blob: a1309943c79157d120af5fad7317735eb557685e [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_64_H_
#define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_64_H_
#include "arch/x86_64/instruction_set_features_x86_64.h"
#include "code_generator.h"
#include "driver/compiler_options.h"
#include "nodes.h"
#include "parallel_move_resolver.h"
#include "utils/x86_64/assembler_x86_64.h"
namespace art {
namespace x86_64 {
// Use a local definition to prevent copying mistakes.
static constexpr size_t kX86_64WordSize = static_cast<size_t>(kX86_64PointerSize);
// Some x86_64 instructions require a register to be available as temp.
static constexpr Register TMP = R11;
static constexpr Register kParameterCoreRegisters[] = { RSI, RDX, RCX, R8, R9 };
static constexpr FloatRegister kParameterFloatRegisters[] =
{ XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7 };
static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters);
static constexpr size_t kParameterFloatRegistersLength = arraysize(kParameterFloatRegisters);
static constexpr Register kRuntimeParameterCoreRegisters[] = { RDI, RSI, RDX, RCX };
static constexpr size_t kRuntimeParameterCoreRegistersLength =
arraysize(kRuntimeParameterCoreRegisters);
static constexpr FloatRegister kRuntimeParameterFpuRegisters[] = { XMM0, XMM1 };
static constexpr size_t kRuntimeParameterFpuRegistersLength =
arraysize(kRuntimeParameterFpuRegisters);
// These XMM registers are non-volatile in ART ABI, but volatile in native ABI.
// If the ART ABI changes, this list must be updated. It is used to ensure that
// these are not clobbered by any direct call to native code (such as math intrinsics).
static constexpr FloatRegister non_volatile_xmm_regs[] = { XMM12, XMM13, XMM14, XMM15 };
class InvokeRuntimeCallingConvention : public CallingConvention<Register, FloatRegister> {
public:
InvokeRuntimeCallingConvention()
: CallingConvention(kRuntimeParameterCoreRegisters,
kRuntimeParameterCoreRegistersLength,
kRuntimeParameterFpuRegisters,
kRuntimeParameterFpuRegistersLength,
kX86_64PointerSize) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention);
};
class InvokeDexCallingConvention : public CallingConvention<Register, FloatRegister> {
public:
InvokeDexCallingConvention() : CallingConvention(
kParameterCoreRegisters,
kParameterCoreRegistersLength,
kParameterFloatRegisters,
kParameterFloatRegistersLength,
kX86_64PointerSize) {}
private:
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention);
};
class CriticalNativeCallingConventionVisitorX86_64 : public InvokeDexCallingConventionVisitor {
public:
explicit CriticalNativeCallingConventionVisitorX86_64(bool for_register_allocation)
: for_register_allocation_(for_register_allocation) {}
virtual ~CriticalNativeCallingConventionVisitorX86_64() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type type) const override;
Location GetMethodLocation() const override;
size_t GetStackOffset() const { return stack_offset_; }
private:
// Register allocator does not support adjusting frame size, so we cannot provide final locations
// of stack arguments for register allocation. We ask the register allocator for any location and
// move these arguments to the right place after adjusting the SP when generating the call.
