); |
| } else if (field_type.IsLong()) { |
| instruction_compatible = insn_type.IsLong(); |
| value_compatible = value_type.IsLongTypes(); |
| } else if (field_type.IsDouble()) { |
| instruction_compatible = insn_type.IsLong(); // no [is]put-double, so expect [is]put-long |
| value_compatible = value_type.IsDoubleTypes(); |
| } else { |
| instruction_compatible = false; // reference field with primitive store |
| value_compatible = false; // unused |
| } |
| if (!instruction_compatible) { |
| // This is a global failure rather than a class change failure as the instructions and |
| // the descriptors for the type should have been consistent within the same file at |
| // compile time |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "expected field " << PrettyField(field) |
| << " to be of type '" << insn_type |
| << "' but found type '" << field_type |
| << "' in put"; |
| return; |
| } |
| if (!value_compatible) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "unexpected value in v" << dec_insn.vA |
| << " of type " << value_type |
| << " but expected " << field_type |
| << " for store to " << PrettyField(field) << " in put"; |
| return; |
| } |
| } else { |
| if (!insn_type.IsAssignableFrom(field_type)) { |
| Fail(VERIFY_ERROR_BAD_CLASS_SOFT) << "expected field " << PrettyField(field) |
| << " to be compatible with type '" << insn_type |
| << "' but found type '" << field_type |
| << "' in put-object"; |
| return; |
| } |
| work_line_->VerifyRegisterType(dec_insn.vA, field_type); |
| } |
| } |
| } |
| |
| bool DexVerifier::CheckNotMoveException(const uint16_t* insns, int insn_idx) { |
| if ((insns[insn_idx] & 0xff) == Instruction::MOVE_EXCEPTION) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "invalid use of move-exception"; |
| return false; |
| } |
| return true; |
| } |
| |
| void DexVerifier::ReplaceFailingInstruction() { |
| if (Runtime::Current()->IsStarted()) { |
| LOG(ERROR) << "Verification attempting to replace instructions in " << PrettyMethod(method_) |
| << " " << fail_messages_.str(); |
| return; |
| } |
| const Instruction* inst = Instruction::At(code_item_->insns_ + work_insn_idx_); |
| DCHECK(inst->IsThrow()) << "Expected instruction that will throw " << inst->Name(); |
| VerifyErrorRefType ref_type; |
| switch (inst->Opcode()) { |
| case Instruction::CONST_CLASS: // insn[1] == class ref, 2 code units (4 bytes) |
| case Instruction::CHECK_CAST: |
| case Instruction::INSTANCE_OF: |
| case Instruction::NEW_INSTANCE: |
| case Instruction::NEW_ARRAY: |
| case Instruction::FILLED_NEW_ARRAY: // insn[1] == class ref, 3 code units (6 bytes) |
| case Instruction::FILLED_NEW_ARRAY_RANGE: |
| ref_type = VERIFY_ERROR_REF_CLASS; |
| break; |
| case Instruction::IGET: // insn[1] == field ref, 2 code units (4 bytes) |
| case Instruction::IGET_BOOLEAN: |
| case Instruction::IGET_BYTE: |
| case Instruction::IGET_CHAR: |
| case Instruction::IGET_SHORT: |
| case Instruction::IGET_WIDE: |
| case Instruction::IGET_OBJECT: |
| case Instruction::IPUT: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_SHORT: |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_OBJECT: |
| case Instruction::SGET: |
| case Instruction::SGET_BOOLEAN: |
| case Instruction::SGET_BYTE: |
| case Instruction::SGET_CHAR: |
