| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "code_generator_arm64.h" |
| |
| #include "aarch64/assembler-aarch64.h" |
| #include "aarch64/registers-aarch64.h" |
| #include "arch/arm64/asm_support_arm64.h" |
| #include "arch/arm64/instruction_set_features_arm64.h" |
| #include "arch/arm64/jni_frame_arm64.h" |
| #include "art_method-inl.h" |
| #include "base/bit_utils.h" |
| #include "base/bit_utils_iterator.h" |
| #include "class_root-inl.h" |
| #include "class_table.h" |
| #include "code_generator_utils.h" |
| #include "compiled_method.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "entrypoints/quick/quick_entrypoints_enum.h" |
| #include "gc/accounting/card_table.h" |
| #include "gc/space/image_space.h" |
| #include "heap_poisoning.h" |
| #include "interpreter/mterp/nterp.h" |
| #include "intrinsics.h" |
| #include "intrinsics_arm64.h" |
| #include "linker/linker_patch.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/var_handle.h" |
| #include "offsets.h" |
| #include "optimizing/common_arm64.h" |
| #include "thread.h" |
| #include "utils/arm64/assembler_arm64.h" |
| #include "utils/assembler.h" |
| #include "utils/stack_checks.h" |
| |
| using namespace vixl::aarch64; // NOLINT(build/namespaces) |
| using vixl::ExactAssemblyScope; |
| using vixl::CodeBufferCheckScope; |
| using vixl::EmissionCheckScope; |
| |
| #ifdef __ |
| #error "ARM64 Codegen VIXL macro-assembler macro already defined." |
| #endif |
| |
| namespace art { |
| |
| template<class MirrorType> |
| class GcRoot; |
| |
| namespace arm64 { |
| |
| using helpers::ARM64EncodableConstantOrRegister; |
| using helpers::ArtVixlRegCodeCoherentForRegSet; |
| using helpers::CPURegisterFrom; |
| using helpers::DRegisterFrom; |
| using helpers::FPRegisterFrom; |
| using helpers::HeapOperand; |
| using helpers::HeapOperandFrom; |
| using helpers::InputCPURegisterOrZeroRegAt; |
| using helpers::InputFPRegisterAt; |
| using helpers::InputOperandAt; |
| using helpers::InputRegisterAt; |
| using helpers::Int64FromLocation; |
| using helpers::IsConstantZeroBitPattern; |
| using helpers::LocationFrom; |
| using helpers::OperandFromMemOperand; |
| using helpers::OutputCPURegister; |
| using helpers::OutputFPRegister; |
| using helpers::OutputRegister; |
| using helpers::RegisterFrom; |
| using helpers::StackOperandFrom; |
| using helpers::VIXLRegCodeFromART; |
| using helpers::WRegisterFrom; |
| using helpers::XRegisterFrom; |
| |
| // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump |
| // table version generates 7 instructions and num_entries literals. Compare/jump sequence will |
| // generates less code/data with a small num_entries. |
| static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7; |
| |
| // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle |
| // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions. |
| // For the Baker read barrier implementation using link-time generated thunks we need to split |
| // the offset explicitly. |
| constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB; |
| |
| inline Condition ARM64Condition(IfCondition cond) { |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne; |
| case kCondLT: return lt; |
| case kCondLE: return le; |
| case kCondGT: return gt; |
| case kCondGE: return ge; |
| case kCondB: return lo; |
| case kCondBE: return ls; |
| case kCondA: return hi; |
| case kCondAE: return hs; |
| } |
| LOG(FATAL) << "Unreachable"; |
| UNREACHABLE(); |
| } |
| |
| inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) { |
| // The ARM64 condition codes can express all the necessary branches, see the |
| // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual. |
| // There is no dex instruction or HIR that would need the missing conditions |
| // "equal or unordered" or "not equal". |
| switch (cond) { |
| case kCondEQ: return eq; |
| case kCondNE: return ne /* unordered */; |
| case kCondLT: return gt_bias ? cc : lt /* unordered */; |
| case kCondLE: return gt_bias ? ls : le /* unordered */; |
| case kCondGT: return gt_bias ? hi /* unordered */ : gt; |
| case kCondGE: return gt_bias ? cs /* unordered */ : ge; |
| default: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| } |
| |
| Location ARM64ReturnLocation(DataType::Type return_type) { |
| // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the |
| // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`, |
| // but we use the exact registers for clarity. |
| if (return_type == DataType::Type::kFloat32) { |
| return LocationFrom(s0); |
| } else if (return_type == DataType::Type::kFloat64) { |
| return LocationFrom(d0); |
| } else if (return_type == DataType::Type::kInt64) { |
| return LocationFrom(x0); |
| } else if (return_type == DataType::Type::kVoid) { |
| return Location::NoLocation(); |
| } else { |
| return LocationFrom(w0); |
| } |
| } |
| |
| Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) { |
| return ARM64ReturnLocation(return_type); |
| } |
| |
| static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() { |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), |
| RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference), |
| DataType::Type::kReference).GetCode()); |
| return caller_saves; |
| } |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT |
| #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value() |
| |
| void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath(); |
| const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true); |
| for (uint32_t i : LowToHighBits(core_spills)) { |
| // If the register holds an object, update the stack mask. |
| if (locations->RegisterContainsObject(i)) { |
| locations->SetStackBit(stack_offset / kVRegSize); |
| } |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_core_stack_offsets_[i] = stack_offset; |
| stack_offset += kXRegSizeInBytes; |
| } |
| |
| const size_t fp_reg_size = codegen->GetSlowPathFPWidth(); |
| const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false); |
| for (uint32_t i : LowToHighBits(fp_spills)) { |
| DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize()); |
| DCHECK_LT(i, kMaximumNumberOfExpectedRegisters); |
| saved_fpu_stack_offsets_[i] = stack_offset; |
| stack_offset += fp_reg_size; |
| } |
| |
| InstructionCodeGeneratorARM64* visitor = |
| down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64(); |
| visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath()); |
| } |
| |
| void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) { |
| InstructionCodeGeneratorARM64* visitor = |
| down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64(); |
| visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath()); |
| } |
| |
| class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kInt32, |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32); |
| QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt() |
| ? kQuickThrowStringBounds |
| : kQuickThrowArrayBounds; |
| arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>(); |
| CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64); |
| }; |
| |
| class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickThrowDivZero, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64); |
| }; |
| |
| class LoadClassSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at) |
| : SlowPathCodeARM64(at), cls_(cls) { |
| DCHECK(at->IsLoadClass() || at->IsClinitCheck()); |
| DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| Location out = locations->Out(); |
| const uint32_t dex_pc = instruction_->GetDexPc(); |
| bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath(); |
| bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck(); |
| |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| if (must_resolve_type) { |
| DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()) || |
| arm64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile())); |
| dex::TypeIndex type_index = cls_->GetTypeIndex(); |
| __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_); |
| if (cls_->NeedsAccessCheck()) { |
| CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>(); |
| arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this); |
| } else { |
| CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>(); |
| arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this); |
| } |
| // If we also must_do_clinit, the resolved type is now in the correct register. |
| } else { |
| DCHECK(must_do_clinit); |
| Location source = instruction_->IsLoadClass() ? out : locations->InAt(0); |
| arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), |
| source, |
| cls_->GetType()); |
| } |
| if (must_do_clinit) { |
| arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>(); |
| } |
| |
| // Move the class to the desired location. |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg())); |
| DataType::Type type = instruction_->GetType(); |
| arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type); |
| } |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadClassSlowPathARM64"; } |
| |
| private: |
| // The class this slow path will load. |
| HLoadClass* const cls_; |
| |
| DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64); |
| }; |
| |
| class LoadStringSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit LoadStringSlowPathARM64(HLoadString* instruction) |
| : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex(); |
| __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_); |
| arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| DataType::Type type = instruction_->GetType(); |
| arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "LoadStringSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64); |
| }; |
| |
| class NullCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| if (instruction_->CanThrowIntoCatchBlock()) { |
| // Live registers will be restored in the catch block if caught. |
| SaveLiveRegisters(codegen, instruction_->GetLocations()); |
| } |
| arm64_codegen->InvokeRuntime(kQuickThrowNullPointer, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickThrowNullPointer, void, void>(); |
| } |
| |
| bool IsFatal() const override { return true; } |
| |
| const char* GetDescription() const override { return "NullCheckSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64); |
| }; |
| |
| class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor) |
| : SlowPathCodeARM64(instruction), successor_(successor) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD. |
| arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickTestSuspend, void, void>(); |
| RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD. |
| if (successor_ == nullptr) { |
| __ B(GetReturnLabel()); |
| } else { |
| __ B(arm64_codegen->GetLabelOf(successor_)); |
| } |
| } |
| |
| vixl::aarch64::Label* GetReturnLabel() { |
| DCHECK(successor_ == nullptr); |
| return &return_label_; |
| } |
| |
| HBasicBlock* GetSuccessor() const { |
| return successor_; |
| } |
| |
| const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; } |
| |
| private: |
| // If not null, the block to branch to after the suspend check. |
| HBasicBlock* const successor_; |
| |
| // If `successor_` is null, the label to branch to after the suspend check. |
| vixl::aarch64::Label return_label_; |
| |
| DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64); |
| }; |
| |
| class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal) |
| : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| |
| DCHECK(instruction_->IsCheckCast() |
| || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg())); |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| uint32_t dex_pc = instruction_->GetDexPc(); |
| |
| __ Bind(GetEntryLabel()); |
| |
| if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) { |
| SaveLiveRegisters(codegen, locations); |
| } |
| |
| // We're moving two locations to locations that could overlap, so we need a parallel |
| // move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| codegen->EmitParallelMoves(locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kReference); |
| if (instruction_->IsInstanceOf()) { |
| arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>(); |
| DataType::Type ret_type = instruction_->GetType(); |
| Location ret_loc = calling_convention.GetReturnLocation(ret_type); |
| arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type); |
| } else { |
| DCHECK(instruction_->IsCheckCast()); |
| arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this); |
| CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>(); |
| } |
| |
| if (!is_fatal_) { |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| } |
| |
| const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; } |
| bool IsFatal() const override { return is_fatal_; } |
| |
| private: |
| const bool is_fatal_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64); |
| }; |
| |
| class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction) |
| : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| LocationSummary* locations = instruction_->GetLocations(); |
| SaveLiveRegisters(codegen, locations); |
| InvokeRuntimeCallingConvention calling_convention; |
| __ Mov(calling_convention.GetRegisterAt(0), |
| static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind())); |
| arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>(); |