const bool for_register_allocation_;
size_t gpr_index_ = 0u;
size_t fpr_index_ = 0u;
size_t stack_offset_ = 0u;
DISALLOW_COPY_AND_ASSIGN(CriticalNativeCallingConventionVisitorX86_64);
};
class FieldAccessCallingConventionX86_64 : public FieldAccessCallingConvention {
public:
FieldAccessCallingConventionX86_64() {}
Location GetObjectLocation() const override {
return Location::RegisterLocation(RSI);
}
Location GetFieldIndexLocation() const override {
return Location::RegisterLocation(RDI);
}
Location GetReturnLocation(DataType::Type type ATTRIBUTE_UNUSED) const override {
return Location::RegisterLocation(RAX);
}
Location GetSetValueLocation(DataType::Type type ATTRIBUTE_UNUSED, bool is_instance)
const override {
return is_instance
? Location::RegisterLocation(RDX)
: Location::RegisterLocation(RSI);
}
Location GetFpuLocation(DataType::Type type ATTRIBUTE_UNUSED) const override {
return Location::FpuRegisterLocation(XMM0);
}
private:
DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionX86_64);
};
class InvokeDexCallingConventionVisitorX86_64 : public InvokeDexCallingConventionVisitor {
public:
InvokeDexCallingConventionVisitorX86_64() {}
virtual ~InvokeDexCallingConventionVisitorX86_64() {}
Location GetNextLocation(DataType::Type type) override;
Location GetReturnLocation(DataType::Type type) const override;
Location GetMethodLocation() const override;
private:
InvokeDexCallingConvention calling_convention;
DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorX86_64);
};
class CodeGeneratorX86_64;
class ParallelMoveResolverX86_64 : public ParallelMoveResolverWithSwap {
public:
ParallelMoveResolverX86_64(ArenaAllocator* allocator, CodeGeneratorX86_64* codegen)
: ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {}
void EmitMove(size_t index) override;
void EmitSwap(size_t index) override;
void SpillScratch(int reg) override;
void RestoreScratch(int reg) override;
X86_64Assembler* GetAssembler() const;
private:
void Exchange32(CpuRegister reg, int mem);
void Exchange32(XmmRegister reg, int mem);
void Exchange64(CpuRegister reg1, CpuRegister reg2);
void Exchange64(CpuRegister reg, int mem);
void Exchange64(XmmRegister reg, int mem);
void Exchange128(XmmRegister reg, int mem);
void ExchangeMemory32(int mem1, int mem2);
void ExchangeMemory64(int mem1, int mem2, int num_of_qwords);
CodeGeneratorX86_64* const codegen_;
DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverX86_64);
};
class LocationsBuilderX86_64 : public HGraphVisitor {
public:
LocationsBuilderX86_64(HGraph* graph, CodeGeneratorX86_64* codegen)
: HGraphVisitor(graph), codegen_(codegen) {}
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86_64(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
private:
void HandleInvoke(HInvoke* invoke);
void HandleBitwiseOperation(HBinaryOperation* operation);
void HandleCondition(HCondition* condition);
void HandleShift(HBinaryOperation* operation);
void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info);
void HandleFieldGet(HInstruction* instruction);
bool CpuHasAvxFeatureFlag();
bool CpuHasAvx2FeatureFlag();
CodeGeneratorX86_64* const codegen_;
InvokeDexCallingConventionVisitorX86_64 parameter_visitor_;
DISALLOW_COPY_AND_ASSIGN(LocationsBuilderX86_64);
};
class InstructionCodeGeneratorX86_64 : public InstructionCodeGenerator {
public:
InstructionCodeGeneratorX86_64(HGraph* graph, CodeGeneratorX86_64* codegen);
#define DECLARE_VISIT_INSTRUCTION(name, super) \
void Visit##name(H##name* instr) override;
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86_64(DECLARE_VISIT_INSTRUCTION)
FOR_EACH_CONCRETE_INSTRUCTION_X86_COMMON(DECLARE_VISIT_INSTRUCTION)
#undef DECLARE_VISIT_INSTRUCTION
void VisitInstruction(HInstruction* instruction) override {
LOG(FATAL) << "Unreachable instruction " << instruction->DebugName()
<< " (id " << instruction->GetId() << ")";
}
X86_64Assembler* GetAssembler() const { return assembler_; }
// Generate a GC root reference load:
//
// root <- *address
//
// while honoring read barriers based on read_barrier_option.
void GenerateGcRootFieldLoad(HInstruction* instruction,
Location root,
const Address& address,
Label* fixup_label,
ReadBarrierOption read_barrier_option);
void HandleFieldSet(HInstruction* instruction,
uint32_t value_index,
uint32_t extra_temp_index,
DataType::Type field_type,
Address field_addr,
CpuRegister base,
bool is_volatile,
bool is_atomic,
bool value_can_be_null,
bool byte_swap = false);
void Bswap(Location value, DataType::Type type, CpuRegister* temp = nullptr);
private:
// Generate code for the given suspend check. If not null, `successor`
// is the block to branch to if the suspend check is not needed, and after
// the suspend call.