| case Instruction::SGET_SHORT: |
| case Instruction::SGET_WIDE: |
| case Instruction::SGET_OBJECT: |
| case Instruction::SPUT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: |
| case Instruction::SPUT_WIDE: |
| case Instruction::SPUT_OBJECT: |
| ref_type = VERIFY_ERROR_REF_FIELD; |
| break; |
| case Instruction::INVOKE_VIRTUAL: // insn[1] == method ref, 3 code units (6 bytes) |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_STATIC_RANGE: |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| ref_type = VERIFY_ERROR_REF_METHOD; |
| break; |
| default: |
| LOG(FATAL) << "Error: verifier asked to replace instruction " << inst->DumpString(dex_file_); |
| return; |
| } |
| uint16_t* insns = const_cast<uint16_t*>(code_item_->insns_); |
| // THROW_VERIFICATION_ERROR is a 2 code unit instruction. We shouldn't be rewriting a 1 code unit |
| // instruction, so assert it. |
| size_t width = inst->SizeInCodeUnits(); |
| CHECK_GT(width, 1u); |
| // If the instruction is larger than 2 code units, rewrite subsequent code unit sized chunks with |
| // NOPs |
| for (size_t i = 2; i < width; i++) { |
| insns[work_insn_idx_ + i] = Instruction::NOP; |
| } |
| // Encode the opcode, with the failure code in the high byte |
| uint16_t new_instruction = Instruction::THROW_VERIFICATION_ERROR | |
| (failure_ << 8) | // AA - component |
| (ref_type << (8 + kVerifyErrorRefTypeShift)); |
| insns[work_insn_idx_] = new_instruction; |
| // The 2nd code unit (higher in memory) with the reference in, comes from the instruction we |
| // rewrote, so nothing to do here. |
| LOG(INFO) << "Verification error, replacing instructions in " << PrettyMethod(method_) << " " |
| << fail_messages_.str(); |
| if (gDebugVerify) { |
| std::cout << std::endl << info_messages_.str(); |
| Dump(std::cout); |
| } |
| } |
| |
| bool DexVerifier::UpdateRegisters(uint32_t next_insn, const RegisterLine* merge_line) { |
| bool changed = true; |
| RegisterLine* target_line = reg_table_.GetLine(next_insn); |
| if (!insn_flags_[next_insn].IsVisitedOrChanged()) { |
| /* |
| * We haven't processed this instruction before, and we haven't touched the registers here, so |
| * there's nothing to "merge". Copy the registers over and mark it as changed. (This is the |
| * only way a register can transition out of "unknown", so this is not just an optimization.) |
| */ |
| target_line->CopyFromLine(merge_line); |
| } else { |
| UniquePtr<RegisterLine> copy(gDebugVerify ? new RegisterLine(target_line->NumRegs(), this) : NULL); |
| if (gDebugVerify) { |
| copy->CopyFromLine(target_line); |
| } |
| changed = target_line->MergeRegisters(merge_line); |
| if (failure_ != VERIFY_ERROR_NONE) { |
| return false; |
| } |
| if (gDebugVerify && changed) { |
| LogVerifyInfo() << "Merging at [" << reinterpret_cast<void*>(work_insn_idx_) << "]" |
| << " to [" << reinterpret_cast<void*>(next_insn) << "]: " << std::endl |
| << *copy.get() << " MERGE" << std::endl |
| << *merge_line << " ==" << std::endl |
| << *target_line << std::endl; |
| } |
| } |
| if (changed) { |
| insn_flags_[next_insn].SetChanged(); |
| } |
| return true; |
| } |
| |
| void DexVerifier::ComputeGcMapSizes(size_t* gc_points, size_t* ref_bitmap_bits, |
| size_t* log2_max_gc_pc) { |
