| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_NODES_H_ |
| #define ART_COMPILER_OPTIMIZING_NODES_H_ |
| |
| #include <algorithm> |
| #include <array> |
| #include <type_traits> |
| |
| #include "art_method.h" |
| #include "base/arena_allocator.h" |
| #include "base/arena_bit_vector.h" |
| #include "base/arena_containers.h" |
| #include "base/arena_object.h" |
| #include "base/array_ref.h" |
| #include "base/intrusive_forward_list.h" |
| #include "base/iteration_range.h" |
| #include "base/mutex.h" |
| #include "base/quasi_atomic.h" |
| #include "base/stl_util.h" |
| #include "base/transform_array_ref.h" |
| #include "block_namer.h" |
| #include "class_root.h" |
| #include "compilation_kind.h" |
| #include "data_type.h" |
| #include "deoptimization_kind.h" |
| #include "dex/dex_file.h" |
| #include "dex/dex_file_types.h" |
| #include "dex/invoke_type.h" |
| #include "dex/method_reference.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "handle.h" |
| #include "handle_scope.h" |
| #include "intrinsics_enum.h" |
| #include "locations.h" |
| #include "mirror/class.h" |
| #include "mirror/method_type.h" |
| #include "offsets.h" |
| |
| namespace art { |
| |
| class ArenaStack; |
| class CodeGenerator; |
| class GraphChecker; |
| class HBasicBlock; |
| class HConstructorFence; |
| class HCurrentMethod; |
| class HDoubleConstant; |
| class HEnvironment; |
| class HFloatConstant; |
| class HGraphBuilder; |
| class HGraphVisitor; |
| class HInstruction; |
| class HIntConstant; |
| class HInvoke; |
| class HLongConstant; |
| class HNullConstant; |
| class HParameterValue; |
| class HPhi; |
| class HSuspendCheck; |
| class HTryBoundary; |
| class FieldInfo; |
| class LiveInterval; |
| class LocationSummary; |
| class ProfilingInfo; |
| class SlowPathCode; |
| class SsaBuilder; |
| |
| namespace mirror { |
| class DexCache; |
| } // namespace mirror |
| |
| static const int kDefaultNumberOfBlocks = 8; |
| static const int kDefaultNumberOfSuccessors = 2; |
| static const int kDefaultNumberOfPredecessors = 2; |
| static const int kDefaultNumberOfExceptionalPredecessors = 0; |
| static const int kDefaultNumberOfDominatedBlocks = 1; |
| static const int kDefaultNumberOfBackEdges = 1; |
| |
| // The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation. |
| static constexpr int32_t kMaxIntShiftDistance = 0x1f; |
| // The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation. |
| static constexpr int32_t kMaxLongShiftDistance = 0x3f; |
| |
| static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1); |
| static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1); |
| |
| static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1); |
| |
| static constexpr uint32_t kNoDexPc = -1; |
| |
| inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) { |
| // For the purposes of the compiler, the dex files must actually be the same object |
| // if we want to safely treat them as the same. This is especially important for JIT |
| // as custom class loaders can open the same underlying file (or memory) multiple |
| // times and provide different class resolution but no two class loaders should ever |
| // use the same DexFile object - doing so is an unsupported hack that can lead to |
| // all sorts of weird failures. |
| return &lhs == &rhs; |
| } |
| |
| enum IfCondition { |
| // All types. |
| kCondEQ, // == |
| kCondNE, // != |
| // Signed integers and floating-point numbers. |
| kCondLT, // < |
| kCondLE, // <= |
| kCondGT, // > |
| kCondGE, // >= |
| // Unsigned integers. |
| kCondB, // < |
| kCondBE, // <= |
| kCondA, // > |
| kCondAE, // >= |
| // First and last aliases. |
| kCondFirst = kCondEQ, |
| kCondLast = kCondAE, |
| }; |
| |
| enum GraphAnalysisResult { |
| kAnalysisSkipped, |
| kAnalysisInvalidBytecode, |
| kAnalysisFailThrowCatchLoop, |
| kAnalysisFailAmbiguousArrayOp, |
| kAnalysisFailIrreducibleLoopAndStringInit, |
| kAnalysisFailPhiEquivalentInOsr, |
| kAnalysisSuccess, |
| }; |
| |
| template <typename T> |
| static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) { |
| return static_cast<typename std::make_unsigned<T>::type>(x); |
| } |
| |
| class HInstructionList : public ValueObject { |
| public: |
| HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {} |
| |
| void AddInstruction(HInstruction* instruction); |
| void RemoveInstruction(HInstruction* instruction); |
| |
| // Insert `instruction` before/after an existing instruction `cursor`. |
| void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); |
| void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); |
| |
| // Return true if this list contains `instruction`. |
| bool Contains(HInstruction* instruction) const; |
| |
| // Return true if `instruction1` is found before `instruction2` in |
| // this instruction list and false otherwise. Abort if none |
| // of these instructions is found. |
| bool FoundBefore(const HInstruction* instruction1, |
| const HInstruction* instruction2) const; |
| |
| bool IsEmpty() const { return first_instruction_ == nullptr; } |
| void Clear() { first_instruction_ = last_instruction_ = nullptr; } |
| |
| // Update the block of all instructions to be `block`. |
| void SetBlockOfInstructions(HBasicBlock* block) const; |
| |
| void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list); |
| void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list); |
| void Add(const HInstructionList& instruction_list); |
| |
| // Return the number of instructions in the list. This is an expensive operation. |
| size_t CountSize() const; |
| |
| private: |
| HInstruction* first_instruction_; |
| HInstruction* last_instruction_; |
| |
| friend class HBasicBlock; |
| friend class HGraph; |
| friend class HInstruction; |
| friend class HInstructionIterator; |
| friend class HInstructionIteratorHandleChanges; |
| friend class HBackwardInstructionIterator; |
| |
| DISALLOW_COPY_AND_ASSIGN(HInstructionList); |
| }; |
| |
| class ReferenceTypeInfo : ValueObject { |
| public: |
| using TypeHandle = Handle<mirror::Class>; |
| |
| static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact); |
| |
| static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes()); |
| } |
| |
| static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) { |
| return ReferenceTypeInfo(type_handle, is_exact); |
| } |
| |
| static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); } |
| |
| static bool IsValidHandle(TypeHandle handle) { |
| return handle.GetReference() != nullptr; |
| } |
| |
| bool IsValid() const { |
| return IsValidHandle(type_handle_); |
| } |
| |
| bool IsExact() const { return is_exact_; } |
| |
| bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsObjectClass(); |
| } |
| |
| bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsStringClass(); |
| } |
| |
| bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass(); |
| } |
| |
| bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsInterface(); |
| } |
| |
| bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsArrayClass(); |
| } |
| |
| bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsPrimitiveArray(); |
| } |
| |
| bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray(); |
| } |
| |
| bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| if (!IsExact()) return false; |
| if (!IsArrayClass()) return false; |
| return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get()); |
| } |
| |
| bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| if (!IsExact()) return false; |
| if (!IsArrayClass()) return false; |
| if (!rti.IsArrayClass()) return false; |
| return GetTypeHandle()->GetComponentType()->IsAssignableFrom( |
| rti.GetTypeHandle()->GetComponentType()); |
| } |
| |
| Handle<mirror::Class> GetTypeHandle() const { return type_handle_; } |
| |
| bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(IsValid()); |
| DCHECK(rti.IsValid()); |
| return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get()); |
| } |
| |
| // Returns true if the type information provide the same amount of details. |
| // Note that it does not mean that the instructions have the same actual type |
| // (because the type can be the result of a merge). |
| bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!IsValid() && !rti.IsValid()) { |
| // Invalid types are equal. |
| return true; |
| } |
| if (!IsValid() || !rti.IsValid()) { |
| // One is valid, the other not. |
| return false; |
| } |
| return IsExact() == rti.IsExact() |
| && GetTypeHandle().Get() == rti.GetTypeHandle().Get(); |
| } |
| |
| private: |
| ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} |
| ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) |
| : type_handle_(type_handle), is_exact_(is_exact) { } |
| |
| // The class of the object. |
| TypeHandle type_handle_; |
| // Whether or not the type is exact or a superclass of the actual type. |
| // Whether or not we have any information about this type. |
| bool is_exact_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs); |
| |
| class HandleCache { |
| public: |
| explicit HandleCache(VariableSizedHandleScope* handles) : handles_(handles) { } |
| |
| VariableSizedHandleScope* GetHandles() { return handles_; } |
| |
| template <typename T> |
| MutableHandle<T> NewHandle(T* object) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return handles_->NewHandle(object); |
| } |
| |
| template <typename T> |
| MutableHandle<T> NewHandle(ObjPtr<T> object) REQUIRES_SHARED(Locks::mutator_lock_) { |
| return handles_->NewHandle(object); |
| } |
| |
| ReferenceTypeInfo::TypeHandle GetObjectClassHandle() { |
| return GetRootHandle(ClassRoot::kJavaLangObject, &object_class_handle_); |
| } |
| |
| ReferenceTypeInfo::TypeHandle GetClassClassHandle() { |
| return GetRootHandle(ClassRoot::kJavaLangClass, &class_class_handle_); |
| } |
| |
| ReferenceTypeInfo::TypeHandle GetMethodHandleClassHandle() { |
| return GetRootHandle(ClassRoot::kJavaLangInvokeMethodHandleImpl, &method_handle_class_handle_); |
| } |
| |
| ReferenceTypeInfo::TypeHandle GetMethodTypeClassHandle() { |
| return GetRootHandle(ClassRoot::kJavaLangInvokeMethodType, &method_type_class_handle_); |
| } |
| |
| ReferenceTypeInfo::TypeHandle GetStringClassHandle() { |
| return GetRootHandle(ClassRoot::kJavaLangString, &string_class_handle_); |
| } |
| |
| ReferenceTypeInfo::TypeHandle GetThrowableClassHandle() { |
| return GetRootHandle(ClassRoot::kJavaLangThrowable, &throwable_class_handle_); |
| } |
| |
| |
| private: |
| inline ReferenceTypeInfo::TypeHandle GetRootHandle(ClassRoot class_root, |
| ReferenceTypeInfo::TypeHandle* cache) { |
| if (UNLIKELY(!ReferenceTypeInfo::IsValidHandle(*cache))) { |
| *cache = CreateRootHandle(handles_, class_root); |
| } |
| return *cache; |
| } |
| |
| static ReferenceTypeInfo::TypeHandle CreateRootHandle(VariableSizedHandleScope* handles, |
| ClassRoot class_root); |
| |
| VariableSizedHandleScope* handles_; |
| |
| ReferenceTypeInfo::TypeHandle object_class_handle_; |
| ReferenceTypeInfo::TypeHandle class_class_handle_; |
| ReferenceTypeInfo::TypeHandle method_handle_class_handle_; |
| ReferenceTypeInfo::TypeHandle method_type_class_handle_; |
| ReferenceTypeInfo::TypeHandle string_class_handle_; |
| ReferenceTypeInfo::TypeHandle throwable_class_handle_; |
| }; |
| |
| // Control-flow graph of a method. Contains a list of basic blocks. |
| class HGraph : public ArenaObject<kArenaAllocGraph> { |
| public: |
| HGraph(ArenaAllocator* allocator, |
| ArenaStack* arena_stack, |
| VariableSizedHandleScope* handles, |
| const DexFile& dex_file, |
| uint32_t method_idx, |
| InstructionSet instruction_set, |
| InvokeType invoke_type = kInvalidInvokeType, |
| bool dead_reference_safe = false, |
| bool debuggable = false, |
| CompilationKind compilation_kind = CompilationKind::kOptimized, |
| int start_instruction_id = 0) |
| : allocator_(allocator), |
| arena_stack_(arena_stack), |
| handle_cache_(handles), |
| blocks_(allocator->Adapter(kArenaAllocBlockList)), |
| reverse_post_order_(allocator->Adapter(kArenaAllocReversePostOrder)), |
| linear_order_(allocator->Adapter(kArenaAllocLinearOrder)), |
| reachability_graph_(allocator, 0, 0, true, kArenaAllocReachabilityGraph), |
| entry_block_(nullptr), |
| exit_block_(nullptr), |
| maximum_number_of_out_vregs_(0), |
| number_of_vregs_(0), |
| number_of_in_vregs_(0), |
| temporaries_vreg_slots_(0), |
| has_bounds_checks_(false), |
| has_try_catch_(false), |
| has_monitor_operations_(false), |
| has_simd_(false), |
| has_loops_(false), |
| has_irreducible_loops_(false), |
| has_direct_critical_native_call_(false), |
| dead_reference_safe_(dead_reference_safe), |
| debuggable_(debuggable), |
| current_instruction_id_(start_instruction_id), |
| dex_file_(dex_file), |
| method_idx_(method_idx), |
| invoke_type_(invoke_type), |
| in_ssa_form_(false), |
| number_of_cha_guards_(0), |
| instruction_set_(instruction_set), |
| cached_null_constant_(nullptr), |
| cached_int_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), |
| cached_float_constants_(std::less<int32_t>(), allocator->Adapter(kArenaAllocConstantsMap)), |
| cached_long_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), |
| cached_double_constants_(std::less<int64_t>(), allocator->Adapter(kArenaAllocConstantsMap)), |
| cached_current_method_(nullptr), |
| art_method_(nullptr), |
| compilation_kind_(compilation_kind), |
| cha_single_implementation_list_(allocator->Adapter(kArenaAllocCHA)) { |
| blocks_.reserve(kDefaultNumberOfBlocks); |
| } |
| |
| std::ostream& Dump(std::ostream& os, |
| CodeGenerator* codegen, |
| std::optional<std::reference_wrapper<const BlockNamer>> namer = std::nullopt); |
| |
| ArenaAllocator* GetAllocator() const { return allocator_; } |
| ArenaStack* GetArenaStack() const { return arena_stack_; } |
| |
| HandleCache* GetHandleCache() { return &handle_cache_; } |
| |
| const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; } |
| |
| // An iterator to only blocks that are still actually in the graph (when |
| // blocks are removed they are replaced with 'nullptr' in GetBlocks to |
| // simplify block-id assignment and avoid memmoves in the block-list). |
| IterationRange<FilterNull<ArenaVector<HBasicBlock*>::const_iterator>> GetActiveBlocks() const { |
| return FilterOutNull(MakeIterationRange(GetBlocks())); |
| } |
| |
| bool IsInSsaForm() const { return in_ssa_form_; } |
| void SetInSsaForm() { in_ssa_form_ = true; } |
| |
| HBasicBlock* GetEntryBlock() const { return entry_block_; } |
| HBasicBlock* GetExitBlock() const { return exit_block_; } |
| bool HasExitBlock() const { return exit_block_ != nullptr; } |
| |
| void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; } |
| void SetExitBlock(HBasicBlock* block) { exit_block_ = block; } |
| |
| void AddBlock(HBasicBlock* block); |
| |
| void ComputeDominanceInformation(); |
| void ClearDominanceInformation(); |
| void ComputeReachabilityInformation(); |
| void ClearReachabilityInformation(); |
| void ClearLoopInformation(); |
| void FindBackEdges(ArenaBitVector* visited); |
| GraphAnalysisResult BuildDominatorTree(); |
| void SimplifyCFG(); |
| void SimplifyCatchBlocks(); |
| |
| // Analyze all natural loops in this graph. Returns a code specifying that it |
| // was successful or the reason for failure. The method will fail if a loop |
| // is a throw-catch loop, i.e. the header is a catch block. |
| GraphAnalysisResult AnalyzeLoops() const; |
| |
| // Iterate over blocks to compute try block membership. Needs reverse post |
| // order and loop information. |
| void ComputeTryBlockInformation(); |
| |
| // Inline this graph in `outer_graph`, replacing the given `invoke` instruction. |
| // Returns the instruction to replace the invoke expression or null if the |
| // invoke is for a void method. Note that the caller is responsible for replacing |
| // and removing the invoke instruction. |
| HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke); |
| |
| // Update the loop and try membership of `block`, which was spawned from `reference`. |
| // In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block` |
| // should be the new back edge. |
| void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block, |
| HBasicBlock* reference, |
| bool replace_if_back_edge); |
| |
| // Need to add a couple of blocks to test if the loop body is entered and |
| // put deoptimization instructions, etc. |
| void TransformLoopHeaderForBCE(HBasicBlock* header); |
| |
| // Adds a new loop directly after the loop with the given header and exit. |
| // Returns the new preheader. |
| HBasicBlock* TransformLoopForVectorization(HBasicBlock* header, |
| HBasicBlock* body, |
| HBasicBlock* exit); |
| |
| // Removes `block` from the graph. Assumes `block` has been disconnected from |
| // other blocks and has no instructions or phis. |
| void DeleteDeadEmptyBlock(HBasicBlock* block); |
| |
| // Splits the edge between `block` and `successor` while preserving the |
| // indices in the predecessor/successor lists. If there are multiple edges |
| // between the blocks, the lowest indices are used. |
| // Returns the new block which is empty and has the same dex pc as `successor`. |
| HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor); |
| |
| void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor); |
| void OrderLoopHeaderPredecessors(HBasicBlock* header); |
| |
| // Transform a loop into a format with a single preheader. |
| // |
| // Each phi in the header should be split: original one in the header should only hold |
| // inputs reachable from the back edges and a single input from the preheader. The newly created |
| // phi in the preheader should collate the inputs from the original multiple incoming blocks. |
| // |
| // Loops in the graph typically have a single preheader, so this method is used to "repair" loops |
| // that no longer have this property. |
| void TransformLoopToSinglePreheaderFormat(HBasicBlock* header); |
| |
| void SimplifyLoop(HBasicBlock* header); |
| |
| int32_t GetNextInstructionId() { |
| CHECK_NE(current_instruction_id_, INT32_MAX); |
| return current_instruction_id_++; |
| } |
| |
| int32_t GetCurrentInstructionId() const { |
| return current_instruction_id_; |
| } |
| |
| void SetCurrentInstructionId(int32_t id) { |
| CHECK_GE(id, current_instruction_id_); |
| current_instruction_id_ = id; |
| } |
| |
| uint16_t GetMaximumNumberOfOutVRegs() const { |
| return maximum_number_of_out_vregs_; |
| } |
| |
| void SetMaximumNumberOfOutVRegs(uint16_t new_value) { |
| maximum_number_of_out_vregs_ = new_value; |
| } |
| |
| void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) { |
| maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value); |
| } |
| |
| void UpdateTemporariesVRegSlots(size_t slots) { |
| temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_); |
| } |
| |
| size_t GetTemporariesVRegSlots() const { |
| DCHECK(!in_ssa_form_); |
| return temporaries_vreg_slots_; |
| } |
| |
| void SetNumberOfVRegs(uint16_t number_of_vregs) { |
| number_of_vregs_ = number_of_vregs; |
| } |
| |
| uint16_t GetNumberOfVRegs() const { |
| return number_of_vregs_; |
| } |
| |
| void SetNumberOfInVRegs(uint16_t value) { |
| number_of_in_vregs_ = value; |
| } |
| |
| uint16_t GetNumberOfInVRegs() const { |
| return number_of_in_vregs_; |
| } |
| |
| uint16_t GetNumberOfLocalVRegs() const { |
| DCHECK(!in_ssa_form_); |
| return number_of_vregs_ - number_of_in_vregs_; |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetReversePostOrder() const { |
| return reverse_post_order_; |
| } |
| |
| ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() const { |
| DCHECK(GetReversePostOrder()[0] == entry_block_); |
| return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1); |
| } |
| |
| IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const { |
| return ReverseRange(GetReversePostOrder()); |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetLinearOrder() const { |
| return linear_order_; |
| } |
| |
| IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const { |
| return ReverseRange(GetLinearOrder()); |
| } |
| |
| bool HasBoundsChecks() const { |
| return has_bounds_checks_; |
| } |
| |
| void SetHasBoundsChecks(bool value) { |
| has_bounds_checks_ = value; |
| } |
| |
| // Returns true if dest is reachable from source, using either blocks or block-ids. |
| bool PathBetween(const HBasicBlock* source, const HBasicBlock* dest) const; |
| bool PathBetween(uint32_t source_id, uint32_t dest_id) const; |
| |
| // Is the code known to be robust against eliminating dead references |
| // and the effects of early finalization? |
| bool IsDeadReferenceSafe() const { return dead_reference_safe_; } |
| |
| void MarkDeadReferenceUnsafe() { dead_reference_safe_ = false; } |
| |
| bool IsDebuggable() const { return debuggable_; } |
| |
| // Returns a constant of the given type and value. If it does not exist |
| // already, it is created and inserted into the graph. This method is only for |
| // integral types. |
| HConstant* GetConstant(DataType::Type type, int64_t value, uint32_t dex_pc = kNoDexPc); |
| |
| // TODO: This is problematic for the consistency of reference type propagation |
| // because it can be created anytime after the pass and thus it will be left |
| // with an invalid type. |
| HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc); |
| |
| HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(value, &cached_int_constants_, dex_pc); |
| } |
| HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(value, &cached_long_constants_, dex_pc); |
| } |
| HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc); |
| } |
| HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) { |
| return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc); |
| } |
| |
| HCurrentMethod* GetCurrentMethod(); |
| |
| const DexFile& GetDexFile() const { |
| return dex_file_; |
| } |
| |
| uint32_t GetMethodIdx() const { |
| return method_idx_; |
| } |
| |
| // Get the method name (without the signature), e.g. "<init>" |
| const char* GetMethodName() const; |
| |
| // Get the pretty method name (class + name + optionally signature). |
| std::string PrettyMethod(bool with_signature = true) const; |
| |
| InvokeType GetInvokeType() const { |
| return invoke_type_; |
| } |
| |
| InstructionSet GetInstructionSet() const { |
| return instruction_set_; |
| } |
| |
| bool IsCompilingOsr() const { return compilation_kind_ == CompilationKind::kOsr; } |
| |
| bool IsCompilingBaseline() const { return compilation_kind_ == CompilationKind::kBaseline; } |
| |
| CompilationKind GetCompilationKind() const { return compilation_kind_; } |
| |
| ArenaSet<ArtMethod*>& GetCHASingleImplementationList() { |
| return cha_single_implementation_list_; |
| } |
| |
| void AddCHASingleImplementationDependency(ArtMethod* method) { |
| cha_single_implementation_list_.insert(method); |
| } |
| |
| bool HasShouldDeoptimizeFlag() const { |
| return number_of_cha_guards_ != 0 || debuggable_; |
| } |
| |
| bool HasTryCatch() const { return has_try_catch_; } |
| void SetHasTryCatch(bool value) { has_try_catch_ = value; } |
| |
| bool HasMonitorOperations() const { return has_monitor_operations_; } |
| void SetHasMonitorOperations(bool value) { has_monitor_operations_ = value; } |
| |
| bool HasSIMD() const { return has_simd_; } |
| void SetHasSIMD(bool value) { has_simd_ = value; } |
| |
| bool HasLoops() const { return has_loops_; } |
| void SetHasLoops(bool value) { has_loops_ = value; } |
| |
| bool HasIrreducibleLoops() const { return has_irreducible_loops_; } |
| void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; } |
| |
| bool HasDirectCriticalNativeCall() const { return has_direct_critical_native_call_; } |
| void SetHasDirectCriticalNativeCall(bool value) { has_direct_critical_native_call_ = value; } |
| |
| ArtMethod* GetArtMethod() const { return art_method_; } |
| void SetArtMethod(ArtMethod* method) { art_method_ = method; } |
| |
| void SetProfilingInfo(ProfilingInfo* info) { profiling_info_ = info; } |
| ProfilingInfo* GetProfilingInfo() const { return profiling_info_; } |
| |
| // Returns an instruction with the opposite Boolean value from 'cond'. |
| // The instruction has been inserted into the graph, either as a constant, or |
| // before cursor. |
| HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor); |
| |
| ReferenceTypeInfo GetInexactObjectRti() { |
| return ReferenceTypeInfo::Create(handle_cache_.GetObjectClassHandle(), /* is_exact= */ false); |
| } |
| |
| uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; } |
| void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; } |
| void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; } |
| |
| private: |
| void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const; |
| void RemoveDeadBlocks(const ArenaBitVector& visited); |
| |
| template <class InstructionType, typename ValueType> |
| InstructionType* CreateConstant(ValueType value, |
| ArenaSafeMap<ValueType, InstructionType*>* cache, |
| uint32_t dex_pc = kNoDexPc) { |
| // Try to find an existing constant of the given value. |
| InstructionType* constant = nullptr; |
| auto cached_constant = cache->find(value); |
| if (cached_constant != cache->end()) { |
| constant = cached_constant->second; |
| } |
| |
| // If not found or previously deleted, create and cache a new instruction. |
| // Don't bother reviving a previously deleted instruction, for simplicity. |
| if (constant == nullptr || constant->GetBlock() == nullptr) { |
| constant = new (allocator_) InstructionType(value, dex_pc); |
| cache->Overwrite(value, constant); |
| InsertConstant(constant); |
| } |
| return constant; |
| } |
| |
| void InsertConstant(HConstant* instruction); |
| |
| // Cache a float constant into the graph. This method should only be |
| // called by the SsaBuilder when creating "equivalent" instructions. |
| void CacheFloatConstant(HFloatConstant* constant); |
| |
| // See CacheFloatConstant comment. |
| void CacheDoubleConstant(HDoubleConstant* constant); |
| |
| ArenaAllocator* const allocator_; |
| ArenaStack* const arena_stack_; |
| |
| HandleCache handle_cache_; |
| |
| // List of blocks in insertion order. |
| ArenaVector<HBasicBlock*> blocks_; |
| |
| // List of blocks to perform a reverse post order tree traversal. |
| ArenaVector<HBasicBlock*> reverse_post_order_; |
| |
| // List of blocks to perform a linear order tree traversal. Unlike the reverse |
| // post order, this order is not incrementally kept up-to-date. |
| ArenaVector<HBasicBlock*> linear_order_; |
| |
| // Reachability graph for checking connectedness between nodes. Acts as a partitioned vector where |
| // each RoundUp(blocks_.size(), BitVector::kWordBits) is the reachability of each node. |
| ArenaBitVectorArray reachability_graph_; |
| |
| HBasicBlock* entry_block_; |
| HBasicBlock* exit_block_; |
| |
| // The maximum number of virtual registers arguments passed to a HInvoke in this graph. |
| uint16_t maximum_number_of_out_vregs_; |
| |
| // The number of virtual registers in this method. Contains the parameters. |
| uint16_t number_of_vregs_; |
| |
| // The number of virtual registers used by parameters of this method. |
| uint16_t number_of_in_vregs_; |
| |
| // Number of vreg size slots that the temporaries use (used in baseline compiler). |
| size_t temporaries_vreg_slots_; |
| |
| // Flag whether there are bounds checks in the graph. We can skip |
| // BCE if it's false. It's only best effort to keep it up to date in |
| // the presence of code elimination so there might be false positives. |
| bool has_bounds_checks_; |
| |
| // Flag whether there are try/catch blocks in the graph. We will skip |
| // try/catch-related passes if it's false. It's only best effort to keep |
| // it up to date in the presence of code elimination so there might be |
| // false positives. |
| bool has_try_catch_; |
| |
| // Flag whether there are any HMonitorOperation in the graph. If yes this will mandate |
| // DexRegisterMap to be present to allow deadlock analysis for non-debuggable code. |
| bool has_monitor_operations_; |
| |
| // Flag whether SIMD instructions appear in the graph. If true, the |
| // code generators may have to be more careful spilling the wider |
| // contents of SIMD registers. |
| bool has_simd_; |
| |
| // Flag whether there are any loops in the graph. We can skip loop |
| // optimization if it's false. It's only best effort to keep it up |
| // to date in the presence of code elimination so there might be false |
| // positives. |
| bool has_loops_; |
| |
| // Flag whether there are any irreducible loops in the graph. It's only |
| // best effort to keep it up to date in the presence of code elimination |
| // so there might be false positives. |
| bool has_irreducible_loops_; |
| |
| // Flag whether there are any direct calls to native code registered |
| // for @CriticalNative methods. |
| bool has_direct_critical_native_call_; |
| |
| // Is the code known to be robust against eliminating dead references |
| // and the effects of early finalization? If false, dead reference variables |
| // are kept if they might be visible to the garbage collector. |
| // Currently this means that the class was declared to be dead-reference-safe, |
| // the method accesses no reachability-sensitive fields or data, and the same |
| // is true for any methods that were inlined into the current one. |
| bool dead_reference_safe_; |
| |
| // Indicates whether the graph should be compiled in a way that |
| // ensures full debuggability. If false, we can apply more |
| // aggressive optimizations that may limit the level of debugging. |
| const bool debuggable_; |
| |
| // The current id to assign to a newly added instruction. See HInstruction.id_. |
| int32_t current_instruction_id_; |
| |
| // The dex file from which the method is from. |
| const DexFile& dex_file_; |
| |
| // The method index in the dex file. |
| const uint32_t method_idx_; |
| |
| // If inlined, this encodes how the callee is being invoked. |
| const InvokeType invoke_type_; |
| |
| // Whether the graph has been transformed to SSA form. Only used |
| // in debug mode to ensure we are not using properties only valid |
| // for non-SSA form (like the number of temporaries). |
| bool in_ssa_form_; |
| |
| // Number of CHA guards in the graph. Used to short-circuit the |
| // CHA guard optimization pass when there is no CHA guard left. |
| uint32_t number_of_cha_guards_; |
| |
| const InstructionSet instruction_set_; |
| |
| // Cached constants. |
| HNullConstant* cached_null_constant_; |
| ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_; |
| ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_; |
| ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_; |
| ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_; |
| |
| HCurrentMethod* cached_current_method_; |
| |
| // The ArtMethod this graph is for. Note that for AOT, it may be null, |
| // for example for methods whose declaring class could not be resolved |
| // (such as when the superclass could not be found). |
| ArtMethod* art_method_; |
| |
| // The `ProfilingInfo` associated with the method being compiled. |
| ProfilingInfo* profiling_info_; |
| |
| // How we are compiling the graph: either optimized, osr, or baseline. |
| // For osr, we will make all loops seen as irreducible and emit special |
| // stack maps to mark compiled code entries which the interpreter can |
| // directly jump to. |
| const CompilationKind compilation_kind_; |
| |
| // List of methods that are assumed to have single implementation. |
| ArenaSet<ArtMethod*> cha_single_implementation_list_; |
| |
| friend class SsaBuilder; // For caching constants. |
| friend class SsaLivenessAnalysis; // For the linear order. |
| friend class HInliner; // For the reverse post order. |
| ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1); |
| DISALLOW_COPY_AND_ASSIGN(HGraph); |
| }; |
| |
| class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> { |
| public: |
| HLoopInformation(HBasicBlock* header, HGraph* graph) |
| : header_(header), |
| suspend_check_(nullptr), |
| irreducible_(false), |
| contains_irreducible_loop_(false), |
| back_edges_(graph->GetAllocator()->Adapter(kArenaAllocLoopInfoBackEdges)), |
| // Make bit vector growable, as the number of blocks may change. |
| blocks_(graph->GetAllocator(), |
| graph->GetBlocks().size(), |
| true, |
| kArenaAllocLoopInfoBackEdges) { |
| back_edges_.reserve(kDefaultNumberOfBackEdges); |
| } |
| |
| bool IsIrreducible() const { return irreducible_; } |
| bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; } |
| |
| void Dump(std::ostream& os); |
| |
| HBasicBlock* GetHeader() const { |
| return header_; |
| } |
| |
| void SetHeader(HBasicBlock* block) { |
| header_ = block; |
| } |
| |
| HSuspendCheck* GetSuspendCheck() const { return suspend_check_; } |
| void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; } |
| bool HasSuspendCheck() const { return suspend_check_ != nullptr; } |
| |
| void AddBackEdge(HBasicBlock* back_edge) { |
| back_edges_.push_back(back_edge); |
| } |
| |
| void RemoveBackEdge(HBasicBlock* back_edge) { |
| RemoveElement(back_edges_, back_edge); |
| } |
| |
| bool IsBackEdge(const HBasicBlock& block) const { |
| return ContainsElement(back_edges_, &block); |
| } |
| |
| size_t NumberOfBackEdges() const { |
| return back_edges_.size(); |
| } |
| |
| HBasicBlock* GetPreHeader() const; |
| |
| const ArenaVector<HBasicBlock*>& GetBackEdges() const { |
| return back_edges_; |
| } |
| |
| // Returns the lifetime position of the back edge that has the |
| // greatest lifetime position. |
| size_t GetLifetimeEnd() const; |
| |
| void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) { |
| ReplaceElement(back_edges_, existing, new_back_edge); |
| } |
| |
| // Finds blocks that are part of this loop. |
| void Populate(); |
| |
| // Updates blocks population of the loop and all of its outer' ones recursively after the |
| // population of the inner loop is updated. |
| void PopulateInnerLoopUpwards(HLoopInformation* inner_loop); |
| |
| // Returns whether this loop information contains `block`. |
| // Note that this loop information *must* be populated before entering this function. |
| bool Contains(const HBasicBlock& block) const; |
| |
| // Returns whether this loop information is an inner loop of `other`. |
| // Note that `other` *must* be populated before entering this function. |
| bool IsIn(const HLoopInformation& other) const; |
| |
| // Returns true if instruction is not defined within this loop. |
| bool IsDefinedOutOfTheLoop(HInstruction* instruction) const; |
| |
| const ArenaBitVector& GetBlocks() const { return blocks_; } |
| |
| void Add(HBasicBlock* block); |
| void Remove(HBasicBlock* block); |
| |
| void ClearAllBlocks() { |
| blocks_.ClearAllBits(); |
| } |
| |