| } |
| |
| const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64); |
| }; |
| |
| class ArraySetSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove( |
| locations->InAt(0), |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| DataType::Type::kReference, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(1), |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| DataType::Type::kInt32, |
| nullptr); |
| parallel_move.AddMove( |
| locations->InAt(2), |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kReference, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this); |
| CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>(); |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ArraySetSlowPathARM64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64); |
| }; |
| |
| void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) { |
| uint32_t num_entries = switch_instr_->GetNumEntries(); |
| DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold); |
| |
| // We are about to use the assembler to place literals directly. Make sure we have enough |
| // underlying code buffer and we have generated the jump table with right size. |
| EmissionCheckScope scope(codegen->GetVIXLAssembler(), |
| num_entries * sizeof(int32_t), |
| CodeBufferCheckScope::kExactSize); |
| |
| __ Bind(&table_start_); |
| const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors(); |
| for (uint32_t i = 0; i < num_entries; i++) { |
| vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]); |
| DCHECK(target_label->IsBound()); |
| ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation(); |
| DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min()); |
| DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max()); |
| Literal<int32_t> literal(jump_offset); |
| __ place(&literal); |
| } |
| } |
| |
| // Slow path generating a read barrier for a heap reference. |
| class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) |
| : SlowPathCodeARM64(instruction), |
| out_(out), |
| ref_(ref), |
| obj_(obj), |
| offset_(offset), |
| index_(index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| // If `obj` is equal to `out` or `ref`, it means the initial object |
| // has been overwritten by (or after) the heap object reference load |
| // to be instrumented, e.g.: |
| // |
| // __ Ldr(out, HeapOperand(out, class_offset); |
| // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset); |
| // |
| // In that case, we have lost the information about the original |
| // object, and the emitted read barrier cannot work properly. |
| DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out; |
| DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref; |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DataType::Type type = DataType::Type::kReference; |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(instruction_->IsInstanceFieldGet() || |
| instruction_->IsPredicatedInstanceFieldGet() || |
| instruction_->IsStaticFieldGet() || |
| instruction_->IsArrayGet() || |
| instruction_->IsInstanceOf() || |
| instruction_->IsCheckCast() || |
| (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for heap reference slow path: " |
| << instruction_->DebugName(); |
| // The read barrier instrumentation of object ArrayGet |
| // instructions does not support the HIntermediateAddress |
| // instruction. |
| DCHECK(!(instruction_->IsArrayGet() && |
| instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress())); |
| |
| __ Bind(GetEntryLabel()); |
| |
| SaveLiveRegisters(codegen, locations); |
| |
| // We may have to change the index's value, but as `index_` is a |
| // constant member (like other "inputs" of this slow path), |
| // introduce a copy of it, `index`. |
| Location index = index_; |
| if (index_.IsValid()) { |
| // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics. |
| if (instruction_->IsArrayGet()) { |
| // Compute the actual memory offset and store it in `index`. |
| Register index_reg = RegisterFrom(index_, DataType::Type::kInt32); |
| DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg())); |
| if (codegen->IsCoreCalleeSaveRegister(index_.reg())) { |
| // We are about to change the value of `index_reg` (see the |
| // calls to vixl::MacroAssembler::Lsl and |
| // vixl::MacroAssembler::Mov below), but it has |
| // not been saved by the previous call to |
| // art::SlowPathCode::SaveLiveRegisters, as it is a |
| // callee-save register -- |
| // art::SlowPathCode::SaveLiveRegisters does not consider |
| // callee-save registers, as it has been designed with the |
| // assumption that callee-save registers are supposed to be |
| // handled by the called function. So, as a callee-save |
| // register, `index_reg` _would_ eventually be saved onto |
| // the stack, but it would be too late: we would have |
| // changed its value earlier. Therefore, we manually save |
| // it here into another freely available register, |
| // `free_reg`, chosen of course among the caller-save |
| // registers (as a callee-save `free_reg` register would |
| // exhibit the same problem). |
| // |
| // Note we could have requested a temporary register from |
| // the register allocator instead; but we prefer not to, as |
| // this is a slow path, and we know we can find a |
| // caller-save register that is available. |
| Register free_reg = FindAvailableCallerSaveRegister(codegen); |
| __ Mov(free_reg.W(), index_reg); |
| index_reg = free_reg; |
| index = LocationFrom(index_reg); |
| } else { |
| // The initial register stored in `index_` has already been |
| // saved in the call to art::SlowPathCode::SaveLiveRegisters |
| // (as it is not a callee-save register), so we can freely |
| // use it. |
| } |
| // Shifting the index value contained in `index_reg` by the scale |
| // factor (2) cannot overflow in practice, as the runtime is |
| // unable to allocate object arrays with a size larger than |
| // 2^26 - 1 (that is, 2^28 - 4 bytes). |
| __ Lsl(index_reg, index_reg, DataType::SizeShift(type)); |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| __ Add(index_reg, index_reg, Operand(offset_)); |
| } else { |
| // In the case of the UnsafeGetObject/UnsafeGetObjectVolatile/VarHandleGet |
| // intrinsics, `index_` is not shifted by a scale factor of 2 |
| // (as in the case of ArrayGet), as it is actually an offset |
| // to an object field within an object. |
| DCHECK(instruction_->IsInvoke()) << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| Intrinsics intrinsic = instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK(intrinsic == Intrinsics::kUnsafeGetObject || |
| intrinsic == Intrinsics::kUnsafeGetObjectVolatile || |
| intrinsic == Intrinsics::kUnsafeCASObject || |
| intrinsic == Intrinsics::kJdkUnsafeGetObject || |
| intrinsic == Intrinsics::kJdkUnsafeGetObjectVolatile || |
| intrinsic == Intrinsics::kJdkUnsafeGetObjectAcquire || |
| intrinsic == Intrinsics::kJdkUnsafeCASObject || |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == |
| mirror::VarHandle::AccessModeTemplate::kGet || |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == |
| mirror::VarHandle::AccessModeTemplate::kCompareAndSet || |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == |
| mirror::VarHandle::AccessModeTemplate::kCompareAndExchange || |
| mirror::VarHandle::GetAccessModeTemplateByIntrinsic(intrinsic) == |
| mirror::VarHandle::AccessModeTemplate::kGetAndUpdate) |
| << instruction_->AsInvoke()->GetIntrinsic(); |
| DCHECK_EQ(offset_, 0u); |
| DCHECK(index_.IsRegister()); |
| } |
| } |
| |
| // We're moving two or three locations to locations that could |
| // overlap, so we need a parallel move resolver. |
| InvokeRuntimeCallingConvention calling_convention; |
| HParallelMove parallel_move(codegen->GetGraph()->GetAllocator()); |
| parallel_move.AddMove(ref_, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| type, |
| nullptr); |
| parallel_move.AddMove(obj_, |
| LocationFrom(calling_convention.GetRegisterAt(1)), |
| type, |
| nullptr); |
| if (index.IsValid()) { |
| parallel_move.AddMove(index, |
| LocationFrom(calling_convention.GetRegisterAt(2)), |
| DataType::Type::kInt32, |
| nullptr); |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| } else { |
| codegen->GetMoveResolver()->EmitNativeCode(¶llel_move); |
| arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_); |
| } |
| arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes< |
| kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>(); |
| arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; } |
| |
| private: |
| Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) { |
| size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode()); |
| size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode()); |
| for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) { |
| if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) { |
| return Register(VIXLRegCodeFromART(i), kXRegSize); |
| } |
| } |
| // We shall never fail to find a free caller-save register, as |
| // there are more than two core caller-save registers on ARM64 |
| // (meaning it is possible to find one which is different from |
| // `ref` and `obj`). |
| DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u); |
| LOG(FATAL) << "Could not find a free register"; |
| UNREACHABLE(); |
| } |
| |
| const Location out_; |
| const Location ref_; |
| const Location obj_; |
| const uint32_t offset_; |
| // An additional location containing an index to an array. |
| // Only used for HArrayGet and the UnsafeGetObject & |
| // UnsafeGetObjectVolatile intrinsics. |
| const Location index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64); |
| }; |
| |
| // Slow path generating a read barrier for a GC root. |
| class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root) |
| : SlowPathCodeARM64(instruction), out_(out), root_(root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| DataType::Type type = DataType::Type::kReference; |
| DCHECK(locations->CanCall()); |
| DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg())); |
| DCHECK(instruction_->IsLoadClass() || |
| instruction_->IsLoadString() || |
| (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified())) |
| << "Unexpected instruction in read barrier for GC root slow path: " |
| << instruction_->DebugName(); |
| |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| // The argument of the ReadBarrierForRootSlow is not a managed |
| // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`; |
| // thus we need a 64-bit move here, and we cannot use |
| // |
| // arm64_codegen->MoveLocation( |
| // LocationFrom(calling_convention.GetRegisterAt(0)), |
| // root_, |
| // type); |
| // |
| // which would emit a 32-bit move, as `type` is a (32-bit wide) |
| // reference type (`DataType::Type::kReference`). |
| __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_)); |
| arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow, |
| instruction_, |
| instruction_->GetDexPc(), |
| this); |
| CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>(); |
| arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type); |
| |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; } |
| |
| private: |
| const Location out_; |
| const Location root_; |
| |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64); |
| }; |
| |
| class MethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| explicit MethodEntryExitHooksSlowPathARM64(HInstruction* instruction) |
| : SlowPathCodeARM64(instruction) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| LocationSummary* locations = instruction_->GetLocations(); |
| QuickEntrypointEnum entry_point = |
| (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook; |
| CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen); |
| __ Bind(GetEntryLabel()); |
| SaveLiveRegisters(codegen, locations); |
| arm64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this); |
| RestoreLiveRegisters(codegen, locations); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { |
| return "MethodEntryExitHooksSlowPath"; |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARM64); |
| }; |
| |
| class CompileOptimizedSlowPathARM64 : public SlowPathCodeARM64 { |
| public: |
| CompileOptimizedSlowPathARM64() : SlowPathCodeARM64(/* instruction= */ nullptr) {} |
| |
| void EmitNativeCode(CodeGenerator* codegen) override { |
| uint32_t entrypoint_offset = |
| GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value(); |
| __ Bind(GetEntryLabel()); |
| __ Ldr(lr, MemOperand(tr, entrypoint_offset)); |
| // Note: we don't record the call here (and therefore don't generate a stack |
| // map), as the entrypoint should never be suspended. |
| __ Blr(lr); |
| __ B(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const override { |
| return "CompileOptimizedSlowPath"; |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARM64); |
| }; |
| |
| #undef __ |
| |
| Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) { |
| Location next_location; |
| if (type == DataType::Type::kVoid) { |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| |
| if (DataType::IsFloatingPointType(type) && |
| (float_index_ < calling_convention.GetNumberOfFpuRegisters())) { |
| next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++)); |
| } else if (!DataType::IsFloatingPointType(type) && |
