| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_ |
| #define ART_RUNTIME_MIRROR_ARRAY_INL_H_ |
| |
| #include "array.h" |
| |
| #include "android-base/stringprintf.h" |
| |
| #include "base/bit_utils.h" |
| #include "base/casts.h" |
| #include "base/logging.h" |
| #include "class-inl.h" |
| #include "gc/heap-inl.h" |
| #include "obj_ptr-inl.h" |
| #include "thread.h" |
| |
| namespace art { |
| namespace mirror { |
| |
| inline uint32_t Array::ClassSize(PointerSize pointer_size) { |
| uint32_t vtable_entries = Object::kVTableLength; |
| return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size); |
| } |
| |
| template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> |
| inline size_t Array::SizeOf() { |
| // This is safe from overflow because the array was already allocated, so we know it's sane. |
| size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()-> |
| template GetComponentSizeShift<kReadBarrierOption>(); |
| // Don't need to check this since we already check this in GetClass. |
| int32_t component_count = |
| GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>(); |
| size_t header_size = DataOffset(1U << component_size_shift).SizeValue(); |
| size_t data_size = component_count << component_size_shift; |
| return header_size + data_size; |
| } |
| |
| inline MemberOffset Array::DataOffset(size_t component_size) { |
| DCHECK(IsPowerOfTwo(component_size)) << component_size; |
| size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size); |
| DCHECK_EQ(RoundUp(data_offset, component_size), data_offset) |
| << "Array data offset isn't aligned with component size"; |
| return MemberOffset(data_offset); |
| } |
| |
| template<VerifyObjectFlags kVerifyFlags> |
| inline bool Array::CheckIsValidIndex(int32_t index) { |
| if (UNLIKELY(static_cast<uint32_t>(index) >= |
| static_cast<uint32_t>(GetLength<kVerifyFlags>()))) { |
| ThrowArrayIndexOutOfBoundsException(index); |
| return false; |
| } |
| return true; |
| } |
| |
| static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) { |
| DCHECK_GE(component_count, 0); |
| |
| size_t component_size = 1U << component_size_shift; |
| size_t header_size = Array::DataOffset(component_size).SizeValue(); |
| size_t data_size = static_cast<size_t>(component_count) << component_size_shift; |
| size_t size = header_size + data_size; |
| |
| // Check for size_t overflow if this was an unreasonable request |
| // but let the caller throw OutOfMemoryError. |
| #ifdef __LP64__ |
| // 64-bit. No overflow as component_count is 32-bit and the maximum |
| // component size is 8. |
| DCHECK_LE((1U << component_size_shift), 8U); |
| #else |
| // 32-bit. |
| DCHECK_NE(header_size, 0U); |
| DCHECK_EQ(RoundUp(header_size, component_size), header_size); |
| // The array length limit (exclusive). |
| const size_t length_limit = (0U - header_size) >> component_size_shift; |
| if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) { |
| return 0; // failure |
| } |
| #endif |
| return size; |
| } |
| |
| // Used for setting the array length in the allocation code path to ensure it is guarded by a |
| // StoreStore fence. |
| class SetLengthVisitor { |
| public: |
| explicit SetLengthVisitor(int32_t length) : length_(length) { |
| } |
| |
| void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Avoid AsArray as object is not yet in live bitmap or allocation stack. |
| ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj); |
| // DCHECK(array->IsArrayInstance()); |
| array->SetLength(length_); |
| } |
| |
| private: |
| const int32_t length_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor); |
| }; |
| |
| // Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an |
| // array. |
| class SetLengthToUsableSizeVisitor { |
| public: |
| SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size, |
| size_t component_size_shift) : |
| minimum_length_(min_length), header_size_(header_size), |
| component_size_shift_(component_size_shift) { |
| } |
| |
| void operator()(ObjPtr<Object> obj, size_t usable_size) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Avoid AsArray as object is not yet in live bitmap or allocation stack. |
| ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj); |
| // DCHECK(array->IsArrayInstance()); |
| int32_t length = (usable_size - header_size_) >> component_size_shift_; |
| DCHECK_GE(length, minimum_length_); |
| uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_, |
| minimum_length_)); |
| uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_, |
| length)); |
| // Ensure space beyond original allocation is zeroed. |
| memset(old_end, 0, new_end - old_end); |
| array->SetLength(length); |
| } |
| |
| private: |
| const int32_t minimum_length_; |
| const size_t header_size_; |
| const size_t component_size_shift_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor); |
| }; |
| |
| template <bool kIsInstrumented, bool kFillUsable> |
| inline Array* Array::Alloc(Thread* self, |
| ObjPtr<Class> array_class, |
| int32_t component_count, |
| size_t component_size_shift, |
| gc::AllocatorType allocator_type) { |
| DCHECK(allocator_type != gc::kAllocatorTypeLOS); |
| DCHECK(array_class != nullptr); |
| DCHECK(array_class->IsArrayClass()); |
| DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift); |
| DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift)); |