| bool HasBackEdgeNotDominatedByHeader() const; |
| |
| bool IsPopulated() const { |
| return blocks_.GetHighestBitSet() != -1; |
| } |
| |
| bool DominatesAllBackEdges(HBasicBlock* block); |
| |
| bool HasExitEdge() const; |
| |
| // Resets back edge and blocks-in-loop data. |
| void ResetBasicBlockData() { |
| back_edges_.clear(); |
| ClearAllBlocks(); |
| } |
| |
| private: |
| // Internal recursive implementation of `Populate`. |
| void PopulateRecursive(HBasicBlock* block); |
| void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized); |
| |
| HBasicBlock* header_; |
| HSuspendCheck* suspend_check_; |
| bool irreducible_; |
| bool contains_irreducible_loop_; |
| ArenaVector<HBasicBlock*> back_edges_; |
| ArenaBitVector blocks_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLoopInformation); |
| }; |
| |
| // Stores try/catch information for basic blocks. |
| // Note that HGraph is constructed so that catch blocks cannot simultaneously |
| // be try blocks. |
| class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> { |
| public: |
| // Try block information constructor. |
| explicit TryCatchInformation(const HTryBoundary& try_entry) |
| : try_entry_(&try_entry), |
| catch_dex_file_(nullptr), |
| catch_type_index_(dex::TypeIndex::Invalid()) { |
| DCHECK(try_entry_ != nullptr); |
| } |
| |
| // Catch block information constructor. |
| TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file) |
| : try_entry_(nullptr), |
| catch_dex_file_(&dex_file), |
| catch_type_index_(catch_type_index) {} |
| |
| bool IsTryBlock() const { return try_entry_ != nullptr; } |
| |
| const HTryBoundary& GetTryEntry() const { |
| DCHECK(IsTryBlock()); |
| return *try_entry_; |
| } |
| |
| bool IsCatchBlock() const { return catch_dex_file_ != nullptr; } |
| |
| bool IsValidTypeIndex() const { |
| DCHECK(IsCatchBlock()); |
| return catch_type_index_.IsValid(); |
| } |
| |
| dex::TypeIndex GetCatchTypeIndex() const { |
| DCHECK(IsCatchBlock()); |
| return catch_type_index_; |
| } |
| |
| const DexFile& GetCatchDexFile() const { |
| DCHECK(IsCatchBlock()); |
| return *catch_dex_file_; |
| } |
| |
| void SetInvalidTypeIndex() { |
| catch_type_index_ = dex::TypeIndex::Invalid(); |
| } |
| |
| private: |
| // One of possibly several TryBoundary instructions entering the block's try. |
| // Only set for try blocks. |
| const HTryBoundary* try_entry_; |
| |
| // Exception type information. Only set for catch blocks. |
| const DexFile* catch_dex_file_; |
| dex::TypeIndex catch_type_index_; |
| }; |
| |
| static constexpr size_t kNoLifetime = -1; |
| static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1); |
| |
| // A block in a method. Contains the list of instructions represented |
| // as a double linked list. Each block knows its predecessors and |
| // successors. |
| |
| class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> { |
| public: |
| explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc) |
| : graph_(graph), |
| predecessors_(graph->GetAllocator()->Adapter(kArenaAllocPredecessors)), |
| successors_(graph->GetAllocator()->Adapter(kArenaAllocSuccessors)), |
| loop_information_(nullptr), |
| dominator_(nullptr), |
| dominated_blocks_(graph->GetAllocator()->Adapter(kArenaAllocDominated)), |
| block_id_(kInvalidBlockId), |
| dex_pc_(dex_pc), |
| lifetime_start_(kNoLifetime), |
| lifetime_end_(kNoLifetime), |
| try_catch_information_(nullptr) { |
| predecessors_.reserve(kDefaultNumberOfPredecessors); |
| successors_.reserve(kDefaultNumberOfSuccessors); |
| dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks); |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetPredecessors() const { |
| return predecessors_; |
| } |
| |
| size_t GetNumberOfPredecessors() const { |
| return GetPredecessors().size(); |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetSuccessors() const { |
| return successors_; |
| } |
| |
| ArrayRef<HBasicBlock* const> GetNormalSuccessors() const; |
| ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const; |
| |
| bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) { |
| return ContainsElement(successors_, block, start_from); |
| } |
| |
| const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const { |
| return dominated_blocks_; |
| } |
| |
| bool IsEntryBlock() const { |
| return graph_->GetEntryBlock() == this; |
| } |
| |
| bool IsExitBlock() const { |
| return graph_->GetExitBlock() == this; |
| } |
| |
| bool IsSingleGoto() const; |
| bool IsSingleReturn() const; |
| bool IsSingleReturnOrReturnVoidAllowingPhis() const; |
| bool IsSingleTryBoundary() const; |
| |
| // Returns true if this block emits nothing but a jump. |
| bool IsSingleJump() const { |
| HLoopInformation* loop_info = GetLoopInformation(); |
| return (IsSingleGoto() || IsSingleTryBoundary()) |
| // Back edges generate a suspend check. |
| && (loop_info == nullptr || !loop_info->IsBackEdge(*this)); |
| } |
| |
| void AddBackEdge(HBasicBlock* back_edge) { |
| if (loop_information_ == nullptr) { |
| loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); |
| } |
| DCHECK_EQ(loop_information_->GetHeader(), this); |
| loop_information_->AddBackEdge(back_edge); |
| } |
| |
| // Registers a back edge; if the block was not a loop header before the call associates a newly |
| // created loop info with it. |
| // |
| // Used in SuperblockCloner to preserve LoopInformation object instead of reseting loop |
| // info for all blocks during back edges recalculation. |
| void AddBackEdgeWhileUpdating(HBasicBlock* back_edge) { |
| if (loop_information_ == nullptr || loop_information_->GetHeader() != this) { |
| loop_information_ = new (graph_->GetAllocator()) HLoopInformation(this, graph_); |
| } |
| loop_information_->AddBackEdge(back_edge); |
| } |
| |
| HGraph* GetGraph() const { return graph_; } |
| void SetGraph(HGraph* graph) { graph_ = graph; } |
| |
| uint32_t GetBlockId() const { return block_id_; } |
| void SetBlockId(int id) { block_id_ = id; } |
| uint32_t GetDexPc() const { return dex_pc_; } |
| |
| HBasicBlock* GetDominator() const { return dominator_; } |
| void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; } |
| void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); } |
| |
| void RemoveDominatedBlock(HBasicBlock* block) { |
| RemoveElement(dominated_blocks_, block); |
| } |
| |
| void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) { |
| ReplaceElement(dominated_blocks_, existing, new_block); |
| } |
| |
| void ClearDominanceInformation(); |
| |
| int NumberOfBackEdges() const { |
| return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0; |
| } |
| |
| HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; } |
| HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; } |
| const HInstructionList& GetInstructions() const { return instructions_; } |
| HInstruction* GetFirstPhi() const { return phis_.first_instruction_; } |
| HInstruction* GetLastPhi() const { return phis_.last_instruction_; } |
| const HInstructionList& GetPhis() const { return phis_; } |
| |
| HInstruction* GetFirstInstructionDisregardMoves() const; |
| |
| void AddSuccessor(HBasicBlock* block) { |
| successors_.push_back(block); |
| block->predecessors_.push_back(this); |
| } |
| |
| void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) { |
| size_t successor_index = GetSuccessorIndexOf(existing); |
| existing->RemovePredecessor(this); |
| new_block->predecessors_.push_back(this); |
| successors_[successor_index] = new_block; |
| } |
| |
| void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) { |
| size_t predecessor_index = GetPredecessorIndexOf(existing); |
| existing->RemoveSuccessor(this); |
| new_block->successors_.push_back(this); |
| predecessors_[predecessor_index] = new_block; |
| } |
| |
| // Insert `this` between `predecessor` and `successor. This method |
| // preserves the indices, and will update the first edge found between |
| // `predecessor` and `successor`. |
| void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) { |
| size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor); |
| size_t successor_index = predecessor->GetSuccessorIndexOf(successor); |
| successor->predecessors_[predecessor_index] = this; |
| predecessor->successors_[successor_index] = this; |
| successors_.push_back(successor); |
| predecessors_.push_back(predecessor); |
| } |
| |
| void RemovePredecessor(HBasicBlock* block) { |
| predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block)); |
| } |
| |
| void RemoveSuccessor(HBasicBlock* block) { |
| successors_.erase(successors_.begin() + GetSuccessorIndexOf(block)); |
| } |
| |
| void ClearAllPredecessors() { |
| predecessors_.clear(); |
| } |
| |
| void AddPredecessor(HBasicBlock* block) { |
| predecessors_.push_back(block); |
| block->successors_.push_back(this); |
| } |
| |
| void SwapPredecessors() { |
| DCHECK_EQ(predecessors_.size(), 2u); |
| std::swap(predecessors_[0], predecessors_[1]); |
| } |
| |
| void SwapSuccessors() { |
| DCHECK_EQ(successors_.size(), 2u); |
| std::swap(successors_[0], successors_[1]); |
| } |
| |
| size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const { |
| return IndexOfElement(predecessors_, predecessor); |
| } |
| |
| size_t GetSuccessorIndexOf(HBasicBlock* successor) const { |
| return IndexOfElement(successors_, successor); |
| } |
| |
| HBasicBlock* GetSinglePredecessor() const { |
| DCHECK_EQ(GetPredecessors().size(), 1u); |
| return GetPredecessors()[0]; |
| } |
| |
| HBasicBlock* GetSingleSuccessor() const { |
| DCHECK_EQ(GetSuccessors().size(), 1u); |
| return GetSuccessors()[0]; |
| } |
| |
| // Returns whether the first occurrence of `predecessor` in the list of |
| // predecessors is at index `idx`. |
| bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const { |
| DCHECK_EQ(GetPredecessors()[idx], predecessor); |
| return GetPredecessorIndexOf(predecessor) == idx; |
| } |
| |
| // Create a new block between this block and its predecessors. The new block |
| // is added to the graph, all predecessor edges are relinked to it and an edge |
| // is created to `this`. Returns the new empty block. Reverse post order or |
| // loop and try/catch information are not updated. |
| HBasicBlock* CreateImmediateDominator(); |
| |
| // Split the block into two blocks just before `cursor`. Returns the newly |
| // created, latter block. Note that this method will add the block to the |
| // graph, create a Goto at the end of the former block and will create an edge |
| // between the blocks. It will not, however, update the reverse post order or |
| // loop and try/catch information. |
| HBasicBlock* SplitBefore(HInstruction* cursor); |
| |
| // Split the block into two blocks just before `cursor`. Returns the newly |
| // created block. Note that this method just updates raw block information, |
| // like predecessors, successors, dominators, and instruction list. It does not |
| // update the graph, reverse post order, loop information, nor make sure the |
| // blocks are consistent (for example ending with a control flow instruction). |
| HBasicBlock* SplitBeforeForInlining(HInstruction* cursor); |
| |
| // Similar to `SplitBeforeForInlining` but does it after `cursor`. |
| HBasicBlock* SplitAfterForInlining(HInstruction* cursor); |
| |
| // Merge `other` at the end of `this`. Successors and dominated blocks of |
| // `other` are changed to be successors and dominated blocks of `this`. Note |
| // that this method does not update the graph, reverse post order, loop |
| // information, nor make sure the blocks are consistent (for example ending |
| // with a control flow instruction). |
| void MergeWithInlined(HBasicBlock* other); |
| |
| // Replace `this` with `other`. Predecessors, successors, and dominated blocks |
| // of `this` are moved to `other`. |
| // Note that this method does not update the graph, reverse post order, loop |
| // information, nor make sure the blocks are consistent (for example ending |
| // with a control flow instruction). |
| void ReplaceWith(HBasicBlock* other); |
| |
| // Merges the instructions of `other` at the end of `this`. |
| void MergeInstructionsWith(HBasicBlock* other); |
| |
| // Merge `other` at the end of `this`. This method updates loops, reverse post |
| // order, links to predecessors, successors, dominators and deletes the block |
| // from the graph. The two blocks must be successive, i.e. `this` the only |
| // predecessor of `other` and vice versa. |
| void MergeWith(HBasicBlock* other); |
| |
| // Disconnects `this` from all its predecessors, successors and dominator, |
| // removes it from all loops it is included in and eventually from the graph. |
| // The block must not dominate any other block. Predecessors and successors |
| // are safely updated. |
| void DisconnectAndDelete(); |
| |
| void AddInstruction(HInstruction* instruction); |
| // Insert `instruction` before/after an existing instruction `cursor`. |
| void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor); |
| void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor); |
| // Replace phi `initial` with `replacement` within this block. |
| void ReplaceAndRemovePhiWith(HPhi* initial, HPhi* replacement); |
| // Replace instruction `initial` with `replacement` within this block. |
| void ReplaceAndRemoveInstructionWith(HInstruction* initial, |
| HInstruction* replacement); |
| void AddPhi(HPhi* phi); |
| void InsertPhiAfter(HPhi* instruction, HPhi* cursor); |
| // RemoveInstruction and RemovePhi delete a given instruction from the respective |
| // instruction list. With 'ensure_safety' set to true, it verifies that the |
| // instruction is not in use and removes it from the use lists of its inputs. |
| void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true); |
| void RemovePhi(HPhi* phi, bool ensure_safety = true); |
| void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true); |
| |
| bool IsLoopHeader() const { |
| return IsInLoop() && (loop_information_->GetHeader() == this); |
| } |
| |
| bool IsLoopPreHeaderFirstPredecessor() const { |
| DCHECK(IsLoopHeader()); |
| return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader(); |
| } |
| |
| bool IsFirstPredecessorBackEdge() const { |
| DCHECK(IsLoopHeader()); |
| return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]); |
| } |
| |
| HLoopInformation* GetLoopInformation() const { |
| return loop_information_; |
| } |
| |
| // Set the loop_information_ on this block. Overrides the current |
| // loop_information if it is an outer loop of the passed loop information. |
| // Note that this method is called while creating the loop information. |
| void SetInLoop(HLoopInformation* info) { |
| if (IsLoopHeader()) { |
| // Nothing to do. This just means `info` is an outer loop. |
| } else if (!IsInLoop()) { |
| loop_information_ = info; |
| } else if (loop_information_->Contains(*info->GetHeader())) { |
| // Block is currently part of an outer loop. Make it part of this inner loop. |
| // Note that a non loop header having a loop information means this loop information |
| // has already been populated |
| loop_information_ = info; |
| } else { |
| // Block is part of an inner loop. Do not update the loop information. |
| // Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()` |
| // at this point, because this method is being called while populating `info`. |
| } |
| } |
| |
| // Raw update of the loop information. |
| void SetLoopInformation(HLoopInformation* info) { |
| loop_information_ = info; |
| } |
| |
| bool IsInLoop() const { return loop_information_ != nullptr; } |
| |
| TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; } |
| |
| void SetTryCatchInformation(TryCatchInformation* try_catch_information) { |
| try_catch_information_ = try_catch_information; |
| } |
| |
| bool IsTryBlock() const { |
| return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock(); |
| } |
| |
| bool IsCatchBlock() const { |
| return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock(); |
| } |
| |
| // Returns the try entry that this block's successors should have. They will |
| // be in the same try, unless the block ends in a try boundary. In that case, |
| // the appropriate try entry will be returned. |
| const HTryBoundary* ComputeTryEntryOfSuccessors() const; |
| |
| bool HasThrowingInstructions() const; |
| |
| // Returns whether this block dominates the blocked passed as parameter. |
| bool Dominates(HBasicBlock* block) const; |
| |
| size_t GetLifetimeStart() const { return lifetime_start_; } |
| size_t GetLifetimeEnd() const { return lifetime_end_; } |
| |
| void SetLifetimeStart(size_t start) { lifetime_start_ = start; } |
| void SetLifetimeEnd(size_t end) { lifetime_end_ = end; } |
| |
| bool EndsWithControlFlowInstruction() const; |
| bool EndsWithReturn() const; |
| bool EndsWithIf() const; |
| bool EndsWithTryBoundary() const; |
| bool HasSinglePhi() const; |
| |
| private: |
| HGraph* graph_; |
| ArenaVector<HBasicBlock*> predecessors_; |
| ArenaVector<HBasicBlock*> successors_; |
| HInstructionList instructions_; |
| HInstructionList phis_; |
| HLoopInformation* loop_information_; |
| HBasicBlock* dominator_; |
| ArenaVector<HBasicBlock*> dominated_blocks_; |
| uint32_t block_id_; |
| // The dex program counter of the first instruction of this block. |
| const uint32_t dex_pc_; |
| size_t lifetime_start_; |
| size_t lifetime_end_; |
| TryCatchInformation* try_catch_information_; |
| |
| friend class HGraph; |
| friend class HInstruction; |
| // Allow manual control of the ordering of predecessors/successors |
| friend class OptimizingUnitTestHelper; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBasicBlock); |
| }; |
| |
| // Iterates over the LoopInformation of all loops which contain 'block' |
| // from the innermost to the outermost. |
| class HLoopInformationOutwardIterator : public ValueObject { |
| public: |
| explicit HLoopInformationOutwardIterator(const HBasicBlock& block) |
| : current_(block.GetLoopInformation()) {} |
| |
| bool Done() const { return current_ == nullptr; } |
| |
| void Advance() { |
| DCHECK(!Done()); |
| current_ = current_->GetPreHeader()->GetLoopInformation(); |
| } |
| |
| HLoopInformation* Current() const { |
| DCHECK(!Done()); |
| return current_; |
| } |
| |
| private: |
| HLoopInformation* current_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator); |
| }; |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M) \ |
| M(Above, Condition) \ |
| M(AboveOrEqual, Condition) \ |
| M(Abs, UnaryOperation) \ |
| M(Add, BinaryOperation) \ |
| M(And, BinaryOperation) \ |
| M(ArrayGet, Instruction) \ |
| M(ArrayLength, Instruction) \ |
| M(ArraySet, Instruction) \ |
| M(Below, Condition) \ |
| M(BelowOrEqual, Condition) \ |
| M(BooleanNot, UnaryOperation) \ |
| M(BoundsCheck, Instruction) \ |
| M(BoundType, Instruction) \ |
| M(CheckCast, Instruction) \ |
| M(ClassTableGet, Instruction) \ |
| M(ClearException, Instruction) \ |
| M(ClinitCheck, Instruction) \ |
| M(Compare, BinaryOperation) \ |
| M(ConstructorFence, Instruction) \ |
| M(CurrentMethod, Instruction) \ |
| M(ShouldDeoptimizeFlag, Instruction) \ |
| M(Deoptimize, Instruction) \ |
| M(Div, BinaryOperation) \ |
| M(DivZeroCheck, Instruction) \ |
| M(DoubleConstant, Constant) \ |
| M(Equal, Condition) \ |
| M(Exit, Instruction) \ |
| M(FloatConstant, Constant) \ |
| M(Goto, Instruction) \ |
| M(GreaterThan, Condition) \ |
| M(GreaterThanOrEqual, Condition) \ |
| M(If, Instruction) \ |
| M(InstanceFieldGet, Instruction) \ |
| M(InstanceFieldSet, Instruction) \ |
| M(PredicatedInstanceFieldGet, Instruction) \ |
| M(InstanceOf, Instruction) \ |
| M(IntConstant, Constant) \ |
| M(IntermediateAddress, Instruction) \ |
| M(InvokeUnresolved, Invoke) \ |
| M(InvokeInterface, Invoke) \ |
| M(InvokeStaticOrDirect, Invoke) \ |
| M(InvokeVirtual, Invoke) \ |
| M(InvokePolymorphic, Invoke) \ |
| M(InvokeCustom, Invoke) \ |
| M(LessThan, Condition) \ |
| M(LessThanOrEqual, Condition) \ |
| M(LoadClass, Instruction) \ |
| M(LoadException, Instruction) \ |
| M(LoadMethodHandle, Instruction) \ |
| M(LoadMethodType, Instruction) \ |
| M(LoadString, Instruction) \ |
| M(LongConstant, Constant) \ |
| M(Max, Instruction) \ |
| M(MemoryBarrier, Instruction) \ |
| M(MethodEntryHook, Instruction) \ |
| M(MethodExitHook, Instruction) \ |
| M(Min, BinaryOperation) \ |
| M(MonitorOperation, Instruction) \ |
| M(Mul, BinaryOperation) \ |
| M(NativeDebugInfo, Instruction) \ |
| M(Neg, UnaryOperation) \ |
| M(NewArray, Instruction) \ |
| M(NewInstance, Instruction) \ |
| M(Not, UnaryOperation) \ |
| M(NotEqual, Condition) \ |
| M(NullConstant, Instruction) \ |
| M(NullCheck, Instruction) \ |
| M(Or, BinaryOperation) \ |
| M(PackedSwitch, Instruction) \ |
| M(ParallelMove, Instruction) \ |
| M(ParameterValue, Instruction) \ |
| M(Phi, Instruction) \ |
| M(Rem, BinaryOperation) \ |
| M(Return, Instruction) \ |
| M(ReturnVoid, Instruction) \ |
| M(Ror, BinaryOperation) \ |
| M(Shl, BinaryOperation) \ |
| M(Shr, BinaryOperation) \ |
| M(StaticFieldGet, Instruction) \ |
| M(StaticFieldSet, Instruction) \ |
| M(StringBuilderAppend, Instruction) \ |
| M(UnresolvedInstanceFieldGet, Instruction) \ |
| M(UnresolvedInstanceFieldSet, Instruction) \ |
| M(UnresolvedStaticFieldGet, Instruction) \ |
| M(UnresolvedStaticFieldSet, Instruction) \ |
| M(Select, Instruction) \ |
| M(Sub, BinaryOperation) \ |
| M(SuspendCheck, Instruction) \ |
| M(Throw, Instruction) \ |
| M(TryBoundary, Instruction) \ |
| M(TypeConversion, Instruction) \ |
| M(UShr, BinaryOperation) \ |
| M(Xor, BinaryOperation) |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M) \ |
| M(VecReplicateScalar, VecUnaryOperation) \ |
| M(VecExtractScalar, VecUnaryOperation) \ |
| M(VecReduce, VecUnaryOperation) \ |
| M(VecCnv, VecUnaryOperation) \ |
| M(VecNeg, VecUnaryOperation) \ |
| M(VecAbs, VecUnaryOperation) \ |
| M(VecNot, VecUnaryOperation) \ |
| M(VecAdd, VecBinaryOperation) \ |
| M(VecHalvingAdd, VecBinaryOperation) \ |
| M(VecSub, VecBinaryOperation) \ |
| M(VecMul, VecBinaryOperation) \ |
| M(VecDiv, VecBinaryOperation) \ |
| M(VecMin, VecBinaryOperation) \ |
| M(VecMax, VecBinaryOperation) \ |
| M(VecAnd, VecBinaryOperation) \ |
| M(VecAndNot, VecBinaryOperation) \ |
| M(VecOr, VecBinaryOperation) \ |
| M(VecXor, VecBinaryOperation) \ |
| M(VecSaturationAdd, VecBinaryOperation) \ |
| M(VecSaturationSub, VecBinaryOperation) \ |
| M(VecShl, VecBinaryOperation) \ |
| M(VecShr, VecBinaryOperation) \ |
| M(VecUShr, VecBinaryOperation) \ |
| M(VecSetScalars, VecOperation) \ |
| M(VecMultiplyAccumulate, VecOperation) \ |
| M(VecSADAccumulate, VecOperation) \ |
| M(VecDotProd, VecOperation) \ |
| M(VecLoad, VecMemoryOperation) \ |
| M(VecStore, VecMemoryOperation) \ |
| M(VecPredSetAll, VecPredSetOperation) \ |
| M(VecPredWhile, VecPredSetOperation) \ |
| M(VecPredCondition, VecOperation) \ |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_SCALAR_COMMON(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_VECTOR_COMMON(M) |
| |
| /* |
| * Instructions, shared across several (not all) architectures. |
| */ |
| #if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64) |
| #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) |
| #else |
| #define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ |
| M(BitwiseNegatedRight, Instruction) \ |
| M(DataProcWithShifterOp, Instruction) \ |
| M(MultiplyAccumulate, Instruction) \ |
| M(IntermediateAddressIndex, Instruction) |
| #endif |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) |
| |
| #ifndef ART_ENABLE_CODEGEN_x86 |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) |
| #else |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ |
| M(X86ComputeBaseMethodAddress, Instruction) \ |
| M(X86LoadFromConstantTable, Instruction) \ |
| M(X86FPNeg, Instruction) \ |
| M(X86PackedSwitch, Instruction) |
| #endif |
| |
| #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64) |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) \ |
| M(X86AndNot, Instruction) \ |
| M(X86MaskOrResetLeastSetBit, Instruction) |
| #else |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) |
| #endif |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) |
| |
| #define FOR_EACH_CONCRETE_INSTRUCTION(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(M) |
| |
| #define FOR_EACH_ABSTRACT_INSTRUCTION(M) \ |
| M(Condition, BinaryOperation) \ |
| M(Constant, Instruction) \ |
| M(UnaryOperation, Instruction) \ |
| M(BinaryOperation, Instruction) \ |
| M(Invoke, Instruction) \ |
| M(VecOperation, Instruction) \ |
| M(VecUnaryOperation, VecOperation) \ |
| M(VecBinaryOperation, VecOperation) \ |
| M(VecMemoryOperation, VecOperation) \ |
| M(VecPredSetOperation, VecOperation) |
| |
| #define FOR_EACH_INSTRUCTION(M) \ |
| FOR_EACH_CONCRETE_INSTRUCTION(M) \ |
| FOR_EACH_ABSTRACT_INSTRUCTION(M) |
| |
| #define FORWARD_DECLARATION(type, super) class H##type; |
| FOR_EACH_INSTRUCTION(FORWARD_DECLARATION) |
| #undef FORWARD_DECLARATION |
| |
| #define DECLARE_INSTRUCTION(type) \ |
| private: \ |
| H##type& operator=(const H##type&) = delete; \ |
| public: \ |
| const char* DebugName() const override { return #type; } \ |
| HInstruction* Clone(ArenaAllocator* arena) const override { \ |
| DCHECK(IsClonable()); \ |
| return new (arena) H##type(*this->As##type()); \ |
| } \ |
| void Accept(HGraphVisitor* visitor) override |
| |
| #define DECLARE_ABSTRACT_INSTRUCTION(type) \ |
| private: \ |
| H##type& operator=(const H##type&) = delete; \ |
| public: |
| |
| #define DEFAULT_COPY_CONSTRUCTOR(type) H##type(const H##type& other) = default; |
| |
| template <typename T> |
| class HUseListNode : public ArenaObject<kArenaAllocUseListNode>, |
| public IntrusiveForwardListNode<HUseListNode<T>> { |
| public: |
| // Get the instruction which has this use as one of the inputs. |
| T GetUser() const { return user_; } |
| // Get the position of the input record that this use corresponds to. |
| size_t GetIndex() const { return index_; } |
| // Set the position of the input record that this use corresponds to. |
| void SetIndex(size_t index) { index_ = index; } |
| |
| private: |
| HUseListNode(T user, size_t index) |
| : user_(user), index_(index) {} |
| |
| T const user_; |
| size_t index_; |
| |
| friend class HInstruction; |
| |
| DISALLOW_COPY_AND_ASSIGN(HUseListNode); |
| }; |
| |
| template <typename T> |
| using HUseList = IntrusiveForwardList<HUseListNode<T>>; |
| |
| // This class is used by HEnvironment and HInstruction classes to record the |
| // instructions they use and pointers to the corresponding HUseListNodes kept |
| // by the used instructions. |
| template <typename T> |
| class HUserRecord : public ValueObject { |
| public: |
| HUserRecord() : instruction_(nullptr), before_use_node_() {} |
| explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {} |
| |
| HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node) |
| : HUserRecord(old_record.instruction_, before_use_node) {} |
| HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node) |
| : instruction_(instruction), before_use_node_(before_use_node) { |
| DCHECK(instruction_ != nullptr); |
| } |
| |
| HInstruction* GetInstruction() const { return instruction_; } |
| typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; } |
| typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); } |
| |
| private: |
| // Instruction used by the user. |
| HInstruction* instruction_; |
| |
| // Iterator before the corresponding entry in the use list kept by 'instruction_'. |
| typename HUseList<T>::iterator before_use_node_; |
| }; |
| |
| // Helper class that extracts the input instruction from HUserRecord<HInstruction*>. |
| // This is used for HInstruction::GetInputs() to return a container wrapper providing |
| // HInstruction* values even though the underlying container has HUserRecord<>s. |
| struct HInputExtractor { |
| HInstruction* operator()(HUserRecord<HInstruction*>& record) const { |
| return record.GetInstruction(); |
| } |
| const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const { |
| return record.GetInstruction(); |
| } |
| }; |
| |
| using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>; |
| using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>; |
| |
| /** |
| * Side-effects representation. |
| * |
| * For write/read dependences on fields/arrays, the dependence analysis uses |
| * type disambiguation (e.g. a float field write cannot modify the value of an |
| * integer field read) and the access type (e.g. a reference array write cannot |
| * modify the value of a reference field read [although it may modify the |
| * reference fetch prior to reading the field, which is represented by its own |
| * write/read dependence]). The analysis makes conservative points-to |
| * assumptions on reference types (e.g. two same typed arrays are assumed to be |
| * the same, and any reference read depends on any reference read without |
| * further regard of its type). |
| * |
| * kDependsOnGCBit is defined in the following way: instructions with kDependsOnGCBit must not be |
| * alive across the point where garbage collection might happen. |
| * |
| * Note: Instructions with kCanTriggerGCBit do not depend on each other. |
| * |
| * kCanTriggerGCBit must be used for instructions for which GC might happen on the path across |
| * those instructions from the compiler perspective (between this instruction and the next one |
| * in the IR). |
| * |
| * Note: Instructions which can cause GC only on a fatal slow path do not need |
| * kCanTriggerGCBit as the execution never returns to the instruction next to the exceptional |
| * one. However the execution may return to compiled code if there is a catch block in the |
| * current method; for this purpose the TryBoundary exit instruction has kCanTriggerGCBit |
| * set. |
| * |
| * The internal representation uses 38-bit and is described in the table below. |
| * The first line indicates the side effect, and for field/array accesses the |
| * second line indicates the type of the access (in the order of the |
| * DataType::Type enum). |
| * The two numbered lines below indicate the bit position in the bitfield (read |
| * vertically). |
| * |
| * |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W | |
| * +-------------+---------+---------+--------------+---------+---------+ |
| * | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL| |
| * | 3 |333333322|222222221| 1 |111111110|000000000| |
| * | 7 |654321098|765432109| 8 |765432109|876543210| |
| * |
| * Note that, to ease the implementation, 'changes' bits are least significant |
| * bits, while 'dependency' bits are most significant bits. |
| */ |
| class SideEffects : public ValueObject { |
| public: |
| SideEffects() : flags_(0) {} |
| |
| static SideEffects None() { |
| return SideEffects(0); |
| } |
| |
| static SideEffects All() { |
| return SideEffects(kAllChangeBits | kAllDependOnBits); |
| } |
| |
| static SideEffects AllChanges() { |
| return SideEffects(kAllChangeBits); |
| } |
| |
| static SideEffects AllDependencies() { |
| return SideEffects(kAllDependOnBits); |
| } |
| |
| static SideEffects AllExceptGCDependency() { |
| return AllWritesAndReads().Union(SideEffects::CanTriggerGC()); |
| } |
| |
| static SideEffects AllWritesAndReads() { |
| return SideEffects(kAllWrites | kAllReads); |
| } |
| |
| static SideEffects AllWrites() { |
| return SideEffects(kAllWrites); |
| } |
| |
| static SideEffects AllReads() { |
| return SideEffects(kAllReads); |
| } |
| |
| static SideEffects FieldWriteOfType(DataType::Type type, bool is_volatile) { |
| return is_volatile |
| ? AllWritesAndReads() |
| : SideEffects(TypeFlag(type, kFieldWriteOffset)); |
| } |
| |
| static SideEffects ArrayWriteOfType(DataType::Type type) { |
| return SideEffects(TypeFlag(type, kArrayWriteOffset)); |
| } |
| |
| static SideEffects FieldReadOfType(DataType::Type type, bool is_volatile) { |
| return is_volatile |
| ? AllWritesAndReads() |
| : SideEffects(TypeFlag(type, kFieldReadOffset)); |
| } |
| |
| static SideEffects ArrayReadOfType(DataType::Type type) { |
| return SideEffects(TypeFlag(type, kArrayReadOffset)); |
| } |
| |
| // Returns whether GC might happen across this instruction from the compiler perspective so |
| // the next instruction in the IR would see that. |
| // |
| // See the SideEffect class comments. |
| static SideEffects CanTriggerGC() { |
| return SideEffects(1ULL << kCanTriggerGCBit); |
| } |
| |
| // Returns whether the instruction must not be alive across a GC point. |
| // |
| // See the SideEffect class comments. |
| static SideEffects DependsOnGC() { |
| return SideEffects(1ULL << kDependsOnGCBit); |
| } |
| |
| // Combines the side-effects of this and the other. |
| SideEffects Union(SideEffects other) const { |
| return SideEffects(flags_ | other.flags_); |
| } |
| |
| SideEffects Exclusion(SideEffects other) const { |
| return SideEffects(flags_ & ~other.flags_); |
| } |
| |
| void Add(SideEffects other) { |
| flags_ |= other.flags_; |
| } |
| |
| bool Includes(SideEffects other) const { |
| return (other.flags_ & flags_) == other.flags_; |
| } |
| |
| bool HasSideEffects() const { |
| return (flags_ & kAllChangeBits); |
| } |
| |
| bool HasDependencies() const { |
| return (flags_ & kAllDependOnBits); |
| } |
| |
| // Returns true if there are no side effects or dependencies. |
| bool DoesNothing() const { |
| return flags_ == 0; |
| } |
| |
| // Returns true if something is written. |
| bool DoesAnyWrite() const { |
| return (flags_ & kAllWrites); |
| } |
| |
| // Returns true if something is read. |
| bool DoesAnyRead() const { |
| return (flags_ & kAllReads); |
| } |
| |
| // Returns true if potentially everything is written and read |
| // (every type and every kind of access). |
| bool DoesAllReadWrite() const { |
| return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads); |
| } |
| |
| bool DoesAll() const { |
| return flags_ == (kAllChangeBits | kAllDependOnBits); |
| } |
| |
| // Returns true if `this` may read something written by `other`. |
| bool MayDependOn(SideEffects other) const { |
| const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits; |
| return (other.flags_ & depends_on_flags); |
| } |
| |
| // Returns string representation of flags (for debugging only). |
| // Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL| |
| std::string ToString() const { |
| std::string flags = "|"; |
| for (int s = kLastBit; s >= 0; s--) { |
| bool current_bit_is_set = ((flags_ >> s) & 1) != 0; |
| if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) { |
| // This is a bit for the GC side effect. |
| if (current_bit_is_set) { |
| flags += "GC"; |
| } |
| flags += "|"; |
| } else { |
| // This is a bit for the array/field analysis. |
| // The underscore character stands for the 'can trigger GC' bit. |
| static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD"; |
