blob: 973c8ed07db90f26879b5452664c029be01b7374 [file] [log] [blame]
/*
* Copyright (C) 2013 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_
#define ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_
#include "dex_cache.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/casts.h"
#include "base/enums.h"
#include "base/logging.h"
#include "gc_root.h"
#include "mirror/class.h"
#include "mirror/call_site.h"
#include "mirror/method_type.h"
#include "runtime.h"
#include "obj_ptr.h"
#include <atomic>
namespace art {
namespace mirror {
inline uint32_t DexCache::ClassSize(PointerSize pointer_size) {
uint32_t vtable_entries = Object::kVTableLength + 5;
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
}
inline mirror::String* DexCache::GetResolvedString(dex::StringIndex string_idx) {
DCHECK_LT(string_idx.index_, GetDexFile()->NumStringIds());
return StringDexCachePair::Lookup(GetStrings(), string_idx.index_, NumStrings()).Read();
}
inline void DexCache::SetResolvedString(dex::StringIndex string_idx,
ObjPtr<mirror::String> resolved) {
StringDexCachePair::Assign(GetStrings(), string_idx.index_, resolved.Ptr(), NumStrings());
Runtime* const runtime = Runtime::Current();
if (UNLIKELY(runtime->IsActiveTransaction())) {
DCHECK(runtime->IsAotCompiler());
runtime->RecordResolveString(this, string_idx);
}
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
runtime->GetHeap()->WriteBarrierEveryFieldOf(this);
}
inline void DexCache::ClearString(dex::StringIndex string_idx) {
const uint32_t slot_idx = string_idx.index_ % NumStrings();
DCHECK(Runtime::Current()->IsAotCompiler());
StringDexCacheType* slot = &GetStrings()[slot_idx];
// This is racy but should only be called from the transactional interpreter.
if (slot->load(std::memory_order_relaxed).index == string_idx.index_) {
StringDexCachePair cleared(
nullptr,
StringDexCachePair::InvalidIndexForSlot(slot_idx));
slot->store(cleared, std::memory_order_relaxed);
}
}
inline Class* DexCache::GetResolvedType(dex::TypeIndex type_idx) {
// It is theorized that a load acquire is not required since obtaining the resolved class will
// always have an address dependency or a lock.
DCHECK_LT(type_idx.index_, NumResolvedTypes());
return GetResolvedTypes()[type_idx.index_].Read();
}
inline void DexCache::SetResolvedType(dex::TypeIndex type_idx, ObjPtr<Class> resolved) {
DCHECK_LT(type_idx.index_, NumResolvedTypes()); // NOTE: Unchecked, i.e. not throwing AIOOB.
// TODO default transaction support.
// Use a release store for SetResolvedType. This is done to prevent other threads from seeing a
// class but not necessarily seeing the loaded members like the static fields array.
// See b/32075261.
reinterpret_cast<Atomic<GcRoot<mirror::Class>>&>(GetResolvedTypes()[type_idx.index_]).
StoreRelease(GcRoot<Class>(resolved));
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(this);
}
inline MethodType* DexCache::GetResolvedMethodType(uint32_t proto_idx) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(proto_idx, GetDexFile()->NumProtoIds());
return MethodTypeDexCachePair::Lookup(
GetResolvedMethodTypes(), proto_idx, NumResolvedMethodTypes()).Read();
}
inline void DexCache::SetResolvedMethodType(uint32_t proto_idx, MethodType* resolved) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(proto_idx, GetDexFile()->NumProtoIds());
MethodTypeDexCachePair::Assign(GetResolvedMethodTypes(), proto_idx, resolved,
NumResolvedMethodTypes());
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(this);
}
inline CallSite* DexCache::GetResolvedCallSite(uint32_t call_site_idx) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());
GcRoot<mirror::CallSite>& target = GetResolvedCallSites()[call_site_idx];
Atomic<GcRoot<mirror::CallSite>>& ref =
reinterpret_cast<Atomic<GcRoot<mirror::CallSite>>&>(target);
return ref.LoadSequentiallyConsistent().Read();
}
inline CallSite* DexCache::SetResolvedCallSite(uint32_t call_site_idx, CallSite* call_site) {
DCHECK(Runtime::Current()->IsMethodHandlesEnabled());
DCHECK_LT(call_site_idx, GetDexFile()->NumCallSiteIds());
GcRoot<mirror::CallSite> null_call_site(nullptr);
GcRoot<mirror::CallSite> candidate(call_site);
GcRoot<mirror::CallSite>& target = GetResolvedCallSites()[call_site_idx];
// The first assignment for a given call site wins.