| (gp_index_ < calling_convention.GetNumberOfRegisters())) { |
| next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++)); |
| } else { |
| size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_); |
| next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset) |
| : Location::StackSlot(stack_offset); |
| } |
| |
| // Space on the stack is reserved for all arguments. |
| stack_index_ += DataType::Is64BitType(type) ? 2 : 1; |
| return next_location; |
| } |
| |
| Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const { |
| return LocationFrom(kArtMethodRegister); |
| } |
| |
| Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) { |
| DCHECK_NE(type, DataType::Type::kReference); |
| |
| Location location = Location::NoLocation(); |
| if (DataType::IsFloatingPointType(type)) { |
| if (fpr_index_ < kParameterFPRegistersLength) { |
| location = LocationFrom(kParameterFPRegisters[fpr_index_]); |
| ++fpr_index_; |
| } |
| } else { |
| // Native ABI uses the same registers as managed, except that the method register x0 |
| // is a normal argument. |
| if (gpr_index_ < 1u + kParameterCoreRegistersLength) { |
| location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]); |
| ++gpr_index_; |
| } |
| } |
| if (location.IsInvalid()) { |
| if (DataType::Is64BitType(type)) { |
| location = Location::DoubleStackSlot(stack_offset_); |
| } else { |
| location = Location::StackSlot(stack_offset_); |
| } |
| stack_offset_ += kFramePointerSize; |
| |
| if (for_register_allocation_) { |
| location = Location::Any(); |
| } |
| } |
| return location; |
| } |
| |
| Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const { |
| // We perform conversion to the managed ABI return register after the call if needed. |
| InvokeDexCallingConventionVisitorARM64 dex_calling_convention; |
| return dex_calling_convention.GetReturnLocation(type); |
| } |
| |
| Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const { |
| // Pass the method in the hidden argument x15. |
| return Location::RegisterLocation(x15.GetCode()); |
| } |
| |
| CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph, |
| const CompilerOptions& compiler_options, |
| OptimizingCompilerStats* stats) |
| : CodeGenerator(graph, |
| kNumberOfAllocatableRegisters, |
| kNumberOfAllocatableFPRegisters, |
| kNumberOfAllocatableRegisterPairs, |
| callee_saved_core_registers.GetList(), |
| callee_saved_fp_registers.GetList(), |
| compiler_options, |
| stats), |
| block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| location_builder_neon_(graph, this), |
| instruction_visitor_neon_(graph, this), |
| location_builder_sve_(graph, this), |
| instruction_visitor_sve_(graph, this), |
| move_resolver_(graph->GetAllocator(), this), |
| assembler_(graph->GetAllocator(), |
| compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()), |
| boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| uint32_literals_(std::less<uint32_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| uint64_literals_(std::less<uint64_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_string_patches_(StringReferenceValueComparator(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_class_patches_(TypeReferenceValueComparator(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)), |
| jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(), |
| graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) { |
| // Save the link register (containing the return address) to mimic Quick. |
| AddAllocatedRegister(LocationFrom(lr)); |
| |
| bool use_sve = ShouldUseSVE(); |
| if (use_sve) { |
| location_builder_ = &location_builder_sve_; |
| instruction_visitor_ = &instruction_visitor_sve_; |
| } else { |
| location_builder_ = &location_builder_neon_; |
| instruction_visitor_ = &instruction_visitor_neon_; |
| } |
| } |
| |
| bool CodeGeneratorARM64::ShouldUseSVE() const { |
| return GetInstructionSetFeatures().HasSVE(); |
| } |
| |
| size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const { |
| return SupportsPredicatedSIMD() |
| ? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte |
| : vixl::aarch64::kQRegSizeInBytes; |
| } |
| |
| #define __ GetVIXLAssembler()-> |
| |
| void CodeGeneratorARM64::EmitJumpTables() { |
| for (auto&& jump_table : jump_tables_) { |
| jump_table->EmitTable(this); |
| } |
| } |
| |
| void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) { |
| EmitJumpTables(); |
| |
| // Emit JIT baker read barrier slow paths. |
| DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty()); |
| for (auto& entry : jit_baker_read_barrier_slow_paths_) { |
| uint32_t encoded_data = entry.first; |
| vixl::aarch64::Label* slow_path_entry = &entry.second.label; |
| __ Bind(slow_path_entry); |
| CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr); |
| } |
| |
| // Ensure we emit the literal pool. |
| __ FinalizeCode(); |
| |
| CodeGenerator::Finalize(allocator); |
| |
| // Verify Baker read barrier linker patches. |
| if (kIsDebugBuild) { |
| ArrayRef<const uint8_t> code = allocator->GetMemory(); |
| for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { |
| DCHECK(info.label.IsBound()); |
| uint32_t literal_offset = info.label.GetLocation(); |
| DCHECK_ALIGNED(literal_offset, 4u); |
| |
| auto GetInsn = [&code](uint32_t offset) { |
| DCHECK_ALIGNED(offset, 4u); |
| return |
| (static_cast<uint32_t>(code[offset + 0]) << 0) + |
| (static_cast<uint32_t>(code[offset + 1]) << 8) + |
| (static_cast<uint32_t>(code[offset + 2]) << 16)+ |
| (static_cast<uint32_t>(code[offset + 3]) << 24); |
| }; |
| |
| const uint32_t encoded_data = info.custom_data; |
| BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); |
| // Check that the next instruction matches the expected LDR. |
| switch (kind) { |
| case BakerReadBarrierKind::kField: |
| case BakerReadBarrierKind::kAcquire: { |
| DCHECK_GE(code.size() - literal_offset, 8u); |
| uint32_t next_insn = GetInsn(literal_offset + 4u); |
| CheckValidReg(next_insn & 0x1fu); // Check destination register. |
| const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); |
| if (kind == BakerReadBarrierKind::kField) { |
| // LDR (immediate) with correct base_reg. |
| CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5)); |
| } else { |
| DCHECK(kind == BakerReadBarrierKind::kAcquire); |
| // LDAR with correct base_reg. |
| CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5)); |
| } |
| break; |
| } |
| case BakerReadBarrierKind::kArray: { |
| DCHECK_GE(code.size() - literal_offset, 8u); |
| uint32_t next_insn = GetInsn(literal_offset + 4u); |
| // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL), |
| // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2]. |
| CheckValidReg(next_insn & 0x1fu); // Check destination register. |
| const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); |
| CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5)); |
| CheckValidReg((next_insn >> 16) & 0x1f); // Check index register |
| break; |
| } |
| case BakerReadBarrierKind::kGcRoot: { |
| DCHECK_GE(literal_offset, 4u); |
| uint32_t prev_insn = GetInsn(literal_offset - 4u); |
| const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); |
| // Usually LDR (immediate) with correct root_reg but |
| // we may have a "MOV marked, old_value" for intrinsic CAS. |
| if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV? |
| CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR? |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); |
| UNREACHABLE(); |
| } |
| } |
| } |
| } |
| |
| void ParallelMoveResolverARM64::PrepareForEmitNativeCode() { |
| // Note: There are 6 kinds of moves: |
| // 1. constant -> GPR/FPR (non-cycle) |
| // 2. constant -> stack (non-cycle) |
| // 3. GPR/FPR -> GPR/FPR |
| // 4. GPR/FPR -> stack |
| // 5. stack -> GPR/FPR |
| // 6. stack -> stack (non-cycle) |
| // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5 |
| // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting |
| // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the |
| // dependency. |
| vixl_temps_.Open(GetVIXLAssembler()); |
| } |
| |
| void ParallelMoveResolverARM64::FinishEmitNativeCode() { |
| vixl_temps_.Close(); |
| } |
| |
| Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) { |
| DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister |
| || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot |
| || kind == Location::kSIMDStackSlot); |
| kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot) |
| ? Location::kFpuRegister |
| : Location::kRegister; |
| Location scratch = GetScratchLocation(kind); |
| if (!scratch.Equals(Location::NoLocation())) { |
| return scratch; |
| } |
| // Allocate from VIXL temp registers. |
| if (kind == Location::kRegister) { |
| scratch = LocationFrom(vixl_temps_.AcquireX()); |
| } else { |
| DCHECK_EQ(kind, Location::kFpuRegister); |
| scratch = codegen_->GetGraph()->HasSIMD() |
| ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_) |
| : LocationFrom(vixl_temps_.AcquireD()); |
| } |
| AddScratchLocation(scratch); |
| return scratch; |
| } |
| |
| void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) { |
| if (loc.IsRegister()) { |
| vixl_temps_.Release(XRegisterFrom(loc)); |
| } else { |
| DCHECK(loc.IsFpuRegister()); |
| if (codegen_->GetGraph()->HasSIMD()) { |
| codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_); |
| } else { |
| vixl_temps_.Release(DRegisterFrom(loc)); |
| } |
| } |
| RemoveScratchLocation(loc); |
| } |
| |
| void ParallelMoveResolverARM64::EmitMove(size_t index) { |
| MoveOperands* move = moves_[index]; |
| codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid); |
| } |
| |
| void LocationsBuilderARM64::VisitMethodExitHook(HMethodExitHook* method_hook) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(method_hook, LocationSummary::kCallOnSlowPath); |
| DataType::Type return_type = method_hook->InputAt(0)->GetType(); |
| locations->SetInAt(0, ARM64ReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateMethodEntryExitHook(HInstruction* instruction) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| Register value = temps.AcquireW(); |
| |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation()); |
| int offset = instrumentation::Instrumentation::NeedsEntryExitHooksOffset().Int32Value(); |
| __ Mov(temp, address + offset); |
| __ Ldrb(value, MemOperand(temp, 0)); |
| __ Cbnz(value, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMethodExitHook(HMethodExitHook* instruction) { |
| DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); |
| DCHECK(codegen_->RequiresCurrentMethod()); |
| GenerateMethodEntryExitHook(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitMethodEntryHook(HMethodEntryHook* method_hook) { |
| new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMethodEntryHook(HMethodEntryHook* instruction) { |
| DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable()); |
| DCHECK(codegen_->RequiresCurrentMethod()); |
| GenerateMethodEntryExitHook(instruction); |
| } |
| |
| void CodeGeneratorARM64::MaybeIncrementHotness(bool is_frame_entry) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| if (GetCompilerOptions().CountHotnessInCompiledCode()) { |
| UseScratchRegisterScope temps(masm); |
| Register counter = temps.AcquireX(); |
| Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX(); |
| if (!is_frame_entry) { |
| __ Ldr(method, MemOperand(sp, 0)); |
| } |
| __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value())); |
| vixl::aarch64::Label done; |
| DCHECK_EQ(0u, interpreter::kNterpHotnessValue); |
| __ Cbz(counter, &done); |
| __ Add(counter, counter, -1); |
| __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value())); |
| __ Bind(&done); |
| } |
| |
| if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) { |
| SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARM64(); |
| AddSlowPath(slow_path); |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| DCHECK(!HasEmptyFrame()); |
| uint64_t address = reinterpret_cast64<uint64_t>(info); |
| vixl::aarch64::Label done; |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| Register counter = temps.AcquireW(); |
| __ Ldr(temp, DeduplicateUint64Literal(address)); |
| __ Ldrh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); |
| __ Cbz(counter, slow_path->GetEntryLabel()); |
| __ Add(counter, counter, -1); |
| __ Strh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value())); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateFrameEntry() { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| __ Bind(&frame_entry_label_); |
| |
| bool do_overflow_check = |
| FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod(); |
| if (do_overflow_check) { |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireX(); |
| DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks()); |
| __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64))); |
| { |
| // Ensure that between load and RecordPcInfo there are no pools emitted. |
| ExactAssemblyScope eas(GetVIXLAssembler(), |
| kInstructionSize, |
| CodeBufferCheckScope::kExactSize); |
| __ ldr(wzr, MemOperand(temp, 0)); |
| RecordPcInfo(nullptr, 0); |
| } |
| } |
| |
| if (!HasEmptyFrame()) { |
| // Stack layout: |
| // sp[frame_size - 8] : lr. |
| // ... : other preserved core registers. |
| // ... : other preserved fp registers. |
| // ... : reserved frame space. |