| if (current_bit_is_set) { |
| flags += kDebug[s]; |
| } |
| if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) || |
| (s == kFieldReadOffset) || (s == kArrayReadOffset)) { |
| flags += "|"; |
| } |
| } |
| } |
| return flags; |
| } |
| |
| bool Equals(const SideEffects& other) const { return flags_ == other.flags_; } |
| |
| private: |
| static constexpr int kFieldArrayAnalysisBits = 9; |
| |
| static constexpr int kFieldWriteOffset = 0; |
| static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits; |
| static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1; |
| static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1; |
| |
| static constexpr int kChangeBits = kCanTriggerGCBit + 1; |
| |
| static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1; |
| static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits; |
| static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1; |
| static constexpr int kDependsOnGCBit = kLastBitForReads + 1; |
| |
| static constexpr int kLastBit = kDependsOnGCBit; |
| static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits; |
| |
| // Aliases. |
| |
| static_assert(kChangeBits == kDependOnBits, |
| "the 'change' bits should match the 'depend on' bits."); |
| |
| static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1); |
| static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits; |
| static constexpr uint64_t kAllWrites = |
| ((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset; |
| static constexpr uint64_t kAllReads = |
| ((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset; |
| |
| // Translates type to bit flag. The type must correspond to a Java type. |
| static uint64_t TypeFlag(DataType::Type type, int offset) { |
| int shift; |
| switch (type) { |
| case DataType::Type::kReference: shift = 0; break; |
| case DataType::Type::kBool: shift = 1; break; |
| case DataType::Type::kInt8: shift = 2; break; |
| case DataType::Type::kUint16: shift = 3; break; |
| case DataType::Type::kInt16: shift = 4; break; |
| case DataType::Type::kInt32: shift = 5; break; |
| case DataType::Type::kInt64: shift = 6; break; |
| case DataType::Type::kFloat32: shift = 7; break; |
| case DataType::Type::kFloat64: shift = 8; break; |
| default: |
| LOG(FATAL) << "Unexpected data type " << type; |
| UNREACHABLE(); |
| } |
| DCHECK_LE(kFieldWriteOffset, shift); |
| DCHECK_LT(shift, kArrayWriteOffset); |
| return UINT64_C(1) << (shift + offset); |
| } |
| |
| // Private constructor on direct flags value. |
| explicit SideEffects(uint64_t flags) : flags_(flags) {} |
| |
| uint64_t flags_; |
| }; |
| |
| // A HEnvironment object contains the values of virtual registers at a given location. |
| class HEnvironment : public ArenaObject<kArenaAllocEnvironment> { |
| public: |
| ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, |
| size_t number_of_vregs, |
| ArtMethod* method, |
| uint32_t dex_pc, |
| HInstruction* holder) |
| : vregs_(number_of_vregs, allocator->Adapter(kArenaAllocEnvironmentVRegs)), |
| locations_(allocator->Adapter(kArenaAllocEnvironmentLocations)), |
| parent_(nullptr), |
| method_(method), |
| dex_pc_(dex_pc), |
| holder_(holder) { |
| } |
| |
| ALWAYS_INLINE HEnvironment(ArenaAllocator* allocator, |
| const HEnvironment& to_copy, |
| HInstruction* holder) |
| : HEnvironment(allocator, |
| to_copy.Size(), |
| to_copy.GetMethod(), |
| to_copy.GetDexPc(), |
| holder) {} |
| |
| void AllocateLocations() { |
| DCHECK(locations_.empty()); |
| locations_.resize(vregs_.size()); |
| } |
| |
| void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) { |
| if (parent_ != nullptr) { |
| parent_->SetAndCopyParentChain(allocator, parent); |
| } else { |
| parent_ = new (allocator) HEnvironment(allocator, *parent, holder_); |
| parent_->CopyFrom(parent); |
| if (parent->GetParent() != nullptr) { |
| parent_->SetAndCopyParentChain(allocator, parent->GetParent()); |
| } |
| } |
| } |
| |
| void CopyFrom(ArrayRef<HInstruction* const> locals); |
| void CopyFrom(HEnvironment* environment); |
| |
| // Copy from `env`. If it's a loop phi for `loop_header`, copy the first |
| // input to the loop phi instead. This is for inserting instructions that |
| // require an environment (like HDeoptimization) in the loop pre-header. |
| void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header); |
| |
| void SetRawEnvAt(size_t index, HInstruction* instruction) { |
| vregs_[index] = HUserRecord<HEnvironment*>(instruction); |
| } |
| |
| HInstruction* GetInstructionAt(size_t index) const { |
| return vregs_[index].GetInstruction(); |
| } |
| |
| void RemoveAsUserOfInput(size_t index) const; |
| |
| // Replaces the input at the position 'index' with the replacement; the replacement and old |
| // input instructions' env_uses_ lists are adjusted. The function works similar to |
| // HInstruction::ReplaceInput. |
| void ReplaceInput(HInstruction* replacement, size_t index); |
| |
| size_t Size() const { return vregs_.size(); } |
| |
| HEnvironment* GetParent() const { return parent_; } |
| |
| void SetLocationAt(size_t index, Location location) { |
| locations_[index] = location; |
| } |
| |
| Location GetLocationAt(size_t index) const { |
| return locations_[index]; |
| } |
| |
| uint32_t GetDexPc() const { |
| return dex_pc_; |
| } |
| |
| ArtMethod* GetMethod() const { |
| return method_; |
| } |
| |
| HInstruction* GetHolder() const { |
| return holder_; |
| } |
| |
| |
| bool IsFromInlinedInvoke() const { |
| return GetParent() != nullptr; |
| } |
| |
| class EnvInputSelector { |
| public: |
| explicit EnvInputSelector(const HEnvironment* e) : env_(e) {} |
| HInstruction* operator()(size_t s) const { |
| return env_->GetInstructionAt(s); |
| } |
| private: |
| const HEnvironment* env_; |
| }; |
| |
| using HConstEnvInputRef = TransformIterator<CountIter, EnvInputSelector>; |
| IterationRange<HConstEnvInputRef> GetEnvInputs() const { |
| IterationRange<CountIter> range(Range(Size())); |
| return MakeIterationRange(MakeTransformIterator(range.begin(), EnvInputSelector(this)), |
| MakeTransformIterator(range.end(), EnvInputSelector(this))); |
| } |
| |
| private: |
| ArenaVector<HUserRecord<HEnvironment*>> vregs_; |
| ArenaVector<Location> locations_; |
| HEnvironment* parent_; |
| ArtMethod* method_; |
| const uint32_t dex_pc_; |
| |
| // The instruction that holds this environment. |
| HInstruction* const holder_; |
| |
| friend class HInstruction; |
| |
| DISALLOW_COPY_AND_ASSIGN(HEnvironment); |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const HInstruction& rhs); |
| |
| // Iterates over the Environments |
| class HEnvironmentIterator : public ValueObject, |
| public std::iterator<std::forward_iterator_tag, HEnvironment*> { |
| public: |
| explicit HEnvironmentIterator(HEnvironment* cur) : cur_(cur) {} |
| |
| HEnvironment* operator*() const { |
| return cur_; |
| } |
| |
| HEnvironmentIterator& operator++() { |
| DCHECK(cur_ != nullptr); |
| cur_ = cur_->GetParent(); |
| return *this; |
| } |
| |
| HEnvironmentIterator operator++(int) { |
| HEnvironmentIterator prev(*this); |
| ++(*this); |
| return prev; |
| } |
| |
| bool operator==(const HEnvironmentIterator& other) const { |
| return other.cur_ == cur_; |
| } |
| |
| bool operator!=(const HEnvironmentIterator& other) const { |
| return !(*this == other); |
| } |
| |
| private: |
| HEnvironment* cur_; |
| }; |
| |
| class HInstruction : public ArenaObject<kArenaAllocInstruction> { |
| public: |
| #define DECLARE_KIND(type, super) k##type, |
| enum InstructionKind { // private marker to avoid generate-operator-out.py from processing. |
| FOR_EACH_CONCRETE_INSTRUCTION(DECLARE_KIND) |
| kLastInstructionKind |
| }; |
| #undef DECLARE_KIND |
| |
| HInstruction(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) |
| : HInstruction(kind, DataType::Type::kVoid, side_effects, dex_pc) {} |
| |
| HInstruction(InstructionKind kind, DataType::Type type, SideEffects side_effects, uint32_t dex_pc) |
| : previous_(nullptr), |
| next_(nullptr), |
| block_(nullptr), |
| dex_pc_(dex_pc), |
| id_(-1), |
| ssa_index_(-1), |
| packed_fields_(0u), |
| environment_(nullptr), |
| locations_(nullptr), |
| live_interval_(nullptr), |
| lifetime_position_(kNoLifetime), |
| side_effects_(side_effects), |
| reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) { |
| SetPackedField<InstructionKindField>(kind); |
| SetPackedField<TypeField>(type); |
| SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact()); |
| } |
| |
| virtual ~HInstruction() {} |
| |
| std::ostream& Dump(std::ostream& os, bool dump_args = false); |
| |
| // Helper for dumping without argument information using operator<< |
| struct NoArgsDump { |
| const HInstruction* ins; |
| }; |
| NoArgsDump DumpWithoutArgs() const { |
| return NoArgsDump{this}; |
| } |
| // Helper for dumping with argument information using operator<< |
| struct ArgsDump { |
| const HInstruction* ins; |
| }; |
| ArgsDump DumpWithArgs() const { |
| return ArgsDump{this}; |
| } |
| |
| HInstruction* GetNext() const { return next_; } |
| HInstruction* GetPrevious() const { return previous_; } |
| |
| HInstruction* GetNextDisregardingMoves() const; |
| HInstruction* GetPreviousDisregardingMoves() const; |
| |
| HBasicBlock* GetBlock() const { return block_; } |
| ArenaAllocator* GetAllocator() const { return block_->GetGraph()->GetAllocator(); } |
| void SetBlock(HBasicBlock* block) { block_ = block; } |
| bool IsInBlock() const { return block_ != nullptr; } |
| bool IsInLoop() const { return block_->IsInLoop(); } |
| bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); } |
| bool IsIrreducibleLoopHeaderPhi() const { |
| return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible(); |
| } |
| |
| virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0; |
| |
| ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const { |
| // One virtual method is enough, just const_cast<> and then re-add the const. |
| return ArrayRef<const HUserRecord<HInstruction*>>( |
| const_cast<HInstruction*>(this)->GetInputRecords()); |
| } |
| |
| HInputsRef GetInputs() { |
| return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); |
| } |
| |
| HConstInputsRef GetInputs() const { |
| return MakeTransformArrayRef(GetInputRecords(), HInputExtractor()); |
| } |
| |
| size_t InputCount() const { return GetInputRecords().size(); } |
| HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); } |
| |
| bool HasInput(HInstruction* input) const { |
| for (const HInstruction* i : GetInputs()) { |
| if (i == input) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| void SetRawInputAt(size_t index, HInstruction* input) { |
| SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input)); |
| } |
| |
| virtual void Accept(HGraphVisitor* visitor) = 0; |
| virtual const char* DebugName() const = 0; |
| |
| DataType::Type GetType() const { |
| return TypeField::Decode(GetPackedFields()); |
| } |
| |
| virtual bool NeedsEnvironment() const { return false; } |
| virtual bool NeedsBss() const { |
| return false; |
| } |
| |
| uint32_t GetDexPc() const { return dex_pc_; } |
| |
| virtual bool IsControlFlow() const { return false; } |
| |
| // Can the instruction throw? |
| // TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance), |
| // could throw OOME, but it is still OK to remove them if they are unused. |
| virtual bool CanThrow() const { return false; } |
| |
| // Does the instruction always throw an exception unconditionally? |
| virtual bool AlwaysThrows() const { return false; } |
| // Will this instruction only cause async exceptions if it causes any at all? |
| virtual bool OnlyThrowsAsyncExceptions() const { |
| return false; |
| } |
| |
| bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); } |
| |
| bool HasSideEffects() const { return side_effects_.HasSideEffects(); } |
| bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); } |
| |
| // Does not apply for all instructions, but having this at top level greatly |
| // simplifies the null check elimination. |
| // TODO: Consider merging can_be_null into ReferenceTypeInfo. |
| virtual bool CanBeNull() const { |
| DCHECK_EQ(GetType(), DataType::Type::kReference) << "CanBeNull only applies to reference types"; |
| return true; |
| } |
| |
| virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const { |
| return false; |
| } |
| |
| // If this instruction will do an implicit null check, return the `HNullCheck` associated |
| // with it. Otherwise return null. |
| HNullCheck* GetImplicitNullCheck() const { |
| // Go over previous non-move instructions that are emitted at use site. |
| HInstruction* prev_not_move = GetPreviousDisregardingMoves(); |
| while (prev_not_move != nullptr && prev_not_move->IsEmittedAtUseSite()) { |
| if (prev_not_move->IsNullCheck()) { |
| return prev_not_move->AsNullCheck(); |
| } |
| prev_not_move = prev_not_move->GetPreviousDisregardingMoves(); |
| } |
| return nullptr; |
| } |
| |
| virtual bool IsActualObject() const { |
| return GetType() == DataType::Type::kReference; |
| } |
| |
| void SetReferenceTypeInfo(ReferenceTypeInfo rti); |
| |
| ReferenceTypeInfo GetReferenceTypeInfo() const { |
| DCHECK_EQ(GetType(), DataType::Type::kReference); |
| return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_, |
| GetPackedFlag<kFlagReferenceTypeIsExact>()); |
| } |
| |
| void AddUseAt(HInstruction* user, size_t index) { |
| DCHECK(user != nullptr); |
| // Note: fixup_end remains valid across push_front(). |
| auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin(); |
| ArenaAllocator* allocator = user->GetBlock()->GetGraph()->GetAllocator(); |
| HUseListNode<HInstruction*>* new_node = |
| new (allocator) HUseListNode<HInstruction*>(user, index); |
| uses_.push_front(*new_node); |
| FixUpUserRecordsAfterUseInsertion(fixup_end); |
| } |
| |
| void AddEnvUseAt(HEnvironment* user, size_t index) { |
| DCHECK(user != nullptr); |
| // Note: env_fixup_end remains valid across push_front(). |
| auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin(); |
| HUseListNode<HEnvironment*>* new_node = |
| new (GetBlock()->GetGraph()->GetAllocator()) HUseListNode<HEnvironment*>(user, index); |
| env_uses_.push_front(*new_node); |
| FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end); |
| } |
| |
| void RemoveAsUserOfInput(size_t input) { |
| HUserRecord<HInstruction*> input_use = InputRecordAt(input); |
| HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); |
| input_use.GetInstruction()->uses_.erase_after(before_use_node); |
| input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); |
| } |
| |
| void RemoveAsUserOfAllInputs() { |
| for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) { |
| HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode(); |
| input_use.GetInstruction()->uses_.erase_after(before_use_node); |
| input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node); |
| } |
| } |
| |
| const HUseList<HInstruction*>& GetUses() const { return uses_; } |
| const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; } |
| |
| bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); } |
| bool HasEnvironmentUses() const { return !env_uses_.empty(); } |
| bool HasNonEnvironmentUses() const { return !uses_.empty(); } |
| bool HasOnlyOneNonEnvironmentUse() const { |
| return !HasEnvironmentUses() && GetUses().HasExactlyOneElement(); |
| } |
| |
| bool IsRemovable() const { |
| return |
| !DoesAnyWrite() && |
| !CanThrow() && |
| !IsSuspendCheck() && |
| !IsControlFlow() && |
| !IsNativeDebugInfo() && |
| !IsParameterValue() && |
| // If we added an explicit barrier then we should keep it. |
| !IsMemoryBarrier() && |
| !IsConstructorFence(); |
| } |
| |
| bool IsDeadAndRemovable() const { |
| return IsRemovable() && !HasUses(); |
| } |
| |
| // Does this instruction strictly dominate `other_instruction`? |
| // Returns false if this instruction and `other_instruction` are the same. |
| // Aborts if this instruction and `other_instruction` are both phis. |
| bool StrictlyDominates(HInstruction* other_instruction) const; |
| |
| int GetId() const { return id_; } |
| void SetId(int id) { id_ = id; } |
| |
| int GetSsaIndex() const { return ssa_index_; } |
| void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; } |
| bool HasSsaIndex() const { return ssa_index_ != -1; } |
| |
| bool HasEnvironment() const { return environment_ != nullptr; } |
| HEnvironment* GetEnvironment() const { return environment_; } |
| IterationRange<HEnvironmentIterator> GetAllEnvironments() const { |
| return MakeIterationRange(HEnvironmentIterator(GetEnvironment()), |
| HEnvironmentIterator(nullptr)); |
| } |
| // Set the `environment_` field. Raw because this method does not |
| // update the uses lists. |
| void SetRawEnvironment(HEnvironment* environment) { |
| DCHECK(environment_ == nullptr); |
| DCHECK_EQ(environment->GetHolder(), this); |
| environment_ = environment; |
| } |
| |
| void InsertRawEnvironment(HEnvironment* environment) { |
| DCHECK(environment_ != nullptr); |
| DCHECK_EQ(environment->GetHolder(), this); |
| DCHECK(environment->GetParent() == nullptr); |
| environment->parent_ = environment_; |
| environment_ = environment; |
| } |
| |
| void RemoveEnvironment(); |
| |
| // Set the environment of this instruction, copying it from `environment`. While |
| // copying, the uses lists are being updated. |
| void CopyEnvironmentFrom(HEnvironment* environment) { |
| DCHECK(environment_ == nullptr); |
| ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); |
| environment_ = new (allocator) HEnvironment(allocator, *environment, this); |
| environment_->CopyFrom(environment); |
| if (environment->GetParent() != nullptr) { |
| environment_->SetAndCopyParentChain(allocator, environment->GetParent()); |
| } |
| } |
| |
| void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment, |
| HBasicBlock* block) { |
| DCHECK(environment_ == nullptr); |
| ArenaAllocator* allocator = GetBlock()->GetGraph()->GetAllocator(); |
| environment_ = new (allocator) HEnvironment(allocator, *environment, this); |
| environment_->CopyFromWithLoopPhiAdjustment(environment, block); |
| if (environment->GetParent() != nullptr) { |
| environment_->SetAndCopyParentChain(allocator, environment->GetParent()); |
| } |
| } |
| |
| // Returns the number of entries in the environment. Typically, that is the |
| // number of dex registers in a method. It could be more in case of inlining. |
| size_t EnvironmentSize() const; |
| |
| LocationSummary* GetLocations() const { return locations_; } |
| void SetLocations(LocationSummary* locations) { locations_ = locations; } |
| |
| void ReplaceWith(HInstruction* instruction); |
| void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement); |
| void ReplaceEnvUsesDominatedBy(HInstruction* dominator, HInstruction* replacement); |
| void ReplaceInput(HInstruction* replacement, size_t index); |
| |
| // This is almost the same as doing `ReplaceWith()`. But in this helper, the |
| // uses of this instruction by `other` are *not* updated. |
| void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) { |
| ReplaceWith(other); |
| other->ReplaceInput(this, use_index); |
| } |
| |
| // Move `this` instruction before `cursor` |
| void MoveBefore(HInstruction* cursor, bool do_checks = true); |
| |
| // Move `this` before its first user and out of any loops. If there is no |
| // out-of-loop user that dominates all other users, move the instruction |
| // to the end of the out-of-loop common dominator of the user's blocks. |
| // |
| // This can be used only on non-throwing instructions with no side effects that |
| // have at least one use but no environment uses. |
| void MoveBeforeFirstUserAndOutOfLoops(); |
| |
| #define INSTRUCTION_TYPE_CHECK(type, super) \ |
| bool Is##type() const; |
| |
| FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CHECK) |
| #undef INSTRUCTION_TYPE_CHECK |
| |
| #define INSTRUCTION_TYPE_CAST(type, super) \ |
| const H##type* As##type() const; \ |
| H##type* As##type(); |
| |
| FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST) |
| #undef INSTRUCTION_TYPE_CAST |
| |
| // Return a clone of the instruction if it is clonable (shallow copy by default, custom copy |
| // if a custom copy-constructor is provided for a particular type). If IsClonable() is false for |
| // the instruction then the behaviour of this function is undefined. |
| // |
| // Note: It is semantically valid to create a clone of the instruction only until |
| // prepare_for_register_allocator phase as lifetime, intervals and codegen info are not |
| // copied. |
| // |
| // Note: HEnvironment and some other fields are not copied and are set to default values, see |
| // 'explicit HInstruction(const HInstruction& other)' for details. |
| virtual HInstruction* Clone(ArenaAllocator* arena ATTRIBUTE_UNUSED) const { |
| LOG(FATAL) << "Cloning is not implemented for the instruction " << |
| DebugName() << " " << GetId(); |
| UNREACHABLE(); |
| } |
| |
| virtual bool IsFieldAccess() const { |
| return false; |
| } |
| |
| virtual const FieldInfo& GetFieldInfo() const { |
| CHECK(IsFieldAccess()) << "Only callable on field accessors not " << DebugName() << " " |
| << *this; |
| LOG(FATAL) << "Must be overridden by field accessors. Not implemented by " << *this; |
| UNREACHABLE(); |
| } |
| |
| // Return whether instruction can be cloned (copied). |
| virtual bool IsClonable() const { return false; } |
| |
| // Returns whether the instruction can be moved within the graph. |
| // TODO: this method is used by LICM and GVN with possibly different |
| // meanings? split and rename? |
| virtual bool CanBeMoved() const { return false; } |
| |
| // Returns whether any data encoded in the two instructions is equal. |
| // This method does not look at the inputs. Both instructions must be |
| // of the same type, otherwise the method has undefined behavior. |
| virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const { |
| return false; |
| } |
| |
| // Returns whether two instructions are equal, that is: |
| // 1) They have the same type and contain the same data (InstructionDataEquals). |
| // 2) Their inputs are identical. |
| bool Equals(const HInstruction* other) const; |
| |
| InstructionKind GetKind() const { return GetPackedField<InstructionKindField>(); } |
| |
| virtual size_t ComputeHashCode() const { |
| size_t result = GetKind(); |
| for (const HInstruction* input : GetInputs()) { |
| result = (result * 31) + input->GetId(); |
| } |
| return result; |
| } |
| |
| SideEffects GetSideEffects() const { return side_effects_; } |
| void SetSideEffects(SideEffects other) { side_effects_ = other; } |
| void AddSideEffects(SideEffects other) { side_effects_.Add(other); } |
| |
| size_t GetLifetimePosition() const { return lifetime_position_; } |
| void SetLifetimePosition(size_t position) { lifetime_position_ = position; } |
| LiveInterval* GetLiveInterval() const { return live_interval_; } |
| void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; } |
| bool HasLiveInterval() const { return live_interval_ != nullptr; } |
| |
| bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); } |
| |
| // Returns whether the code generation of the instruction will require to have access |
| // to the current method. Such instructions are: |
| // (1): Instructions that require an environment, as calling the runtime requires |
| // to walk the stack and have the current method stored at a specific stack address. |
| // (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass |
| // to access the dex cache. |
| bool NeedsCurrentMethod() const { |
| return NeedsEnvironment() || IsCurrentMethod(); |
| } |
| |
| // Does this instruction have any use in an environment before |
| // control flow hits 'other'? |
| bool HasAnyEnvironmentUseBefore(HInstruction* other); |
| |
| // Remove all references to environment uses of this instruction. |
| // The caller must ensure that this is safe to do. |
| void RemoveEnvironmentUsers(); |
| |
| bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); } |
| void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); } |
| |
| protected: |
| // If set, the machine code for this instruction is assumed to be generated by |
| // its users. Used by liveness analysis to compute use positions accordingly. |
| static constexpr size_t kFlagEmittedAtUseSite = 0u; |
| static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1; |
| static constexpr size_t kFieldInstructionKind = kFlagReferenceTypeIsExact + 1; |
| static constexpr size_t kFieldInstructionKindSize = |
| MinimumBitsToStore(static_cast<size_t>(InstructionKind::kLastInstructionKind - 1)); |
| static constexpr size_t kFieldType = |
| kFieldInstructionKind + kFieldInstructionKindSize; |
| static constexpr size_t kFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); |
| static constexpr size_t kNumberOfGenericPackedBits = kFieldType + kFieldTypeSize; |
| static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte; |
| |
| static_assert(kNumberOfGenericPackedBits <= kMaxNumberOfPackedBits, |
| "Too many generic packed fields"); |
| |
| using TypeField = BitField<DataType::Type, kFieldType, kFieldTypeSize>; |
| |
| const HUserRecord<HInstruction*> InputRecordAt(size_t i) const { |
| return GetInputRecords()[i]; |
| } |
| |
| void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) { |
| ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords(); |
| input_records[index] = input; |
| } |
| |
| uint32_t GetPackedFields() const { |
| return packed_fields_; |
| } |
| |
| template <size_t flag> |
| bool GetPackedFlag() const { |
| return (packed_fields_ & (1u << flag)) != 0u; |
| } |
| |
| template <size_t flag> |
| void SetPackedFlag(bool value = true) { |
| packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag); |
| } |
| |
| template <typename BitFieldType> |
| typename BitFieldType::value_type GetPackedField() const { |
| return BitFieldType::Decode(packed_fields_); |
| } |
| |
| template <typename BitFieldType> |
| void SetPackedField(typename BitFieldType::value_type value) { |
| DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value))); |
| packed_fields_ = BitFieldType::Update(value, packed_fields_); |
| } |
| |
| // Copy construction for the instruction (used for Clone function). |
| // |
| // Fields (e.g. lifetime, intervals and codegen info) associated with phases starting from |
| // prepare_for_register_allocator are not copied (set to default values). |
| // |
| // Copy constructors must be provided for every HInstruction type; default copy constructor is |
| // fine for most of them. However for some of the instructions a custom copy constructor must be |
| // specified (when instruction has non-trivially copyable fields and must have a special behaviour |
| // for copying them). |
| explicit HInstruction(const HInstruction& other) |
| : previous_(nullptr), |
| next_(nullptr), |
| block_(nullptr), |
| dex_pc_(other.dex_pc_), |
| id_(-1), |
| ssa_index_(-1), |
| packed_fields_(other.packed_fields_), |
| environment_(nullptr), |
| locations_(nullptr), |
| live_interval_(nullptr), |
| lifetime_position_(kNoLifetime), |
| side_effects_(other.side_effects_), |
| reference_type_handle_(other.reference_type_handle_) { |
| } |
| |
| private: |
| using InstructionKindField = |
| BitField<InstructionKind, kFieldInstructionKind, kFieldInstructionKindSize>; |
| |
| void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) { |
| auto before_use_node = uses_.before_begin(); |
| for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) { |
| HInstruction* user = use_node->GetUser(); |
| size_t input_index = use_node->GetIndex(); |
| user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node)); |
| before_use_node = use_node; |
| } |
| } |
| |
| void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) { |
| auto next = ++HUseList<HInstruction*>::iterator(before_use_node); |
| if (next != uses_.end()) { |
| HInstruction* next_user = next->GetUser(); |
| size_t next_index = next->GetIndex(); |
| DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this); |
| next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node)); |
| } |
| } |
| |
| void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) { |
| auto before_env_use_node = env_uses_.before_begin(); |
| for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) { |
| HEnvironment* user = env_use_node->GetUser(); |
| size_t input_index = env_use_node->GetIndex(); |
| user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); |
| before_env_use_node = env_use_node; |
| } |
| } |
| |
| void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) { |
| auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node); |
| if (next != env_uses_.end()) { |
| HEnvironment* next_user = next->GetUser(); |
| size_t next_index = next->GetIndex(); |
| DCHECK(next_user->vregs_[next_index].GetInstruction() == this); |
| next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node); |
| } |
| } |
| |
| HInstruction* previous_; |
| HInstruction* next_; |
| HBasicBlock* block_; |
| const uint32_t dex_pc_; |
| |
| // An instruction gets an id when it is added to the graph. |
| // It reflects creation order. A negative id means the instruction |
| // has not been added to the graph. |
| int id_; |
| |
| // When doing liveness analysis, instructions that have uses get an SSA index. |
| int ssa_index_; |
| |
| // Packed fields. |
| uint32_t packed_fields_; |
| |
| // List of instructions that have this instruction as input. |
| HUseList<HInstruction*> uses_; |
| |
| // List of environments that contain this instruction. |
| HUseList<HEnvironment*> env_uses_; |
| |
| // The environment associated with this instruction. Not null if the instruction |
| // might jump out of the method. |
| HEnvironment* environment_; |
| |
| // Set by the code generator. |
| LocationSummary* locations_; |
| |
| // Set by the liveness analysis. |
| LiveInterval* live_interval_; |
| |
| // Set by the liveness analysis, this is the position in a linear |
| // order of blocks where this instruction's live interval start. |
| size_t lifetime_position_; |
| |
| SideEffects side_effects_; |
| |
| // The reference handle part of the reference type info. |
| // The IsExact() flag is stored in packed fields. |
| // TODO: for primitive types this should be marked as invalid. |
| ReferenceTypeInfo::TypeHandle reference_type_handle_; |
| |
| friend class GraphChecker; |
| friend class HBasicBlock; |
| friend class HEnvironment; |
| friend class HGraph; |
| friend class HInstructionList; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, HInstruction::InstructionKind rhs); |
| std::ostream& operator<<(std::ostream& os, const HInstruction::NoArgsDump rhs); |
| std::ostream& operator<<(std::ostream& os, const HInstruction::ArgsDump rhs); |
| std::ostream& operator<<(std::ostream& os, const HUseList<HInstruction*>& lst); |
| std::ostream& operator<<(std::ostream& os, const HUseList<HEnvironment*>& lst); |
| |
| // Forward declarations for friends |
| template <typename InnerIter> struct HSTLInstructionIterator; |
| |
| // Iterates over the instructions, while preserving the next instruction |
| // in case the current instruction gets removed from the list by the user |
| // of this iterator. |
| class HInstructionIterator : public ValueObject { |
| public: |
| explicit HInstructionIterator(const HInstructionList& instructions) |
| : instruction_(instructions.first_instruction_) { |
| next_ = Done() ? nullptr : instruction_->GetNext(); |
| } |
| |
| bool Done() const { return instruction_ == nullptr; } |
| HInstruction* Current() const { return instruction_; } |
| void Advance() { |
| instruction_ = next_; |
| next_ = Done() ? nullptr : instruction_->GetNext(); |
| } |
| |
| private: |
| HInstructionIterator() : instruction_(nullptr), next_(nullptr) {} |
| |
| HInstruction* instruction_; |
| HInstruction* next_; |
| |
| friend struct HSTLInstructionIterator<HInstructionIterator>; |
| }; |
| |
| // Iterates over the instructions without saving the next instruction, |
| // therefore handling changes in the graph potentially made by the user |
| // of this iterator. |
| class HInstructionIteratorHandleChanges : public ValueObject { |
| public: |
| explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions) |
| : instruction_(instructions.first_instruction_) { |
| } |
| |
| bool Done() const { return instruction_ == nullptr; } |
| HInstruction* Current() const { return instruction_; } |
| void Advance() { |
| instruction_ = instruction_->GetNext(); |
| } |
| |
| private: |
| HInstructionIteratorHandleChanges() : instruction_(nullptr) {} |
| |
| HInstruction* instruction_; |
| |
| friend struct HSTLInstructionIterator<HInstructionIteratorHandleChanges>; |
| }; |
| |
| |
| class HBackwardInstructionIterator : public ValueObject { |
| public: |
| explicit HBackwardInstructionIterator(const HInstructionList& instructions) |
| : instruction_(instructions.last_instruction_) { |
| next_ = Done() ? nullptr : instruction_->GetPrevious(); |
| } |
| |
| bool Done() const { return instruction_ == nullptr; } |
| HInstruction* Current() const { return instruction_; } |
| void Advance() { |
| instruction_ = next_; |
| next_ = Done() ? nullptr : instruction_->GetPrevious(); |
| } |
| |
| private: |
| HBackwardInstructionIterator() : instruction_(nullptr), next_(nullptr) {} |
| |
| HInstruction* instruction_; |
| HInstruction* next_; |
| |
| friend struct HSTLInstructionIterator<HBackwardInstructionIterator>; |
| }; |
| |
| template <typename InnerIter> |
| struct HSTLInstructionIterator : public ValueObject, |
| public std::iterator<std::forward_iterator_tag, HInstruction*> { |
| public: |
| static_assert(std::is_same_v<InnerIter, HBackwardInstructionIterator> || |
| std::is_same_v<InnerIter, HInstructionIterator> || |
| std::is_same_v<InnerIter, HInstructionIteratorHandleChanges>, |
| "Unknown wrapped iterator!"); |
| |
| explicit HSTLInstructionIterator(InnerIter inner) : inner_(inner) {} |
| HInstruction* operator*() const { |
| DCHECK(inner_.Current() != nullptr); |
| return inner_.Current(); |
| } |
| |
| HSTLInstructionIterator<InnerIter>& operator++() { |
| DCHECK(*this != HSTLInstructionIterator<InnerIter>::EndIter()); |
| inner_.Advance(); |
| return *this; |
| } |
| |
| HSTLInstructionIterator<InnerIter> operator++(int) { |
| HSTLInstructionIterator<InnerIter> prev(*this); |
| ++(*this); |
| return prev; |
| } |
| |
| bool operator==(const HSTLInstructionIterator<InnerIter>& other) const { |
| return inner_.Current() == other.inner_.Current(); |
| } |
| |
| bool operator!=(const HSTLInstructionIterator<InnerIter>& other) const { |
| return !(*this == other); |
| } |
| |
| static HSTLInstructionIterator<InnerIter> EndIter() { |
| return HSTLInstructionIterator<InnerIter>(InnerIter()); |
| } |
| |
| private: |