void GenerateSuspendCheck(HSuspendCheck* instruction, HBasicBlock* successor);
void GenerateClassInitializationCheck(SlowPathCode* slow_path, CpuRegister class_reg);
void GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, CpuRegister temp);
void HandleBitwiseOperation(HBinaryOperation* operation);
void GenerateRemFP(HRem* rem);
void DivRemOneOrMinusOne(HBinaryOperation* instruction);
void DivByPowerOfTwo(HDiv* instruction);
void RemByPowerOfTwo(HRem* instruction);
void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction);
void GenerateDivRemIntegral(HBinaryOperation* instruction);
void HandleCondition(HCondition* condition);
void HandleShift(HBinaryOperation* operation);
void HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
bool value_can_be_null);
void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info);
void GenerateMinMaxInt(LocationSummary* locations, bool is_min, DataType::Type type);
void GenerateMinMaxFP(LocationSummary* locations, bool is_min, DataType::Type type);
void GenerateMinMax(HBinaryOperation* minmax, bool is_min);
void GenerateMethodEntryExitHook(HInstruction* instruction);
// Generate a heap reference load using one register `out`:
//
// out <- *(out + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a read barrier and
// shall be a register in that case; it may be an invalid location
// otherwise.
void GenerateReferenceLoadOneRegister(HInstruction* instruction,
Location out,
uint32_t offset,
Location maybe_temp,
ReadBarrierOption read_barrier_option);
// Generate a heap reference load using two different registers
// `out` and `obj`:
//
// out <- *(obj + offset)
//
// while honoring heap poisoning and/or read barriers (if any).
//
// Location `maybe_temp` is used when generating a Baker's (fast
// path) read barrier and shall be a register in that case; it may
// be an invalid location otherwise.
void GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
Location out,
Location obj,
uint32_t offset,
ReadBarrierOption read_barrier_option);
void PushOntoFPStack(Location source, uint32_t temp_offset,
uint32_t stack_adjustment, bool is_float);
void GenerateCompareTest(HCondition* condition);
template<class LabelType>
void GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
LabelType* true_target,
LabelType* false_target);
template<class LabelType>
void GenerateCompareTestAndBranch(HCondition* condition,
LabelType* true_target,
LabelType* false_target);
template<class LabelType>
void GenerateFPJumps(HCondition* cond, LabelType* true_label, LabelType* false_label);
void HandleGoto(HInstruction* got, HBasicBlock* successor);
bool CpuHasAvxFeatureFlag();
bool CpuHasAvx2FeatureFlag();
X86_64Assembler* const assembler_;
CodeGeneratorX86_64* const codegen_;
DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorX86_64);
};
// Class for fixups to jump tables.
class JumpTableRIPFixup;
class CodeGeneratorX86_64 : public CodeGenerator {
public:
CodeGeneratorX86_64(HGraph* graph,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats = nullptr);
virtual ~CodeGeneratorX86_64() {}
void GenerateFrameEntry() override;
void GenerateFrameExit() override;
void Bind(HBasicBlock* block) override;
void MoveConstant(Location destination, int32_t value) override;
void MoveLocation(Location dst, Location src, DataType::Type dst_type) override;
void AddLocationAsTemp(Location location, LocationSummary* locations) override;
size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) override;
size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) override;
// Generate code to invoke a runtime entry point.
void InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path = nullptr) override;
// Generate code to invoke a runtime entry point, but do not record
// PC-related information in a stack map.