Atomic<GcRoot<mirror::CallSite>>& ref =
reinterpret_cast<Atomic<GcRoot<mirror::CallSite>>&>(target);
if (ref.CompareExchangeStrongSequentiallyConsistent(null_call_site, candidate)) {
// TODO: Fine-grained marking, so that we don't need to go through all arrays in full.
Runtime::Current()->GetHeap()->WriteBarrierEveryFieldOf(this);
return call_site;
} else {
return target.Read();
}
}
inline ArtField* DexCache::GetResolvedField(uint32_t field_idx, PointerSize ptr_size) {
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
DCHECK_LT(field_idx, NumResolvedFields()); // NOTE: Unchecked, i.e. not throwing AIOOB.
ArtField* field = GetElementPtrSize(GetResolvedFields(), field_idx, ptr_size);
if (field == nullptr || field->GetDeclaringClass()->IsErroneous()) {
return nullptr;
}
return field;
}
inline void DexCache::SetResolvedField(uint32_t field_idx, ArtField* field, PointerSize ptr_size) {
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
DCHECK_LT(field_idx, NumResolvedFields()); // NOTE: Unchecked, i.e. not throwing AIOOB.
SetElementPtrSize(GetResolvedFields(), field_idx, field, ptr_size);
}
inline ArtMethod* DexCache::GetResolvedMethod(uint32_t method_idx, PointerSize ptr_size) {
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
DCHECK_LT(method_idx, NumResolvedMethods()); // NOTE: Unchecked, i.e. not throwing AIOOB.
ArtMethod* method = GetElementPtrSize<ArtMethod*>(GetResolvedMethods(), method_idx, ptr_size);
// Hide resolution trampoline methods from the caller
if (method != nullptr && method->IsRuntimeMethod()) {
DCHECK_EQ(method, Runtime::Current()->GetResolutionMethod());
return nullptr;
}
return method;
}
inline void DexCache::SetResolvedMethod(uint32_t method_idx,
ArtMethod* method,
PointerSize ptr_size) {
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), ptr_size);
DCHECK_LT(method_idx, NumResolvedMethods()); // NOTE: Unchecked, i.e. not throwing AIOOB.
SetElementPtrSize(GetResolvedMethods(), method_idx, method, ptr_size);
}
template <typename PtrType>
inline PtrType DexCache::GetElementPtrSize(PtrType* ptr_array, size_t idx, PointerSize ptr_size) {
if (ptr_size == PointerSize::k64) {
uint64_t element = reinterpret_cast<const uint64_t*>(ptr_array)[idx];
return reinterpret_cast<PtrType>(dchecked_integral_cast<uintptr_t>(element));
} else {
uint32_t element = reinterpret_cast<const uint32_t*>(ptr_array)[idx];
return reinterpret_cast<PtrType>(dchecked_integral_cast<uintptr_t>(element));
}
}
template <typename PtrType>
inline void DexCache::SetElementPtrSize(PtrType* ptr_array,
size_t idx,
PtrType ptr,
PointerSize ptr_size) {
if (ptr_size == PointerSize::k64) {
reinterpret_cast<uint64_t*>(ptr_array)[idx] =
dchecked_integral_cast<uint64_t>(reinterpret_cast<uintptr_t>(ptr));
} else {
reinterpret_cast<uint32_t*>(ptr_array)[idx] =
dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(ptr));
}
}
template <typename T,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void VisitDexCachePairs(std::atomic<DexCachePair<T>>* pairs,
size_t num_pairs,
const Visitor& visitor)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
for (size_t i = 0; i < num_pairs; ++i) {
DexCachePair<T> source = pairs[i].load(std::memory_order_relaxed);
// NOTE: We need the "template" keyword here to avoid a compilation
// failure. GcRoot<T> is a template argument-dependent type and we need to
// tell the compiler to treat "Read" as a template rather than a field or
// function. Otherwise, on encountering the "<" token, the compiler would
// treat "Read" as a field.