| InnerIter inner_; |
| }; |
| |
| template <typename InnerIter> |
| IterationRange<HSTLInstructionIterator<InnerIter>> MakeSTLInstructionIteratorRange(InnerIter iter) { |
| return MakeIterationRange(HSTLInstructionIterator<InnerIter>(iter), |
| HSTLInstructionIterator<InnerIter>::EndIter()); |
| } |
| |
| class HVariableInputSizeInstruction : public HInstruction { |
| public: |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override { |
| return ArrayRef<HUserRecord<HInstruction*>>(inputs_); |
| } |
| |
| void AddInput(HInstruction* input); |
| void InsertInputAt(size_t index, HInstruction* input); |
| void RemoveInputAt(size_t index); |
| |
| // Removes all the inputs. |
| // Also removes this instructions from each input's use list |
| // (for non-environment uses only). |
| void RemoveAllInputs(); |
| |
| protected: |
| HVariableInputSizeInstruction(InstructionKind inst_kind, |
| SideEffects side_effects, |
| uint32_t dex_pc, |
| ArenaAllocator* allocator, |
| size_t number_of_inputs, |
| ArenaAllocKind kind) |
| : HInstruction(inst_kind, side_effects, dex_pc), |
| inputs_(number_of_inputs, allocator->Adapter(kind)) {} |
| HVariableInputSizeInstruction(InstructionKind inst_kind, |
| DataType::Type type, |
| SideEffects side_effects, |
| uint32_t dex_pc, |
| ArenaAllocator* allocator, |
| size_t number_of_inputs, |
| ArenaAllocKind kind) |
| : HInstruction(inst_kind, type, side_effects, dex_pc), |
| inputs_(number_of_inputs, allocator->Adapter(kind)) {} |
| |
| DEFAULT_COPY_CONSTRUCTOR(VariableInputSizeInstruction); |
| |
| ArenaVector<HUserRecord<HInstruction*>> inputs_; |
| }; |
| |
| template<size_t N> |
| class HExpression : public HInstruction { |
| public: |
| HExpression<N>(InstructionKind kind, SideEffects side_effects, uint32_t dex_pc) |
| : HInstruction(kind, side_effects, dex_pc), inputs_() {} |
| HExpression<N>(InstructionKind kind, |
| DataType::Type type, |
| SideEffects side_effects, |
| uint32_t dex_pc) |
| : HInstruction(kind, type, side_effects, dex_pc), inputs_() {} |
| virtual ~HExpression() {} |
| |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { |
| return ArrayRef<HUserRecord<HInstruction*>>(inputs_); |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Expression<N>); |
| |
| private: |
| std::array<HUserRecord<HInstruction*>, N> inputs_; |
| |
| friend class SsaBuilder; |
| }; |
| |
| // HExpression specialization for N=0. |
| template<> |
| class HExpression<0> : public HInstruction { |
| public: |
| using HInstruction::HInstruction; |
| |
| virtual ~HExpression() {} |
| |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { |
| return ArrayRef<HUserRecord<HInstruction*>>(); |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Expression<0>); |
| |
| private: |
| friend class SsaBuilder; |
| }; |
| |
| class HMethodEntryHook : public HExpression<0> { |
| public: |
| explicit HMethodEntryHook(uint32_t dex_pc) |
| : HExpression(kMethodEntryHook, SideEffects::All(), dex_pc) {} |
| |
| bool NeedsEnvironment() const override { |
| return true; |
| } |
| |
| bool CanThrow() const override { return true; } |
| |
| DECLARE_INSTRUCTION(MethodEntryHook); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(MethodEntryHook); |
| }; |
| |
| class HMethodExitHook : public HExpression<1> { |
| public: |
| HMethodExitHook(HInstruction* value, uint32_t dex_pc) |
| : HExpression(kMethodExitHook, SideEffects::All(), dex_pc) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool NeedsEnvironment() const override { |
| return true; |
| } |
| |
| bool CanThrow() const override { return true; } |
| |
| DECLARE_INSTRUCTION(MethodExitHook); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(MethodExitHook); |
| }; |
| |
| // Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow |
| // instruction that branches to the exit block. |
| class HReturnVoid final : public HExpression<0> { |
| public: |
| explicit HReturnVoid(uint32_t dex_pc = kNoDexPc) |
| : HExpression(kReturnVoid, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsControlFlow() const override { return true; } |
| |
| DECLARE_INSTRUCTION(ReturnVoid); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ReturnVoid); |
| }; |
| |
| // Represents dex's RETURN opcodes. A HReturn is a control flow |
| // instruction that branches to the exit block. |
| class HReturn final : public HExpression<1> { |
| public: |
| explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kReturn, SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool IsControlFlow() const override { return true; } |
| |
| DECLARE_INSTRUCTION(Return); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Return); |
| }; |
| |
| class HPhi final : public HVariableInputSizeInstruction { |
| public: |
| HPhi(ArenaAllocator* allocator, |
| uint32_t reg_number, |
| size_t number_of_inputs, |
| DataType::Type type, |
| uint32_t dex_pc = kNoDexPc) |
| : HVariableInputSizeInstruction( |
| kPhi, |
| ToPhiType(type), |
| SideEffects::None(), |
| dex_pc, |
| allocator, |
| number_of_inputs, |
| kArenaAllocPhiInputs), |
| reg_number_(reg_number) { |
| DCHECK_NE(GetType(), DataType::Type::kVoid); |
| // Phis are constructed live and marked dead if conflicting or unused. |
| // Individual steps of SsaBuilder should assume that if a phi has been |
| // marked dead, it can be ignored and will be removed by SsaPhiElimination. |
| SetPackedFlag<kFlagIsLive>(true); |
| SetPackedFlag<kFlagCanBeNull>(true); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| // Returns a type equivalent to the given `type`, but that a `HPhi` can hold. |
| static DataType::Type ToPhiType(DataType::Type type) { |
| return DataType::Kind(type); |
| } |
| |
| bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); } |
| |
| void SetType(DataType::Type new_type) { |
| // Make sure that only valid type changes occur. The following are allowed: |
| // (1) int -> float/ref (primitive type propagation), |
| // (2) long -> double (primitive type propagation). |
| DCHECK(GetType() == new_type || |
| (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kFloat32) || |
| (GetType() == DataType::Type::kInt32 && new_type == DataType::Type::kReference) || |
| (GetType() == DataType::Type::kInt64 && new_type == DataType::Type::kFloat64)); |
| SetPackedField<TypeField>(new_type); |
| } |
| |
| bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } |
| void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } |
| |
| uint32_t GetRegNumber() const { return reg_number_; } |
| |
| void SetDead() { SetPackedFlag<kFlagIsLive>(false); } |
| void SetLive() { SetPackedFlag<kFlagIsLive>(true); } |
| bool IsDead() const { return !IsLive(); } |
| bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); } |
| |
| bool IsVRegEquivalentOf(const HInstruction* other) const { |
| return other != nullptr |
| && other->IsPhi() |
| && other->AsPhi()->GetBlock() == GetBlock() |
| && other->AsPhi()->GetRegNumber() == GetRegNumber(); |
| } |
| |
| bool HasEquivalentPhi() const { |
| if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) { |
| return true; |
| } |
| if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) { |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns the next equivalent phi (starting from the current one) or null if there is none. |
| // An equivalent phi is a phi having the same dex register and type. |
| // It assumes that phis with the same dex register are adjacent. |
| HPhi* GetNextEquivalentPhiWithSameType() { |
| HInstruction* next = GetNext(); |
| while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) { |
| if (next->GetType() == GetType()) { |
| return next->AsPhi(); |
| } |
| next = next->GetNext(); |
| } |
| return nullptr; |
| } |
| |
| DECLARE_INSTRUCTION(Phi); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Phi); |
| |
| private: |
| static constexpr size_t kFlagIsLive = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1; |
| static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1; |
| static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| |
| const uint32_t reg_number_; |
| }; |
| |
| // The exit instruction is the only instruction of the exit block. |
| // Instructions aborting the method (HThrow and HReturn) must branch to the |
| // exit block. |
| class HExit final : public HExpression<0> { |
| public: |
| explicit HExit(uint32_t dex_pc = kNoDexPc) |
| : HExpression(kExit, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsControlFlow() const override { return true; } |
| |
| DECLARE_INSTRUCTION(Exit); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Exit); |
| }; |
| |
| // Jumps from one block to another. |
| class HGoto final : public HExpression<0> { |
| public: |
| explicit HGoto(uint32_t dex_pc = kNoDexPc) |
| : HExpression(kGoto, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool IsControlFlow() const override { return true; } |
| |
| HBasicBlock* GetSuccessor() const { |
| return GetBlock()->GetSingleSuccessor(); |
| } |
| |
| DECLARE_INSTRUCTION(Goto); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Goto); |
| }; |
| |
| class HConstant : public HExpression<0> { |
| public: |
| explicit HConstant(InstructionKind kind, DataType::Type type, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kind, type, SideEffects::None(), dex_pc) { |
| } |
| |
| bool CanBeMoved() const override { return true; } |
| |
| // Is this constant -1 in the arithmetic sense? |
| virtual bool IsMinusOne() const { return false; } |
| // Is this constant 0 in the arithmetic sense? |
| virtual bool IsArithmeticZero() const { return false; } |
| // Is this constant a 0-bit pattern? |
| virtual bool IsZeroBitPattern() const { return false; } |
| // Is this constant 1 in the arithmetic sense? |
| virtual bool IsOne() const { return false; } |
| |
| virtual uint64_t GetValueAsUint64() const = 0; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(Constant); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Constant); |
| }; |
| |
| class HNullConstant final : public HConstant { |
| public: |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| uint64_t GetValueAsUint64() const override { return 0; } |
| |
| size_t ComputeHashCode() const override { return 0; } |
| |
| // The null constant representation is a 0-bit pattern. |
| bool IsZeroBitPattern() const override { return true; } |
| |
| DECLARE_INSTRUCTION(NullConstant); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(NullConstant); |
| |
| private: |
| explicit HNullConstant(uint32_t dex_pc = kNoDexPc) |
| : HConstant(kNullConstant, DataType::Type::kReference, dex_pc) { |
| } |
| |
| friend class HGraph; |
| }; |
| |
| // Constants of the type int. Those can be from Dex instructions, or |
| // synthesized (for example with the if-eqz instruction). |
| class HIntConstant final : public HConstant { |
| public: |
| int32_t GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const override { |
| return static_cast<uint64_t>(static_cast<uint32_t>(value_)); |
| } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| DCHECK(other->IsIntConstant()) << other->DebugName(); |
| return other->AsIntConstant()->value_ == value_; |
| } |
| |
| size_t ComputeHashCode() const override { return GetValue(); } |
| |
| bool IsMinusOne() const override { return GetValue() == -1; } |
| bool IsArithmeticZero() const override { return GetValue() == 0; } |
| bool IsZeroBitPattern() const override { return GetValue() == 0; } |
| bool IsOne() const override { return GetValue() == 1; } |
| |
| // Integer constants are used to encode Boolean values as well, |
| // where 1 means true and 0 means false. |
| bool IsTrue() const { return GetValue() == 1; } |
| bool IsFalse() const { return GetValue() == 0; } |
| |
| DECLARE_INSTRUCTION(IntConstant); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(IntConstant); |
| |
| private: |
| explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), value_(value) { |
| } |
| explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(kIntConstant, DataType::Type::kInt32, dex_pc), |
| value_(value ? 1 : 0) { |
| } |
| |
| const int32_t value_; |
| |
| friend class HGraph; |
| ART_FRIEND_TEST(GraphTest, InsertInstructionBefore); |
| ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast); |
| }; |
| |
| class HLongConstant final : public HConstant { |
| public: |
| int64_t GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const override { return value_; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| DCHECK(other->IsLongConstant()) << other->DebugName(); |
| return other->AsLongConstant()->value_ == value_; |
| } |
| |
| size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } |
| |
| bool IsMinusOne() const override { return GetValue() == -1; } |
| bool IsArithmeticZero() const override { return GetValue() == 0; } |
| bool IsZeroBitPattern() const override { return GetValue() == 0; } |
| bool IsOne() const override { return GetValue() == 1; } |
| |
| DECLARE_INSTRUCTION(LongConstant); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LongConstant); |
| |
| private: |
| explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(kLongConstant, DataType::Type::kInt64, dex_pc), |
| value_(value) { |
| } |
| |
| const int64_t value_; |
| |
| friend class HGraph; |
| }; |
| |
| class HFloatConstant final : public HConstant { |
| public: |
| float GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const override { |
| return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_)); |
| } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| DCHECK(other->IsFloatConstant()) << other->DebugName(); |
| return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64(); |
| } |
| |
| size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } |
| |
| bool IsMinusOne() const override { |
| return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f)); |
| } |
| bool IsArithmeticZero() const override { |
| return std::fpclassify(value_) == FP_ZERO; |
| } |
| bool IsArithmeticPositiveZero() const { |
| return IsArithmeticZero() && !std::signbit(value_); |
| } |
| bool IsArithmeticNegativeZero() const { |
| return IsArithmeticZero() && std::signbit(value_); |
| } |
| bool IsZeroBitPattern() const override { |
| return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f); |
| } |
| bool IsOne() const override { |
| return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f); |
| } |
| bool IsNaN() const { |
| return std::isnan(value_); |
| } |
| |
| DECLARE_INSTRUCTION(FloatConstant); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(FloatConstant); |
| |
| private: |
| explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), |
| value_(value) { |
| } |
| explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(kFloatConstant, DataType::Type::kFloat32, dex_pc), |
| value_(bit_cast<float, int32_t>(value)) { |
| } |
| |
| const float value_; |
| |
| // Only the SsaBuilder and HGraph can create floating-point constants. |
| friend class SsaBuilder; |
| friend class HGraph; |
| }; |
| |
| class HDoubleConstant final : public HConstant { |
| public: |
| double GetValue() const { return value_; } |
| |
| uint64_t GetValueAsUint64() const override { return bit_cast<uint64_t, double>(value_); } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| DCHECK(other->IsDoubleConstant()) << other->DebugName(); |
| return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64(); |
| } |
| |
| size_t ComputeHashCode() const override { return static_cast<size_t>(GetValue()); } |
| |
| bool IsMinusOne() const override { |
| return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0)); |
| } |
| bool IsArithmeticZero() const override { |
| return std::fpclassify(value_) == FP_ZERO; |
| } |
| bool IsArithmeticPositiveZero() const { |
| return IsArithmeticZero() && !std::signbit(value_); |
| } |
| bool IsArithmeticNegativeZero() const { |
| return IsArithmeticZero() && std::signbit(value_); |
| } |
| bool IsZeroBitPattern() const override { |
| return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0)); |
| } |
| bool IsOne() const override { |
| return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0); |
| } |
| bool IsNaN() const { |
| return std::isnan(value_); |
| } |
| |
| DECLARE_INSTRUCTION(DoubleConstant); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(DoubleConstant); |
| |
| private: |
| explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), |
| value_(value) { |
| } |
| explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc) |
| : HConstant(kDoubleConstant, DataType::Type::kFloat64, dex_pc), |
| value_(bit_cast<double, int64_t>(value)) { |
| } |
| |
| const double value_; |
| |
| // Only the SsaBuilder and HGraph can create floating-point constants. |
| friend class SsaBuilder; |
| friend class HGraph; |
| }; |
| |
| // Conditional branch. A block ending with an HIf instruction must have |
| // two successors. |
| class HIf final : public HExpression<1> { |
| public: |
| explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kIf, SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, input); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool IsControlFlow() const override { return true; } |
| |
| HBasicBlock* IfTrueSuccessor() const { |
| return GetBlock()->GetSuccessors()[0]; |
| } |
| |
| HBasicBlock* IfFalseSuccessor() const { |
| return GetBlock()->GetSuccessors()[1]; |
| } |
| |
| DECLARE_INSTRUCTION(If); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(If); |
| }; |
| |
| |
| // Abstract instruction which marks the beginning and/or end of a try block and |
| // links it to the respective exception handlers. Behaves the same as a Goto in |
| // non-exceptional control flow. |
| // Normal-flow successor is stored at index zero, exception handlers under |
| // higher indices in no particular order. |
| class HTryBoundary final : public HExpression<0> { |
| public: |
| enum class BoundaryKind { |
| kEntry, |
| kExit, |
| kLast = kExit |
| }; |
| |
| // SideEffects::CanTriggerGC prevents instructions with SideEffects::DependOnGC to be alive |
| // across the catch block entering edges as GC might happen during throwing an exception. |
| // TryBoundary with BoundaryKind::kExit is conservatively used for that as there is no |
| // HInstruction which a catch block must start from. |
| explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kTryBoundary, |
| (kind == BoundaryKind::kExit) ? SideEffects::CanTriggerGC() |
| : SideEffects::None(), |
| dex_pc) { |
| SetPackedField<BoundaryKindField>(kind); |
| } |
| |
| bool IsControlFlow() const override { return true; } |
| |
| // Returns the block's non-exceptional successor (index zero). |
| HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; } |
| |
| ArrayRef<HBasicBlock* const> GetExceptionHandlers() const { |
| return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u); |
| } |
| |
| // Returns whether `handler` is among its exception handlers (non-zero index |
| // successors). |
| bool HasExceptionHandler(const HBasicBlock& handler) const { |
| DCHECK(handler.IsCatchBlock()); |
| return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */); |
| } |
| |
| // If not present already, adds `handler` to its block's list of exception |
| // handlers. |
| void AddExceptionHandler(HBasicBlock* handler) { |
| if (!HasExceptionHandler(*handler)) { |
| GetBlock()->AddSuccessor(handler); |
| } |
| } |
| |
| BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); } |
| bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; } |
| |
| bool HasSameExceptionHandlersAs(const HTryBoundary& other) const; |
| |
| DECLARE_INSTRUCTION(TryBoundary); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(TryBoundary); |
| |
| private: |
| static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldBoundaryKindSize = |
| MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast)); |
| static constexpr size_t kNumberOfTryBoundaryPackedBits = |
| kFieldBoundaryKind + kFieldBoundaryKindSize; |
| static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>; |
| }; |
| |
| // Deoptimize to interpreter, upon checking a condition. |
| class HDeoptimize final : public HVariableInputSizeInstruction { |
| public: |
| // Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move |
| // across. |
| HDeoptimize(ArenaAllocator* allocator, |
| HInstruction* cond, |
| DeoptimizationKind kind, |
| uint32_t dex_pc) |
| : HVariableInputSizeInstruction( |
| kDeoptimize, |
| SideEffects::All(), |
| dex_pc, |
| allocator, |
| /* number_of_inputs= */ 1, |
| kArenaAllocMisc) { |
| SetPackedFlag<kFieldCanBeMoved>(false); |
| SetPackedField<DeoptimizeKindField>(kind); |
| SetRawInputAt(0, cond); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| // Use this constructor when the `HDeoptimize` guards an instruction, and any user |
| // that relies on the deoptimization to pass should have its input be the `HDeoptimize` |
| // instead of `guard`. |
| // We set CanTriggerGC to prevent any intermediate address to be live |
| // at the point of the `HDeoptimize`. |
| HDeoptimize(ArenaAllocator* allocator, |
| HInstruction* cond, |
| HInstruction* guard, |
| DeoptimizationKind kind, |
| uint32_t dex_pc) |
| : HVariableInputSizeInstruction( |
| kDeoptimize, |
| guard->GetType(), |
| SideEffects::CanTriggerGC(), |
| dex_pc, |
| allocator, |
| /* number_of_inputs= */ 2, |
| kArenaAllocMisc) { |
| SetPackedFlag<kFieldCanBeMoved>(true); |
| SetPackedField<DeoptimizeKindField>(kind); |
| SetRawInputAt(0, cond); |
| SetRawInputAt(1, guard); |
| } |
| |
| bool CanBeMoved() const override { return GetPackedFlag<kFieldCanBeMoved>(); } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind()); |
| } |
| |
| bool NeedsEnvironment() const override { return true; } |
| |
| bool CanThrow() const override { return true; } |
| |
| DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); } |
| |
| bool GuardsAnInput() const { |
| return InputCount() == 2; |
| } |
| |
| HInstruction* GuardedInput() const { |
| DCHECK(GuardsAnInput()); |
| return InputAt(1); |
| } |
| |
| void RemoveGuard() { |
| RemoveInputAt(1); |
| } |
| |
| DECLARE_INSTRUCTION(Deoptimize); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Deoptimize); |
| |
| private: |
| static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1; |
| static constexpr size_t kFieldDeoptimizeKindSize = |
| MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast)); |
| static constexpr size_t kNumberOfDeoptimizePackedBits = |
| kFieldDeoptimizeKind + kFieldDeoptimizeKindSize; |
| static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using DeoptimizeKindField = |
| BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>; |
| }; |
| |
| // Represents a should_deoptimize flag. Currently used for CHA-based devirtualization. |
| // The compiled code checks this flag value in a guard before devirtualized call and |
| // if it's true, starts to do deoptimization. |
| // It has a 4-byte slot on stack. |
| // TODO: allocate a register for this flag. |
| class HShouldDeoptimizeFlag final : public HVariableInputSizeInstruction { |
| public: |
| // CHA guards are only optimized in a separate pass and it has no side effects |
| // with regard to other passes. |
| HShouldDeoptimizeFlag(ArenaAllocator* allocator, uint32_t dex_pc) |
| : HVariableInputSizeInstruction(kShouldDeoptimizeFlag, |
| DataType::Type::kInt32, |
| SideEffects::None(), |
| dex_pc, |
| allocator, |
| 0, |
| kArenaAllocCHA) { |
| } |
| |
| // We do all CHA guard elimination/motion in a single pass, after which there is no |
| // further guard elimination/motion since a guard might have been used for justification |
| // of the elimination of another guard. Therefore, we pretend this guard cannot be moved |
| // to avoid other optimizations trying to move it. |
| bool CanBeMoved() const override { return false; } |
| |
| DECLARE_INSTRUCTION(ShouldDeoptimizeFlag); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ShouldDeoptimizeFlag); |
| }; |
| |
| // Represents the ArtMethod that was passed as a first argument to |
| // the method. It is used by instructions that depend on it, like |
| // instructions that work with the dex cache. |
| class HCurrentMethod final : public HExpression<0> { |
| public: |
| explicit HCurrentMethod(DataType::Type type, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kCurrentMethod, type, SideEffects::None(), dex_pc) { |
| } |
| |
| DECLARE_INSTRUCTION(CurrentMethod); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(CurrentMethod); |
| }; |
| |
| // Fetches an ArtMethod from the virtual table or the interface method table |
| // of a class. |
| class HClassTableGet final : public HExpression<1> { |
| public: |
| enum class TableKind { |
| kVTable, |
| kIMTable, |
| kLast = kIMTable |
| }; |
| HClassTableGet(HInstruction* cls, |
| DataType::Type type, |
| TableKind kind, |
| size_t index, |
| uint32_t dex_pc) |
| : HExpression(kClassTableGet, type, SideEffects::None(), dex_pc), |
| index_(index) { |
| SetPackedField<TableKindField>(kind); |
| SetRawInputAt(0, cls); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| return other->AsClassTableGet()->GetIndex() == index_ && |
| other->AsClassTableGet()->GetPackedFields() == GetPackedFields(); |
| } |
| |
| TableKind GetTableKind() const { return GetPackedField<TableKindField>(); } |
| size_t GetIndex() const { return index_; } |
| |
| DECLARE_INSTRUCTION(ClassTableGet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ClassTableGet); |
| |
| private: |
| static constexpr size_t kFieldTableKind = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldTableKindSize = |
| MinimumBitsToStore(static_cast<size_t>(TableKind::kLast)); |
| static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize; |
| static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>; |
| |
| // The index of the ArtMethod in the table. |
| const size_t index_; |
| }; |
| |
| // PackedSwitch (jump table). A block ending with a PackedSwitch instruction will |
| // have one successor for each entry in the switch table, and the final successor |
| // will be the block containing the next Dex opcode. |
| class HPackedSwitch final : public HExpression<1> { |
| public: |
| HPackedSwitch(int32_t start_value, |
| uint32_t num_entries, |
| HInstruction* input, |
| uint32_t dex_pc = kNoDexPc) |
| : HExpression(kPackedSwitch, SideEffects::None(), dex_pc), |
| start_value_(start_value), |
| num_entries_(num_entries) { |
| SetRawInputAt(0, input); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| bool IsControlFlow() const override { return true; } |
| |
| int32_t GetStartValue() const { return start_value_; } |
| |
| uint32_t GetNumEntries() const { return num_entries_; } |
| |
| HBasicBlock* GetDefaultBlock() const { |
| // Last entry is the default block. |
| return GetBlock()->GetSuccessors()[num_entries_]; |
| } |
| DECLARE_INSTRUCTION(PackedSwitch); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(PackedSwitch); |
| |
| private: |
| const int32_t start_value_; |
| const uint32_t num_entries_; |
| }; |
| |
| class HUnaryOperation : public HExpression<1> { |
| public: |
| HUnaryOperation(InstructionKind kind, |
| DataType::Type result_type, |
| HInstruction* input, |
| uint32_t dex_pc = kNoDexPc) |
| : HExpression(kind, result_type, SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, input); |
| } |
| |
| // All of the UnaryOperation instructions are clonable. |
| bool IsClonable() const override { return true; } |
| |
| HInstruction* GetInput() const { return InputAt(0); } |
| DataType::Type GetResultType() const { return GetType(); } |
| |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| // Try to statically evaluate `this` and return a HConstant |
| // containing the result of this evaluation. If `this` cannot |
| // be evaluated as a constant, return null. |
| HConstant* TryStaticEvaluation() const; |
| |
| // Apply this operation to `x`. |
| virtual HConstant* Evaluate(HIntConstant* x) const = 0; |
| virtual HConstant* Evaluate(HLongConstant* x) const = 0; |
| virtual HConstant* Evaluate(HFloatConstant* x) const = 0; |
| virtual HConstant* Evaluate(HDoubleConstant* x) const = 0; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(UnaryOperation); |
| }; |
| |
| class HBinaryOperation : public HExpression<2> { |
| public: |
| HBinaryOperation(InstructionKind kind, |
| DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| SideEffects side_effects = SideEffects::None(), |
| uint32_t dex_pc = kNoDexPc) |
| : HExpression(kind, result_type, side_effects, dex_pc) { |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| |
| // All of the BinaryOperation instructions are clonable. |
| bool IsClonable() const override { return true; } |
| |
| HInstruction* GetLeft() const { return InputAt(0); } |
| HInstruction* GetRight() const { return InputAt(1); } |
| DataType::Type GetResultType() const { return GetType(); } |
| |
| virtual bool IsCommutative() const { return false; } |
| |
| // Put constant on the right. |
| // Returns whether order is changed. |
| bool OrderInputsWithConstantOnTheRight() { |
| HInstruction* left = InputAt(0); |
| HInstruction* right = InputAt(1); |
| if (left->IsConstant() && !right->IsConstant()) { |
| ReplaceInput(right, 0); |
| ReplaceInput(left, 1); |
| return true; |
| } |
| return false; |
| } |
| |
| // Order inputs by instruction id, but favor constant on the right side. |
| // This helps GVN for commutative ops. |
| void OrderInputs() { |
| DCHECK(IsCommutative()); |
| HInstruction* left = InputAt(0); |
| HInstruction* right = InputAt(1); |
| if (left == right || (!left->IsConstant() && right->IsConstant())) { |
| return; |
| } |
| if (OrderInputsWithConstantOnTheRight()) { |
| return; |
| } |
| // Order according to instruction id. |
| if (left->GetId() > right->GetId()) { |
| ReplaceInput(right, 0); |
| ReplaceInput(left, 1); |
| } |
| } |
| |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| // Try to statically evaluate `this` and return a HConstant |
| // containing the result of this evaluation. If `this` cannot |
| // be evaluated as a constant, return null. |
| HConstant* TryStaticEvaluation() const; |
| |
| // Apply this operation to `x` and `y`. |
| virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, |
| HNullConstant* y ATTRIBUTE_UNUSED) const { |
| LOG(FATAL) << DebugName() << " is not defined for the (null, null) case."; |
| UNREACHABLE(); |
| } |
| virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0; |
| virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0; |
| virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED, |
| HIntConstant* y ATTRIBUTE_UNUSED) const { |
| LOG(FATAL) << DebugName() << " is not defined for the (long, int) case."; |
| UNREACHABLE(); |
| } |
| virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0; |
| virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0; |
| |
| // Returns an input that can legally be used as the right input and is |
| // constant, or null. |
| HConstant* GetConstantRight() const; |
| |
| // If `GetConstantRight()` returns one of the input, this returns the other |
| // one. Otherwise it returns null. |
| HInstruction* GetLeastConstantLeft() const; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(BinaryOperation); |
| }; |
| |
| // The comparison bias applies for floating point operations and indicates how NaN |
| // comparisons are treated: |
| enum class ComparisonBias { // private marker to avoid generate-operator-out.py from processing. |
| kNoBias, // bias is not applicable (i.e. for long operation) |
| kGtBias, // return 1 for NaN comparisons |
| kLtBias, // return -1 for NaN comparisons |
| kLast = kLtBias |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, ComparisonBias rhs); |
| |
| class HCondition : public HBinaryOperation { |
| public: |
| HCondition(InstructionKind kind, |
| HInstruction* first, |
| HInstruction* second, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kind, |
| DataType::Type::kBool, |
| first, |
| second, |
| SideEffects::None(), |
| dex_pc) { |
| SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias); |
| } |
| |
| // For code generation purposes, returns whether this instruction is just before |
| // `instruction`, and disregard moves in between. |
| bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const; |
| |
| DECLARE_ABSTRACT_INSTRUCTION(Condition); |
| |
| virtual IfCondition GetCondition() const = 0; |
| |
| virtual IfCondition GetOppositeCondition() const = 0; |
| |
| bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; } |
| bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; } |
| |
| ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } |
| void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| return GetPackedFields() == other->AsCondition()->GetPackedFields(); |
| } |
| |
| bool IsFPConditionTrueIfNaN() const { |
| DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| IfCondition if_cond = GetCondition(); |
| if (if_cond == kCondNE) { |
| return true; |
| } else if (if_cond == kCondEQ) { |
| return false; |
| } |
| return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias(); |
| } |
| |
| bool IsFPConditionFalseIfNaN() const { |
| DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| IfCondition if_cond = GetCondition(); |
| if (if_cond == kCondEQ) { |
| return true; |
| } else if (if_cond == kCondNE) { |
| return false; |
| } |
| return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias(); |
| } |
| |
| protected: |
| // Needed if we merge a HCompare into a HCondition. |
| static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldComparisonBiasSize = |
| MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); |
| static constexpr size_t kNumberOfConditionPackedBits = |
| kFieldComparisonBias + kFieldComparisonBiasSize; |
| static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using ComparisonBiasField = |
| BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; |
| |
| template <typename T> |
| int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } |
| |
| template <typename T> |
| int32_t CompareFP(T x, T y) const { |
| DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| DCHECK_NE(GetBias(), ComparisonBias::kNoBias); |
| // Handle the bias. |
| return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y); |
| } |
| |
| // Return an integer constant containing the result of a condition evaluated at compile time. |
| HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const { |
| return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); |
| } |
| |
| DEFAULT_COPY_CONSTRUCTOR(Condition); |
| }; |
| |
| // Instruction to check if two inputs are equal to each other. |
| class HEqual final : public HCondition { |
| public: |
| HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(kEqual, first, second, dex_pc) { |
| } |
| |
| bool IsCommutative() const override { return true; } |
| |
| HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, |
| HNullConstant* y ATTRIBUTE_UNUSED) const override { |
| return MakeConstantCondition(true, GetDexPc()); |
| } |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HEqual instruction; evaluate it as |
| // `Compare(x, y) == 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), |
| GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Equal); |
| |
| IfCondition GetCondition() const override { |
| return kCondEQ; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondNE; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Equal); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { return x == y; } |
| }; |
| |
| class HNotEqual final : public HCondition { |
| public: |
| HNotEqual(HInstruction* first, HInstruction* second, |
| uint32_t dex_pc = kNoDexPc) |
| : HCondition(kNotEqual, first, second, dex_pc) { |
| } |
| |
| bool IsCommutative() const override { return true; } |
| |
| HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED, |
| HNullConstant* y ATTRIBUTE_UNUSED) const override { |
| return MakeConstantCondition(false, GetDexPc()); |
| } |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HNotEqual instruction; evaluate it as |
| // `Compare(x, y) != 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(NotEqual); |
| |
| IfCondition GetCondition() const override { |
| return kCondNE; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondEQ; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(NotEqual); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { return x != y; } |
| }; |
| |
| class HLessThan final : public HCondition { |
| public: |
| HLessThan(HInstruction* first, HInstruction* second, |
| uint32_t dex_pc = kNoDexPc) |
| : HCondition(kLessThan, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HLessThan instruction; evaluate it as |
| // `Compare(x, y) < 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(LessThan); |
| |
| IfCondition GetCondition() const override { |
| return kCondLT; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondGE; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LessThan); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { return x < y; } |
| }; |
| |
| class HLessThanOrEqual final : public HCondition { |
| public: |
| HLessThanOrEqual(HInstruction* first, HInstruction* second, |
| uint32_t dex_pc = kNoDexPc) |
| : HCondition(kLessThanOrEqual, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HLessThanOrEqual instruction; evaluate it as |
| // `Compare(x, y) <= 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(LessThanOrEqual); |
| |
| IfCondition GetCondition() const override { |
| return kCondLE; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondGT; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LessThanOrEqual); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { return x <= y; } |
| }; |
| |
| class HGreaterThan final : public HCondition { |
| public: |
| HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(kGreaterThan, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HGreaterThan instruction; evaluate it as |
| // `Compare(x, y) > 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(GreaterThan); |
| |
| IfCondition GetCondition() const override { |
| return kCondGT; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondLE; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(GreaterThan); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { return x > y; } |
| }; |
| |
| class HGreaterThanOrEqual final : public HCondition { |
| public: |
| HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(kGreaterThanOrEqual, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // In the following Evaluate methods, a HCompare instruction has |
| // been merged into this HGreaterThanOrEqual instruction; evaluate it as |
| // `Compare(x, y) >= 0`. |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(GreaterThanOrEqual); |
| |
| IfCondition GetCondition() const override { |
| return kCondGE; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondLT; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(GreaterThanOrEqual); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { return x >= y; } |
| }; |
| |
| class HBelow final : public HCondition { |
| public: |
| HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(kBelow, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Below); |
| |
| IfCondition GetCondition() const override { |
| return kCondB; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondAE; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Below); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { |
| return MakeUnsigned(x) < MakeUnsigned(y); |
| } |
| }; |
| |
| class HBelowOrEqual final : public HCondition { |
| public: |
| HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(kBelowOrEqual, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(BelowOrEqual); |
| |
| IfCondition GetCondition() const override { |
| return kCondBE; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondA; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(BelowOrEqual); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { |
| return MakeUnsigned(x) <= MakeUnsigned(y); |
| } |
| }; |
| |
| class HAbove final : public HCondition { |
| public: |
| HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(kAbove, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Above); |
| |
| IfCondition GetCondition() const override { |
| return kCondA; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondBE; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Above); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { |
| return MakeUnsigned(x) > MakeUnsigned(y); |
| } |
| }; |
| |
| class HAboveOrEqual final : public HCondition { |
| public: |
| HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc) |
| : HCondition(kAboveOrEqual, first, second, dex_pc) { |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(AboveOrEqual); |
| |
| IfCondition GetCondition() const override { |
| return kCondAE; |
| } |
| |
| IfCondition GetOppositeCondition() const override { |
| return kCondB; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(AboveOrEqual); |
| |
| private: |
| template <typename T> static bool Compute(T x, T y) { |
| return MakeUnsigned(x) >= MakeUnsigned(y); |
| } |
| }; |
| |
| // Instruction to check how two inputs compare to each other. |
| // Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1. |
| class HCompare final : public HBinaryOperation { |
| public: |
| // Note that `comparison_type` is the type of comparison performed |
| // between the comparison's inputs, not the type of the instantiated |
| // HCompare instruction (which is always DataType::Type::kInt). |
| HCompare(DataType::Type comparison_type, |
| HInstruction* first, |
| HInstruction* second, |
| ComparisonBias bias, |
| uint32_t dex_pc) |
| : HBinaryOperation(kCompare, |
| DataType::Type::kInt32, |
| first, |
| second, |
| SideEffectsForArchRuntimeCalls(comparison_type), |
| dex_pc) { |
| SetPackedField<ComparisonBiasField>(bias); |
| } |
| |
| template <typename T> |
| int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); } |
| |
| template <typename T> |
| int32_t ComputeFP(T x, T y) const { |
| DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| DCHECK_NE(GetBias(), ComparisonBias::kNoBias); |
| // Handle the bias. |
| return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| // Note that there is no "cmp-int" Dex instruction so we shouldn't |
| // reach this code path when processing a freshly built HIR |
| // graph. However HCompare integer instructions can be synthesized |
| // by the instruction simplifier to implement IntegerCompare and |
| // IntegerSignum intrinsics, so we have to handle this case. |
| return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| return GetPackedFields() == other->AsCompare()->GetPackedFields(); |
| } |
| |
| ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); } |
| |
| // Does this compare instruction have a "gt bias" (vs an "lt bias")? |
| // Only meaningful for floating-point comparisons. |
| bool IsGtBias() const { |
| DCHECK(DataType::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType(); |
| return GetBias() == ComparisonBias::kGtBias; |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type type ATTRIBUTE_UNUSED) { |
| // Comparisons do not require a runtime call in any back end. |
| return SideEffects::None(); |
| } |
| |
| DECLARE_INSTRUCTION(Compare); |
| |
| protected: |
| static constexpr size_t kFieldComparisonBias = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldComparisonBiasSize = |
| MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast)); |
| static constexpr size_t kNumberOfComparePackedBits = |
| kFieldComparisonBias + kFieldComparisonBiasSize; |
| static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using ComparisonBiasField = |
| BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>; |
| |
| // Return an integer constant containing the result of a comparison evaluated at compile time. |
| HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const { |
| DCHECK(value == -1 || value == 0 || value == 1) << value; |
| return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc); |
| } |
| |
| DEFAULT_COPY_CONSTRUCTOR(Compare); |
| }; |
| |
| class HNewInstance final : public HExpression<1> { |
| public: |
| HNewInstance(HInstruction* cls, |
| uint32_t dex_pc, |
| dex::TypeIndex type_index, |
| const DexFile& dex_file, |
| bool finalizable, |
| QuickEntrypointEnum entrypoint) |
| : HExpression(kNewInstance, |
| DataType::Type::kReference, |
| SideEffects::CanTriggerGC(), |
| dex_pc), |
| type_index_(type_index), |
| dex_file_(dex_file), |
| entrypoint_(entrypoint) { |
| SetPackedFlag<kFlagFinalizable>(finalizable); |
| SetPackedFlag<kFlagPartialMaterialization>(false); |
| SetRawInputAt(0, cls); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| void SetPartialMaterialization() { |
| SetPackedFlag<kFlagPartialMaterialization>(true); |
| } |
| |
| dex::TypeIndex GetTypeIndex() const { return type_index_; } |
| const DexFile& GetDexFile() const { return dex_file_; } |
| |
| // Calls runtime so needs an environment. |
| bool NeedsEnvironment() const override { return true; } |
| |
| // Can throw errors when out-of-memory or if it's not instantiable/accessible. |
| bool CanThrow() const override { return true; } |
| bool OnlyThrowsAsyncExceptions() const override { |
| return !IsFinalizable() && !NeedsChecks(); |
| } |
| |
| bool NeedsChecks() const { |
| return entrypoint_ == kQuickAllocObjectWithChecks; |
| } |
| |
| bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); } |
| |
| bool CanBeNull() const override { return false; } |
| |
| bool IsPartialMaterialization() const { |
| return GetPackedFlag<kFlagPartialMaterialization>(); |
| } |
| |
| QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; } |
| |
| void SetEntrypoint(QuickEntrypointEnum entrypoint) { |
| entrypoint_ = entrypoint; |
| } |
| |
| HLoadClass* GetLoadClass() const { |
| HInstruction* input = InputAt(0); |
| if (input->IsClinitCheck()) { |
| input = input->InputAt(0); |
| } |
| DCHECK(input->IsLoadClass()); |
| return input->AsLoadClass(); |
| } |
| |
| bool IsStringAlloc() const; |
| |
| DECLARE_INSTRUCTION(NewInstance); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(NewInstance); |
| |
| private: |
| static constexpr size_t kFlagFinalizable = kNumberOfGenericPackedBits; |
| static constexpr size_t kFlagPartialMaterialization = kFlagFinalizable + 1; |
| static constexpr size_t kNumberOfNewInstancePackedBits = kFlagPartialMaterialization + 1; |
| static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const dex::TypeIndex type_index_; |
| const DexFile& dex_file_; |
| QuickEntrypointEnum entrypoint_; |
| }; |
| |
| enum IntrinsicNeedsEnvironment { |
| kNoEnvironment, // Intrinsic does not require an environment. |
| kNeedsEnvironment // Intrinsic requires an environment. |
| }; |
| |
| enum IntrinsicSideEffects { |
| kNoSideEffects, // Intrinsic does not have any heap memory side effects. |
| kReadSideEffects, // Intrinsic may read heap memory. |
| kWriteSideEffects, // Intrinsic may write heap memory. |
| kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC. |
| }; |
| |
| enum IntrinsicExceptions { |
| kNoThrow, // Intrinsic does not throw any exceptions. |
| kCanThrow // Intrinsic may throw exceptions. |
| }; |
| |
| // Determines how to load an ArtMethod*. |
| enum class MethodLoadKind { |
| // Use a String init ArtMethod* loaded from Thread entrypoints. |
| kStringInit, |
| |
| // Use the method's own ArtMethod* loaded by the register allocator. |
| kRecursive, |
| |
| // Use PC-relative boot image ArtMethod* address that will be known at link time. |
| // Used for boot image methods referenced by boot image code. |
| kBootImageLinkTimePcRelative, |
| |
| // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. |
| // Used for app->boot calls with relocatable image. |
| kBootImageRelRo, |
| |
| // Load from an entry in the .bss section using a PC-relative load. |
| // Used for methods outside boot image referenced by AOT-compiled app and boot image code. |
| kBssEntry, |
| |
| // Use ArtMethod* at a known address, embed the direct address in the code. |
| // Used for for JIT-compiled calls. |
| kJitDirectAddress, |
| |
| // Make a runtime call to resolve and call the method. This is the last-resort-kind |
| // used when other kinds are unimplemented on a particular architecture. |
| kRuntimeCall, |
| }; |
| |
| // Determines the location of the code pointer of an invoke. |
| enum class CodePtrLocation { |
| // Recursive call, use local PC-relative call instruction. |
| kCallSelf, |
| |
| // Use native pointer from the Artmethod*. |
| // Used for @CriticalNative to avoid going through the compiled stub. This call goes through |
| // a special resolution stub if the class is not initialized or no native code is registered. |
| kCallCriticalNative, |
| |
| // Use code pointer from the ArtMethod*. |
| // Used when we don't know the target code. This is also the last-resort-kind used when |
| // other kinds are unimplemented or impractical (i.e. slow) on a particular architecture. |
| kCallArtMethod, |
| }; |
| |
| static inline bool IsPcRelativeMethodLoadKind(MethodLoadKind load_kind) { |
| return load_kind == MethodLoadKind::kBootImageLinkTimePcRelative || |
| load_kind == MethodLoadKind::kBootImageRelRo || |
| load_kind == MethodLoadKind::kBssEntry; |
| } |
| |
| class HInvoke : public HVariableInputSizeInstruction { |
| public: |
| bool NeedsEnvironment() const override; |
| |
| void SetArgumentAt(size_t index, HInstruction* argument) { |
| SetRawInputAt(index, argument); |
| } |
| |
| // Return the number of arguments. This number can be lower than |
| // the number of inputs returned by InputCount(), as some invoke |
| // instructions (e.g. HInvokeStaticOrDirect) can have non-argument |
| // inputs at the end of their list of inputs. |
| uint32_t GetNumberOfArguments() const { return number_of_arguments_; } |
| |
| InvokeType GetInvokeType() const { |
| return GetPackedField<InvokeTypeField>(); |
| } |
| |
| Intrinsics GetIntrinsic() const { |
| return intrinsic_; |
| } |
| |
| void SetIntrinsic(Intrinsics intrinsic, |
| IntrinsicNeedsEnvironment needs_env, |
| IntrinsicSideEffects side_effects, |
| IntrinsicExceptions exceptions); |
| |
| bool IsFromInlinedInvoke() const { |
| return GetEnvironment()->IsFromInlinedInvoke(); |
| } |
| |
| void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); } |
| |
| bool CanThrow() const override { return GetPackedFlag<kFlagCanThrow>(); } |
| |
| void SetAlwaysThrows(bool always_throws) { SetPackedFlag<kFlagAlwaysThrows>(always_throws); } |
| |
| bool AlwaysThrows() const override { return GetPackedFlag<kFlagAlwaysThrows>(); } |
| |
| bool CanBeMoved() const override { return IsIntrinsic() && !DoesAnyWrite(); } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_; |
| } |
| |
| uint32_t* GetIntrinsicOptimizations() { |
| return &intrinsic_optimizations_; |
| } |
| |
| const uint32_t* GetIntrinsicOptimizations() const { |
| return &intrinsic_optimizations_; |
| } |
| |
| bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; } |
| |
| ArtMethod* GetResolvedMethod() const { return resolved_method_; } |
| void SetResolvedMethod(ArtMethod* method); |
| |
| MethodReference GetMethodReference() const { return method_reference_; } |
| |
| const MethodReference GetResolvedMethodReference() const { |
| return resolved_method_reference_; |
| } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(Invoke); |
| |
| protected: |
| static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldInvokeTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType)); |
| static constexpr size_t kFlagCanThrow = kFieldInvokeType + kFieldInvokeTypeSize; |
| static constexpr size_t kFlagAlwaysThrows = kFlagCanThrow + 1; |
| static constexpr size_t kNumberOfInvokePackedBits = kFlagAlwaysThrows + 1; |
| static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>; |
| |
| HInvoke(InstructionKind kind, |
| ArenaAllocator* allocator, |
| uint32_t number_of_arguments, |
| uint32_t number_of_other_inputs, |
| DataType::Type return_type, |
| uint32_t dex_pc, |
| MethodReference method_reference, |
| ArtMethod* resolved_method, |
| MethodReference resolved_method_reference, |
| InvokeType invoke_type) |
| : HVariableInputSizeInstruction( |
| kind, |
| return_type, |
| SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. |
| dex_pc, |
| allocator, |
| number_of_arguments + number_of_other_inputs, |
| kArenaAllocInvokeInputs), |
| number_of_arguments_(number_of_arguments), |
| method_reference_(method_reference), |
| resolved_method_reference_(resolved_method_reference), |
| intrinsic_(Intrinsics::kNone), |
| intrinsic_optimizations_(0) { |
| SetPackedField<InvokeTypeField>(invoke_type); |
| SetPackedFlag<kFlagCanThrow>(true); |
| SetResolvedMethod(resolved_method); |
| } |
| |
| DEFAULT_COPY_CONSTRUCTOR(Invoke); |
| |
| uint32_t number_of_arguments_; |
| ArtMethod* resolved_method_; |
| const MethodReference method_reference_; |
| // Cached values of the resolved method, to avoid needing the mutator lock. |
| const MethodReference resolved_method_reference_; |
| Intrinsics intrinsic_; |
| |
| // A magic word holding optimizations for intrinsics. See intrinsics.h. |
| uint32_t intrinsic_optimizations_; |
| }; |
| |
| class HInvokeUnresolved final : public HInvoke { |
| public: |
| HInvokeUnresolved(ArenaAllocator* allocator, |
| uint32_t number_of_arguments, |
| DataType::Type return_type, |
| uint32_t dex_pc, |
| MethodReference method_reference, |
| InvokeType invoke_type) |
| : HInvoke(kInvokeUnresolved, |
| allocator, |
| number_of_arguments, |
| /* number_of_other_inputs= */ 0u, |
| return_type, |
| dex_pc, |
| method_reference, |
| nullptr, |
| MethodReference(nullptr, 0u), |
| invoke_type) { |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| DECLARE_INSTRUCTION(InvokeUnresolved); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InvokeUnresolved); |
| }; |
| |
| class HInvokePolymorphic final : public HInvoke { |
| public: |
| HInvokePolymorphic(ArenaAllocator* allocator, |
| uint32_t number_of_arguments, |
| DataType::Type return_type, |
| uint32_t dex_pc, |
| MethodReference method_reference, |
| // resolved_method is the ArtMethod object corresponding to the polymorphic |
| // method (e.g. VarHandle.get), resolved using the class linker. It is needed |
| // to pass intrinsic information to the HInvokePolymorphic node. |
| ArtMethod* resolved_method, |
| MethodReference resolved_method_reference, |
| dex::ProtoIndex proto_idx) |
| : HInvoke(kInvokePolymorphic, |
| allocator, |
| number_of_arguments, |
| /* number_of_other_inputs= */ 0u, |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| resolved_method_reference, |
| kPolymorphic), |
| proto_idx_(proto_idx) { |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| dex::ProtoIndex GetProtoIndex() { return proto_idx_; } |
| |
| DECLARE_INSTRUCTION(InvokePolymorphic); |
| |
| protected: |
| dex::ProtoIndex proto_idx_; |
| DEFAULT_COPY_CONSTRUCTOR(InvokePolymorphic); |
| }; |
| |
| class HInvokeCustom final : public HInvoke { |
| public: |
| HInvokeCustom(ArenaAllocator* allocator, |
| uint32_t number_of_arguments, |
| uint32_t call_site_index, |
| DataType::Type return_type, |
| uint32_t dex_pc, |
| MethodReference method_reference) |
| : HInvoke(kInvokeCustom, |
| allocator, |
| number_of_arguments, |
| /* number_of_other_inputs= */ 0u, |
| return_type, |
| dex_pc, |
| method_reference, |
| /* resolved_method= */ nullptr, |
| MethodReference(nullptr, 0u), |
| kStatic), |
| call_site_index_(call_site_index) { |
| } |
| |
| uint32_t GetCallSiteIndex() const { return call_site_index_; } |
| |
| bool IsClonable() const override { return true; } |
| |
| DECLARE_INSTRUCTION(InvokeCustom); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InvokeCustom); |
| |
| private: |
| uint32_t call_site_index_; |
| }; |
| |
| class HInvokeStaticOrDirect final : public HInvoke { |
| public: |
| // Requirements of this method call regarding the class |
| // initialization (clinit) check of its declaring class. |
| enum class ClinitCheckRequirement { // private marker to avoid generate-operator-out.py from processing. |
| kNone, // Class already initialized. |
| kExplicit, // Static call having explicit clinit check as last input. |
| kImplicit, // Static call implicitly requiring a clinit check. |
| kLast = kImplicit |
| }; |
| |
| struct DispatchInfo { |
| MethodLoadKind method_load_kind; |
| CodePtrLocation code_ptr_location; |
| // The method load data holds |
| // - thread entrypoint offset for kStringInit method if this is a string init invoke. |
| // Note that there are multiple string init methods, each having its own offset. |
| // - the method address for kDirectAddress |
| uint64_t method_load_data; |
| }; |
| |
| HInvokeStaticOrDirect(ArenaAllocator* allocator, |
| uint32_t number_of_arguments, |
| DataType::Type return_type, |
| uint32_t dex_pc, |
| MethodReference method_reference, |
| ArtMethod* resolved_method, |
| DispatchInfo dispatch_info, |
| InvokeType invoke_type, |
| MethodReference resolved_method_reference, |
| ClinitCheckRequirement clinit_check_requirement) |
| : HInvoke(kInvokeStaticOrDirect, |
| allocator, |
| number_of_arguments, |
| // There is potentially one extra argument for the HCurrentMethod input, |
| // and one other if the clinit check is explicit. These can be removed later. |
| (NeedsCurrentMethodInput(dispatch_info) ? 1u : 0u) + |
| (clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u), |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| resolved_method_reference, |
| invoke_type), |
| dispatch_info_(dispatch_info) { |
| SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsBss() const override { |
| return GetMethodLoadKind() == MethodLoadKind::kBssEntry; |
| } |
| |
| void SetDispatchInfo(DispatchInfo dispatch_info) { |
| bool had_current_method_input = HasCurrentMethodInput(); |
| bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info); |
| |
| // Using the current method is the default and once we find a better |
| // method load kind, we should not go back to using the current method. |
| DCHECK(had_current_method_input || !needs_current_method_input); |
| |
| if (had_current_method_input && !needs_current_method_input) { |
| DCHECK_EQ(InputAt(GetCurrentMethodIndex()), GetBlock()->GetGraph()->GetCurrentMethod()); |
| RemoveInputAt(GetCurrentMethodIndex()); |
| } |
| dispatch_info_ = dispatch_info; |
| } |
| |
| DispatchInfo GetDispatchInfo() const { |
| return dispatch_info_; |
| } |
| |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() override { |
| ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords(); |
| if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) { |
| DCHECK(!input_records.empty()); |
| DCHECK_GT(input_records.size(), GetNumberOfArguments()); |
| HInstruction* last_input = input_records.back().GetInstruction(); |
| // Note: `last_input` may be null during arguments setup. |
| if (last_input != nullptr) { |
| // `last_input` is the last input of a static invoke marked as having |
| // an explicit clinit check. It must either be: |
| // - an art::HClinitCheck instruction, set by art::HGraphBuilder; or |
| // - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation. |
| DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName(); |
| } |
| } |
| return input_records; |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { |
| // We do not access the method via object reference, so we cannot do an implicit null check. |
| // TODO: for intrinsics we can generate implicit null checks. |
| return false; |
| } |
| |
| bool CanBeNull() const override { |
| return GetType() == DataType::Type::kReference && !IsStringInit(); |
| } |
| |
| MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; } |
| CodePtrLocation GetCodePtrLocation() const { |
| // We do CHA analysis after sharpening. When a method has CHA inlining, it |
| // cannot call itself, as if the CHA optmization is invalid we want to make |
| // sure the method is never executed again. So, while sharpening can return |
| // kCallSelf, we bypass it here if there is a CHA optimization. |
| if (dispatch_info_.code_ptr_location == CodePtrLocation::kCallSelf && |
| GetBlock()->GetGraph()->HasShouldDeoptimizeFlag()) { |
| return CodePtrLocation::kCallArtMethod; |
| } else { |
| return dispatch_info_.code_ptr_location; |
| } |
| } |
| bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; } |
| bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; } |
| bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kJitDirectAddress; } |
| bool HasPcRelativeMethodLoadKind() const { |
| return IsPcRelativeMethodLoadKind(GetMethodLoadKind()); |
| } |
| |
| QuickEntrypointEnum GetStringInitEntryPoint() const { |
| DCHECK(IsStringInit()); |
| return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data); |
| } |
| |
| uint64_t GetMethodAddress() const { |
| DCHECK(HasMethodAddress()); |
| return dispatch_info_.method_load_data; |
| } |
| |
| const DexFile& GetDexFileForPcRelativeDexCache() const; |
| |
| ClinitCheckRequirement GetClinitCheckRequirement() const { |
| return GetPackedField<ClinitCheckRequirementField>(); |
| } |
| |
| // Is this instruction a call to a static method? |
| bool IsStatic() const { |
| return GetInvokeType() == kStatic; |
| } |
| |
| // Does this method load kind need the current method as an input? |
| static bool NeedsCurrentMethodInput(DispatchInfo dispatch_info) { |
| return dispatch_info.method_load_kind == MethodLoadKind::kRecursive || |
| dispatch_info.method_load_kind == MethodLoadKind::kRuntimeCall || |
| dispatch_info.code_ptr_location == CodePtrLocation::kCallCriticalNative; |
| } |
| |
| // Get the index of the current method input. |
| size_t GetCurrentMethodIndex() const { |
| DCHECK(HasCurrentMethodInput()); |
| return GetCurrentMethodIndexUnchecked(); |
| } |
| size_t GetCurrentMethodIndexUnchecked() const { |
| return GetNumberOfArguments(); |
| } |
| |
| // Check if the method has a current method input. |
| bool HasCurrentMethodInput() const { |
| if (NeedsCurrentMethodInput(GetDispatchInfo())) { |
| DCHECK(InputAt(GetCurrentMethodIndexUnchecked()) == nullptr || // During argument setup. |
| InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod()); |
| return true; |
| } else { |
| DCHECK(InputCount() == GetCurrentMethodIndexUnchecked() || |
| InputAt(GetCurrentMethodIndexUnchecked()) == nullptr || // During argument setup. |
| !InputAt(GetCurrentMethodIndexUnchecked())->IsCurrentMethod()); |
| return false; |
| } |
| } |
| |
| // Get the index of the special input. |
| size_t GetSpecialInputIndex() const { |
| DCHECK(HasSpecialInput()); |
| return GetSpecialInputIndexUnchecked(); |
| } |
| size_t GetSpecialInputIndexUnchecked() const { |
| return GetNumberOfArguments() + (HasCurrentMethodInput() ? 1u : 0u); |
| } |
| |
| // Check if the method has a special input. |
| bool HasSpecialInput() const { |
| size_t other_inputs = |
| GetSpecialInputIndexUnchecked() + (IsStaticWithExplicitClinitCheck() ? 1u : 0u); |
| size_t input_count = InputCount(); |
| DCHECK_LE(input_count - other_inputs, 1u) << other_inputs << " " << input_count; |
| return other_inputs != input_count; |
| } |
| |
| void AddSpecialInput(HInstruction* input) { |
| // We allow only one special input. |
| DCHECK(!HasSpecialInput()); |
| InsertInputAt(GetSpecialInputIndexUnchecked(), input); |
| } |
| |
| // Remove the HClinitCheck or the replacement HLoadClass (set as last input by |
| // PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck) |
| // instruction; only relevant for static calls with explicit clinit check. |
| void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) { |
| DCHECK(IsStaticWithExplicitClinitCheck()); |
| size_t last_input_index = inputs_.size() - 1u; |
| HInstruction* last_input = inputs_.back().GetInstruction(); |
| DCHECK(last_input != nullptr); |
| DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName(); |
| RemoveAsUserOfInput(last_input_index); |
| inputs_.pop_back(); |
| SetPackedField<ClinitCheckRequirementField>(new_requirement); |
| DCHECK(!IsStaticWithExplicitClinitCheck()); |
| } |
| |
| // Is this a call to a static method whose declaring class has an |
| // explicit initialization check in the graph? |
| bool IsStaticWithExplicitClinitCheck() const { |
| return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit); |
| } |
| |
| // Is this a call to a static method whose declaring class has an |
| // implicit intialization check requirement? |
| bool IsStaticWithImplicitClinitCheck() const { |
| return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit); |
| } |
| |
| DECLARE_INSTRUCTION(InvokeStaticOrDirect); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InvokeStaticOrDirect); |
| |
| private: |
| static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits; |
| static constexpr size_t kFieldClinitCheckRequirementSize = |
| MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast)); |
| static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits = |
| kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize; |
| static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using ClinitCheckRequirementField = BitField<ClinitCheckRequirement, |
| kFieldClinitCheckRequirement, |
| kFieldClinitCheckRequirementSize>; |
| |
| DispatchInfo dispatch_info_; |
| }; |
| std::ostream& operator<<(std::ostream& os, MethodLoadKind rhs); |
| std::ostream& operator<<(std::ostream& os, CodePtrLocation rhs); |
| std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs); |
| |
| class HInvokeVirtual final : public HInvoke { |
| public: |
| HInvokeVirtual(ArenaAllocator* allocator, |
| uint32_t number_of_arguments, |
| DataType::Type return_type, |
| uint32_t dex_pc, |
| MethodReference method_reference, |
| ArtMethod* resolved_method, |
| MethodReference resolved_method_reference, |
| uint32_t vtable_index) |
| : HInvoke(kInvokeVirtual, |
| allocator, |
| number_of_arguments, |
| 0u, |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| resolved_method_reference, |
| kVirtual), |
| vtable_index_(vtable_index) { |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| bool CanBeNull() const override { |
| switch (GetIntrinsic()) { |
| case Intrinsics::kThreadCurrentThread: |
| case Intrinsics::kStringBufferAppend: |
| case Intrinsics::kStringBufferToString: |
| case Intrinsics::kStringBuilderAppendObject: |
| case Intrinsics::kStringBuilderAppendString: |
| case Intrinsics::kStringBuilderAppendCharSequence: |
| case Intrinsics::kStringBuilderAppendCharArray: |
| case Intrinsics::kStringBuilderAppendBoolean: |
| case Intrinsics::kStringBuilderAppendChar: |
| case Intrinsics::kStringBuilderAppendInt: |
| case Intrinsics::kStringBuilderAppendLong: |
| case Intrinsics::kStringBuilderAppendFloat: |
| case Intrinsics::kStringBuilderAppendDouble: |
| case Intrinsics::kStringBuilderToString: |
| return false; |
| default: |
| return HInvoke::CanBeNull(); |
| } |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const override; |
| |
| uint32_t GetVTableIndex() const { return vtable_index_; } |
| |
| DECLARE_INSTRUCTION(InvokeVirtual); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InvokeVirtual); |
| |
| private: |
| // Cached value of the resolved method, to avoid needing the mutator lock. |
| const uint32_t vtable_index_; |
| }; |
| |
| class HInvokeInterface final : public HInvoke { |
| public: |
| HInvokeInterface(ArenaAllocator* allocator, |
| uint32_t number_of_arguments, |
| DataType::Type return_type, |
| uint32_t dex_pc, |
| MethodReference method_reference, |
| ArtMethod* resolved_method, |
| MethodReference resolved_method_reference, |
| uint32_t imt_index, |
| MethodLoadKind load_kind) |
| : HInvoke(kInvokeInterface, |
| allocator, |
| number_of_arguments + (NeedsCurrentMethod(load_kind) ? 1 : 0), |
| 0u, |
| return_type, |
| dex_pc, |
| method_reference, |
| resolved_method, |
| resolved_method_reference, |
| kInterface), |
| imt_index_(imt_index), |
| hidden_argument_load_kind_(load_kind) { |
| } |
| |
| static bool NeedsCurrentMethod(MethodLoadKind load_kind) { |
| return load_kind == MethodLoadKind::kRecursive; |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsBss() const override { |
| return GetHiddenArgumentLoadKind() == MethodLoadKind::kBssEntry; |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { |
| // TODO: Add implicit null checks in intrinsics. |
| return (obj == InputAt(0)) && !IsIntrinsic(); |
| } |
| |
| size_t GetSpecialInputIndex() const { |
| return GetNumberOfArguments(); |
| } |
| |
| void AddSpecialInput(HInstruction* input) { |
| InsertInputAt(GetSpecialInputIndex(), input); |
| } |
| |
| uint32_t GetImtIndex() const { return imt_index_; } |
| MethodLoadKind GetHiddenArgumentLoadKind() const { return hidden_argument_load_kind_; } |
| |
| DECLARE_INSTRUCTION(InvokeInterface); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InvokeInterface); |
| |
| private: |
| // Cached value of the resolved method, to avoid needing the mutator lock. |
| const uint32_t imt_index_; |
| |
| // How the hidden argument (the interface method) is being loaded. |
| const MethodLoadKind hidden_argument_load_kind_; |
| }; |
| |
| class HNeg final : public HUnaryOperation { |
| public: |
| HNeg(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HUnaryOperation(kNeg, result_type, input, dex_pc) { |
| DCHECK_EQ(result_type, DataType::Kind(input->GetType())); |
| } |
| |
| template <typename T> static T Compute(T x) { return -x; } |
| |
| HConstant* Evaluate(HIntConstant* x) const override { |
| return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x) const override { |