void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
HInstruction* instruction,
SlowPathCode* slow_path);
void GenerateInvokeRuntime(int32_t entry_point_offset);
size_t GetWordSize() const override {
return kX86_64WordSize;
}
size_t GetSlowPathFPWidth() const override {
return GetGraph()->HasSIMD()
? GetSIMDRegisterWidth()
: 1 * kX86_64WordSize; // 8 bytes == 1 x86_64 words for each spill
}
size_t GetCalleePreservedFPWidth() const override {
return 1 * kX86_64WordSize;
}
size_t GetSIMDRegisterWidth() const override {
return 2 * kX86_64WordSize;
}
HGraphVisitor* GetLocationBuilder() override {
return &location_builder_;
}
HGraphVisitor* GetInstructionVisitor() override {
return &instruction_visitor_;
}
X86_64Assembler* GetAssembler() override {
return &assembler_;
}
const X86_64Assembler& GetAssembler() const override {
return assembler_;
}
ParallelMoveResolverX86_64* GetMoveResolver() override {
return &move_resolver_;
}
uintptr_t GetAddressOf(HBasicBlock* block) override {
return GetLabelOf(block)->Position();
}
void SetupBlockedRegisters() const override;
void DumpCoreRegister(std::ostream& stream, int reg) const override;
void DumpFloatingPointRegister(std::ostream& stream, int reg) const override;
void Finalize(CodeAllocator* allocator) override;
InstructionSet GetInstructionSet() const override {
return InstructionSet::kX86_64;
}
InstructionCodeGeneratorX86_64* GetInstructionCodegen() {
return down_cast<InstructionCodeGeneratorX86_64*>(GetInstructionVisitor());
}
const X86_64InstructionSetFeatures& GetInstructionSetFeatures() const;
// Emit a write barrier.
void MarkGCCard(CpuRegister temp,
CpuRegister card,
CpuRegister object,
CpuRegister value,
bool value_can_be_null);
void GenerateMemoryBarrier(MemBarrierKind kind);
// Helper method to move a value between two locations.
void Move(Location destination, Location source);
// Helper method to load a value of non-reference type from memory.
void LoadFromMemoryNoReference(DataType::Type type, Location dst, Address src);
Label* GetLabelOf(HBasicBlock* block) const {
return CommonGetLabelOf<Label>(block_labels_, block);
}
void Initialize() override {
block_labels_ = CommonInitializeLabels<Label>();
}
bool NeedsTwoRegisters(DataType::Type type ATTRIBUTE_UNUSED) const override {
return false;
}
// Check if the desired_string_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadString::LoadKind GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) override;
// Check if the desired_class_load_kind is supported. If it is, return it,
// otherwise return a fall-back kind that should be used instead.
HLoadClass::LoadKind GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) override;
// Check if the desired_dispatch_info is supported. If it is, return it,
// otherwise return a fall-back info that should be used instead.
HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
ArtMethod* method) override;
void LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke);
void GenerateStaticOrDirectCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) override;
void GenerateVirtualCall(
HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) override;
void RecordBootImageIntrinsicPatch(uint32_t intrinsic_data);
void RecordBootImageRelRoPatch(uint32_t boot_image_offset);
void RecordBootImageMethodPatch(HInvoke* invoke);
void RecordMethodBssEntryPatch(HInvoke* invoke);
void RecordBootImageTypePatch(HLoadClass* load_class);
Label* NewTypeBssEntryPatch(HLoadClass* load_class);
void RecordBootImageStringPatch(HLoadString* load_string);
Label* NewStringBssEntryPatch(HLoadString* load_string);
void RecordBootImageJniEntrypointPatch(HInvokeStaticOrDirect* invoke);
Label* NewJitRootStringPatch(const DexFile& dex_file,
dex::StringIndex string_index,
Handle<mirror::String> handle);
Label* NewJitRootClassPatch(const DexFile& dex_file,
dex::TypeIndex type_index,
Handle<mirror::Class> handle);
void LoadBootImageAddress(CpuRegister reg, uint32_t boot_image_reference);
void LoadIntrinsicDeclaringClass(CpuRegister reg, HInvoke* invoke);
void LoadClassRootForIntrinsic(CpuRegister reg, ClassRoot class_root);
void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) override;
void PatchJitRootUse(uint8_t* code,
const uint8_t* roots_data,
const PatchInfo<Label>& info,
uint64_t index_in_table) const;
void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) override;
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference field load when Baker's read barriers are used.