| // sp[0] : current method. |
| int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize()); |
| uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); |
| CPURegList preserved_core_registers = GetFramePreservedCoreRegisters(); |
| DCHECK(!preserved_core_registers.IsEmpty()); |
| uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); |
| CPURegList preserved_fp_registers = GetFramePreservedFPRegisters(); |
| |
| // Save the current method if we need it, or if using STP reduces code |
| // size. Note that we do not do this in HCurrentMethod, as the |
| // instruction might have been removed in the SSA graph. |
| CPURegister lowest_spill; |
| if (core_spills_offset == kXRegSizeInBytes) { |
| // If there is no gap between the method and the lowest core spill, use |
| // aligned STP pre-index to store both. Max difference is 512. We do |
| // that to reduce code size even if we do not have to save the method. |
| DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes. |
| lowest_spill = preserved_core_registers.PopLowestIndex(); |
| __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex)); |
| } else if (RequiresCurrentMethod()) { |
| __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex)); |
| } else { |
| __ Claim(frame_size); |
| } |
| GetAssembler()->cfi().AdjustCFAOffset(frame_size); |
| if (lowest_spill.IsValid()) { |
| GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset); |
| core_spills_offset += kXRegSizeInBytes; |
| } |
| GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset); |
| GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset); |
| |
| if (GetGraph()->HasShouldDeoptimizeFlag()) { |
| // Initialize should_deoptimize flag to 0. |
| Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize); |
| __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag())); |
| } |
| } |
| MaybeIncrementHotness(/* is_frame_entry= */ true); |
| MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void CodeGeneratorARM64::GenerateFrameExit() { |
| GetAssembler()->cfi().RememberState(); |
| if (!HasEmptyFrame()) { |
| int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize()); |
| uint32_t core_spills_offset = frame_size - GetCoreSpillSize(); |
| CPURegList preserved_core_registers = GetFramePreservedCoreRegisters(); |
| DCHECK(!preserved_core_registers.IsEmpty()); |
| uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize(); |
| CPURegList preserved_fp_registers = GetFramePreservedFPRegisters(); |
| |
| CPURegister lowest_spill; |
| if (core_spills_offset == kXRegSizeInBytes) { |
| // If there is no gap between the method and the lowest core spill, use |
| // aligned LDP pre-index to pop both. Max difference is 504. We do |
| // that to reduce code size even though the loaded method is unused. |
| DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes. |
| lowest_spill = preserved_core_registers.PopLowestIndex(); |
| core_spills_offset += kXRegSizeInBytes; |
| } |
| GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset); |
| GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset); |
| if (lowest_spill.IsValid()) { |
| __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex)); |
| GetAssembler()->cfi().Restore(DWARFReg(lowest_spill)); |
| } else { |
| __ Drop(frame_size); |
| } |
| GetAssembler()->cfi().AdjustCFAOffset(-frame_size); |
| } |
| __ Ret(); |
| GetAssembler()->cfi().RestoreState(); |
| GetAssembler()->cfi().DefCFAOffset(GetFrameSize()); |
| } |
| |
| CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const { |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0)); |
| return CPURegList(CPURegister::kRegister, kXRegSize, |
| core_spill_mask_); |
| } |
| |
| CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const { |
| DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_, |
| GetNumberOfFloatingPointRegisters())); |
| return CPURegList(CPURegister::kVRegister, kDRegSize, |
| fpu_spill_mask_); |
| } |
| |
| void CodeGeneratorARM64::Bind(HBasicBlock* block) { |
| __ Bind(GetLabelOf(block)); |
| } |
| |
| void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) { |
| DCHECK(location.IsRegister()); |
| __ Mov(RegisterFrom(location, DataType::Type::kInt32), value); |
| } |
| |
| void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) { |
| if (location.IsRegister()) { |
| locations->AddTemp(location); |
| } else { |
| UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location; |
| } |
| } |
| |
| void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register card = temps.AcquireX(); |
| Register temp = temps.AcquireW(); // Index within the CardTable - 32bit. |
| vixl::aarch64::Label done; |
| if (value_can_be_null) { |
| __ Cbz(value, &done); |
| } |
| // Load the address of the card table into `card`. |
| __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value())); |
| // Calculate the offset (in the card table) of the card corresponding to |
| // `object`. |
| __ Lsr(temp, object, gc::accounting::CardTable::kCardShift); |
| // Write the `art::gc::accounting::CardTable::kCardDirty` value into the |
| // `object`'s card. |
| // |
| // Register `card` contains the address of the card table. Note that the card |
| // table's base is biased during its creation so that it always starts at an |
| // address whose least-significant byte is equal to `kCardDirty` (see |
| // art::gc::accounting::CardTable::Create). Therefore the STRB instruction |
| // below writes the `kCardDirty` (byte) value into the `object`'s card |
| // (located at `card + object >> kCardShift`). |
| // |
| // This dual use of the value in register `card` (1. to calculate the location |
| // of the card to mark; and 2. to load the `kCardDirty` value) saves a load |
| // (no need to explicitly load `kCardDirty` as an immediate value). |
| __ Strb(card, MemOperand(card, temp.X())); |
| if (value_can_be_null) { |
| __ Bind(&done); |
| } |
| } |
| |
| void CodeGeneratorARM64::SetupBlockedRegisters() const { |
| // Blocked core registers: |
| // lr : Runtime reserved. |
| // tr : Runtime reserved. |
| // mr : Runtime reserved. |
| // ip1 : VIXL core temp. |
| // ip0 : VIXL core temp. |
| // x18 : Platform register. |
| // |
| // Blocked fp registers: |
| // d31 : VIXL fp temp. |
| CPURegList reserved_core_registers = vixl_reserved_core_registers; |
| reserved_core_registers.Combine(runtime_reserved_core_registers); |
| while (!reserved_core_registers.IsEmpty()) { |
| blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true; |
| } |
| blocked_core_registers_[X18] = true; |
| |
| CPURegList reserved_fp_registers = vixl_reserved_fp_registers; |
| while (!reserved_fp_registers.IsEmpty()) { |
| blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true; |
| } |
| |
| if (GetGraph()->IsDebuggable()) { |
| // Stubs do not save callee-save floating point registers. If the graph |
| // is debuggable, we need to deal with these registers differently. For |
| // now, just block them. |
| CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers; |
| while (!reserved_fp_registers_debuggable.IsEmpty()) { |
| blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true; |
| } |
| } |
| } |
| |
| size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) { |
| Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); |
| __ Str(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) { |
| Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize); |
| __ Ldr(reg, MemOperand(sp, stack_index)); |
| return kArm64WordSize; |
| } |
| |
| size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, |
| uint32_t reg_id ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "FP registers shouldn't be saved/restored individually, " |
| << "use SaveRestoreLiveRegistersHelper"; |
| UNREACHABLE(); |
| } |
| |
| size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED, |
| uint32_t reg_id ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "FP registers shouldn't be saved/restored individually, " |
| << "use SaveRestoreLiveRegistersHelper"; |
| UNREACHABLE(); |
| } |
| |
| void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const { |
| stream << XRegister(reg); |
| } |
| |
| void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const { |
| stream << DRegister(reg); |
| } |
| |
| const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const { |
| return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures(); |
| } |
| |
| void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) { |
| if (constant->IsIntConstant()) { |
| __ Mov(Register(destination), constant->AsIntConstant()->GetValue()); |
| } else if (constant->IsLongConstant()) { |
| __ Mov(Register(destination), constant->AsLongConstant()->GetValue()); |
| } else if (constant->IsNullConstant()) { |
| __ Mov(Register(destination), 0); |
| } else if (constant->IsFloatConstant()) { |
| __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue()); |
| } else { |
| DCHECK(constant->IsDoubleConstant()); |
| __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue()); |
| } |
| } |
| |
| |
| static bool CoherentConstantAndType(Location constant, DataType::Type type) { |
| DCHECK(constant.IsConstant()); |
| HConstant* cst = constant.GetConstant(); |
| return (cst->IsIntConstant() && type == DataType::Type::kInt32) || |
| // Null is mapped to a core W register, which we associate with kPrimInt. |
| (cst->IsNullConstant() && type == DataType::Type::kInt32) || |
| (cst->IsLongConstant() && type == DataType::Type::kInt64) || |
| (cst->IsFloatConstant() && type == DataType::Type::kFloat32) || |
| (cst->IsDoubleConstant() && type == DataType::Type::kFloat64); |
| } |
| |
| // Allocate a scratch register from the VIXL pool, querying first |
| // the floating-point register pool, and then the core register |
| // pool. This is essentially a reimplementation of |
| // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize |
| // using a different allocation strategy. |
| static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm, |
| vixl::aarch64::UseScratchRegisterScope* temps, |
| int size_in_bits) { |
| return masm->GetScratchVRegisterList()->IsEmpty() |
| ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits)) |
| : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits)); |
| } |
| |
| void CodeGeneratorARM64::MoveLocation(Location destination, |
| Location source, |
| DataType::Type dst_type) { |
| if (source.Equals(destination)) { |
| return; |
| } |
| |
| // A valid move can always be inferred from the destination and source |
| // locations. When moving from and to a register, the argument type can be |
| // used to generate 32bit instead of 64bit moves. In debug mode we also |
| // checks the coherency of the locations and the type. |
| bool unspecified_type = (dst_type == DataType::Type::kVoid); |
| |
| if (destination.IsRegister() || destination.IsFpuRegister()) { |
| if (unspecified_type) { |
| HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr; |
| if (source.IsStackSlot() || |
| (src_cst != nullptr && (src_cst->IsIntConstant() |
| || src_cst->IsFloatConstant() |
| || src_cst->IsNullConstant()))) { |
| // For stack slots and 32bit constants, a 64bit type is appropriate. |
| dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32; |
| } else { |
| // If the source is a double stack slot or a 64bit constant, a 64bit |
| // type is appropriate. Else the source is a register, and since the |
| // type has not been specified, we chose a 64bit type to force a 64bit |
| // move. |
| dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64; |
| } |
| } |
| DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) || |
| (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type))); |
| CPURegister dst = CPURegisterFrom(destination, dst_type); |
| if (source.IsStackSlot() || source.IsDoubleStackSlot()) { |
| DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot()); |
| __ Ldr(dst, StackOperandFrom(source)); |
| } else if (source.IsSIMDStackSlot()) { |
| GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source); |
| } else if (source.IsConstant()) { |
| DCHECK(CoherentConstantAndType(source, dst_type)); |
| MoveConstant(dst, source.GetConstant()); |
| } else if (source.IsRegister()) { |
| if (destination.IsRegister()) { |
| __ Mov(Register(dst), RegisterFrom(source, dst_type)); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| DataType::Type source_type = DataType::Is64BitType(dst_type) |
| ? DataType::Type::kInt64 |
| : DataType::Type::kInt32; |
| __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type)); |
| } |
| } else { |
| DCHECK(source.IsFpuRegister()); |
| if (destination.IsRegister()) { |
| DataType::Type source_type = DataType::Is64BitType(dst_type) |
| ? DataType::Type::kFloat64 |
| : DataType::Type::kFloat32; |
| __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type)); |
| } else { |
| DCHECK(destination.IsFpuRegister()); |
| if (GetGraph()->HasSIMD()) { |
| GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source); |
| } else { |
| __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type)); |
| } |
| } |
| } |
| } else if (destination.IsSIMDStackSlot()) { |
| GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source); |
| } else { // The destination is not a register. It must be a stack slot. |
| DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot()); |