| size_t local_gc_points = 0; |
| size_t max_insn = 0; |
| size_t max_ref_reg = -1; |
| for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) { |
| if (insn_flags_[i].IsGcPoint()) { |
| local_gc_points++; |
| max_insn = i; |
| RegisterLine* line = reg_table_.GetLine(i); |
| max_ref_reg = line->GetMaxNonZeroReferenceReg(max_ref_reg); |
| } |
| } |
| *gc_points = local_gc_points; |
| *ref_bitmap_bits = max_ref_reg + 1; // if max register is 0 we need 1 bit to encode (ie +1) |
| size_t i = 0; |
| while ((1U << i) <= max_insn) { |
| i++; |
| } |
| *log2_max_gc_pc = i; |
| } |
| |
| const std::vector<uint8_t>* DexVerifier::GenerateGcMap() { |
| size_t num_entries, ref_bitmap_bits, pc_bits; |
| ComputeGcMapSizes(&num_entries, &ref_bitmap_bits, &pc_bits); |
| // There's a single byte to encode the size of each bitmap |
| if (ref_bitmap_bits >= (8 /* bits per byte */ * 8192 /* 13-bit size */ )) { |
| // TODO: either a better GC map format or per method failures |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " |
| << ref_bitmap_bits << " registers"; |
| return NULL; |
| } |
| size_t ref_bitmap_bytes = (ref_bitmap_bits + 7) / 8; |
| // There are 2 bytes to encode the number of entries |
| if (num_entries >= 65536) { |
| // TODO: either a better GC map format or per method failures |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " |
| << num_entries << " entries"; |
| return NULL; |
| } |
| size_t pc_bytes; |
| RegisterMapFormat format; |
| if (pc_bits <= 8) { |
| format = kRegMapFormatCompact8; |
| pc_bytes = 1; |
| } else if (pc_bits <= 16) { |
| format = kRegMapFormatCompact16; |
| pc_bytes = 2; |
| } else { |
| // TODO: either a better GC map format or per method failures |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Cannot encode GC map for method with " |
| << (1 << pc_bits) << " instructions (number is rounded up to nearest power of 2)"; |
| return NULL; |
| } |
| size_t table_size = ((pc_bytes + ref_bitmap_bytes) * num_entries) + 4; |
| std::vector<uint8_t>* table = new std::vector<uint8_t>; |
| if (table == NULL) { |
| Fail(VERIFY_ERROR_BAD_CLASS_HARD) << "Failed to encode GC map (size=" << table_size << ")"; |
| return NULL; |
| } |
| // Write table header |
| table->push_back(format | ((ref_bitmap_bytes >> kRegMapFormatShift) & ~kRegMapFormatMask)); |
| table->push_back(ref_bitmap_bytes & 0xFF); |
| table->push_back(num_entries & 0xFF); |
| table->push_back((num_entries >> 8) & 0xFF); |
| // Write table data |
| for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) { |
| if (insn_flags_[i].IsGcPoint()) { |
| table->push_back(i & 0xFF); |
| if (pc_bytes == 2) { |
| table->push_back((i >> 8) & 0xFF); |
| } |
| RegisterLine* line = reg_table_.GetLine(i); |
| line->WriteReferenceBitMap(*table, ref_bitmap_bytes); |
| } |
| } |
| DCHECK_EQ(table->size(), table_size); |
| return table; |
| } |
| |
| void DexVerifier::VerifyGcMap(const std::vector<uint8_t>& data) { |
| // Check that for every GC point there is a map entry, there aren't entries for non-GC points, |
| // that the table data is well formed and all references are marked (or not) in the bitmap |
| PcToReferenceMap map(&data[0], data.size()); |
| size_t map_index = 0; |
| for (size_t i = 0; i < code_item_->insns_size_in_code_units_; i++) { |