T* const before = source.object.template Read<kReadBarrierOption>();
visitor.VisitRootIfNonNull(source.object.AddressWithoutBarrier());
if (source.object.template Read<kReadBarrierOption>() != before) {
pairs[i].store(source, std::memory_order_relaxed);
}
}
}
template <bool kVisitNativeRoots,
VerifyObjectFlags kVerifyFlags,
ReadBarrierOption kReadBarrierOption,
typename Visitor>
inline void DexCache::VisitReferences(ObjPtr<Class> klass, const Visitor& visitor) {
// Visit instance fields first.
VisitInstanceFieldsReferences<kVerifyFlags, kReadBarrierOption>(klass, visitor);
// Visit arrays after.
if (kVisitNativeRoots) {
VisitDexCachePairs<mirror::String, kReadBarrierOption, Visitor>(
GetStrings(), NumStrings(), visitor);
GcRoot<mirror::Class>* resolved_types = GetResolvedTypes();
for (size_t i = 0, num_types = NumResolvedTypes(); i != num_types; ++i) {
visitor.VisitRootIfNonNull(resolved_types[i].AddressWithoutBarrier());
}
VisitDexCachePairs<mirror::MethodType, kReadBarrierOption, Visitor>(
GetResolvedMethodTypes(), NumResolvedMethodTypes(), visitor);
GcRoot<mirror::CallSite>* resolved_call_sites = GetResolvedCallSites();
for (size_t i = 0, num_call_sites = NumResolvedCallSites(); i != num_call_sites; ++i) {
visitor.VisitRootIfNonNull(resolved_call_sites[i].AddressWithoutBarrier());
}
}
}
template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupStrings(mirror::StringDexCacheType* dest, const Visitor& visitor) {
mirror::StringDexCacheType* src = GetStrings();
for (size_t i = 0, count = NumStrings(); i < count; ++i) {
StringDexCachePair source = src[i].load(std::memory_order_relaxed);
mirror::String* ptr = source.object.Read<kReadBarrierOption>();
mirror::String* new_source = visitor(ptr);
source.object = GcRoot<String>(new_source);
dest[i].store(source, std::memory_order_relaxed);
}
}
template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupResolvedTypes(GcRoot<mirror::Class>* dest, const Visitor& visitor) {
GcRoot<mirror::Class>* src = GetResolvedTypes();
for (size_t i = 0, count = NumResolvedTypes(); i < count; ++i) {
mirror::Class* source = src[i].Read<kReadBarrierOption>();
mirror::Class* new_source = visitor(source);
dest[i] = GcRoot<mirror::Class>(new_source);
}
}
template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupResolvedMethodTypes(mirror::MethodTypeDexCacheType* dest,
const Visitor& visitor) {
mirror::MethodTypeDexCacheType* src = GetResolvedMethodTypes();
for (size_t i = 0, count = NumResolvedMethodTypes(); i < count; ++i) {
MethodTypeDexCachePair source = src[i].load(std::memory_order_relaxed);
mirror::MethodType* ptr = source.object.Read<kReadBarrierOption>();
mirror::MethodType* new_source = visitor(ptr);
source.object = GcRoot<MethodType>(new_source);
dest[i].store(source, std::memory_order_relaxed);
}
}
template <ReadBarrierOption kReadBarrierOption, typename Visitor>
inline void DexCache::FixupResolvedCallSites(GcRoot<mirror::CallSite>* dest,
const Visitor& visitor) {
GcRoot<mirror::CallSite>* src = GetResolvedCallSites();
for (size_t i = 0, count = NumResolvedCallSites(); i < count; ++i) {
mirror::CallSite* source = src[i].Read<kReadBarrierOption>();
mirror::CallSite* new_source = visitor(source);
dest[i] = GcRoot<mirror::CallSite>(new_source);
}
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_DEX_CACHE_INL_H_