| if (source.IsRegister() || source.IsFpuRegister()) { |
| if (unspecified_type) { |
| if (source.IsRegister()) { |
| dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64; |
| } else { |
| dst_type = |
| destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64; |
| } |
| } |
| DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) && |
| (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type))); |
| __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination)); |
| } else if (source.IsConstant()) { |
| DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type)) |
| << source << " " << dst_type; |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| HConstant* src_cst = source.GetConstant(); |
| CPURegister temp; |
| if (src_cst->IsZeroBitPattern()) { |
| temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant()) |
| ? Register(xzr) |
| : Register(wzr); |
| } else { |
| if (src_cst->IsIntConstant()) { |
| temp = temps.AcquireW(); |
| } else if (src_cst->IsLongConstant()) { |
| temp = temps.AcquireX(); |
| } else if (src_cst->IsFloatConstant()) { |
| temp = temps.AcquireS(); |
| } else { |
| DCHECK(src_cst->IsDoubleConstant()); |
| temp = temps.AcquireD(); |
| } |
| MoveConstant(temp, src_cst); |
| } |
| __ Str(temp, StackOperandFrom(destination)); |
| } else { |
| DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot()); |
| DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot()); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| // Use any scratch register (a core or a floating-point one) |
| // from VIXL scratch register pools as a temporary. |
| // |
| // We used to only use the FP scratch register pool, but in some |
| // rare cases the only register from this pool (D31) would |
| // already be used (e.g. within a ParallelMove instruction, when |
| // a move is blocked by a another move requiring a scratch FP |
| // register, which would reserve D31). To prevent this issue, we |
| // ask for a scratch register of any type (core or FP). |
| // |
| // Also, we start by asking for a FP scratch register first, as the |
| // demand of scratch core registers is higher. This is why we |
| // use AcquireFPOrCoreCPURegisterOfSize instead of |
| // UseScratchRegisterScope::AcquireCPURegisterOfSize, which |
| // allocates core scratch registers first. |
| CPURegister temp = AcquireFPOrCoreCPURegisterOfSize( |
| GetVIXLAssembler(), |
| &temps, |
| (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize)); |
| __ Ldr(temp, StackOperandFrom(source)); |
| __ Str(temp, StackOperandFrom(destination)); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::Load(DataType::Type type, |
| CPURegister dst, |
| const MemOperand& src) { |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| __ Ldrb(Register(dst), src); |
| break; |
| case DataType::Type::kInt8: |
| __ Ldrsb(Register(dst), src); |
| break; |
| case DataType::Type::kUint16: |
| __ Ldrh(Register(dst), src); |
| break; |
| case DataType::Type::kInt16: |
| __ Ldrsh(Register(dst), src); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); |
| __ Ldr(dst, src); |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction, |
| DataType::Type type, |
| CPURegister dst, |
| const MemOperand& src, |
| bool needs_null_check) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| Register temp_base = temps.AcquireX(); |
| |
| DCHECK(!src.IsPreIndex()); |
| DCHECK(!src.IsPostIndex()); |
| |
| // TODO(vixl): Let the MacroAssembler handle MemOperand. |
| __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src)); |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| MemOperand base = MemOperand(temp_base); |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldarb(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| if (type == DataType::Type::kInt8) { |
| __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); |
| } |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldarh(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| if (type == DataType::Type::kInt16) { |
| __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte); |
| } |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| case DataType::Type::kInt64: |
| DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldar(Register(dst), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| DCHECK(dst.IsFPRegister()); |
| DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type)); |
| |
| Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ ldar(temp, base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| __ Fmov(VRegister(dst), temp); |
| break; |
| } |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::Store(DataType::Type type, |
| CPURegister src, |
| const MemOperand& dst) { |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| __ Strb(Register(src), dst); |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| __ Strh(Register(src), dst); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); |
| __ Str(src, dst); |
| break; |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::StoreRelease(HInstruction* instruction, |
| DataType::Type type, |
| CPURegister src, |
| const MemOperand& dst, |
| bool needs_null_check) { |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp_base = temps.AcquireX(); |
| |
| DCHECK(!dst.IsPreIndex()); |
| DCHECK(!dst.IsPostIndex()); |
| |
| // TODO(vixl): Let the MacroAssembler handle this. |
| Operand op = OperandFromMemOperand(dst); |
| __ Add(temp_base, dst.GetBaseRegister(), op); |
| MemOperand base = MemOperand(temp_base); |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| switch (type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlrb(Register(src), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlrh(Register(src), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kReference: |
| case DataType::Type::kInt64: |
| DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlr(Register(src), base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type)); |
| Register temp_src; |
| if (src.IsZero()) { |
| // The zero register is used to avoid synthesizing zero constants. |
| temp_src = Register(src); |
| } else { |
| DCHECK(src.IsFPRegister()); |
| temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW(); |
| __ Fmov(temp_src, VRegister(src)); |
| } |
| { |
| ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ stlr(temp_src, base); |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| break; |
| } |
| case DataType::Type::kUint32: |
| case DataType::Type::kUint64: |
| case DataType::Type::kVoid: |
| LOG(FATAL) << "Unreachable type " << type; |
| } |
| } |
| |
| void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint, |
| HInstruction* instruction, |
| uint32_t dex_pc, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntime(entrypoint, instruction, slow_path); |
| |
| ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint); |
| // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the |
| // entire oat file. This adds an extra branch and we do not want to slow down the main path. |
| // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative. |
| if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) { |
| __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value())); |
| // Ensure the pc position is recorded immediately after the `blr` instruction. |
| ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ blr(lr); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } else { |
| // Ensure the pc position is recorded immediately after the `bl` instruction. |
| ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); |
| EmitEntrypointThunkCall(entrypoint_offset); |
| if (EntrypointRequiresStackMap(entrypoint)) { |
| RecordPcInfo(instruction, dex_pc, slow_path); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, |
| HInstruction* instruction, |
| SlowPathCode* slow_path) { |
| ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path); |
| __ Ldr(lr, MemOperand(tr, entry_point_offset)); |
| __ Blr(lr); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path, |
| Register class_reg) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| constexpr size_t status_lsb_position = SubtypeCheckBits::BitStructSizeOf(); |
| const size_t status_byte_offset = |
| mirror::Class::StatusOffset().SizeValue() + (status_lsb_position / kBitsPerByte); |
| constexpr uint32_t shifted_visibly_initialized_value = |
| enum_cast<uint32_t>(ClassStatus::kVisiblyInitialized) << (status_lsb_position % kBitsPerByte); |
| |
| // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize |
| // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code |
| // size, load only the high byte of the field and compare with 0xf0. |
| // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks |
| // show that this pattern is slower (tested on little cores). |
| __ Ldrb(temp, HeapOperand(class_reg, status_byte_offset)); |
| __ Cmp(temp, shifted_visibly_initialized_value); |
| __ B(lo, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare( |
| HTypeCheckInstruction* check, vixl::aarch64::Register temp) { |
| uint32_t path_to_root = check->GetBitstringPathToRoot(); |
| uint32_t mask = check->GetBitstringMask(); |
| DCHECK(IsPowerOfTwo(mask + 1)); |
| size_t mask_bits = WhichPowerOf2(mask + 1); |
| |
| if (mask_bits == 16u) { |
| // Load only the bitstring part of the status word. |
| __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset())); |
| } else { |
| // /* uint32_t */ temp = temp->status_ |
| __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset())); |
| // Extract the bitstring bits. |
| __ Ubfx(temp, temp, 0, mask_bits); |
| } |
| // Compare the bitstring bits to `path_to_root`. |
| __ Cmp(temp, path_to_root); |
| } |
| |
| void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) { |
| BarrierType type = BarrierAll; |
| |
| switch (kind) { |
| case MemBarrierKind::kAnyAny: |
| case MemBarrierKind::kAnyStore: { |
| type = BarrierAll; |
| break; |
| } |
| case MemBarrierKind::kLoadAny: { |
| type = BarrierReads; |
| break; |
| } |
| case MemBarrierKind::kStoreStore: { |
| type = BarrierWrites; |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected memory barrier " << kind; |
| } |
| __ Dmb(InnerShareable, type); |
| } |
| |
| bool CodeGeneratorARM64::CanUseImplicitSuspendCheck() const { |
| // Use implicit suspend checks if requested in compiler options unless there are SIMD |
| // instructions in the graph. The implicit suspend check saves all FP registers as |
| // 64-bit (in line with the calling convention) but SIMD instructions can use 128-bit |
| // registers, so they need to be saved in an explicit slow path. |
| return GetCompilerOptions().GetImplicitSuspendChecks() && !GetGraph()->HasSIMD(); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction, |
| HBasicBlock* successor) { |
| if (codegen_->CanUseImplicitSuspendCheck()) { |
| __ Ldr(kImplicitSuspendCheckRegister, MemOperand(kImplicitSuspendCheckRegister)); |
| codegen_->RecordPcInfo(instruction, instruction->GetDexPc()); |
| if (successor != nullptr) { |
| __ B(codegen_->GetLabelOf(successor)); |
| } |
| return; |
| } |
| |
| SuspendCheckSlowPathARM64* slow_path = |
| down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath()); |
| if (slow_path == nullptr) { |
| slow_path = |
| new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor); |
| instruction->SetSlowPath(slow_path); |
| codegen_->AddSlowPath(slow_path); |
| if (successor != nullptr) { |
| DCHECK(successor->IsLoopHeader()); |
| } |
| } else { |
| DCHECK_EQ(slow_path->GetSuccessor(), successor); |
| } |
| |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| |
| __ Ldr(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue())); |
| __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags()); |
| if (successor == nullptr) { |
| __ B(ne, slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetReturnLabel()); |
| } else { |
| __ B(eq, codegen_->GetLabelOf(successor)); |
| __ B(slow_path->GetEntryLabel()); |
| // slow_path will return to GetLabelOf(successor). |
| } |
| } |
| |
| InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph, |
| CodeGeneratorARM64* codegen) |
| : InstructionCodeGenerator(graph, codegen), |
| assembler_(codegen->GetAssembler()), |
| codegen_(codegen) {} |
| |
| void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) { |
| DCHECK_EQ(instr->InputCount(), 2U); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); |
| DataType::Type type = instr->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsPredicatedInstanceFieldGet()); |
| |
| bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); |
| |
| bool object_field_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, |
| object_field_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| if (object_field_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| // We need a temporary register for the read barrier load in |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() |
| // only if the field is volatile or the offset is too big. |
| if (field_info.IsVolatile() || |
| field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) { |
| locations->AddTemp(FixedTempLocation()); |
| } |
| } |
| // Input for object receiver. |
| locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister()); |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| if (is_predicated) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } else { |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| } else { |