| const uint8_t* reg_bitmap = map.FindBitMap(i, false); |
| if (insn_flags_[i].IsGcPoint()) { |
| CHECK_LT(map_index, map.NumEntries()); |
| CHECK_EQ(map.GetPC(map_index), i); |
| CHECK_EQ(map.GetBitMap(map_index), reg_bitmap); |
| map_index++; |
| RegisterLine* line = reg_table_.GetLine(i); |
| for (size_t j = 0; j < code_item_->registers_size_; j++) { |
| if (line->GetRegisterType(j).IsNonZeroReferenceTypes()) { |
| CHECK_LT(j / 8, map.RegWidth()); |
| CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 1); |
| } else if ((j / 8) < map.RegWidth()) { |
| CHECK_EQ((reg_bitmap[j / 8] >> (j % 8)) & 1, 0); |
| } else { |
| // If a register doesn't contain a reference then the bitmap may be shorter than the line |
| } |
| } |
| } else { |
| CHECK(reg_bitmap == NULL); |
| } |
| } |
| } |
| |
| const uint8_t* PcToReferenceMap::FindBitMap(uint16_t dex_pc, bool error_if_not_present) const { |
| size_t num_entries = NumEntries(); |
| // Do linear or binary search? |
| static const size_t kSearchThreshold = 8; |
| if (num_entries < kSearchThreshold) { |
| for (size_t i = 0; i < num_entries; i++) { |
| if (GetPC(i) == dex_pc) { |
| return GetBitMap(i); |
| } |
| } |
| } else { |
| int lo = 0; |
| int hi = num_entries -1; |
| while (hi >= lo) { |
| int mid = (hi + lo) / 2; |
| int mid_pc = GetPC(mid); |
| if (dex_pc > mid_pc) { |
| lo = mid + 1; |
| } else if (dex_pc < mid_pc) { |
| hi = mid - 1; |
| } else { |
| return GetBitMap(mid); |
| } |
| } |
| } |
| if (error_if_not_present) { |
| LOG(ERROR) << "Didn't find reference bit map for dex_pc " << dex_pc; |
| } |
| return NULL; |
| } |
| |
| Mutex* DexVerifier::gc_maps_lock_ = NULL; |
| DexVerifier::GcMapTable* DexVerifier::gc_maps_ = NULL; |
| |
| void DexVerifier::InitGcMaps() { |
| gc_maps_lock_ = new Mutex("verifier GC maps lock"); |
| MutexLock mu(*gc_maps_lock_); |
| gc_maps_ = new DexVerifier::GcMapTable; |
| } |
| |
| void DexVerifier::DeleteGcMaps() { |
| { |
| MutexLock mu(*gc_maps_lock_); |
| STLDeleteValues(gc_maps_); |
| delete gc_maps_; |
| gc_maps_ = NULL; |
| } |
| delete gc_maps_lock_; |
| gc_maps_lock_ = NULL; |
| } |
| |
| void DexVerifier::SetGcMap(Compiler::MethodReference ref, const std::vector<uint8_t>& gc_map) { |
| MutexLock mu(*gc_maps_lock_); |
| const std::vector<uint8_t>* existing_gc_map = GetGcMap(ref); |
| if (existing_gc_map != NULL) { |
| CHECK(*existing_gc_map == gc_map); |
| delete existing_gc_map; |
| } |
| (*gc_maps_)[ref] = &gc_map; |
| CHECK(GetGcMap(ref) != NULL); |
| } |
| |
| const std::vector<uint8_t>* DexVerifier::GetGcMap(Compiler::MethodReference ref) { |
| MutexLock mu(*gc_maps_lock_); |
| GcMapTable::const_iterator it = gc_maps_->find(ref); |
| if (it == gc_maps_->end()) { |
| return NULL; |
| } |
| CHECK(it->second != NULL); |
| return it->second; |
| } |
| |
| static Mutex& GetRejectedClassesLock() { |
| static Mutex rejected_classes_lock("verifier rejected classes lock"); |
| return rejected_classes_lock; |
| } |
| |
| static std::set<Compiler::ClassReference>& GetRejectedClasses() { |
| static std::set<Compiler::ClassReference> rejected_classes; |
| return rejected_classes; |
| } |
| |
| void DexVerifier::AddRejectedClass(Compiler::ClassReference ref) { |