| size_t size = ComputeArraySize(component_count, component_size_shift); |
| #ifdef __LP64__ |
| // 64-bit. No size_t overflow. |
| DCHECK_NE(size, 0U); |
| #else |
| // 32-bit. |
| if (UNLIKELY(size == 0)) { |
| self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow", |
| array_class->PrettyDescriptor().c_str(), |
| component_count).c_str()); |
| return nullptr; |
| } |
| #endif |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| Array* result; |
| if (!kFillUsable) { |
| SetLengthVisitor visitor(component_count); |
| result = down_cast<Array*>( |
| heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size, |
| allocator_type, visitor)); |
| } else { |
| SetLengthToUsableSizeVisitor visitor(component_count, |
| DataOffset(1U << component_size_shift).SizeValue(), |
| component_size_shift); |
| result = down_cast<Array*>( |
| heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size, |
| allocator_type, visitor)); |
| } |
| if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) { |
| array_class = result->GetClass(); // In case the array class moved. |
| CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift); |
| if (!kFillUsable) { |
| CHECK_EQ(result->SizeOf(), size); |
| } else { |
| CHECK_GE(result->SizeOf(), size); |
| } |
| } |
| return result; |
| } |
| |
| template<class T> |
| inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) { |
| array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass)); |
| } |
| |
| template<typename T> |
| inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self, |
| const T* data, |
| size_t length) { |
| StackHandleScope<1> hs(self); |
| Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length))); |
| if (!arr.IsNull()) { |
| // Copy it in. Just skip if it's null |
| memcpy(arr->GetData(), data, sizeof(T) * length); |
| } |
| return arr.Get(); |
| } |
| |
| template<typename T> |
| inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) { |
| Array* raw_array = Array::Alloc<true>(self, |
| GetArrayClass(), |
| length, |
| ComponentSizeShiftWidth(sizeof(T)), |
| Runtime::Current()->GetHeap()->GetCurrentAllocator()); |
| return down_cast<PrimitiveArray<T>*>(raw_array); |
| } |
| |
| template<typename T> |
| inline T PrimitiveArray<T>::Get(int32_t i) { |
| if (!CheckIsValidIndex(i)) { |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| return T(0); |
| } |
| return GetWithoutChecks(i); |
| } |
| |
| template<typename T> |
| inline void PrimitiveArray<T>::Set(int32_t i, T value) { |
| if (Runtime::Current()->IsActiveTransaction()) { |
| Set<true>(i, value); |
| } else { |
| Set<false>(i, value); |
| } |
| } |
| |
| template<typename T> |
| template<bool kTransactionActive, bool kCheckTransaction> |
| inline void PrimitiveArray<T>::Set(int32_t i, T value) { |
| if (CheckIsValidIndex(i)) { |
| SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value); |
| } else { |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| } |
| } |
| |
| template<typename T> |
| template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags> |
| inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) { |
| if (kCheckTransaction) { |
| DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction()); |
| } |
| if (kTransactionActive) { |
| Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i)); |
| } |
| DCHECK(CheckIsValidIndex<kVerifyFlags>(i)); |
| GetData()[i] = value; |
| } |
| // Backward copy where elements are of aligned appropriately for T. Count is in T sized units. |
| // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. |
| template<typename T> |
| static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) { |
| d += count; |
| s += count; |
| for (int32_t i = 0; i < count; ++i) { |
| d--; |
| s--; |
| *d = *s; |
| } |
| } |
| |
| // Forward copy where elements are of aligned appropriately for T. Count is in T sized units. |
| // Copies are guaranteed not to tear when the sizeof T is less-than 64bit. |
| template<typename T> |
| static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) { |
| for (int32_t i = 0; i < count; ++i) { |
| *d = *s; |
| d++; |
| s++; |
| } |
| } |
| |
| template<class T> |
| inline void PrimitiveArray<T>::Memmove(int32_t dst_pos, |
| ObjPtr<PrimitiveArray<T>> src, |
| int32_t src_pos, |
| int32_t count) { |
| if (UNLIKELY(count == 0)) { |
| return; |
| } |
| DCHECK_GE(dst_pos, 0); |
| DCHECK_GE(src_pos, 0); |
| DCHECK_GT(count, 0); |
| DCHECK(src != nullptr); |
| DCHECK_LT(dst_pos, GetLength()); |
| DCHECK_LE(dst_pos, GetLength() - count); |
| DCHECK_LT(src_pos, src->GetLength()); |
| DCHECK_LE(src_pos, src->GetLength() - count); |
| |
| // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) |
| // in our implementation, because they may copy byte-by-byte. |
| if (LIKELY(src != this)) { |
| // Memcpy ok for guaranteed non-overlapping distinct arrays. |
| Memcpy(dst_pos, src, src_pos, count); |
| } else { |
| // Handle copies within the same array using the appropriate direction copy. |
| void* dst_raw = GetRawData(sizeof(T), dst_pos); |
| const void* src_raw = src->GetRawData(sizeof(T), src_pos); |
| if (sizeof(T) == sizeof(uint8_t)) { |
| uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw); |
| const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw); |
| memmove(d, s, count); |
| } else { |