| return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x) const override { |
| return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x) const override { |
| return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Neg); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Neg); |
| }; |
| |
| class HNewArray final : public HExpression<2> { |
| public: |
| HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc, size_t component_size_shift) |
| : HExpression(kNewArray, DataType::Type::kReference, SideEffects::CanTriggerGC(), dex_pc) { |
| SetRawInputAt(0, cls); |
| SetRawInputAt(1, length); |
| SetPackedField<ComponentSizeShiftField>(component_size_shift); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| // Calls runtime so needs an environment. |
| bool NeedsEnvironment() const override { return true; } |
| |
| // May throw NegativeArraySizeException, OutOfMemoryError, etc. |
| bool CanThrow() const override { return true; } |
| |
| bool CanBeNull() const override { return false; } |
| |
| HLoadClass* GetLoadClass() const { |
| DCHECK(InputAt(0)->IsLoadClass()); |
| return InputAt(0)->AsLoadClass(); |
| } |
| |
| HInstruction* GetLength() const { |
| return InputAt(1); |
| } |
| |
| size_t GetComponentSizeShift() { |
| return GetPackedField<ComponentSizeShiftField>(); |
| } |
| |
| DECLARE_INSTRUCTION(NewArray); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(NewArray); |
| |
| private: |
| static constexpr size_t kFieldComponentSizeShift = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldComponentSizeShiftSize = MinimumBitsToStore(3u); |
| static constexpr size_t kNumberOfNewArrayPackedBits = |
| kFieldComponentSizeShift + kFieldComponentSizeShiftSize; |
| static_assert(kNumberOfNewArrayPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using ComponentSizeShiftField = |
| BitField<size_t, kFieldComponentSizeShift, kFieldComponentSizeShift>; |
| }; |
| |
| class HAdd final : public HBinaryOperation { |
| public: |
| HAdd(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kAdd, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsCommutative() const override { return true; } |
| |
| template <typename T> static T Compute(T x, T y) { return x + y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Add); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Add); |
| }; |
| |
| class HSub final : public HBinaryOperation { |
| public: |
| HSub(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kSub, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| template <typename T> static T Compute(T x, T y) { return x - y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Sub); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Sub); |
| }; |
| |
| class HMul final : public HBinaryOperation { |
| public: |
| HMul(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kMul, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsCommutative() const override { return true; } |
| |
| template <typename T> static T Compute(T x, T y) { return x * y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Mul); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Mul); |
| }; |
| |
| class HDiv final : public HBinaryOperation { |
| public: |
| HDiv(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc) |
| : HBinaryOperation(kDiv, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| template <typename T> |
| T ComputeIntegral(T x, T y) const { |
| DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); |
| // Our graph structure ensures we never have 0 for `y` during |
| // constant folding. |
| DCHECK_NE(y, 0); |
| // Special case -1 to avoid getting a SIGFPE on x86(_64). |
| return (y == -1) ? -x : x / y; |
| } |
| |
| template <typename T> |
| T ComputeFP(T x, T y) const { |
| DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); |
| return x / y; |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Div); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Div); |
| }; |
| |
| class HRem final : public HBinaryOperation { |
| public: |
| HRem(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc) |
| : HBinaryOperation(kRem, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| template <typename T> |
| T ComputeIntegral(T x, T y) const { |
| DCHECK(!DataType::IsFloatingPointType(GetType())) << GetType(); |
| // Our graph structure ensures we never have 0 for `y` during |
| // constant folding. |
| DCHECK_NE(y, 0); |
| // Special case -1 to avoid getting a SIGFPE on x86(_64). |
| return (y == -1) ? 0 : x % y; |
| } |
| |
| template <typename T> |
| T ComputeFP(T x, T y) const { |
| DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); |
| return std::fmod(x, y); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const override { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const override { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| ComputeFP(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Rem); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Rem); |
| }; |
| |
| class HMin final : public HBinaryOperation { |
| public: |
| HMin(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc) |
| : HBinaryOperation(kMin, result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| bool IsCommutative() const override { return true; } |
| |
| // Evaluation for integral values. |
| template <typename T> static T ComputeIntegral(T x, T y) { |
| return (x <= y) ? x : y; |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // TODO: Evaluation for floating-point values. |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } |
| |
| DECLARE_INSTRUCTION(Min); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Min); |
| }; |
| |
| class HMax final : public HBinaryOperation { |
| public: |
| HMax(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc) |
| : HBinaryOperation(kMax, result_type, left, right, SideEffects::None(), dex_pc) {} |
| |
| bool IsCommutative() const override { return true; } |
| |
| // Evaluation for integral values. |
| template <typename T> static T ComputeIntegral(T x, T y) { |
| return (x >= y) ? x : y; |
| } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| // TODO: Evaluation for floating-point values. |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { return nullptr; } |
| |
| DECLARE_INSTRUCTION(Max); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Max); |
| }; |
| |
| class HAbs final : public HUnaryOperation { |
| public: |
| HAbs(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HUnaryOperation(kAbs, result_type, input, dex_pc) {} |
| |
| // Evaluation for integral values. |
| template <typename T> static T ComputeIntegral(T x) { |
| return x < 0 ? -x : x; |
| } |
| |
| // Evaluation for floating-point values. |
| // Note, as a "quality of implementation", rather than pure "spec compliance", |
| // we require that Math.abs() clears the sign bit (but changes nothing else) |
| // for all floating-point numbers, including NaN (signaling NaN may become quiet though). |
| // http://b/30758343 |
| template <typename T, typename S> static T ComputeFP(T x) { |
| S bits = bit_cast<S, T>(x); |
| return bit_cast<T, S>(bits & std::numeric_limits<S>::max()); |
| } |
| |
| HConstant* Evaluate(HIntConstant* x) const override { |
| return GetBlock()->GetGraph()->GetIntConstant(ComputeIntegral(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x) const override { |
| return GetBlock()->GetGraph()->GetLongConstant(ComputeIntegral(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x) const override { |
| return GetBlock()->GetGraph()->GetFloatConstant( |
| ComputeFP<float, int32_t>(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HDoubleConstant* x) const override { |
| return GetBlock()->GetGraph()->GetDoubleConstant( |
| ComputeFP<double, int64_t>(x->GetValue()), GetDexPc()); |
| } |
| |
| DECLARE_INSTRUCTION(Abs); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Abs); |
| }; |
| |
| class HDivZeroCheck final : public HExpression<1> { |
| public: |
| // `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException` |
| // constructor. However it can only do it on a fatal slow path so execution never returns to the |
| // instruction following the current one; thus 'SideEffects::None()' is used. |
| HDivZeroCheck(HInstruction* value, uint32_t dex_pc) |
| : HExpression(kDivZeroCheck, value->GetType(), SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const override { return true; } |
| bool CanThrow() const override { return true; } |
| |
| DECLARE_INSTRUCTION(DivZeroCheck); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(DivZeroCheck); |
| }; |
| |
| class HShl final : public HBinaryOperation { |
| public: |
| HShl(DataType::Type result_type, |
| HInstruction* value, |
| HInstruction* distance, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kShl, result_type, value, distance, SideEffects::None(), dex_pc) { |
| DCHECK_EQ(result_type, DataType::Kind(value->GetType())); |
| DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); |
| } |
| |
| template <typename T> |
| static T Compute(T value, int32_t distance, int32_t max_shift_distance) { |
| return value << (distance & max_shift_distance); |
| } |
| |
| HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, |
| HLongConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, |
| HFloatConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, |
| HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Shl); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Shl); |
| }; |
| |
| class HShr final : public HBinaryOperation { |
| public: |
| HShr(DataType::Type result_type, |
| HInstruction* value, |
| HInstruction* distance, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kShr, result_type, value, distance, SideEffects::None(), dex_pc) { |
| DCHECK_EQ(result_type, DataType::Kind(value->GetType())); |
| DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); |
| } |
| |
| template <typename T> |
| static T Compute(T value, int32_t distance, int32_t max_shift_distance) { |
| return value >> (distance & max_shift_distance); |
| } |
| |
| HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, |
| HLongConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, |
| HFloatConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, |
| HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Shr); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Shr); |
| }; |
| |
| class HUShr final : public HBinaryOperation { |
| public: |
| HUShr(DataType::Type result_type, |
| HInstruction* value, |
| HInstruction* distance, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kUShr, result_type, value, distance, SideEffects::None(), dex_pc) { |
| DCHECK_EQ(result_type, DataType::Kind(value->GetType())); |
| DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(distance->GetType())); |
| } |
| |
| template <typename T> |
| static T Compute(T value, int32_t distance, int32_t max_shift_distance) { |
| using V = std::make_unsigned_t<T>; |
| V ux = static_cast<V>(value); |
| return static_cast<T>(ux >> (distance & max_shift_distance)); |
| } |
| |
| HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, |
| HLongConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, |
| HFloatConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, |
| HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(UShr); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(UShr); |
| }; |
| |
| class HAnd final : public HBinaryOperation { |
| public: |
| HAnd(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kAnd, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsCommutative() const override { return true; } |
| |
| template <typename T> static T Compute(T x, T y) { return x & y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(And); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(And); |
| }; |
| |
| class HOr final : public HBinaryOperation { |
| public: |
| HOr(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kOr, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsCommutative() const override { return true; } |
| |
| template <typename T> static T Compute(T x, T y) { return x | y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Or); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Or); |
| }; |
| |
| class HXor final : public HBinaryOperation { |
| public: |
| HXor(DataType::Type result_type, |
| HInstruction* left, |
| HInstruction* right, |
| uint32_t dex_pc = kNoDexPc) |
| : HBinaryOperation(kXor, result_type, left, right, SideEffects::None(), dex_pc) { |
| } |
| |
| bool IsCommutative() const override { return true; } |
| |
| template <typename T> static T Compute(T x, T y) { return x ^ y; } |
| |
| HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(x->GetValue(), y->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED, |
| HFloatConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED, |
| HDoubleConstant* y ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Xor); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Xor); |
| }; |
| |
| class HRor final : public HBinaryOperation { |
| public: |
| HRor(DataType::Type result_type, HInstruction* value, HInstruction* distance) |
| : HBinaryOperation(kRor, result_type, value, distance) { |
| } |
| |
| template <typename T> |
| static T Compute(T value, int32_t distance, int32_t max_shift_value) { |
| using V = std::make_unsigned_t<T>; |
| V ux = static_cast<V>(value); |
| if ((distance & max_shift_value) == 0) { |
| return static_cast<T>(ux); |
| } else { |
| const V reg_bits = sizeof(T) * 8; |
| return static_cast<T>(ux >> (distance & max_shift_value)) | |
| (value << (reg_bits - (distance & max_shift_value))); |
| } |
| } |
| |
| HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetIntConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const override { |
| return GetBlock()->GetGraph()->GetLongConstant( |
| Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED, |
| HLongConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for the (long, long) case."; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED, |
| HFloatConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED, |
| HDoubleConstant* distance ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Ror); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Ror); |
| }; |
| |
| // The value of a parameter in this method. Its location depends on |
| // the calling convention. |
| class HParameterValue final : public HExpression<0> { |
| public: |
| HParameterValue(const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| uint8_t index, |
| DataType::Type parameter_type, |
| bool is_this = false) |
| : HExpression(kParameterValue, parameter_type, SideEffects::None(), kNoDexPc), |
| dex_file_(dex_file), |
| type_index_(type_index), |
| index_(index) { |
| SetPackedFlag<kFlagIsThis>(is_this); |
| SetPackedFlag<kFlagCanBeNull>(!is_this); |
| } |
| |
| const DexFile& GetDexFile() const { return dex_file_; } |
| dex::TypeIndex GetTypeIndex() const { return type_index_; } |
| uint8_t GetIndex() const { return index_; } |
| bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); } |
| |
| bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } |
| void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); } |
| |
| DECLARE_INSTRUCTION(ParameterValue); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ParameterValue); |
| |
| private: |
| // Whether or not the parameter value corresponds to 'this' argument. |
| static constexpr size_t kFlagIsThis = kNumberOfGenericPackedBits; |
| static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1; |
| static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1; |
| static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const DexFile& dex_file_; |
| const dex::TypeIndex type_index_; |
| // The index of this parameter in the parameters list. Must be less |
| // than HGraph::number_of_in_vregs_. |
| const uint8_t index_; |
| }; |
| |
| class HNot final : public HUnaryOperation { |
| public: |
| HNot(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HUnaryOperation(kNot, result_type, input, dex_pc) { |
| } |
| |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| template <typename T> static T Compute(T x) { return ~x; } |
| |
| HConstant* Evaluate(HIntConstant* x) const override { |
| return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x) const override { |
| return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(Not); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Not); |
| }; |
| |
| class HBooleanNot final : public HUnaryOperation { |
| public: |
| explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HUnaryOperation(kBooleanNot, DataType::Type::kBool, input, dex_pc) { |
| } |
| |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| template <typename T> static bool Compute(T x) { |
| DCHECK(IsUint<1>(x)) << x; |
| return !x; |
| } |
| |
| HConstant* Evaluate(HIntConstant* x) const override { |
| return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc()); |
| } |
| HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for long values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for float values"; |
| UNREACHABLE(); |
| } |
| HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const override { |
| LOG(FATAL) << DebugName() << " is not defined for double values"; |
| UNREACHABLE(); |
| } |
| |
| DECLARE_INSTRUCTION(BooleanNot); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(BooleanNot); |
| }; |
| |
| class HTypeConversion final : public HExpression<1> { |
| public: |
| // Instantiate a type conversion of `input` to `result_type`. |
| HTypeConversion(DataType::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kTypeConversion, result_type, SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, input); |
| // Invariant: We should never generate a conversion to a Boolean value. |
| DCHECK_NE(DataType::Type::kBool, result_type); |
| } |
| |
| HInstruction* GetInput() const { return InputAt(0); } |
| DataType::Type GetInputType() const { return GetInput()->GetType(); } |
| DataType::Type GetResultType() const { return GetType(); } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| // Return whether the conversion is implicit. This includes conversion to the same type. |
| bool IsImplicitConversion() const { |
| return DataType::IsTypeConversionImplicit(GetInputType(), GetResultType()); |
| } |
| |
| // Try to statically evaluate the conversion and return a HConstant |
| // containing the result. If the input cannot be converted, return nullptr. |
| HConstant* TryStaticEvaluation() const; |
| |
| DECLARE_INSTRUCTION(TypeConversion); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(TypeConversion); |
| }; |
| |
| static constexpr uint32_t kNoRegNumber = -1; |
| |
| class HNullCheck final : public HExpression<1> { |
| public: |
| // `HNullCheck` can trigger GC, as it may call the `NullPointerException` |
| // constructor. However it can only do it on a fatal slow path so execution never returns to the |
| // instruction following the current one; thus 'SideEffects::None()' is used. |
| HNullCheck(HInstruction* value, uint32_t dex_pc) |
| : HExpression(kNullCheck, value->GetType(), SideEffects::None(), dex_pc) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const override { return true; } |
| |
| bool CanThrow() const override { return true; } |
| |
| bool CanBeNull() const override { return false; } |
| |
| DECLARE_INSTRUCTION(NullCheck); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(NullCheck); |
| }; |
| |
| // Embeds an ArtField and all the information required by the compiler. We cache |
| // that information to avoid requiring the mutator lock every time we need it. |
| class FieldInfo : public ValueObject { |
| public: |
| FieldInfo(ArtField* field, |
| MemberOffset field_offset, |
| DataType::Type field_type, |
| bool is_volatile, |
| uint32_t index, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file) |
| : field_(field), |
| field_offset_(field_offset), |
| field_type_(field_type), |
| is_volatile_(is_volatile), |
| index_(index), |
| declaring_class_def_index_(declaring_class_def_index), |
| dex_file_(dex_file) {} |
| |
| ArtField* GetField() const { return field_; } |
| MemberOffset GetFieldOffset() const { return field_offset_; } |
| DataType::Type GetFieldType() const { return field_type_; } |
| uint32_t GetFieldIndex() const { return index_; } |
| uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;} |
| const DexFile& GetDexFile() const { return dex_file_; } |
| bool IsVolatile() const { return is_volatile_; } |
| |
| bool Equals(const FieldInfo& other) const { |
| return field_ == other.field_ && |
| field_offset_ == other.field_offset_ && |
| field_type_ == other.field_type_ && |
| is_volatile_ == other.is_volatile_ && |
| index_ == other.index_ && |
| declaring_class_def_index_ == other.declaring_class_def_index_ && |
| &dex_file_ == &other.dex_file_; |
| } |
| |
| std::ostream& Dump(std::ostream& os) const { |
| os << field_ << ", off: " << field_offset_ << ", type: " << field_type_ |
| << ", volatile: " << std::boolalpha << is_volatile_ << ", index_: " << std::dec << index_ |
| << ", declaring_class: " << declaring_class_def_index_ << ", dex: " << dex_file_; |
| return os; |
| } |
| |
| private: |
| ArtField* const field_; |
| const MemberOffset field_offset_; |
| const DataType::Type field_type_; |
| const bool is_volatile_; |
| const uint32_t index_; |
| const uint16_t declaring_class_def_index_; |
| const DexFile& dex_file_; |
| }; |
| |
| inline bool operator==(const FieldInfo& a, const FieldInfo& b) { |
| return a.Equals(b); |
| } |
| |
| inline std::ostream& operator<<(std::ostream& os, const FieldInfo& a) { |
| return a.Dump(os); |
| } |
| |
| class HInstanceFieldGet final : public HExpression<1> { |
| public: |
| HInstanceFieldGet(HInstruction* value, |
| ArtField* field, |
| DataType::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HExpression(kInstanceFieldGet, |
| field_type, |
| SideEffects::FieldReadOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field, |
| field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file) { |
| SetRawInputAt(0, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return !IsVolatile(); } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| const HInstanceFieldGet* other_get = other->AsInstanceFieldGet(); |
| return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { |
| return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); |
| } |
| |
| size_t ComputeHashCode() const override { |
| return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); |
| } |
| |
| bool IsFieldAccess() const override { return true; } |
| const FieldInfo& GetFieldInfo() const override { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| |
| void SetType(DataType::Type new_type) { |
| DCHECK(DataType::IsIntegralType(GetType())); |
| DCHECK(DataType::IsIntegralType(new_type)); |
| DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); |
| SetPackedField<TypeField>(new_type); |
| } |
| |
| DECLARE_INSTRUCTION(InstanceFieldGet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InstanceFieldGet); |
| |
| private: |
| const FieldInfo field_info_; |
| }; |
| |
| class HPredicatedInstanceFieldGet final : public HExpression<2> { |
| public: |
| HPredicatedInstanceFieldGet(HInstanceFieldGet* orig, |
| HInstruction* target, |
| HInstruction* default_val) |
| : HExpression(kPredicatedInstanceFieldGet, |
| orig->GetFieldType(), |
| orig->GetSideEffects(), |
| orig->GetDexPc()), |
| field_info_(orig->GetFieldInfo()) { |
| // NB Default-val is at 0 so we can avoid doing a move. |
| SetRawInputAt(1, target); |
| SetRawInputAt(0, default_val); |
| } |
| |
| HPredicatedInstanceFieldGet(HInstruction* value, |
| ArtField* field, |
| HInstruction* default_value, |
| DataType::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HExpression(kPredicatedInstanceFieldGet, |
| field_type, |
| SideEffects::FieldReadOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field, |
| field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file) { |
| SetRawInputAt(1, value); |
| SetRawInputAt(0, default_value); |
| } |
| |
| bool IsClonable() const override { |
| return true; |
| } |
| bool CanBeMoved() const override { |
| return !IsVolatile(); |
| } |
| |
| HInstruction* GetDefaultValue() const { |
| return InputAt(0); |
| } |
| HInstruction* GetTarget() const { |
| return InputAt(1); |
| } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| const HPredicatedInstanceFieldGet* other_get = other->AsPredicatedInstanceFieldGet(); |
| return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue() && |
| GetDefaultValue() == other_get->GetDefaultValue(); |
| } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { |
| return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); |
| } |
| |
| size_t ComputeHashCode() const override { |
| return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); |
| } |
| |
| bool IsFieldAccess() const override { return true; } |
| const FieldInfo& GetFieldInfo() const override { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| |
| void SetType(DataType::Type new_type) { |
| DCHECK(DataType::IsIntegralType(GetType())); |
| DCHECK(DataType::IsIntegralType(new_type)); |
| DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); |
| SetPackedField<TypeField>(new_type); |
| } |
| |
| DECLARE_INSTRUCTION(PredicatedInstanceFieldGet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(PredicatedInstanceFieldGet); |
| |
| private: |
| const FieldInfo field_info_; |
| }; |
| |
| class HInstanceFieldSet final : public HExpression<2> { |
| public: |
| HInstanceFieldSet(HInstruction* object, |
| HInstruction* value, |
| ArtField* field, |
| DataType::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HExpression(kInstanceFieldSet, |
| SideEffects::FieldWriteOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field, |
| field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file) { |
| SetPackedFlag<kFlagValueCanBeNull>(true); |
| SetPackedFlag<kFlagIsPredicatedSet>(false); |
| SetRawInputAt(0, object); |
| SetRawInputAt(1, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { |
| return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value()); |
| } |
| |
| bool IsFieldAccess() const override { return true; } |
| const FieldInfo& GetFieldInfo() const override { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| HInstruction* GetValue() const { return InputAt(1); } |
| bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } |
| void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } |
| bool GetIsPredicatedSet() const { return GetPackedFlag<kFlagIsPredicatedSet>(); } |
| void SetIsPredicatedSet(bool value = true) { SetPackedFlag<kFlagIsPredicatedSet>(value); } |
| |
| DECLARE_INSTRUCTION(InstanceFieldSet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InstanceFieldSet); |
| |
| private: |
| static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; |
| static constexpr size_t kFlagIsPredicatedSet = kFlagValueCanBeNull + 1; |
| static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagIsPredicatedSet + 1; |
| static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const FieldInfo field_info_; |
| }; |
| |
| class HArrayGet final : public HExpression<2> { |
| public: |
| HArrayGet(HInstruction* array, |
| HInstruction* index, |
| DataType::Type type, |
| uint32_t dex_pc) |
| : HArrayGet(array, |
| index, |
| type, |
| SideEffects::ArrayReadOfType(type), |
| dex_pc, |
| /* is_string_char_at= */ false) { |
| } |
| |
| HArrayGet(HInstruction* array, |
| HInstruction* index, |
| DataType::Type type, |
| SideEffects side_effects, |
| uint32_t dex_pc, |
| bool is_string_char_at) |
| : HExpression(kArrayGet, type, side_effects, dex_pc) { |
| SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); |
| SetRawInputAt(0, array); |
| SetRawInputAt(1, index); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { |
| // TODO: We can be smarter here. |
| // Currently, unless the array is the result of NewArray, the array access is always |
| // preceded by some form of null NullCheck necessary for the bounds check, usually |
| // implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for |
| // dynamic BCE. There are cases when these could be removed to produce better code. |
| // If we ever add optimizations to do so we should allow an implicit check here |
| // (as long as the address falls in the first page). |
| // |
| // As an example of such fancy optimization, we could eliminate BoundsCheck for |
| // a = cond ? new int[1] : null; |
| // a[0]; // The Phi does not need bounds check for either input. |
| return false; |
| } |
| |
| bool IsEquivalentOf(HArrayGet* other) const { |
| bool result = (GetDexPc() == other->GetDexPc()); |
| if (kIsDebugBuild && result) { |
| DCHECK_EQ(GetBlock(), other->GetBlock()); |
| DCHECK_EQ(GetArray(), other->GetArray()); |
| DCHECK_EQ(GetIndex(), other->GetIndex()); |
| if (DataType::IsIntOrLongType(GetType())) { |
| DCHECK(DataType::IsFloatingPointType(other->GetType())) << other->GetType(); |
| } else { |
| DCHECK(DataType::IsFloatingPointType(GetType())) << GetType(); |
| DCHECK(DataType::IsIntOrLongType(other->GetType())) << other->GetType(); |
| } |
| } |
| return result; |
| } |
| |
| bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } |
| |
| HInstruction* GetArray() const { return InputAt(0); } |
| HInstruction* GetIndex() const { return InputAt(1); } |
| |
| void SetType(DataType::Type new_type) { |
| DCHECK(DataType::IsIntegralType(GetType())); |
| DCHECK(DataType::IsIntegralType(new_type)); |
| DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); |
| SetPackedField<TypeField>(new_type); |
| } |
| |
| DECLARE_INSTRUCTION(ArrayGet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ArrayGet); |
| |
| private: |
| // We treat a String as an array, creating the HArrayGet from String.charAt() |
| // intrinsic in the instruction simplifier. We can always determine whether |
| // a particular HArrayGet is actually a String.charAt() by looking at the type |
| // of the input but that requires holding the mutator lock, so we prefer to use |
| // a flag, so that code generators don't need to do the locking. |
| static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits; |
| static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1; |
| static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| }; |
| |
| class HArraySet final : public HExpression<3> { |
| public: |
| HArraySet(HInstruction* array, |
| HInstruction* index, |
| HInstruction* value, |
| DataType::Type expected_component_type, |
| uint32_t dex_pc) |
| : HArraySet(array, |
| index, |
| value, |
| expected_component_type, |
| // Make a best guess for side effects now, may be refined during SSA building. |
| ComputeSideEffects(GetComponentType(value->GetType(), expected_component_type)), |
| dex_pc) { |
| } |
| |
| HArraySet(HInstruction* array, |
| HInstruction* index, |
| HInstruction* value, |
| DataType::Type expected_component_type, |
| SideEffects side_effects, |
| uint32_t dex_pc) |
| : HExpression(kArraySet, side_effects, dex_pc) { |
| SetPackedField<ExpectedComponentTypeField>(expected_component_type); |
| SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == DataType::Type::kReference); |
| SetPackedFlag<kFlagValueCanBeNull>(true); |
| SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false); |
| SetRawInputAt(0, array); |
| SetRawInputAt(1, index); |
| SetRawInputAt(2, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| bool NeedsEnvironment() const override { |
| // We call a runtime method to throw ArrayStoreException. |
| return NeedsTypeCheck(); |
| } |
| |
| // Can throw ArrayStoreException. |
| bool CanThrow() const override { return NeedsTypeCheck(); } |
| |
| bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const override { |
| // TODO: Same as for ArrayGet. |
| return false; |
| } |
| |
| void ClearNeedsTypeCheck() { |
| SetPackedFlag<kFlagNeedsTypeCheck>(false); |
| } |
| |
| void ClearValueCanBeNull() { |
| SetPackedFlag<kFlagValueCanBeNull>(false); |
| } |
| |
| void SetStaticTypeOfArrayIsObjectArray() { |
| SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true); |
| } |
| |
| bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } |
| bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); } |
| bool StaticTypeOfArrayIsObjectArray() const { |
| return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(); |
| } |
| |
| HInstruction* GetArray() const { return InputAt(0); } |
| HInstruction* GetIndex() const { return InputAt(1); } |
| HInstruction* GetValue() const { return InputAt(2); } |
| |
| DataType::Type GetComponentType() const { |
| return GetComponentType(GetValue()->GetType(), GetRawExpectedComponentType()); |
| } |
| |
| static DataType::Type GetComponentType(DataType::Type value_type, |
| DataType::Type expected_component_type) { |
| // The Dex format does not type floating point index operations. Since the |
| // `expected_component_type` comes from SSA building and can therefore not |
| // be correct, we also check what is the value type. If it is a floating |
| // point type, we must use that type. |
| return ((value_type == DataType::Type::kFloat32) || (value_type == DataType::Type::kFloat64)) |
| ? value_type |
| : expected_component_type; |
| } |
| |
| DataType::Type GetRawExpectedComponentType() const { |
| return GetPackedField<ExpectedComponentTypeField>(); |
| } |
| |
| static SideEffects ComputeSideEffects(DataType::Type type) { |
| return SideEffects::ArrayWriteOfType(type).Union(SideEffectsForArchRuntimeCalls(type)); |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls(DataType::Type value_type) { |
| return (value_type == DataType::Type::kReference) ? SideEffects::CanTriggerGC() |
| : SideEffects::None(); |
| } |
| |
| DECLARE_INSTRUCTION(ArraySet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ArraySet); |
| |
| private: |
| static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldExpectedComponentTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); |
| static constexpr size_t kFlagNeedsTypeCheck = |
| kFieldExpectedComponentType + kFieldExpectedComponentTypeSize; |
| static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1; |
| // Cached information for the reference_type_info_ so that codegen |
| // does not need to inspect the static type. |
| static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1; |
| static constexpr size_t kNumberOfArraySetPackedBits = |
| kFlagStaticTypeOfArrayIsObjectArray + 1; |
| static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using ExpectedComponentTypeField = |
| BitField<DataType::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>; |
| }; |
| |
| class HArrayLength final : public HExpression<1> { |
| public: |
| HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false) |
| : HExpression(kArrayLength, DataType::Type::kInt32, SideEffects::None(), dex_pc) { |
| SetPackedFlag<kFlagIsStringLength>(is_string_length); |
| // Note that arrays do not change length, so the instruction does not |
| // depend on any write. |
| SetRawInputAt(0, array); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| bool CanDoImplicitNullCheckOn(HInstruction* obj) const override { |
| return obj == InputAt(0); |
| } |
| |
| bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); } |
| |
| DECLARE_INSTRUCTION(ArrayLength); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ArrayLength); |
| |
| private: |
| // We treat a String as an array, creating the HArrayLength from String.length() |
| // or String.isEmpty() intrinsic in the instruction simplifier. We can always |
| // determine whether a particular HArrayLength is actually a String.length() by |
| // looking at the type of the input but that requires holding the mutator lock, so |
| // we prefer to use a flag, so that code generators don't need to do the locking. |
| static constexpr size_t kFlagIsStringLength = kNumberOfGenericPackedBits; |
| static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1; |
| static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| }; |
| |
| class HBoundsCheck final : public HExpression<2> { |
| public: |
| // `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException` |
| // constructor. However it can only do it on a fatal slow path so execution never returns to the |
| // instruction following the current one; thus 'SideEffects::None()' is used. |
| HBoundsCheck(HInstruction* index, |
| HInstruction* length, |
| uint32_t dex_pc, |
| bool is_string_char_at = false) |
| : HExpression(kBoundsCheck, index->GetType(), SideEffects::None(), dex_pc) { |
| DCHECK_EQ(DataType::Type::kInt32, DataType::Kind(index->GetType())); |
| SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at); |
| SetRawInputAt(0, index); |
| SetRawInputAt(1, length); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const override { return true; } |
| |
| bool CanThrow() const override { return true; } |
| |
| bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); } |
| |
| HInstruction* GetIndex() const { return InputAt(0); } |
| |
| DECLARE_INSTRUCTION(BoundsCheck); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(BoundsCheck); |
| |
| private: |
| static constexpr size_t kFlagIsStringCharAt = kNumberOfGenericPackedBits; |
| static constexpr size_t kNumberOfBoundsCheckPackedBits = kFlagIsStringCharAt + 1; |
| static_assert(kNumberOfBoundsCheckPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| }; |
| |
| class HSuspendCheck final : public HExpression<0> { |
| public: |
| explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc) |
| : HExpression(kSuspendCheck, SideEffects::CanTriggerGC(), dex_pc), |
| slow_path_(nullptr) { |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| bool NeedsEnvironment() const override { |
| return true; |
| } |
| |
| void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; } |
| SlowPathCode* GetSlowPath() const { return slow_path_; } |
| |
| DECLARE_INSTRUCTION(SuspendCheck); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(SuspendCheck); |
| |
| private: |
| // Only used for code generation, in order to share the same slow path between back edges |
| // of a same loop. |
| SlowPathCode* slow_path_; |
| }; |
| |
| // Pseudo-instruction which provides the native debugger with mapping information. |
| // It ensures that we can generate line number and local variables at this point. |
| class HNativeDebugInfo : public HExpression<0> { |
| public: |
| explicit HNativeDebugInfo(uint32_t dex_pc) |
| : HExpression<0>(kNativeDebugInfo, SideEffects::None(), dex_pc) { |
| } |
| |
| bool NeedsEnvironment() const override { |
| return true; |
| } |
| |
| DECLARE_INSTRUCTION(NativeDebugInfo); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(NativeDebugInfo); |
| }; |
| |
| /** |
| * Instruction to load a Class object. |
| */ |
| class HLoadClass final : public HInstruction { |
| public: |
| // Determines how to load the Class. |
| enum class LoadKind { |
| // We cannot load this class. See HSharpening::SharpenLoadClass. |
| kInvalid = -1, |
| |
| // Use the Class* from the method's own ArtMethod*. |
| kReferrersClass, |
| |
| // Use PC-relative boot image Class* address that will be known at link time. |
| // Used for boot image classes referenced by boot image code. |
| kBootImageLinkTimePcRelative, |
| |
| // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. |
| // Used for boot image classes referenced by apps in AOT-compiled code. |
| kBootImageRelRo, |
| |
| // Load from an entry in the .bss section using a PC-relative load. |
| // Used for classes outside boot image referenced by AOT-compiled app and boot image code. |
| kBssEntry, |
| |
| // Load from an entry for public class in the .bss section using a PC-relative load. |
| // Used for classes that were unresolved during AOT-compilation outside the literal |
| // package of the compiling class. Such classes are accessible only if they are public |
| // and the .bss entry shall therefore be filled only if the resolved class is public. |
| kBssEntryPublic, |
| |
| // Load from an entry for package class in the .bss section using a PC-relative load. |
| // Used for classes that were unresolved during AOT-compilation but within the literal |
| // package of the compiling class. Such classes are accessible if they are public or |
| // in the same package which, given the literal package match, requires only matching |
| // defining class loader and the .bss entry shall therefore be filled only if at least |
| // one of those conditions holds. Note that all code in an oat file belongs to classes |
| // with the same defining class loader. |
| kBssEntryPackage, |
| |
| // Use a known boot image Class* address, embedded in the code by the codegen. |
| // Used for boot image classes referenced by apps in JIT-compiled code. |
| kJitBootImageAddress, |
| |
| // Load from the root table associated with the JIT compiled method. |
| kJitTableAddress, |
| |
| // Load using a simple runtime call. This is the fall-back load kind when |
| // the codegen is unable to use another appropriate kind. |
| kRuntimeCall, |
| |
| kLast = kRuntimeCall |
| }; |
| |
| HLoadClass(HCurrentMethod* current_method, |
| dex::TypeIndex type_index, |
| const DexFile& dex_file, |
| Handle<mirror::Class> klass, |
| bool is_referrers_class, |
| uint32_t dex_pc, |
| bool needs_access_check) |
| : HInstruction(kLoadClass, |
| DataType::Type::kReference, |
| SideEffectsForArchRuntimeCalls(), |
| dex_pc), |
| special_input_(HUserRecord<HInstruction*>(current_method)), |
| type_index_(type_index), |
| dex_file_(dex_file), |
| klass_(klass) { |
| // Referrers class should not need access check. We never inline unverified |
| // methods so we can't possibly end up in this situation. |
| DCHECK(!is_referrers_class || !needs_access_check); |
| |
| SetPackedField<LoadKindField>( |
| is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall); |
| SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check); |
| SetPackedFlag<kFlagIsInBootImage>(false); |
| SetPackedFlag<kFlagGenerateClInitCheck>(false); |
| SetPackedFlag<kFlagValidLoadedClassRTI>(false); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| void SetLoadKind(LoadKind load_kind); |
| |
| LoadKind GetLoadKind() const { |
| return GetPackedField<LoadKindField>(); |
| } |
| |
| bool HasPcRelativeLoadKind() const { |
| return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || |
| GetLoadKind() == LoadKind::kBootImageRelRo || |
| GetLoadKind() == LoadKind::kBssEntry || |
| GetLoadKind() == LoadKind::kBssEntryPublic || |
| GetLoadKind() == LoadKind::kBssEntryPackage; |
| } |
| |
| bool CanBeMoved() const override { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override; |
| |
| size_t ComputeHashCode() const override { return type_index_.index_; } |
| |
| bool CanBeNull() const override { return false; } |
| |
| bool NeedsEnvironment() const override { |
| return CanCallRuntime(); |
| } |
| bool NeedsBss() const override { |
| LoadKind load_kind = GetLoadKind(); |
| return load_kind == LoadKind::kBssEntry || |
| load_kind == LoadKind::kBssEntryPublic || |
| load_kind == LoadKind::kBssEntryPackage; |
| } |
| |
| void SetMustGenerateClinitCheck(bool generate_clinit_check) { |
| SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check); |
| } |
| |
| bool CanCallRuntime() const { |
| return NeedsAccessCheck() || |
| MustGenerateClinitCheck() || |
| GetLoadKind() == LoadKind::kRuntimeCall || |
| GetLoadKind() == LoadKind::kBssEntry; |
| } |
| |
| bool CanThrow() const override { |
| return NeedsAccessCheck() || |
| MustGenerateClinitCheck() || |
| // If the class is in the boot image, the lookup in the runtime call cannot throw. |
| ((GetLoadKind() == LoadKind::kRuntimeCall || |
| GetLoadKind() == LoadKind::kBssEntry) && |
| !IsInBootImage()); |
| } |
| |
| ReferenceTypeInfo GetLoadedClassRTI() { |
| if (GetPackedFlag<kFlagValidLoadedClassRTI>()) { |
| // Note: The is_exact flag from the return value should not be used. |
| return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true); |
| } else { |
| return ReferenceTypeInfo::CreateInvalid(); |
| } |
| } |
| |
| // Loaded class RTI is marked as valid by RTP if the klass_ is admissible. |
| void SetValidLoadedClassRTI() { |
| DCHECK(klass_ != nullptr); |
| SetPackedFlag<kFlagValidLoadedClassRTI>(true); |
| } |
| |
| dex::TypeIndex GetTypeIndex() const { return type_index_; } |
| const DexFile& GetDexFile() const { return dex_file_; } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; } |
| bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); } |
| bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); } |
| bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); } |
| |
| bool MustResolveTypeOnSlowPath() const { |
| // Check that this instruction has a slow path. |
| LoadKind load_kind = GetLoadKind(); |
| DCHECK(load_kind != LoadKind::kRuntimeCall); // kRuntimeCall calls on main path. |
| bool must_resolve_type_on_slow_path = |
| load_kind == LoadKind::kBssEntry || |
| load_kind == LoadKind::kBssEntryPublic || |
| load_kind == LoadKind::kBssEntryPackage; |
| DCHECK(must_resolve_type_on_slow_path || MustGenerateClinitCheck()); |
| return must_resolve_type_on_slow_path; |
| } |
| |
| void MarkInBootImage() { |
| SetPackedFlag<kFlagIsInBootImage>(true); |
| } |
| |
| void AddSpecialInput(HInstruction* special_input); |
| |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { |
| return ArrayRef<HUserRecord<HInstruction*>>( |
| &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); |
| } |
| |
| Handle<mirror::Class> GetClass() const { |
| return klass_; |
| } |
| |
| DECLARE_INSTRUCTION(LoadClass); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LoadClass); |
| |
| private: |
| static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits; |
| static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1; |
| // Whether this instruction must generate the initialization check. |
| // Used for code generation. |
| static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1; |
| static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1; |
| static constexpr size_t kFieldLoadKindSize = |
| MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); |
| static constexpr size_t kFlagValidLoadedClassRTI = kFieldLoadKind + kFieldLoadKindSize; |
| static constexpr size_t kNumberOfLoadClassPackedBits = kFlagValidLoadedClassRTI + 1; |
| static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields."); |
| using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; |
| |
| static bool HasTypeReference(LoadKind load_kind) { |
| return load_kind == LoadKind::kReferrersClass || |
| load_kind == LoadKind::kBootImageLinkTimePcRelative || |
| load_kind == LoadKind::kBssEntry || |
| load_kind == LoadKind::kBssEntryPublic || |
| load_kind == LoadKind::kBssEntryPackage || |
| load_kind == LoadKind::kRuntimeCall; |
| } |
| |
| void SetLoadKindInternal(LoadKind load_kind); |
| |
| // The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass. |
| // For other load kinds it's empty or possibly some architecture-specific instruction |
| // for PC-relative loads, i.e. kBssEntry* or kBootImageLinkTimePcRelative. |
| HUserRecord<HInstruction*> special_input_; |
| |
| // A type index and dex file where the class can be accessed. The dex file can be: |
| // - The compiling method's dex file if the class is defined there too. |
| // - The compiling method's dex file if the class is referenced there. |
| // - The dex file where the class is defined. When the load kind can only be |
| // kBssEntry* or kRuntimeCall, we cannot emit code for this `HLoadClass`. |
| const dex::TypeIndex type_index_; |
| const DexFile& dex_file_; |
| |
| Handle<mirror::Class> klass_; |
| }; |
| std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs); |
| |
| // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). |
| inline void HLoadClass::SetLoadKind(LoadKind load_kind) { |
| // The load kind should be determined before inserting the instruction to the graph. |
| DCHECK(GetBlock() == nullptr); |
| DCHECK(GetEnvironment() == nullptr); |
| SetPackedField<LoadKindField>(load_kind); |
| if (load_kind != LoadKind::kRuntimeCall && load_kind != LoadKind::kReferrersClass) { |
| special_input_ = HUserRecord<HInstruction*>(nullptr); |
| } |
| if (!NeedsEnvironment()) { |
| SetSideEffects(SideEffects::None()); |
| } |
| } |
| |
| // Note: defined outside class to see operator<<(., HLoadClass::LoadKind). |
| inline void HLoadClass::AddSpecialInput(HInstruction* special_input) { |
| // The special input is used for PC-relative loads on some architectures, |
| // including literal pool loads, which are PC-relative too. |
| DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || |
| GetLoadKind() == LoadKind::kBootImageRelRo || |
| GetLoadKind() == LoadKind::kBssEntry || |
| GetLoadKind() == LoadKind::kBssEntryPublic || |
| GetLoadKind() == LoadKind::kBssEntryPackage || |
| GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind(); |
| DCHECK(special_input_.GetInstruction() == nullptr); |
| special_input_ = HUserRecord<HInstruction*>(special_input); |
| special_input->AddUseAt(this, 0); |
| } |
| |
| class HLoadString final : public HInstruction { |
| public: |
| // Determines how to load the String. |
| enum class LoadKind { |
| // Use PC-relative boot image String* address that will be known at link time. |
| // Used for boot image strings referenced by boot image code. |
| kBootImageLinkTimePcRelative, |
| |
| // Load from an entry in the .data.bimg.rel.ro using a PC-relative load. |
| // Used for boot image strings referenced by apps in AOT-compiled code. |
| kBootImageRelRo, |
| |
| // Load from an entry in the .bss section using a PC-relative load. |
| // Used for strings outside boot image referenced by AOT-compiled app and boot image code. |
| kBssEntry, |
| |
| // Use a known boot image String* address, embedded in the code by the codegen. |
| // Used for boot image strings referenced by apps in JIT-compiled code. |
| kJitBootImageAddress, |
| |
| // Load from the root table associated with the JIT compiled method. |
| kJitTableAddress, |
| |
| // Load using a simple runtime call. This is the fall-back load kind when |
| // the codegen is unable to use another appropriate kind. |
| kRuntimeCall, |
| |
| kLast = kRuntimeCall, |
| }; |
| |
| HLoadString(HCurrentMethod* current_method, |
| dex::StringIndex string_index, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HInstruction(kLoadString, |
| DataType::Type::kReference, |
| SideEffectsForArchRuntimeCalls(), |
| dex_pc), |
| special_input_(HUserRecord<HInstruction*>(current_method)), |
| string_index_(string_index), |
| dex_file_(dex_file) { |
| SetPackedField<LoadKindField>(LoadKind::kRuntimeCall); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsBss() const override { |
| return GetLoadKind() == LoadKind::kBssEntry; |
| } |
| |
| void SetLoadKind(LoadKind load_kind); |
| |
| LoadKind GetLoadKind() const { |
| return GetPackedField<LoadKindField>(); |
| } |
| |
| bool HasPcRelativeLoadKind() const { |
| return GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || |
| GetLoadKind() == LoadKind::kBootImageRelRo || |
| GetLoadKind() == LoadKind::kBssEntry; |
| } |
| |
| const DexFile& GetDexFile() const { |
| return dex_file_; |
| } |
| |
| dex::StringIndex GetStringIndex() const { |
| return string_index_; |
| } |
| |
| Handle<mirror::String> GetString() const { |
| return string_; |
| } |
| |
| void SetString(Handle<mirror::String> str) { |
| string_ = str; |
| } |
| |
| bool CanBeMoved() const override { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override; |
| |
| size_t ComputeHashCode() const override { return string_index_.index_; } |
| |
| // Will call the runtime if we need to load the string through |
| // the dex cache and the string is not guaranteed to be there yet. |
| bool NeedsEnvironment() const override { |
| LoadKind load_kind = GetLoadKind(); |
| if (load_kind == LoadKind::kBootImageLinkTimePcRelative || |
| load_kind == LoadKind::kBootImageRelRo || |
| load_kind == LoadKind::kJitBootImageAddress || |
| load_kind == LoadKind::kJitTableAddress) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool CanBeNull() const override { return false; } |
| bool CanThrow() const override { return NeedsEnvironment(); } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| void AddSpecialInput(HInstruction* special_input); |
| |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { |
| return ArrayRef<HUserRecord<HInstruction*>>( |
| &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); |
| } |
| |
| DECLARE_INSTRUCTION(LoadString); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LoadString); |
| |
| private: |
| static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldLoadKindSize = |
| MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast)); |
| static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize; |
| static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>; |
| |
| void SetLoadKindInternal(LoadKind load_kind); |
| |
| // The special input is the HCurrentMethod for kRuntimeCall. |
| // For other load kinds it's empty or possibly some architecture-specific instruction |
| // for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative. |
| HUserRecord<HInstruction*> special_input_; |
| |
| dex::StringIndex string_index_; |
| const DexFile& dex_file_; |
| |
| Handle<mirror::String> string_; |
| }; |
| std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs); |
| |
| // Note: defined outside class to see operator<<(., HLoadString::LoadKind). |
| inline void HLoadString::SetLoadKind(LoadKind load_kind) { |
| // The load kind should be determined before inserting the instruction to the graph. |
| DCHECK(GetBlock() == nullptr); |
| DCHECK(GetEnvironment() == nullptr); |
| DCHECK_EQ(GetLoadKind(), LoadKind::kRuntimeCall); |
| SetPackedField<LoadKindField>(load_kind); |
| if (load_kind != LoadKind::kRuntimeCall) { |
| special_input_ = HUserRecord<HInstruction*>(nullptr); |
| } |
| if (!NeedsEnvironment()) { |
| SetSideEffects(SideEffects::None()); |
| } |
| } |
| |
| // Note: defined outside class to see operator<<(., HLoadString::LoadKind). |
| inline void HLoadString::AddSpecialInput(HInstruction* special_input) { |
| // The special input is used for PC-relative loads on some architectures, |
| // including literal pool loads, which are PC-relative too. |
| DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative || |
| GetLoadKind() == LoadKind::kBootImageRelRo || |
| GetLoadKind() == LoadKind::kBssEntry || |
| GetLoadKind() == LoadKind::kJitBootImageAddress) << GetLoadKind(); |
| // HLoadString::GetInputRecords() returns an empty array at this point, |
| // so use the GetInputRecords() from the base class to set the input record. |
| DCHECK(special_input_.GetInstruction() == nullptr); |
| special_input_ = HUserRecord<HInstruction*>(special_input); |
| special_input->AddUseAt(this, 0); |
| } |
| |
| class HLoadMethodHandle final : public HInstruction { |
| public: |
| HLoadMethodHandle(HCurrentMethod* current_method, |
| uint16_t method_handle_idx, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HInstruction(kLoadMethodHandle, |
| DataType::Type::kReference, |
| SideEffectsForArchRuntimeCalls(), |
| dex_pc), |
| special_input_(HUserRecord<HInstruction*>(current_method)), |
| method_handle_idx_(method_handle_idx), |
| dex_file_(dex_file) { |
| } |
| |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { |
| return ArrayRef<HUserRecord<HInstruction*>>( |
| &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| uint16_t GetMethodHandleIndex() const { return method_handle_idx_; } |
| |
| const DexFile& GetDexFile() const { return dex_file_; } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| DECLARE_INSTRUCTION(LoadMethodHandle); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LoadMethodHandle); |
| |
| private: |
| // The special input is the HCurrentMethod for kRuntimeCall. |
| HUserRecord<HInstruction*> special_input_; |
| |
| const uint16_t method_handle_idx_; |
| const DexFile& dex_file_; |
| }; |
| |
| class HLoadMethodType final : public HInstruction { |
| public: |
| HLoadMethodType(HCurrentMethod* current_method, |
| dex::ProtoIndex proto_index, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HInstruction(kLoadMethodType, |
| DataType::Type::kReference, |
| SideEffectsForArchRuntimeCalls(), |
| dex_pc), |
| special_input_(HUserRecord<HInstruction*>(current_method)), |
| proto_index_(proto_index), |
| dex_file_(dex_file) { |
| } |
| |
| using HInstruction::GetInputRecords; // Keep the const version visible. |
| ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() final { |
| return ArrayRef<HUserRecord<HInstruction*>>( |
| &special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| dex::ProtoIndex GetProtoIndex() const { return proto_index_; } |
| |
| const DexFile& GetDexFile() const { return dex_file_; } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls() { |
| return SideEffects::CanTriggerGC(); |
| } |
| |
| DECLARE_INSTRUCTION(LoadMethodType); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LoadMethodType); |
| |
| private: |
| // The special input is the HCurrentMethod for kRuntimeCall. |
| HUserRecord<HInstruction*> special_input_; |
| |
| const dex::ProtoIndex proto_index_; |
| const DexFile& dex_file_; |
| }; |
| |
| /** |
| * Performs an initialization check on its Class object input. |
| */ |
| class HClinitCheck final : public HExpression<1> { |
| public: |
| HClinitCheck(HLoadClass* constant, uint32_t dex_pc) |
| : HExpression( |
| kClinitCheck, |
| DataType::Type::kReference, |
| SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. |
| dex_pc) { |
| SetRawInputAt(0, constant); |
| } |
| // TODO: Make ClinitCheck clonable. |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| bool NeedsEnvironment() const override { |
| // May call runtime to initialize the class. |
| return true; |
| } |
| |
| bool CanThrow() const override { return true; } |
| |
| HLoadClass* GetLoadClass() const { |
| DCHECK(InputAt(0)->IsLoadClass()); |
| return InputAt(0)->AsLoadClass(); |
| } |
| |
| DECLARE_INSTRUCTION(ClinitCheck); |
| |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ClinitCheck); |
| }; |
| |
| class HStaticFieldGet final : public HExpression<1> { |
| public: |
| HStaticFieldGet(HInstruction* cls, |
| ArtField* field, |
| DataType::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HExpression(kStaticFieldGet, |
| field_type, |
| SideEffects::FieldReadOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field, |
| field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file) { |
| SetRawInputAt(0, cls); |
| } |
| |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return !IsVolatile(); } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| const HStaticFieldGet* other_get = other->AsStaticFieldGet(); |
| return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue(); |
| } |
| |
| size_t ComputeHashCode() const override { |
| return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue(); |
| } |
| |
| bool IsFieldAccess() const override { return true; } |
| const FieldInfo& GetFieldInfo() const override { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| |
| void SetType(DataType::Type new_type) { |
| DCHECK(DataType::IsIntegralType(GetType())); |
| DCHECK(DataType::IsIntegralType(new_type)); |
| DCHECK_EQ(DataType::Size(GetType()), DataType::Size(new_type)); |
| SetPackedField<TypeField>(new_type); |
| } |
| |
| DECLARE_INSTRUCTION(StaticFieldGet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(StaticFieldGet); |
| |
| private: |
| const FieldInfo field_info_; |
| }; |
| |
| class HStaticFieldSet final : public HExpression<2> { |
| public: |
| HStaticFieldSet(HInstruction* cls, |
| HInstruction* value, |
| ArtField* field, |
| DataType::Type field_type, |
| MemberOffset field_offset, |
| bool is_volatile, |
| uint32_t field_idx, |
| uint16_t declaring_class_def_index, |
| const DexFile& dex_file, |
| uint32_t dex_pc) |
| : HExpression(kStaticFieldSet, |
| SideEffects::FieldWriteOfType(field_type, is_volatile), |
| dex_pc), |
| field_info_(field, |
| field_offset, |
| field_type, |
| is_volatile, |
| field_idx, |
| declaring_class_def_index, |
| dex_file) { |
| SetPackedFlag<kFlagValueCanBeNull>(true); |
| SetRawInputAt(0, cls); |
| SetRawInputAt(1, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool IsFieldAccess() const override { return true; } |
| const FieldInfo& GetFieldInfo() const override { return field_info_; } |
| MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); } |
| DataType::Type GetFieldType() const { return field_info_.GetFieldType(); } |
| bool IsVolatile() const { return field_info_.IsVolatile(); } |
| |
| HInstruction* GetValue() const { return InputAt(1); } |
| bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); } |
| void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); } |
| |
| DECLARE_INSTRUCTION(StaticFieldSet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(StaticFieldSet); |
| |
| private: |
| static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits; |
| static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1; |
| static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| |
| const FieldInfo field_info_; |
| }; |
| |
| class HStringBuilderAppend final : public HVariableInputSizeInstruction { |
| public: |
| HStringBuilderAppend(HIntConstant* format, |
| uint32_t number_of_arguments, |
| ArenaAllocator* allocator, |
| uint32_t dex_pc) |
| : HVariableInputSizeInstruction( |
| kStringBuilderAppend, |
| DataType::Type::kReference, |
| // The runtime call may read memory from inputs. It never writes outside |
| // of the newly allocated result object (or newly allocated helper objects). |
| SideEffects::AllReads().Union(SideEffects::CanTriggerGC()), |
| dex_pc, |
| allocator, |
| number_of_arguments + /* format */ 1u, |
| kArenaAllocInvokeInputs) { |
| DCHECK_GE(number_of_arguments, 1u); // There must be something to append. |
| SetRawInputAt(FormatIndex(), format); |
| } |
| |
| void SetArgumentAt(size_t index, HInstruction* argument) { |
| DCHECK_LE(index, GetNumberOfArguments()); |
| SetRawInputAt(index, argument); |
| } |
| |
| // Return the number of arguments, excluding the format. |
| size_t GetNumberOfArguments() const { |
| DCHECK_GE(InputCount(), 1u); |
| return InputCount() - 1u; |
| } |
| |
| size_t FormatIndex() const { |
| return GetNumberOfArguments(); |
| } |
| |
| HIntConstant* GetFormat() { |
| return InputAt(FormatIndex())->AsIntConstant(); |
| } |
| |
| bool NeedsEnvironment() const override { return true; } |
| |
| bool CanThrow() const override { return true; } |
| |
| bool CanBeNull() const override { return false; } |
| |
| DECLARE_INSTRUCTION(StringBuilderAppend); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(StringBuilderAppend); |
| }; |
| |
| class HUnresolvedInstanceFieldGet final : public HExpression<1> { |
| public: |
| HUnresolvedInstanceFieldGet(HInstruction* obj, |
| DataType::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HExpression(kUnresolvedInstanceFieldGet, |
| field_type, |
| SideEffects::AllExceptGCDependency(), |
| dex_pc), |
| field_index_(field_index) { |
| SetRawInputAt(0, obj); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsEnvironment() const override { return true; } |
| bool CanThrow() const override { return true; } |
| |
| DataType::Type GetFieldType() const { return GetType(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldGet); |
| |
| private: |
| const uint32_t field_index_; |
| }; |
| |
| class HUnresolvedInstanceFieldSet final : public HExpression<2> { |
| public: |
| HUnresolvedInstanceFieldSet(HInstruction* obj, |
| HInstruction* value, |
| DataType::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HExpression(kUnresolvedInstanceFieldSet, SideEffects::AllExceptGCDependency(), dex_pc), |
| field_index_(field_index) { |
| SetPackedField<FieldTypeField>(field_type); |
| DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType())); |
| SetRawInputAt(0, obj); |
| SetRawInputAt(1, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsEnvironment() const override { return true; } |
| bool CanThrow() const override { return true; } |
| |
| DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(UnresolvedInstanceFieldSet); |
| |
| private: |
| static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); |
| static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = |
| kFieldFieldType + kFieldFieldTypeSize; |
| static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>; |
| |
| const uint32_t field_index_; |
| }; |
| |
| class HUnresolvedStaticFieldGet final : public HExpression<0> { |
| public: |
| HUnresolvedStaticFieldGet(DataType::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HExpression(kUnresolvedStaticFieldGet, |
| field_type, |
| SideEffects::AllExceptGCDependency(), |
| dex_pc), |
| field_index_(field_index) { |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsEnvironment() const override { return true; } |
| bool CanThrow() const override { return true; } |
| |
| DataType::Type GetFieldType() const { return GetType(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedStaticFieldGet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldGet); |
| |
| private: |
| const uint32_t field_index_; |
| }; |
| |
| class HUnresolvedStaticFieldSet final : public HExpression<1> { |
| public: |
| HUnresolvedStaticFieldSet(HInstruction* value, |
| DataType::Type field_type, |
| uint32_t field_index, |
| uint32_t dex_pc) |
| : HExpression(kUnresolvedStaticFieldSet, SideEffects::AllExceptGCDependency(), dex_pc), |
| field_index_(field_index) { |
| SetPackedField<FieldTypeField>(field_type); |
| DCHECK_EQ(DataType::Kind(field_type), DataType::Kind(value->GetType())); |
| SetRawInputAt(0, value); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsEnvironment() const override { return true; } |
| bool CanThrow() const override { return true; } |
| |
| DataType::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); } |
| uint32_t GetFieldIndex() const { return field_index_; } |
| |
| DECLARE_INSTRUCTION(UnresolvedStaticFieldSet); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(UnresolvedStaticFieldSet); |
| |
| private: |
| static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldFieldTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); |
| static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits = |
| kFieldFieldType + kFieldFieldTypeSize; |
| static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using FieldTypeField = BitField<DataType::Type, kFieldFieldType, kFieldFieldTypeSize>; |
| |
| const uint32_t field_index_; |
| }; |
| |
| // Implement the move-exception DEX instruction. |
| class HLoadException final : public HExpression<0> { |
| public: |
| explicit HLoadException(uint32_t dex_pc = kNoDexPc) |
| : HExpression(kLoadException, DataType::Type::kReference, SideEffects::None(), dex_pc) { |
| } |
| |
| bool CanBeNull() const override { return false; } |
| |
| DECLARE_INSTRUCTION(LoadException); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(LoadException); |
| }; |
| |
| // Implicit part of move-exception which clears thread-local exception storage. |
| // Must not be removed because the runtime expects the TLS to get cleared. |
| class HClearException final : public HExpression<0> { |
| public: |
| explicit HClearException(uint32_t dex_pc = kNoDexPc) |
| : HExpression(kClearException, SideEffects::AllWrites(), dex_pc) { |
| } |
| |
| DECLARE_INSTRUCTION(ClearException); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ClearException); |
| }; |
| |
| class HThrow final : public HExpression<1> { |
| public: |
| HThrow(HInstruction* exception, uint32_t dex_pc) |
| : HExpression(kThrow, SideEffects::CanTriggerGC(), dex_pc) { |
| SetRawInputAt(0, exception); |
| } |
| |
| bool IsControlFlow() const override { return true; } |
| |
| bool NeedsEnvironment() const override { return true; } |
| |
| bool CanThrow() const override { return true; } |
| |
| bool AlwaysThrows() const override { return true; } |
| |
| DECLARE_INSTRUCTION(Throw); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Throw); |
| }; |
| |
| /** |
| * Implementation strategies for the code generator of a HInstanceOf |
| * or `HCheckCast`. |
| */ |
| enum class TypeCheckKind { // private marker to avoid generate-operator-out.py from processing. |
| kUnresolvedCheck, // Check against an unresolved type. |
| kExactCheck, // Can do a single class compare. |
| kClassHierarchyCheck, // Can just walk the super class chain. |
| kAbstractClassCheck, // Can just walk the super class chain, starting one up. |
| kInterfaceCheck, // No optimization yet when checking against an interface. |
| kArrayObjectCheck, // Can just check if the array is not primitive. |
| kArrayCheck, // No optimization yet when checking against a generic array. |
| kBitstringCheck, // Compare the type check bitstring. |
| kLast = kArrayCheck |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs); |
| |
| // Note: HTypeCheckInstruction is just a helper class, not an abstract instruction with an |
| // `IsTypeCheckInstruction()`. (New virtual methods in the HInstruction class have a high cost.) |
| class HTypeCheckInstruction : public HVariableInputSizeInstruction { |
| public: |
| HTypeCheckInstruction(InstructionKind kind, |
| DataType::Type type, |
| HInstruction* object, |
| HInstruction* target_class_or_null, |
| TypeCheckKind check_kind, |
| Handle<mirror::Class> klass, |