| MutexLock mu(GetRejectedClassesLock()); |
| GetRejectedClasses().insert(ref); |
| CHECK(IsClassRejected(ref)); |
| } |
| |
| bool DexVerifier::IsClassRejected(Compiler::ClassReference ref) { |
| MutexLock mu(GetRejectedClassesLock()); |
| std::set<Compiler::ClassReference>& rejected_classes(GetRejectedClasses()); |
| return (rejected_classes.find(ref) != rejected_classes.end()); |
| } |
| |
| #if defined(ART_USE_LLVM_COMPILER) |
| const InferredRegCategoryMap* DexVerifier::GenerateInferredRegCategoryMap() { |
| uint32_t insns_size = code_item_->insns_size_in_code_units_; |
| uint16_t regs_size = code_item_->registers_size_; |
| |
| UniquePtr<InferredRegCategoryMap> table( |
| new InferredRegCategoryMap(insns_size, regs_size)); |
| |
| for (size_t i = 0; i < insns_size; ++i) { |
| if (RegisterLine* line = reg_table_.GetLine(i)) { |
| for (size_t r = 0; r < regs_size; ++r) { |
| const RegType &rt = line->GetRegisterType(r); |
| |
| if (rt.IsZero()) { |
| table->SetRegCategory(i, r, kRegZero); |
| } else if (rt.IsCategory1Types()) { |
| table->SetRegCategory(i, r, kRegCat1nr); |
| } else if (rt.IsCategory2Types()) { |
| table->SetRegCategory(i, r, kRegCat2); |
| } else if (rt.IsReferenceTypes()) { |
| table->SetRegCategory(i, r, kRegObject); |
| } else { |
| table->SetRegCategory(i, r, kRegUnknown); |
| } |
| } |
| } |
| } |
| |
| return table.release(); |
| } |
| |
| Mutex* DexVerifier::inferred_reg_category_maps_lock_ = NULL; |
| DexVerifier::InferredRegCategoryMapTable* DexVerifier::inferred_reg_category_maps_ = NULL; |
| |
| void DexVerifier::InitInferredRegCategoryMaps() { |
| inferred_reg_category_maps_lock_ = new Mutex("verifier GC maps lock"); |
| MutexLock mu(*inferred_reg_category_maps_lock_); |
| inferred_reg_category_maps_ = new DexVerifier::InferredRegCategoryMapTable; |
| } |
| |
| void DexVerifier::DeleteInferredRegCategoryMaps() { |
| { |
| MutexLock mu(*inferred_reg_category_maps_lock_); |
| STLDeleteValues(inferred_reg_category_maps_); |
| delete inferred_reg_category_maps_; |
| inferred_reg_category_maps_ = NULL; |
| } |
| delete inferred_reg_category_maps_lock_; |
| inferred_reg_category_maps_lock_ = NULL; |
| } |
| |
| |
| void DexVerifier::SetInferredRegCategoryMap(Compiler::MethodReference ref, |
| const InferredRegCategoryMap& inferred_reg_category_map) { |
| MutexLock mu(*inferred_reg_category_maps_lock_); |
| const InferredRegCategoryMap* existing_inferred_reg_category_map = |
| GetInferredRegCategoryMap(ref); |
| |
| if (existing_inferred_reg_category_map != NULL) { |
| CHECK(*existing_inferred_reg_category_map == inferred_reg_category_map); |
| delete existing_inferred_reg_category_map; |
| } |
| |
| (*inferred_reg_category_maps_)[ref] = &inferred_reg_category_map; |
| CHECK(GetInferredRegCategoryMap(ref) != NULL); |
| } |
| |
| const InferredRegCategoryMap* |
| DexVerifier::GetInferredRegCategoryMap(Compiler::MethodReference ref) { |
| MutexLock mu(*inferred_reg_category_maps_lock_); |
| |
| InferredRegCategoryMapTable::const_iterator it = |
| inferred_reg_category_maps_->find(ref); |
| |
| if (it == inferred_reg_category_maps_->end()) { |
| return NULL; |
| } |
| CHECK(it->second != NULL); |
| return it->second; |
| } |
| #endif |
| |
| } // namespace verifier |
| } // namespace art |