void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
CpuRegister obj,
uint32_t offset,
bool needs_null_check);
// Fast path implementation of ReadBarrier::Barrier for a heap
// reference array load when Baker's read barriers are used.
void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
CpuRegister obj,
uint32_t data_offset,
Location index,
bool needs_null_check);
// Factored implementation, used by GenerateFieldLoadWithBakerReadBarrier,
// GenerateArrayLoadWithBakerReadBarrier and some intrinsics.
//
// Load the object reference located at address `src`, held by
// object `obj`, into `ref`, and mark it if needed. The base of
// address `src` must be `obj`.
//
// If `always_update_field` is true, the value of the reference is
// atomically updated in the holder (`obj`). This operation
// requires two temporary registers, which must be provided as
// non-null pointers (`temp1` and `temp2`).
void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
Location ref,
CpuRegister obj,
const Address& src,
bool needs_null_check,
bool always_update_field = false,
CpuRegister* temp1 = nullptr,
CpuRegister* temp2 = nullptr);
// Generate a read barrier for a heap reference within `instruction`
// using a slow path.
//
// A read barrier for an object reference read from the heap is
// implemented as a call to the artReadBarrierSlow runtime entry
// point, which is passed the values in locations `ref`, `obj`, and
// `offset`:
//
// mirror::Object* artReadBarrierSlow(mirror::Object* ref,
// mirror::Object* obj,
// uint32_t offset);
//
// The `out` location contains the value returned by
// artReadBarrierSlow.
//
// When `index` provided (i.e., when it is different from
// Location::NoLocation()), the offset value passed to
// artReadBarrierSlow is adjusted to take `index` into account.
void GenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// If read barriers are enabled, generate a read barrier for a heap
// reference using a slow path. If heap poisoning is enabled, also
// unpoison the reference in `out`.
void MaybeGenerateReadBarrierSlow(HInstruction* instruction,
Location out,
Location ref,
Location obj,
uint32_t offset,
Location index = Location::NoLocation());
// Generate a read barrier for a GC root within `instruction` using
// a slow path.
//
// A read barrier for an object reference GC root is implemented as
// a call to the artReadBarrierForRootSlow runtime entry point,
// which is passed the value in location `root`:
//
// mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root);
//
// The `out` location contains the value returned by
// artReadBarrierForRootSlow.
void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root);
int ConstantAreaStart() const {
return constant_area_start_;
}
Address LiteralDoubleAddress(double v);
Address LiteralFloatAddress(float v);
Address LiteralInt32Address(int32_t v);
Address LiteralInt64Address(int64_t v);
// Load a 32/64-bit value into a register in the most efficient manner.
void Load32BitValue(CpuRegister dest, int32_t value);
void Load64BitValue(CpuRegister dest, int64_t value);
void Load32BitValue(XmmRegister dest, int32_t value);
void Load64BitValue(XmmRegister dest, int64_t value);
void Load32BitValue(XmmRegister dest, float value);
void Load64BitValue(XmmRegister dest, double value);
// Compare a register with a 32/64-bit value in the most efficient manner.
void Compare32BitValue(CpuRegister dest, int32_t value);
void Compare64BitValue(CpuRegister dest, int64_t value);
// Compare int values. Supports register locations for `lhs`.
void GenerateIntCompare(Location lhs, Location rhs);
void GenerateIntCompare(CpuRegister lhs, Location rhs);
// Compare long values. Supports only register locations for `lhs`.
void GenerateLongCompare(Location lhs, Location rhs);
// Construct address for array access.
static Address ArrayAddress(CpuRegister obj,
Location index,
ScaleFactor scale,
uint32_t data_offset);
Address LiteralCaseTable(HPackedSwitch* switch_instr);
// Store a 64 bit value into a DoubleStackSlot in the most efficient manner.
void Store64BitValueToStack(Location dest, int64_t value);
void MoveFromReturnRegister(Location trg, DataType::Type type) override;
// Assign a 64 bit constant to an address.
void MoveInt64ToAddress(const Address& addr_low,
const Address& addr_high,
int64_t v,
HInstruction* instruction);
// Ensure that prior stores complete to memory before subsequent loads.