| const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count); |
| if (sizeof(T) == sizeof(uint16_t)) { |
| uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); |
| const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); |
| if (copy_forward) { |
| ArrayForwardCopy<uint16_t>(d, s, count); |
| } else { |
| ArrayBackwardCopy<uint16_t>(d, s, count); |
| } |
| } else if (sizeof(T) == sizeof(uint32_t)) { |
| uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); |
| const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); |
| if (copy_forward) { |
| ArrayForwardCopy<uint32_t>(d, s, count); |
| } else { |
| ArrayBackwardCopy<uint32_t>(d, s, count); |
| } |
| } else { |
| DCHECK_EQ(sizeof(T), sizeof(uint64_t)); |
| uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); |
| const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); |
| if (copy_forward) { |
| ArrayForwardCopy<uint64_t>(d, s, count); |
| } else { |
| ArrayBackwardCopy<uint64_t>(d, s, count); |
| } |
| } |
| } |
| } |
| } |
| |
| template<class T> |
| inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos, |
| ObjPtr<PrimitiveArray<T>> src, |
| int32_t src_pos, |
| int32_t count) { |
| if (UNLIKELY(count == 0)) { |
| return; |
| } |
| DCHECK_GE(dst_pos, 0); |
| DCHECK_GE(src_pos, 0); |
| DCHECK_GT(count, 0); |
| DCHECK(src != nullptr); |
| DCHECK_LT(dst_pos, GetLength()); |
| DCHECK_LE(dst_pos, GetLength() - count); |
| DCHECK_LT(src_pos, src->GetLength()); |
| DCHECK_LE(src_pos, src->GetLength() - count); |
| |
| // Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3) |
| // in our implementation, because they may copy byte-by-byte. |
| void* dst_raw = GetRawData(sizeof(T), dst_pos); |
| const void* src_raw = src->GetRawData(sizeof(T), src_pos); |
| if (sizeof(T) == sizeof(uint8_t)) { |
| memcpy(dst_raw, src_raw, count); |
| } else if (sizeof(T) == sizeof(uint16_t)) { |
| uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw); |
| const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw); |
| ArrayForwardCopy<uint16_t>(d, s, count); |
| } else if (sizeof(T) == sizeof(uint32_t)) { |
| uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw); |
| const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw); |
| ArrayForwardCopy<uint32_t>(d, s, count); |
| } else { |
| DCHECK_EQ(sizeof(T), sizeof(uint64_t)); |
| uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw); |
| const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw); |
| ArrayForwardCopy<uint64_t>(d, s, count); |
| } |
| } |
| |
| template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption> |
| inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) { |
| // C style casts here since we sometimes have T be a pointer, or sometimes an integer |
| // (for stack traces). |
| if (ptr_size == PointerSize::k64) { |
| return (T)static_cast<uintptr_t>( |
| AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)); |
| } |
| return (T)static_cast<uintptr_t>( |
| AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)); |
| } |
| |
| template<bool kTransactionActive, bool kUnchecked> |
| inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) { |
| if (ptr_size == PointerSize::k64) { |
| (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())-> |
| SetWithoutChecks<kTransactionActive>(idx, element); |
| } else { |
| DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu)); |
| (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray()) |
| ->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element)); |
| } |
| } |
| |
| template<bool kTransactionActive, bool kUnchecked, typename T> |
| inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) { |
| SetElementPtrSize<kTransactionActive, kUnchecked>(idx, |
| reinterpret_cast<uintptr_t>(element), |
| ptr_size); |
| } |
| |
| template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor> |
| inline void PointerArray::Fixup(mirror::PointerArray* dest, |
| PointerSize pointer_size, |
| const Visitor& visitor) { |
| for (size_t i = 0, count = GetLength(); i < count; ++i) { |
| void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size); |
| void* new_ptr = visitor(ptr); |
| if (ptr != new_ptr) { |
| dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size); |
| } |
| } |
| } |
| |
| template<bool kUnchecked> |
| void PointerArray::Memcpy(int32_t dst_pos, |
| ObjPtr<PointerArray> src, |
| int32_t src_pos, |
| int32_t count, |
| PointerSize ptr_size) { |
| DCHECK(!Runtime::Current()->IsActiveTransaction()); |
| DCHECK(!src.IsNull()); |
| if (ptr_size == PointerSize::k64) { |
| LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) |
| : AsLongArray()); |
| LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr())) |
| : src->AsLongArray()); |
| l_this->Memcpy(dst_pos, l_src, src_pos, count); |
| } else { |
| IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) |
| : AsIntArray()); |
| IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr())) |
| : src->AsIntArray()); |
| i_this->Memcpy(dst_pos, i_src, src_pos, count); |
| } |
| } |
| |
| template<typename T> |
| inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) { |
| CHECK(array_class_.IsNull()); |
| CHECK(array_class != nullptr); |
| array_class_ = GcRoot<Class>(array_class); |
| } |
| |
| } // namespace mirror |
| } // namespace art |
| |
| #endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_ |