| if (is_predicated) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } else { |
| // The output overlaps for an object field get when read barriers |
| // are enabled: we do not want the load to overwrite the object's |
| // location, as we need it to emit the read barrier. |
| locations->SetOut(Location::RequiresRegister(), |
| object_field_get_with_read_barrier ? Location::kOutputOverlap |
| : Location::kNoOutputOverlap); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction, |
| const FieldInfo& field_info) { |
| DCHECK(instruction->IsInstanceFieldGet() || |
| instruction->IsStaticFieldGet() || |
| instruction->IsPredicatedInstanceFieldGet()); |
| bool is_predicated = instruction->IsPredicatedInstanceFieldGet(); |
| LocationSummary* locations = instruction->GetLocations(); |
| uint32_t receiver_input = is_predicated ? 1 : 0; |
| Location base_loc = locations->InAt(receiver_input); |
| Location out = locations->Out(); |
| uint32_t offset = field_info.GetFieldOffset().Uint32Value(); |
| DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType())); |
| DataType::Type load_type = instruction->GetType(); |
| MemOperand field = |
| HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset()); |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && |
| load_type == DataType::Type::kReference) { |
| // Object FieldGet with Baker's read barrier case. |
| // /* HeapReference<Object> */ out = *(base + offset) |
| Register base = RegisterFrom(base_loc, DataType::Type::kReference); |
| Location maybe_temp = |
| (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); |
| // Note that potential implicit null checks are handled in this |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call. |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| instruction, |
| out, |
| base, |
| offset, |
| maybe_temp, |
| /* needs_null_check= */ true, |
| field_info.IsVolatile()); |
| } else { |
| // General case. |
| if (field_info.IsVolatile()) { |
| // Note that a potential implicit null check is handled in this |
| // CodeGeneratorARM64::LoadAcquire call. |
| // NB: LoadAcquire will record the pc info if needed. |
| codegen_->LoadAcquire(instruction, |
| load_type, |
| OutputCPURegister(instruction), |
| field, |
| /* needs_null_check= */ true); |
| } else { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Load(load_type, OutputCPURegister(instruction), field); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| if (load_type == DataType::Type::kReference) { |
| // If read barriers are enabled, emit read barriers other than |
| // Baker's using a slow path (and also unpoison the loaded |
| // reference, if heap poisoning is enabled). |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (IsConstantZeroBitPattern(instruction->InputAt(1))) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| } else if (DataType::IsFloatingPointType(instruction->InputAt(1)->GetType())) { |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction, |
| const FieldInfo& field_info, |
| bool value_can_be_null) { |
| DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet()); |
| bool is_predicated = |
| instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet(); |
| |
| Register obj = InputRegisterAt(instruction, 0); |
| CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1); |
| CPURegister source = value; |
| Offset offset = field_info.GetFieldOffset(); |
| DataType::Type field_type = field_info.GetFieldType(); |
| std::optional<vixl::aarch64::Label> pred_is_null; |
| if (is_predicated) { |
| pred_is_null.emplace(); |
| __ Cbz(obj, &*pred_is_null); |
| } |
| |
| { |
| // We use a block to end the scratch scope before the write barrier, thus |
| // freeing the temporary registers so they can be used in `MarkGCCard`. |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| |
| if (kPoisonHeapReferences && field_type == DataType::Type::kReference) { |
| DCHECK(value.IsW()); |
| Register temp = temps.AcquireW(); |
| __ Mov(temp, value.W()); |
| GetAssembler()->PoisonHeapReference(temp.W()); |
| source = temp; |
| } |
| |
| if (field_info.IsVolatile()) { |
| codegen_->StoreRelease( |
| instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true); |
| } else { |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Store(field_type, source, HeapOperand(obj, offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) { |
| codegen_->MarkGCCard(obj, Register(value), value_can_be_null); |
| } |
| |
| if (is_predicated) { |
| __ Bind(&*pred_is_null); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) { |
| DataType::Type type = instr->GetType(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Operand rhs = InputOperandAt(instr, 1); |
| if (instr->IsAdd()) { |
| __ Add(dst, lhs, rhs); |
| } else if (instr->IsAnd()) { |
| __ And(dst, lhs, rhs); |
| } else if (instr->IsOr()) { |
| __ Orr(dst, lhs, rhs); |
| } else if (instr->IsSub()) { |
| __ Sub(dst, lhs, rhs); |
| } else if (instr->IsRor()) { |
| if (rhs.IsImmediate()) { |
| uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1); |
| __ Ror(dst, lhs, shift); |
| } else { |
| // Ensure shift distance is in the same size register as the result. If |
| // we are rotating a long and the shift comes in a w register originally, |
| // we don't need to sxtw for use as an x since the shift distances are |
| // all & reg_bits - 1. |
| __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type)); |
| } |
| } else if (instr->IsMin() || instr->IsMax()) { |
| __ Cmp(lhs, rhs); |
| __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt); |
| } else { |
| DCHECK(instr->IsXor()); |
| __ Eor(dst, lhs, rhs); |
| } |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| VRegister dst = OutputFPRegister(instr); |
| VRegister lhs = InputFPRegisterAt(instr, 0); |
| VRegister rhs = InputFPRegisterAt(instr, 1); |
| if (instr->IsAdd()) { |
| __ Fadd(dst, lhs, rhs); |
| } else if (instr->IsSub()) { |
| __ Fsub(dst, lhs, rhs); |
| } else if (instr->IsMin()) { |
| __ Fmin(dst, lhs, rhs); |
| } else if (instr->IsMax()) { |
| __ Fmax(dst, lhs, rhs); |
| } else { |
| LOG(FATAL) << "Unexpected floating-point binary operation"; |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected binary operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); |
| |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); |
| DataType::Type type = instr->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) { |
| DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr()); |
| |
| DataType::Type type = instr->GetType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Operand rhs = InputOperandAt(instr, 1); |
| if (rhs.IsImmediate()) { |
| uint32_t shift_value = rhs.GetImmediate() & |
| (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance); |
| if (instr->IsShl()) { |
| __ Lsl(dst, lhs, shift_value); |
| } else if (instr->IsShr()) { |
| __ Asr(dst, lhs, shift_value); |
| } else { |
| __ Lsr(dst, lhs, shift_value); |
| } |
| } else { |
| Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W(); |
| |
| if (instr->IsShl()) { |
| __ Lsl(dst, lhs, rhs_reg); |
| } else if (instr->IsShr()) { |
| __ Asr(dst, lhs, rhs_reg); |
| } else { |
| __ Lsr(dst, lhs, rhs_reg); |
| } |
| } |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected shift operation type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { |
| DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType(); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // There is no immediate variant of negated bitwise instructions in AArch64. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) { |
| Register dst = OutputRegister(instr); |
| Register lhs = InputRegisterAt(instr, 0); |
| Register rhs = InputRegisterAt(instr, 1); |
| |
| switch (instr->GetOpKind()) { |
| case HInstruction::kAnd: |
| __ Bic(dst, lhs, rhs); |
| break; |
| case HInstruction::kOr: |
| __ Orn(dst, lhs, rhs); |
| break; |
| case HInstruction::kXor: |
| __ Eon(dst, lhs, rhs); |
| break; |
| default: |
| LOG(FATAL) << "Unreachable"; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDataProcWithShifterOp( |
| HDataProcWithShifterOp* instruction) { |
| DCHECK(instruction->GetType() == DataType::Type::kInt32 || |
| instruction->GetType() == DataType::Type::kInt64); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| if (instruction->GetInstrKind() == HInstruction::kNeg) { |
| locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant())); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp( |
| HDataProcWithShifterOp* instruction) { |
| DataType::Type type = instruction->GetType(); |
| HInstruction::InstructionKind kind = instruction->GetInstrKind(); |
| DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64); |
| Register out = OutputRegister(instruction); |
| Register left; |
| if (kind != HInstruction::kNeg) { |
| left = InputRegisterAt(instruction, 0); |
| } |
| // If this `HDataProcWithShifterOp` was created by merging a type conversion as the |
| // shifter operand operation, the IR generating `right_reg` (input to the type |
| // conversion) can have a different type from the current instruction's type, |
| // so we manually indicate the type. |
| Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type); |
| Operand right_operand(0); |
| |
| HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind(); |
| if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) { |
| right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind)); |
| } else { |
| right_operand = Operand(right_reg, |
| helpers::ShiftFromOpKind(op_kind), |
| instruction->GetShiftAmount()); |
| } |
| |
| // Logical binary operations do not support extension operations in the |
| // operand. Note that VIXL would still manage if it was passed by generating |
| // the extension as a separate instruction. |
| // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`. |
| DCHECK(!right_operand.IsExtendedRegister() || |
| (kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor && |
| kind != HInstruction::kNeg)); |
| switch (kind) { |
| case HInstruction::kAdd: |
| __ Add(out, left, right_operand); |
| break; |
| case HInstruction::kAnd: |
| __ And(out, left, right_operand); |
| break; |
| case HInstruction::kNeg: |
| DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero()); |
| __ Neg(out, right_operand); |
| break; |
| case HInstruction::kOr: |
| __ Orr(out, left, right_operand); |
| break; |
| case HInstruction::kSub: |
| __ Sub(out, left, right_operand); |
| break; |
| case HInstruction::kXor: |
| __ Eor(out, left, right_operand); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected operation kind: " << kind; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) { |
| __ Add(OutputRegister(instruction), |
| InputRegisterAt(instruction, 0), |
| Operand(InputOperandAt(instruction, 1))); |
| } |
| |
| void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| |
| HIntConstant* shift = instruction->GetShift()->AsIntConstant(); |
| |
| locations->SetInAt(0, Location::RequiresRegister()); |
| // For byte case we don't need to shift the index variable so we can encode the data offset into |
| // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist |
| // data offset constant generation out of the loop and reduce the critical path length in the |
| // loop. |
| locations->SetInAt(1, shift->GetValue() == 0 |
| ? Location::ConstantLocation(instruction->GetOffset()->AsIntConstant()) |
| : Location::RequiresRegister()); |
| locations->SetInAt(2, Location::ConstantLocation(shift)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex( |
| HIntermediateAddressIndex* instruction) { |
| Register index_reg = InputRegisterAt(instruction, 0); |
| uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2)); |
| uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue(); |
| |
| if (shift == 0) { |
| __ Add(OutputRegister(instruction), index_reg, offset); |
| } else { |
| Register offset_reg = InputRegisterAt(instruction, 1); |
| __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall); |
| HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); |
| if (instr->GetOpKind() == HInstruction::kSub && |
| accumulator->IsConstant() && |
| accumulator->AsConstant()->IsArithmeticZero()) { |
| // Don't allocate register for Mneg instruction. |
| } else { |
| locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex, |
| Location::RequiresRegister()); |
| } |
| locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister()); |
| locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) { |
| Register res = OutputRegister(instr); |
| Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex); |
| Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex); |
| |
| // Avoid emitting code that could trigger Cortex A53's erratum 835769. |
| // This fixup should be carried out for all multiply-accumulate instructions: |
| // madd, msub, smaddl, smsubl, umaddl and umsubl. |
| if (instr->GetType() == DataType::Type::kInt64 && |
| codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) { |
| MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler(); |
| ptrdiff_t off = masm->GetCursorOffset(); |
| if (off >= static_cast<ptrdiff_t>(kInstructionSize) && |
| masm->GetInstructionAt(off - static_cast<ptrdiff_t>(kInstructionSize))->IsLoadOrStore()) { |