// The locked add implementation will avoid serializing device memory, but will
// touch (but not change) the top of the stack.
// The 'non_temporal' parameter should be used to ensure ordering of non-temporal stores.
void MemoryFence(bool force_mfence = false) {
if (!force_mfence) {
assembler_.lock()->addl(Address(CpuRegister(RSP), 0), Immediate(0));
} else {
assembler_.mfence();
}
}
void IncreaseFrame(size_t adjustment) override;
void DecreaseFrame(size_t adjustment) override;
void GenerateNop() override;
void GenerateImplicitNullCheck(HNullCheck* instruction) override;
void GenerateExplicitNullCheck(HNullCheck* instruction) override;
void MaybeGenerateInlineCacheCheck(HInstruction* instruction, CpuRegister cls);
void MaybeIncrementHotness(bool is_frame_entry);
static void BlockNonVolatileXmmRegisters(LocationSummary* locations);
// When we don't know the proper offset for the value, we use kPlaceholder32BitOffset.
// We will fix this up in the linker later to have the right value.
static constexpr int32_t kPlaceholder32BitOffset = 256;
private:
template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
static void EmitPcRelativeLinkerPatches(const ArenaDeque<PatchInfo<Label>>& infos,
ArenaVector<linker::LinkerPatch>* linker_patches);
// Labels for each block that will be compiled.
Label* block_labels_; // Indexed by block id.
Label frame_entry_label_;
LocationsBuilderX86_64 location_builder_;
InstructionCodeGeneratorX86_64 instruction_visitor_;
ParallelMoveResolverX86_64 move_resolver_;
X86_64Assembler assembler_;
// Offset to the start of the constant area in the assembled code.
// Used for fixups to the constant area.
int constant_area_start_;
// PC-relative method patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PatchInfo<Label>> boot_image_method_patches_;
// PC-relative method patch info for kBssEntry.
ArenaDeque<PatchInfo<Label>> method_bss_entry_patches_;
// PC-relative type patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PatchInfo<Label>> boot_image_type_patches_;
// PC-relative type patch info for kBssEntry.
ArenaDeque<PatchInfo<Label>> type_bss_entry_patches_;
// PC-relative public type patch info for kBssEntryPublic.
ArenaDeque<PatchInfo<Label>> public_type_bss_entry_patches_;
// PC-relative package type patch info for kBssEntryPackage.
ArenaDeque<PatchInfo<Label>> package_type_bss_entry_patches_;
// PC-relative String patch info for kBootImageLinkTimePcRelative.
ArenaDeque<PatchInfo<Label>> boot_image_string_patches_;
// PC-relative String patch info for kBssEntry.
ArenaDeque<PatchInfo<Label>> string_bss_entry_patches_;
// PC-relative method patch info for kBootImageLinkTimePcRelative+kCallCriticalNative.
ArenaDeque<PatchInfo<Label>> boot_image_jni_entrypoint_patches_;
// PC-relative patch info for IntrinsicObjects for the boot image,
// and for method/type/string patches for kBootImageRelRo otherwise.
ArenaDeque<PatchInfo<Label>> boot_image_other_patches_;
// Patches for string literals in JIT compiled code.
ArenaDeque<PatchInfo<Label>> jit_string_patches_;
// Patches for class literals in JIT compiled code.
ArenaDeque<PatchInfo<Label>> jit_class_patches_;
// Fixups for jump tables need to be handled specially.
ArenaVector<JumpTableRIPFixup*> fixups_to_jump_tables_;
DISALLOW_COPY_AND_ASSIGN(CodeGeneratorX86_64);
};
} // namespace x86_64
} // namespace art
#endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_X86_64_H_