| uint32_t dex_pc, |
| ArenaAllocator* allocator, |
| HIntConstant* bitstring_path_to_root, |
| HIntConstant* bitstring_mask, |
| SideEffects side_effects) |
| : HVariableInputSizeInstruction( |
| kind, |
| type, |
| side_effects, |
| dex_pc, |
| allocator, |
| /* number_of_inputs= */ check_kind == TypeCheckKind::kBitstringCheck ? 4u : 2u, |
| kArenaAllocTypeCheckInputs), |
| klass_(klass) { |
| SetPackedField<TypeCheckKindField>(check_kind); |
| SetPackedFlag<kFlagMustDoNullCheck>(true); |
| SetPackedFlag<kFlagValidTargetClassRTI>(false); |
| SetRawInputAt(0, object); |
| SetRawInputAt(1, target_class_or_null); |
| DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_path_to_root != nullptr); |
| DCHECK_EQ(check_kind == TypeCheckKind::kBitstringCheck, bitstring_mask != nullptr); |
| if (check_kind == TypeCheckKind::kBitstringCheck) { |
| DCHECK(target_class_or_null->IsNullConstant()); |
| SetRawInputAt(2, bitstring_path_to_root); |
| SetRawInputAt(3, bitstring_mask); |
| } else { |
| DCHECK(target_class_or_null->IsLoadClass()); |
| } |
| } |
| |
| HLoadClass* GetTargetClass() const { |
| DCHECK_NE(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck); |
| HInstruction* load_class = InputAt(1); |
| DCHECK(load_class->IsLoadClass()); |
| return load_class->AsLoadClass(); |
| } |
| |
| uint32_t GetBitstringPathToRoot() const { |
| DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck); |
| HInstruction* path_to_root = InputAt(2); |
| DCHECK(path_to_root->IsIntConstant()); |
| return static_cast<uint32_t>(path_to_root->AsIntConstant()->GetValue()); |
| } |
| |
| uint32_t GetBitstringMask() const { |
| DCHECK_EQ(GetTypeCheckKind(), TypeCheckKind::kBitstringCheck); |
| HInstruction* mask = InputAt(3); |
| DCHECK(mask->IsIntConstant()); |
| return static_cast<uint32_t>(mask->AsIntConstant()->GetValue()); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override { |
| DCHECK(other->IsInstanceOf() || other->IsCheckCast()) << other->DebugName(); |
| return GetPackedFields() == down_cast<const HTypeCheckInstruction*>(other)->GetPackedFields(); |
| } |
| |
| bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); } |
| void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); } |
| TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); } |
| bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; } |
| |
| ReferenceTypeInfo GetTargetClassRTI() { |
| if (GetPackedFlag<kFlagValidTargetClassRTI>()) { |
| // Note: The is_exact flag from the return value should not be used. |
| return ReferenceTypeInfo::CreateUnchecked(klass_, /* is_exact= */ true); |
| } else { |
| return ReferenceTypeInfo::CreateInvalid(); |
| } |
| } |
| |
| // Target class RTI is marked as valid by RTP if the klass_ is admissible. |
| void SetValidTargetClassRTI() { |
| DCHECK(klass_ != nullptr); |
| SetPackedFlag<kFlagValidTargetClassRTI>(true); |
| } |
| |
| Handle<mirror::Class> GetClass() const { |
| return klass_; |
| } |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(TypeCheckInstruction); |
| |
| private: |
| static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldTypeCheckKindSize = |
| MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast)); |
| static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize; |
| static constexpr size_t kFlagValidTargetClassRTI = kFlagMustDoNullCheck + 1; |
| static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagValidTargetClassRTI + 1; |
| static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>; |
| |
| Handle<mirror::Class> klass_; |
| }; |
| |
| class HInstanceOf final : public HTypeCheckInstruction { |
| public: |
| HInstanceOf(HInstruction* object, |
| HInstruction* target_class_or_null, |
| TypeCheckKind check_kind, |
| Handle<mirror::Class> klass, |
| uint32_t dex_pc, |
| ArenaAllocator* allocator, |
| HIntConstant* bitstring_path_to_root, |
| HIntConstant* bitstring_mask) |
| : HTypeCheckInstruction(kInstanceOf, |
| DataType::Type::kBool, |
| object, |
| target_class_or_null, |
| check_kind, |
| klass, |
| dex_pc, |
| allocator, |
| bitstring_path_to_root, |
| bitstring_mask, |
| SideEffectsForArchRuntimeCalls(check_kind)) {} |
| |
| bool IsClonable() const override { return true; } |
| |
| bool NeedsEnvironment() const override { |
| return CanCallRuntime(GetTypeCheckKind()); |
| } |
| |
| static bool CanCallRuntime(TypeCheckKind check_kind) { |
| // TODO: Re-evaluate now that mips codegen has been removed. |
| return check_kind != TypeCheckKind::kExactCheck; |
| } |
| |
| static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) { |
| return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None(); |
| } |
| |
| DECLARE_INSTRUCTION(InstanceOf); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(InstanceOf); |
| }; |
| |
| class HBoundType final : public HExpression<1> { |
| public: |
| explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kBoundType, DataType::Type::kReference, SideEffects::None(), dex_pc), |
| upper_bound_(ReferenceTypeInfo::CreateInvalid()) { |
| SetPackedFlag<kFlagUpperCanBeNull>(true); |
| SetPackedFlag<kFlagCanBeNull>(true); |
| DCHECK_EQ(input->GetType(), DataType::Type::kReference); |
| SetRawInputAt(0, input); |
| } |
| |
| bool InstructionDataEquals(const HInstruction* other) const override; |
| bool IsClonable() const override { return true; } |
| |
| // {Get,Set}Upper* should only be used in reference type propagation. |
| const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; } |
| bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); } |
| void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null); |
| |
| void SetCanBeNull(bool can_be_null) { |
| DCHECK(GetUpperCanBeNull() || !can_be_null); |
| SetPackedFlag<kFlagCanBeNull>(can_be_null); |
| } |
| |
| bool CanBeNull() const override { return GetPackedFlag<kFlagCanBeNull>(); } |
| |
| DECLARE_INSTRUCTION(BoundType); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(BoundType); |
| |
| private: |
| // Represents the top constraint that can_be_null_ cannot exceed (i.e. if this |
| // is false then CanBeNull() cannot be true). |
| static constexpr size_t kFlagUpperCanBeNull = kNumberOfGenericPackedBits; |
| static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1; |
| static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1; |
| static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| |
| // Encodes the most upper class that this instruction can have. In other words |
| // it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()). |
| // It is used to bound the type in cases like: |
| // if (x instanceof ClassX) { |
| // // uper_bound_ will be ClassX |
| // } |
| ReferenceTypeInfo upper_bound_; |
| }; |
| |
| class HCheckCast final : public HTypeCheckInstruction { |
| public: |
| HCheckCast(HInstruction* object, |
| HInstruction* target_class_or_null, |
| TypeCheckKind check_kind, |
| Handle<mirror::Class> klass, |
| uint32_t dex_pc, |
| ArenaAllocator* allocator, |
| HIntConstant* bitstring_path_to_root, |
| HIntConstant* bitstring_mask) |
| : HTypeCheckInstruction(kCheckCast, |
| DataType::Type::kVoid, |
| object, |
| target_class_or_null, |
| check_kind, |
| klass, |
| dex_pc, |
| allocator, |
| bitstring_path_to_root, |
| bitstring_mask, |
| SideEffects::CanTriggerGC()) {} |
| |
| bool IsClonable() const override { return true; } |
| bool NeedsEnvironment() const override { |
| // Instruction may throw a CheckCastError. |
| return true; |
| } |
| |
| bool CanThrow() const override { return true; } |
| |
| DECLARE_INSTRUCTION(CheckCast); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(CheckCast); |
| }; |
| |
| /** |
| * @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers"). |
| * @details We define the combined barrier types that are actually required |
| * by the Java Memory Model, rather than using exactly the terminology from |
| * the JSR-133 cookbook. These should, in many cases, be replaced by acquire/release |
| * primitives. Note that the JSR-133 cookbook generally does not deal with |
| * store atomicity issues, and the recipes there are not always entirely sufficient. |
| * The current recipe is as follows: |
| * -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store. |
| * -# Use AnyAny barrier after volatile store. (StoreLoad is as expensive.) |
| * -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load. |
| * -# Use StoreStore barrier after all stores but before return from any constructor whose |
| * class has final fields. |
| * -# Use NTStoreStore to order non-temporal stores with respect to all later |
| * store-to-memory instructions. Only generated together with non-temporal stores. |
| */ |
| enum MemBarrierKind { |
| kAnyStore, |
| kLoadAny, |
| kStoreStore, |
| kAnyAny, |
| kNTStoreStore, |
| kLastBarrierKind = kNTStoreStore |
| }; |
| std::ostream& operator<<(std::ostream& os, MemBarrierKind kind); |
| |
| class HMemoryBarrier final : public HExpression<0> { |
| public: |
| explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kMemoryBarrier, |
| SideEffects::AllWritesAndReads(), // Assume write/read on all fields/arrays. |
| dex_pc) { |
| SetPackedField<BarrierKindField>(barrier_kind); |
| } |
| |
| bool IsClonable() const override { return true; } |
| |
| MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); } |
| |
| DECLARE_INSTRUCTION(MemoryBarrier); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(MemoryBarrier); |
| |
| private: |
| static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldBarrierKindSize = |
| MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind)); |
| static constexpr size_t kNumberOfMemoryBarrierPackedBits = |
| kFieldBarrierKind + kFieldBarrierKindSize; |
| static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>; |
| }; |
| |
| // A constructor fence orders all prior stores to fields that could be accessed via a final field of |
| // the specified object(s), with respect to any subsequent store that might "publish" |
| // (i.e. make visible) the specified object to another thread. |
| // |
| // JLS 17.5.1 "Semantics of final fields" states that a freeze action happens |
| // for all final fields (that were set) at the end of the invoked constructor. |
| // |
| // The constructor fence models the freeze actions for the final fields of an object |
| // being constructed (semantically at the end of the constructor). Constructor fences |
| // have a per-object affinity; two separate objects being constructed get two separate |
| // constructor fences. |
| // |
| // (Note: that if calling a super-constructor or forwarding to another constructor, |
| // the freezes would happen at the end of *that* constructor being invoked). |
| // |
| // The memory model guarantees that when the object being constructed is "published" after |
| // constructor completion (i.e. escapes the current thread via a store), then any final field |
| // writes must be observable on other threads (once they observe that publication). |
| // |
| // Further, anything written before the freeze, and read by dereferencing through the final field, |
| // must also be visible (so final object field could itself have an object with non-final fields; |
| // yet the freeze must also extend to them). |
| // |
| // Constructor example: |
| // |
| // class HasFinal { |
| // final int field; Optimizing IR for <init>()V: |
| // HasFinal() { |
| // field = 123; HInstanceFieldSet(this, HasFinal.field, 123) |
| // // freeze(this.field); HConstructorFence(this) |
| // } HReturn |
| // } |
| // |
| // HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of |
| // already-initialized classes; in that case the allocation must act as a "default-initializer" |
| // of the object which effectively writes the class pointer "final field". |
| // |
| // For example, we can model default-initialiation as roughly the equivalent of the following: |
| // |
| // class Object { |
| // private final Class header; |
| // } |
| // |
| // Java code: Optimizing IR: |
| // |
| // T new_instance<T>() { |
| // Object obj = allocate_memory(T.class.size); obj = HInvoke(art_quick_alloc_object, T) |
| // obj.header = T.class; // header write is done by above call. |
| // // freeze(obj.header) HConstructorFence(obj) |
| // return (T)obj; |
| // } |
| // |
| // See also: |
| // * DexCompilationUnit::RequiresConstructorBarrier |
| // * QuasiAtomic::ThreadFenceForConstructor |
| // |
| class HConstructorFence final : public HVariableInputSizeInstruction { |
| // A fence has variable inputs because the inputs can be removed |
| // after prepare_for_register_allocation phase. |
| // (TODO: In the future a fence could freeze multiple objects |
| // after merging two fences together.) |
| public: |
| // `fence_object` is the reference that needs to be protected for correct publication. |
| // |
| // It makes sense in the following situations: |
| // * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true). |
| // * new-instance-like instructions, it's the return value (i.e. HNewInstance). |
| // |
| // After construction the `fence_object` becomes the 0th input. |
| // This is not an input in a real sense, but just a convenient place to stash the information |
| // about the associated object. |
| HConstructorFence(HInstruction* fence_object, |
| uint32_t dex_pc, |
| ArenaAllocator* allocator) |
| // We strongly suspect there is not a more accurate way to describe the fine-grained reordering |
| // constraints described in the class header. We claim that these SideEffects constraints |
| // enforce a superset of the real constraints. |
| // |
| // The ordering described above is conservatively modeled with SideEffects as follows: |
| // |
| // * To prevent reordering of the publication stores: |
| // ----> "Reads of objects" is the initial SideEffect. |
| // * For every primitive final field store in the constructor: |
| // ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect. |
| // * If there are any stores to reference final fields in the constructor: |
| // ----> Use a more conservative "AllReads" SideEffect because any stores to any references |
| // that are reachable from `fence_object` also need to be prevented for reordering |
| // (and we do not want to do alias analysis to figure out what those stores are). |
| // |
| // In the implementation, this initially starts out as an "all reads" side effect; this is an |
| // even more conservative approach than the one described above, and prevents all of the |
| // above reordering without analyzing any of the instructions in the constructor. |
| // |
| // If in a later phase we discover that there are no writes to reference final fields, |
| // we can refine the side effect to a smaller set of type reads (see above constraints). |
| : HVariableInputSizeInstruction(kConstructorFence, |
| SideEffects::AllReads(), |
| dex_pc, |
| allocator, |
| /* number_of_inputs= */ 1, |
| kArenaAllocConstructorFenceInputs) { |
| DCHECK(fence_object != nullptr); |
| SetRawInputAt(0, fence_object); |
| } |
| |
| // The object associated with this constructor fence. |
| // |
| // (Note: This will be null after the prepare_for_register_allocation phase, |
| // as all constructor fence inputs are removed there). |
| HInstruction* GetFenceObject() const { |
| return InputAt(0); |
| } |
| |
| // Find all the HConstructorFence uses (`fence_use`) for `this` and: |
| // - Delete `fence_use` from `this`'s use list. |
| // - Delete `this` from `fence_use`'s inputs list. |
| // - If the `fence_use` is dead, remove it from the graph. |
| // |
| // A fence is considered dead once it no longer has any uses |
| // and all of the inputs are dead. |
| // |
| // This must *not* be called during/after prepare_for_register_allocation, |
| // because that removes all the inputs to the fences but the fence is actually |
| // still considered live. |
| // |
| // Returns how many HConstructorFence instructions were removed from graph. |
| static size_t RemoveConstructorFences(HInstruction* instruction); |
| |
| // Combine all inputs of `this` and `other` instruction and remove |
| // `other` from the graph. |
| // |
| // Inputs are unique after the merge. |
| // |
| // Requirement: `this` must not be the same as `other. |
| void Merge(HConstructorFence* other); |
| |
| // Check if this constructor fence is protecting |
| // an HNewInstance or HNewArray that is also the immediate |
| // predecessor of `this`. |
| // |
| // If `ignore_inputs` is true, then the immediate predecessor doesn't need |
| // to be one of the inputs of `this`. |
| // |
| // Returns the associated HNewArray or HNewInstance, |
| // or null otherwise. |
| HInstruction* GetAssociatedAllocation(bool ignore_inputs = false); |
| |
| DECLARE_INSTRUCTION(ConstructorFence); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ConstructorFence); |
| }; |
| |
| class HMonitorOperation final : public HExpression<1> { |
| public: |
| enum class OperationKind { |
| kEnter, |
| kExit, |
| kLast = kExit |
| }; |
| |
| HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc) |
| : HExpression(kMonitorOperation, |
| SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays. |
| dex_pc) { |
| SetPackedField<OperationKindField>(kind); |
| SetRawInputAt(0, object); |
| } |
| |
| // Instruction may go into runtime, so we need an environment. |
| bool NeedsEnvironment() const override { return true; } |
| |
| bool CanThrow() const override { |
| // Verifier guarantees that monitor-exit cannot throw. |
| // This is important because it allows the HGraphBuilder to remove |
| // a dead throw-catch loop generated for `synchronized` blocks/methods. |
| return IsEnter(); |
| } |
| |
| OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); } |
| bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; } |
| |
| DECLARE_INSTRUCTION(MonitorOperation); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(MonitorOperation); |
| |
| private: |
| static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldOperationKindSize = |
| MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast)); |
| static constexpr size_t kNumberOfMonitorOperationPackedBits = |
| kFieldOperationKind + kFieldOperationKindSize; |
| static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits, |
| "Too many packed fields."); |
| using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>; |
| }; |
| |
| class HSelect final : public HExpression<3> { |
| public: |
| HSelect(HInstruction* condition, |
| HInstruction* true_value, |
| HInstruction* false_value, |
| uint32_t dex_pc) |
| : HExpression(kSelect, HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) { |
| DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType())); |
| |
| // First input must be `true_value` or `false_value` to allow codegens to |
| // use the SameAsFirstInput allocation policy. We make it `false_value`, so |
| // that architectures which implement HSelect as a conditional move also |
| // will not need to invert the condition. |
| SetRawInputAt(0, false_value); |
| SetRawInputAt(1, true_value); |
| SetRawInputAt(2, condition); |
| } |
| |
| bool IsClonable() const override { return true; } |
| HInstruction* GetFalseValue() const { return InputAt(0); } |
| HInstruction* GetTrueValue() const { return InputAt(1); } |
| HInstruction* GetCondition() const { return InputAt(2); } |
| |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| |
| bool CanBeNull() const override { |
| return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull(); |
| } |
| |
| DECLARE_INSTRUCTION(Select); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(Select); |
| }; |
| |
| class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> { |
| public: |
| MoveOperands(Location source, |
| Location destination, |
| DataType::Type type, |
| HInstruction* instruction) |
| : source_(source), destination_(destination), type_(type), instruction_(instruction) {} |
| |
| Location GetSource() const { return source_; } |
| Location GetDestination() const { return destination_; } |
| |
| void SetSource(Location value) { source_ = value; } |
| void SetDestination(Location value) { destination_ = value; } |
| |
| // The parallel move resolver marks moves as "in-progress" by clearing the |
| // destination (but not the source). |
| Location MarkPending() { |
| DCHECK(!IsPending()); |
| Location dest = destination_; |
| destination_ = Location::NoLocation(); |
| return dest; |
| } |
| |
| void ClearPending(Location dest) { |
| DCHECK(IsPending()); |
| destination_ = dest; |
| } |
| |
| bool IsPending() const { |
| DCHECK(source_.IsValid() || destination_.IsInvalid()); |
| return destination_.IsInvalid() && source_.IsValid(); |
| } |
| |
| // True if this blocks a move from the given location. |
| bool Blocks(Location loc) const { |
| return !IsEliminated() && source_.OverlapsWith(loc); |
| } |
| |
| // A move is redundant if it's been eliminated, if its source and |
| // destination are the same, or if its destination is unneeded. |
| bool IsRedundant() const { |
| return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_); |
| } |
| |
| // We clear both operands to indicate move that's been eliminated. |
| void Eliminate() { |
| source_ = destination_ = Location::NoLocation(); |
| } |
| |
| bool IsEliminated() const { |
| DCHECK(!source_.IsInvalid() || destination_.IsInvalid()); |
| return source_.IsInvalid(); |
| } |
| |
| DataType::Type GetType() const { return type_; } |
| |
| bool Is64BitMove() const { |
| return DataType::Is64BitType(type_); |
| } |
| |
| HInstruction* GetInstruction() const { return instruction_; } |
| |
| private: |
| Location source_; |
| Location destination_; |
| // The type this move is for. |
| DataType::Type type_; |
| // The instruction this move is assocatied with. Null when this move is |
| // for moving an input in the expected locations of user (including a phi user). |
| // This is only used in debug mode, to ensure we do not connect interval siblings |
| // in the same parallel move. |
| HInstruction* instruction_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs); |
| |
| static constexpr size_t kDefaultNumberOfMoves = 4; |
| |
| class HParallelMove final : public HExpression<0> { |
| public: |
| explicit HParallelMove(ArenaAllocator* allocator, uint32_t dex_pc = kNoDexPc) |
| : HExpression(kParallelMove, SideEffects::None(), dex_pc), |
| moves_(allocator->Adapter(kArenaAllocMoveOperands)) { |
| moves_.reserve(kDefaultNumberOfMoves); |
| } |
| |
| void AddMove(Location source, |
| Location destination, |
| DataType::Type type, |
| HInstruction* instruction) { |
| DCHECK(source.IsValid()); |
| DCHECK(destination.IsValid()); |
| if (kIsDebugBuild) { |
| if (instruction != nullptr) { |
| for (const MoveOperands& move : moves_) { |
| if (move.GetInstruction() == instruction) { |
| // Special case the situation where the move is for the spill slot |
| // of the instruction. |
| if ((GetPrevious() == instruction) |
| || ((GetPrevious() == nullptr) |
| && instruction->IsPhi() |
| && instruction->GetBlock() == GetBlock())) { |
| DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind()) |
| << "Doing parallel moves for the same instruction."; |
| } else { |
| DCHECK(false) << "Doing parallel moves for the same instruction."; |
| } |
| } |
| } |
| } |
| for (const MoveOperands& move : moves_) { |
| DCHECK(!destination.OverlapsWith(move.GetDestination())) |
| << "Overlapped destination for two moves in a parallel move: " |
| << move.GetSource() << " ==> " << move.GetDestination() << " and " |
| << source << " ==> " << destination << " for " << SafePrint(instruction); |
| } |
| } |
| moves_.emplace_back(source, destination, type, instruction); |
| } |
| |
| MoveOperands* MoveOperandsAt(size_t index) { |
| return &moves_[index]; |
| } |
| |
| size_t NumMoves() const { return moves_.size(); } |
| |
| DECLARE_INSTRUCTION(ParallelMove); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(ParallelMove); |
| |
| private: |
| ArenaVector<MoveOperands> moves_; |
| }; |
| |
| // This instruction computes an intermediate address pointing in the 'middle' of an object. The |
| // result pointer cannot be handled by GC, so extra care is taken to make sure that this value is |
| // never used across anything that can trigger GC. |
| // The result of this instruction is not a pointer in the sense of `DataType::Type::kreference`. |
| // So we represent it by the type `DataType::Type::kInt`. |
| class HIntermediateAddress final : public HExpression<2> { |
| public: |
| HIntermediateAddress(HInstruction* base_address, HInstruction* offset, uint32_t dex_pc) |
| : HExpression(kIntermediateAddress, |
| DataType::Type::kInt32, |
| SideEffects::DependsOnGC(), |
| dex_pc) { |
| DCHECK_EQ(DataType::Size(DataType::Type::kInt32), |
| DataType::Size(DataType::Type::kReference)) |
| << "kPrimInt and kPrimNot have different sizes."; |
| SetRawInputAt(0, base_address); |
| SetRawInputAt(1, offset); |
| } |
| |
| bool IsClonable() const override { return true; } |
| bool CanBeMoved() const override { return true; } |
| bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const override { |
| return true; |
| } |
| bool IsActualObject() const override { return false; } |
| |
| HInstruction* GetBaseAddress() const { return InputAt(0); } |
| HInstruction* GetOffset() const { return InputAt(1); } |
| |
| DECLARE_INSTRUCTION(IntermediateAddress); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(IntermediateAddress); |
| }; |
| |
| |
| } // namespace art |
| |
| #include "nodes_vector.h" |
| |
| #if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64) |
| #include "nodes_shared.h" |
| #endif |
| #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64) |
| #include "nodes_x86.h" |
| #endif |
| |
| namespace art { |
| |
| class OptimizingCompilerStats; |
| |
| class HGraphVisitor : public ValueObject { |
| public: |
| explicit HGraphVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr) |
| : stats_(stats), |
| graph_(graph) {} |
| virtual ~HGraphVisitor() {} |
| |
| virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {} |
| virtual void VisitBasicBlock(HBasicBlock* block); |
| |
| // Visit the graph following basic block insertion order. |
| void VisitInsertionOrder(); |
| |
| // Visit the graph following dominator tree reverse post-order. |
| void VisitReversePostOrder(); |
| |
| HGraph* GetGraph() const { return graph_; } |
| |
| // Visit functions for instruction classes. |
| #define DECLARE_VISIT_INSTRUCTION(name, super) \ |
| virtual void Visit##name(H##name* instr) { VisitInstruction(instr); } |
| |
| FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) |
| |
| #undef DECLARE_VISIT_INSTRUCTION |
| |
| protected: |
| OptimizingCompilerStats* stats_; |
| |
| private: |
| HGraph* const graph_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HGraphVisitor); |
| }; |
| |
| class HGraphDelegateVisitor : public HGraphVisitor { |
| public: |
| explicit HGraphDelegateVisitor(HGraph* graph, OptimizingCompilerStats* stats = nullptr) |
| : HGraphVisitor(graph, stats) {} |
| virtual ~HGraphDelegateVisitor() {} |
| |
| // Visit functions that delegate to to super class. |
| #define DECLARE_VISIT_INSTRUCTION(name, super) \ |
| void Visit##name(H##name* instr) override { Visit##super(instr); } |
| |
| FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION) |
| |
| #undef DECLARE_VISIT_INSTRUCTION |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor); |
| }; |
| |
| // Create a clone of the instruction, insert it into the graph; replace the old one with a new |
| // and remove the old instruction. |
| HInstruction* ReplaceInstrOrPhiByClone(HInstruction* instr); |
| |
| // Create a clone for each clonable instructions/phis and replace the original with the clone. |
| // |
| // Used for testing individual instruction cloner. |
| class CloneAndReplaceInstructionVisitor : public HGraphDelegateVisitor { |
| public: |
| explicit CloneAndReplaceInstructionVisitor(HGraph* graph) |
| : HGraphDelegateVisitor(graph), instr_replaced_by_clones_count_(0) {} |
| |
| void VisitInstruction(HInstruction* instruction) override { |
| if (instruction->IsClonable()) { |
| ReplaceInstrOrPhiByClone(instruction); |
| instr_replaced_by_clones_count_++; |
| } |
| } |
| |
| size_t GetInstrReplacedByClonesCount() const { return instr_replaced_by_clones_count_; } |
| |
| private: |
| size_t instr_replaced_by_clones_count_; |
| |
| DISALLOW_COPY_AND_ASSIGN(CloneAndReplaceInstructionVisitor); |
| }; |
| |
| // Iterator over the blocks that art part of the loop. Includes blocks part |
| // of an inner loop. The order in which the blocks are iterated is on their |
| // block id. |
| class HBlocksInLoopIterator : public ValueObject { |
| public: |
| explicit HBlocksInLoopIterator(const HLoopInformation& info) |
| : blocks_in_loop_(info.GetBlocks()), |
| blocks_(info.GetHeader()->GetGraph()->GetBlocks()), |
| index_(0) { |
| if (!blocks_in_loop_.IsBitSet(index_)) { |
| Advance(); |
| } |
| } |
| |
| bool Done() const { return index_ == blocks_.size(); } |
| HBasicBlock* Current() const { return blocks_[index_]; } |
| void Advance() { |
| ++index_; |
| for (size_t e = blocks_.size(); index_ < e; ++index_) { |
| if (blocks_in_loop_.IsBitSet(index_)) { |
| break; |
| } |
| } |
| } |
| |
| private: |
| const BitVector& blocks_in_loop_; |
| const ArenaVector<HBasicBlock*>& blocks_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator); |
| }; |
| |
| // Iterator over the blocks that art part of the loop. Includes blocks part |
| // of an inner loop. The order in which the blocks are iterated is reverse |
| // post order. |
| class HBlocksInLoopReversePostOrderIterator : public ValueObject { |
| public: |
| explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info) |
| : blocks_in_loop_(info.GetBlocks()), |
| blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()), |
| index_(0) { |
| if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { |
| Advance(); |
| } |
| } |
| |
| bool Done() const { return index_ == blocks_.size(); } |
| HBasicBlock* Current() const { return blocks_[index_]; } |
| void Advance() { |
| ++index_; |
| for (size_t e = blocks_.size(); index_ < e; ++index_) { |
| if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) { |
| break; |
| } |
| } |
| } |
| |
| private: |
| const BitVector& blocks_in_loop_; |
| const ArenaVector<HBasicBlock*>& blocks_; |
| size_t index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator); |
| }; |
| |
| // Returns int64_t value of a properly typed constant. |
| inline int64_t Int64FromConstant(HConstant* constant) { |
| if (constant->IsIntConstant()) { |
| return constant->AsIntConstant()->GetValue(); |
| } else if (constant->IsLongConstant()) { |
| return constant->AsLongConstant()->GetValue(); |
| } else { |
| DCHECK(constant->IsNullConstant()) << constant->DebugName(); |
| return 0; |
| } |
| } |
| |
| // Returns true iff instruction is an integral constant (and sets value on success). |
| inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) { |
| if (instruction->IsIntConstant()) { |
| *value = instruction->AsIntConstant()->GetValue(); |
| return true; |
| } else if (instruction->IsLongConstant()) { |
| *value = instruction->AsLongConstant()->GetValue(); |
| return true; |
| } else if (instruction->IsNullConstant()) { |
| *value = 0; |
| return true; |
| } |
| return false; |
| } |
| |
| // Returns true iff instruction is the given integral constant. |
| inline bool IsInt64Value(HInstruction* instruction, int64_t value) { |
| int64_t val = 0; |
| return IsInt64AndGet(instruction, &val) && val == value; |
| } |
| |
| // Returns true iff instruction is a zero bit pattern. |
| inline bool IsZeroBitPattern(HInstruction* instruction) { |
| return instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern(); |
| } |
| |
| // Implement HInstruction::Is##type() for concrete instructions. |
| #define INSTRUCTION_TYPE_CHECK(type, super) \ |
| inline bool HInstruction::Is##type() const { return GetKind() == k##type; } |
| FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK) |
| #undef INSTRUCTION_TYPE_CHECK |
| |
| // Implement HInstruction::Is##type() for abstract instructions. |
| #define INSTRUCTION_TYPE_CHECK_RESULT(type, super) \ |
| std::is_base_of<BaseType, H##type>::value, |
| #define INSTRUCTION_TYPE_CHECK(type, super) \ |
| inline bool HInstruction::Is##type() const { \ |
| DCHECK_LT(GetKind(), kLastInstructionKind); \ |
| using BaseType = H##type; \ |
| static constexpr bool results[] = { \ |
| FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK_RESULT) \ |
| }; \ |
| return results[static_cast<size_t>(GetKind())]; \ |
| } |
| |
| FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK) |
| #undef INSTRUCTION_TYPE_CHECK |
| #undef INSTRUCTION_TYPE_CHECK_RESULT |
| |
| #define INSTRUCTION_TYPE_CAST(type, super) \ |
| inline const H##type* HInstruction::As##type() const { \ |
| return Is##type() ? down_cast<const H##type*>(this) : nullptr; \ |
| } \ |
| inline H##type* HInstruction::As##type() { \ |
| return Is##type() ? static_cast<H##type*>(this) : nullptr; \ |
| } |
| |
| FOR_EACH_INSTRUCTION(INSTRUCTION_TYPE_CAST) |
| #undef INSTRUCTION_TYPE_CAST |
| |
| |
| // Create space in `blocks` for adding `number_of_new_blocks` entries |
| // starting at location `at`. Blocks after `at` are moved accordingly. |
| inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks, |
| size_t number_of_new_blocks, |
| size_t after) { |
| DCHECK_LT(after, blocks->size()); |
| size_t old_size = blocks->size(); |
| size_t new_size = old_size + number_of_new_blocks; |
| blocks->resize(new_size); |
| std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end()); |
| } |
| |
| /* |
| * Hunt "under the hood" of array lengths (leading to array references), |
| * null checks (also leading to array references), and new arrays |
| * (leading to the actual length). This makes it more likely related |
| * instructions become actually comparable. |
| */ |
| inline HInstruction* HuntForDeclaration(HInstruction* instruction) { |
| while (instruction->IsArrayLength() || |
| instruction->IsNullCheck() || |
| instruction->IsNewArray()) { |
| instruction = instruction->IsNewArray() |
| ? instruction->AsNewArray()->GetLength() |
| : instruction->InputAt(0); |
| } |
| return instruction; |
| } |
| |
| inline bool IsAddOrSub(const HInstruction* instruction) { |
| return instruction->IsAdd() || instruction->IsSub(); |
| } |
| |
| void RemoveEnvironmentUses(HInstruction* instruction); |
| bool HasEnvironmentUsedByOthers(HInstruction* instruction); |
| void ResetEnvironmentInputRecords(HInstruction* instruction); |
| |
| // Detects an instruction that is >= 0. As long as the value is carried by |
| // a single instruction, arithmetic wrap-around cannot occur. |
| bool IsGEZero(HInstruction* instruction); |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_NODES_H_ |