| // Make sure we emit only exactly one nop. |
| ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize); |
| __ nop(); |
| } |
| } |
| |
| if (instr->GetOpKind() == HInstruction::kAdd) { |
| Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); |
| __ Madd(res, mul_left, mul_right, accumulator); |
| } else { |
| DCHECK(instr->GetOpKind() == HInstruction::kSub); |
| HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex); |
| if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) { |
| __ Mneg(res, mul_left, mul_right); |
| } else { |
| Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex); |
| __ Msub(res, mul_left, mul_right, accumulator); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) { |
| bool object_array_get_with_read_barrier = |
| kEmitCompilerReadBarrier && (instruction->GetType() == DataType::Type::kReference); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, |
| object_array_get_with_read_barrier |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall); |
| if (object_array_get_with_read_barrier && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| if (instruction->GetIndex()->IsConstant()) { |
| // Array loads with constant index are treated as field loads. |
| // We need a temporary register for the read barrier load in |
| // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier() |
| // only if the offset is too big. |
| uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); |
| uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue(); |
| offset += index << DataType::SizeShift(DataType::Type::kReference); |
| if (offset >= kReferenceLoadMinFarOffset) { |
| locations->AddTemp(FixedTempLocation()); |
| } |
| } else if (!instruction->GetArray()->IsIntermediateAddress()) { |
| // We need a non-scratch temporary for the array data pointer in |
| // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no |
| // intermediate address. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (DataType::IsFloatingPointType(instruction->GetType())) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| // The output overlaps in the case of an object array get with |
| // read barriers enabled: we do not want the move to overwrite the |
| // array's location, as we need it to emit the read barrier. |
| locations->SetOut( |
| Location::RequiresRegister(), |
| object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) { |
| DataType::Type type = instruction->GetType(); |
| Register obj = InputRegisterAt(instruction, 0); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index = locations->InAt(1); |
| Location out = locations->Out(); |
| uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction); |
| const bool maybe_compressed_char_at = mirror::kUseStringCompression && |
| instruction->IsStringCharAt(); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope temps(masm); |
| |
| // The non-Baker read barrier instrumentation of object ArrayGet instructions |
| // does not support the HIntermediateAddress instruction. |
| DCHECK(!((type == DataType::Type::kReference) && |
| instruction->GetArray()->IsIntermediateAddress() && |
| kEmitCompilerReadBarrier && |
| !kUseBakerReadBarrier)); |
| |
| if (type == DataType::Type::kReference && kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Object ArrayGet with Baker's read barrier case. |
| // Note that a potential implicit null check is handled in the |
| // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call. |
| DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0))); |
| if (index.IsConstant()) { |
| DCHECK(!instruction->GetArray()->IsIntermediateAddress()); |
| // Array load with a constant index can be treated as a field load. |
| offset += Int64FromLocation(index) << DataType::SizeShift(type); |
| Location maybe_temp = |
| (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation(); |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj.W(), |
| offset, |
| maybe_temp, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| } else { |
| codegen_->GenerateArrayLoadWithBakerReadBarrier( |
| instruction, out, obj.W(), offset, index, /* needs_null_check= */ false); |
| } |
| } else { |
| // General case. |
| MemOperand source = HeapOperand(obj); |
| Register length; |
| if (maybe_compressed_char_at) { |
| uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| length = temps.AcquireW(); |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| |
| if (instruction->GetArray()->IsIntermediateAddress()) { |
| DCHECK_LT(count_offset, offset); |
| int64_t adjusted_offset = |
| static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset); |
| // Note that `adjusted_offset` is negative, so this will be a LDUR. |
| __ Ldr(length, MemOperand(obj.X(), adjusted_offset)); |
| } else { |
| __ Ldr(length, HeapOperand(obj, count_offset)); |
| } |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| if (index.IsConstant()) { |
| if (maybe_compressed_char_at) { |
| vixl::aarch64::Label uncompressed_load, done; |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Tbnz(length.W(), 0, &uncompressed_load); |
| __ Ldrb(Register(OutputCPURegister(instruction)), |
| HeapOperand(obj, offset + Int64FromLocation(index))); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| __ Ldrh(Register(OutputCPURegister(instruction)), |
| HeapOperand(obj, offset + (Int64FromLocation(index) << 1))); |
| __ Bind(&done); |
| } else { |
| offset += Int64FromLocation(index) << DataType::SizeShift(type); |
| source = HeapOperand(obj, offset); |
| } |
| } else { |
| Register temp = temps.AcquireSameSizeAs(obj); |
| if (instruction->GetArray()->IsIntermediateAddress()) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); |
| DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset); |
| } |
| temp = obj; |
| } else { |
| __ Add(temp, obj, offset); |
| } |
| if (maybe_compressed_char_at) { |
| vixl::aarch64::Label uncompressed_load, done; |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ Tbnz(length.W(), 0, &uncompressed_load); |
| __ Ldrb(Register(OutputCPURegister(instruction)), |
| HeapOperand(temp, XRegisterFrom(index), LSL, 0)); |
| __ B(&done); |
| __ Bind(&uncompressed_load); |
| __ Ldrh(Register(OutputCPURegister(instruction)), |
| HeapOperand(temp, XRegisterFrom(index), LSL, 1)); |
| __ Bind(&done); |
| } else { |
| source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type)); |
| } |
| } |
| if (!maybe_compressed_char_at) { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Load(type, OutputCPURegister(instruction), source); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| |
| if (type == DataType::Type::kReference) { |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| Location obj_loc = locations->InAt(0); |
| if (index.IsConstant()) { |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset); |
| } else { |
| codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index); |
| } |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) { |
| uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction); |
| vixl::aarch64::Register out = OutputRegister(instruction); |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| // Mask out compression flag from String's array length. |
| if (mirror::kUseStringCompression && instruction->IsStringLength()) { |
| __ Lsr(out.W(), out.W(), 1u); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) { |
| DataType::Type value_type = instruction->GetComponentType(); |
| |
| bool needs_type_check = instruction->NeedsTypeCheck(); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, |
| needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1))); |
| if (IsConstantZeroBitPattern(instruction->InputAt(2))) { |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| } else if (DataType::IsFloatingPointType(value_type)) { |
| locations->SetInAt(2, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) { |
| DataType::Type value_type = instruction->GetComponentType(); |
| LocationSummary* locations = instruction->GetLocations(); |
| bool needs_type_check = instruction->NeedsTypeCheck(); |
| bool needs_write_barrier = |
| CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue()); |
| |
| Register array = InputRegisterAt(instruction, 0); |
| CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2); |
| CPURegister source = value; |
| Location index = locations->InAt(1); |
| size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value(); |
| MemOperand destination = HeapOperand(array); |
| MacroAssembler* masm = GetVIXLAssembler(); |
| |
| if (!needs_write_barrier) { |
| DCHECK(!needs_type_check); |
| if (index.IsConstant()) { |
| offset += Int64FromLocation(index) << DataType::SizeShift(value_type); |
| destination = HeapOperand(array, offset); |
| } else { |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireSameSizeAs(array); |
| if (instruction->GetArray()->IsIntermediateAddress()) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); |
| DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset); |
| } |
| temp = array; |
| } else { |
| __ Add(temp, array, offset); |
| } |
| destination = HeapOperand(temp, |
| XRegisterFrom(index), |
| LSL, |
| DataType::SizeShift(value_type)); |
| } |
| { |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| codegen_->Store(value_type, value, destination); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } else { |
| DCHECK(!instruction->GetArray()->IsIntermediateAddress()); |
| |
| bool can_value_be_null = instruction->GetValueCanBeNull(); |
| vixl::aarch64::Label do_store; |
| if (can_value_be_null) { |
| __ Cbz(Register(value), &do_store); |
| } |
| |
| SlowPathCodeARM64* slow_path = nullptr; |
| if (needs_type_check) { |
| slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| |
| UseScratchRegisterScope temps(masm); |
| Register temp = temps.AcquireSameSizeAs(array); |
| Register temp2 = temps.AcquireSameSizeAs(array); |
| |
| // Note that when Baker read barriers are enabled, the type |
| // checks are performed without read barriers. This is fine, |
| // even in the case where a class object is in the from-space |
| // after the flip, as a comparison involving such a type would |
| // not produce a false positive; it may of course produce a |
| // false negative, in which case we would take the ArraySet |
| // slow path. |
| |
| // /* HeapReference<Class> */ temp = array->klass_ |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| __ Ldr(temp, HeapOperand(array, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| __ Ldr(temp, HeapOperand(temp, component_offset)); |
| // /* HeapReference<Class> */ temp2 = value->klass_ |
| __ Ldr(temp2, HeapOperand(Register(value), class_offset)); |
| // If heap poisoning is enabled, no need to unpoison `temp` |
| // nor `temp2`, as we are comparing two poisoned references. |
| __ Cmp(temp, temp2); |
| |
| if (instruction->StaticTypeOfArrayIsObjectArray()) { |
| vixl::aarch64::Label do_put; |
| __ B(eq, &do_put); |
| // If heap poisoning is enabled, the `temp` reference has |
| // not been unpoisoned yet; unpoison it now. |
| GetAssembler()->MaybeUnpoisonHeapReference(temp); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| __ Ldr(temp, HeapOperand(temp, super_offset)); |
| // If heap poisoning is enabled, no need to unpoison |
| // `temp`, as we are comparing against null below. |
| __ Cbnz(temp, slow_path->GetEntryLabel()); |
| __ Bind(&do_put); |
| } else { |
| __ B(ne, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| codegen_->MarkGCCard(array, value.W(), /* value_can_be_null= */ false); |
| |
| if (can_value_be_null) { |
| DCHECK(do_store.IsLinked()); |
| __ Bind(&do_store); |
| } |
| |
| UseScratchRegisterScope temps(masm); |
| if (kPoisonHeapReferences) { |
| Register temp_source = temps.AcquireSameSizeAs(array); |
| DCHECK(value.IsW()); |
| __ Mov(temp_source, value.W()); |
| GetAssembler()->PoisonHeapReference(temp_source); |
| source = temp_source; |
| } |
| |
| if (index.IsConstant()) { |
| offset += Int64FromLocation(index) << DataType::SizeShift(value_type); |
| destination = HeapOperand(array, offset); |
| } else { |
| Register temp_base = temps.AcquireSameSizeAs(array); |
| __ Add(temp_base, array, offset); |
| destination = HeapOperand(temp_base, |
| XRegisterFrom(index), |
| LSL, |
| DataType::SizeShift(value_type)); |
| } |
| |
| { |
| // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| __ Str(source, destination); |
| |
| if (can_value_be_null || !needs_type_check) { |
| codegen_->MaybeRecordImplicitNullCheck(instruction); |
| } |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| InvokeRuntimeCallingConvention calling_convention; |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode())); |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves); |
| |
| // If both index and length are constant, we can check the bounds statically and |
| // generate code accordingly. We want to make sure we generate constant locations |
| // in that case, regardless of whether they are encodable in the comparison or not. |
| HInstruction* index = instruction->InputAt(0); |
| HInstruction* length = instruction->InputAt(1); |
| bool both_const = index->IsConstant() && length->IsConstant(); |
| locations->SetInAt(0, both_const |
| ? Location::ConstantLocation(index->AsConstant()) |
| : ARM64EncodableConstantOrRegister(index, instruction)); |
| locations->SetInAt(1, both_const |
| ? Location::ConstantLocation(length->AsConstant()) |
| : ARM64EncodableConstantOrRegister(length, instruction)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Location index_loc = locations->InAt(0); |
| Location length_loc = locations->InAt(1); |
| |
| int cmp_first_input = 0; |
| int cmp_second_input = 1; |
| Condition cond = hs; |
| |
| if (index_loc.IsConstant()) { |
| int64_t index = Int64FromLocation(index_loc); |
| if (length_loc.IsConstant()) { |
| int64_t length = Int64FromLocation(length_loc); |
| if (index < 0 || index >= length) { |
| BoundsCheckSlowPathARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| // BCE will remove the bounds check if we are guaranteed to pass. |
| // However, some optimization after BCE may have generated this, and we should not |
| // generate a bounds check if it is a valid range. |
| } |
| return; |
| } |
| // Only the index is constant: change the order of the operands and commute the condition |
| // so we can use an immediate constant for the index (only the second input to a cmp |
| // instruction can be an immediate). |
| cmp_first_input = 1; |
| cmp_second_input = 0; |
| cond = ls; |
| } |
| BoundsCheckSlowPathARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction); |
| __ Cmp(InputRegisterAt(instruction, cmp_first_input), |
| InputOperandAt(instruction, cmp_second_input)); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel(), cond); |
| } |
| |
| void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (check->HasUses()) { |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| // Rely on the type initialization to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) { |
| // We assume the class is not null. |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check); |
| codegen_->AddSlowPath(slow_path); |
| GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0)); |
| } |
| |
| static bool IsFloatingPointZeroConstant(HInstruction* inst) { |
| return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero())) |
| || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero())); |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) { |
| VRegister lhs_reg = InputFPRegisterAt(instruction, 0); |
| Location rhs_loc = instruction->GetLocations()->InAt(1); |
| if (rhs_loc.IsConstant()) { |
| // 0.0 is the only immediate that can be encoded directly in |
| // an FCMP instruction. |
| // |
| // Both the JLS (section 15.20.1) and the JVMS (section 6.5) |
| // specify that in a floating-point comparison, positive zero |
| // and negative zero are considered equal, so we can use the |
| // literal 0.0 for both cases here. |
| // |
| // Note however that some methods (Float.equal, Float.compare, |
| // Float.compareTo, Double.equal, Double.compare, |
| // Double.compareTo, Math.max, Math.min, StrictMath.max, |
| // StrictMath.min) consider 0.0 to be (strictly) greater than |
| // -0.0. So if we ever translate calls to these methods into a |
| // HCompare instruction, we must handle the -0.0 case with |
| // care here. |
| DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant())); |
| __ Fcmp(lhs_reg, 0.0); |
| } else { |
| __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitCompare(HCompare* compare) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall); |
| DataType::Type in_type = compare->InputAt(0)->GetType(); |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, |
| IsFloatingPointZeroConstant(compare->InputAt(1)) |
| ? Location::ConstantLocation(compare->InputAt(1)->AsConstant()) |
| : Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for compare operation " << in_type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) { |
| DataType::Type in_type = compare->InputAt(0)->GetType(); |
| |
| // 0 if: left == right |
| // 1 if: left > right |
| // -1 if: left < right |
| switch (in_type) { |
| case DataType::Type::kBool: |
| case DataType::Type::kUint8: |
| case DataType::Type::kInt8: |
| case DataType::Type::kUint16: |
| case DataType::Type::kInt16: |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| Register result = OutputRegister(compare); |
| Register left = InputRegisterAt(compare, 0); |
| Operand right = InputOperandAt(compare, 1); |
| __ Cmp(left, right); |
| __ Cset(result, ne); // result == +1 if NE or 0 otherwise |
| __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| Register result = OutputRegister(compare); |
| GenerateFcmp(compare); |
| __ Cset(result, ne); |
| __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias())); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unimplemented compare type " << in_type; |
| } |
| } |
| |
| void LocationsBuilderARM64::HandleCondition(HCondition* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| |
| if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, |
| IsFloatingPointZeroConstant(instruction->InputAt(1)) |
| ? Location::ConstantLocation(instruction->InputAt(1)->AsConstant()) |
| : Location::RequiresFpuRegister()); |
| } else { |
| // Integer cases. |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction)); |
| } |
| |
| if (!instruction->IsEmittedAtUseSite()) { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) { |
| if (instruction->IsEmittedAtUseSite()) { |
| return; |
| } |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Register res = RegisterFrom(locations->Out(), instruction->GetType()); |
| IfCondition if_cond = instruction->GetCondition(); |
| |
| if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) { |
| GenerateFcmp(instruction); |
| __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias())); |
| } else { |
| // Integer cases. |
| Register lhs = InputRegisterAt(instruction, 0); |
| Operand rhs = InputOperandAt(instruction, 1); |
| __ Cmp(lhs, rhs); |
| __ Cset(res, ARM64Condition(if_cond)); |
| } |
| } |
| |
| #define FOR_EACH_CONDITION_INSTRUCTION(M) \ |
| M(Equal) \ |
| M(NotEqual) \ |
| M(LessThan) \ |
| M(LessThanOrEqual) \ |
| M(GreaterThan) \ |
| M(GreaterThanOrEqual) \ |
| M(Below) \ |
| M(BelowOrEqual) \ |
| M(Above) \ |
| M(AboveOrEqual) |
| #define DEFINE_CONDITION_VISITORS(Name) \ |
| void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \ |
| void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } |
| FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS) |
| #undef DEFINE_CONDITION_VISITORS |
| #undef FOR_EACH_CONDITION_INSTRUCTION |
| |
| void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) { |
| int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); |
| uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); |
| DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| |
| Register final_dividend; |
| if (HasNonNegativeOrMinIntInputAt(instruction, 0)) { |
| // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends. |
| // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends: |
| // imm == 2 |
| // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001 |
| // asr out, out(0x80000001), #1 => out = 0xc0000000 |
| // This is the same as 'asr out, 0x80000000, #1' |
| // |
| // imm > 2 |
| // add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number |
| // of the rightmost 1s is ctz_imm. |
| // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true) |
| // csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1 |
| // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the |
| // leftmost 1s is ctz_imm + 1. |
| // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'. |
| // |
| // imm == INT32_MIN |
| // add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1 |
| // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true) |
| // csel out, temp(-1), dividend(0x80000000), lt => out = -1 |
| // neg out, out(-1), asr #31 => out = 1 |
| // This is the same as 'neg out, dividend(0x80000000), asr #31'. |
| final_dividend = dividend; |
| } else { |
| if (abs_imm == 2) { |
| int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte; |
| __ Add(out, dividend, Operand(dividend, LSR, bits - 1)); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| __ Add(temp, dividend, abs_imm - 1); |
| __ Cmp(dividend, 0); |
| __ Csel(out, temp, dividend, lt); |
| } |
| final_dividend = out; |
| } |
| |
| int ctz_imm = CTZ(abs_imm); |
| if (imm > 0) { |
| __ Asr(out, final_dividend, ctz_imm); |
| } else { |
| __ Neg(out, Operand(final_dividend, ASR, ctz_imm)); |
| } |
| } |
| |
| // Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div). |
| // So dividend needs to be added. |
| static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) { |
| return divisor > 0 && magic_number < 0; |
| } |
| |
| // Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div). |
| // So dividend needs to be subtracted. |
| static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) { |
| return divisor < 0 && magic_number > 0; |
| } |
| |
| // Generate code which increments the value in register 'in' by 1 if the value is negative. |
| // It is done with 'add out, in, in, lsr #31 or #63'. |
| // If the value is a result of an operation setting the N flag, CINC MI can be used |
| // instead of ADD. 'use_cond_inc' controls this. |
| void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne( |
| Register out, |
| Register in, |
| bool use_cond_inc) { |
| if (use_cond_inc) { |
| __ Cinc(out, in, mi); |
| } else { |
| __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1)); |
| } |
| } |
| |
| // Helper to generate code producing the result of HRem with a constant divisor. |
| void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant( |
| Register out, |
| Register dividend, |
| Register quotient, |
| int64_t divisor, |
| UseScratchRegisterScope* temps_scope) { |
| Register temp_imm = temps_scope->AcquireSameSizeAs(out); |
| __ Mov(temp_imm, divisor); |
| __ Msub(out, quotient, temp_imm, dividend); |
| } |
| |
| // Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and |
| // a divisor is a positive constant, not power of 2. |
| void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant( |
| HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == DataType::Type::kInt64); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| DCHECK_GT(imm, 0); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| auto generate_unsigned_div_code = [this, magic, shift](Register out, |
| Register dividend, |
| Register temp) { |
| // temp = get_high(dividend * magic) |
| __ Mov(temp, magic); |
| if (magic > 0 && shift == 0) { |
| __ Smulh(out, dividend, temp); |
| } else { |
| __ Smulh(temp, dividend, temp); |
| if (magic < 0) { |
| // The negative magic means that the multiplier m is greater than INT64_MAX. |
| // In such a case shift is never 0. See the proof in |
| // InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant. |
| __ Add(temp, temp, dividend); |
| } |
| DCHECK_NE(shift, 0); |
| __ Lsr(out, temp, shift); |
| } |
| }; |
| |
| if (instruction->IsDiv()) { |
| generate_unsigned_div_code(out, dividend, temp); |
| } else { |
| generate_unsigned_div_code(temp, dividend, temp); |
| GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); |
| } |
| } |
| |
| // Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor |
| // (not power of 2). |
| void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant( |
| HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == DataType::Type::kInt64); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| // temp = get_high(dividend * magic) |
| __ Mov(temp, magic); |
| __ Smulh(temp, dividend, temp); |
| |
| // The multiplication result might need some corrections to be finalized. |
| // The last correction is to increment by 1, if the result is negative. |
| // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'. |
| // Such ADD usually has latency 2, e.g. on Cortex-A55. |
| // However if one of the corrections is ADD or SUB, the sign can be detected |
| // with ADDS/SUBS. They set the N flag if the result is negative. |
| // This allows to use CINC MI which has latency 1. |
| bool use_cond_inc = false; |
| |
| // Some combinations of magic_number and the divisor require to correct the result. |
| // Check whether the correction is needed. |
| if (NeedToAddDividend(magic, imm)) { |
| __ Adds(temp, temp, dividend); |
| use_cond_inc = true; |
| } else if (NeedToSubDividend(magic, imm)) { |
| __ Subs(temp, temp, dividend); |
| use_cond_inc = true; |
| } |
| |
| if (shift != 0) { |
| __ Asr(temp, temp, shift); |
| } |
| |
| if (instruction->IsRem()) { |
| GenerateIncrementNegativeByOne(temp, temp, use_cond_inc); |
| GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); |
| } else { |
| GenerateIncrementNegativeByOne(out, temp, use_cond_inc); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant( |
| HBinaryOperation* instruction) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| DCHECK(instruction->GetResultType() == DataType::Type::kInt32); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location second = locations->InAt(1); |
| DCHECK(second.IsConstant()); |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| int64_t imm = Int64FromConstant(second.GetConstant()); |
| |
| int64_t magic; |
| int shift; |
| CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| // temp = get_high(dividend * magic) |
| __ Mov(temp, magic); |
| __ Smull(temp.X(), dividend, temp); |
| |
| // The multiplication result might need some corrections to be finalized. |
| // The last correction is to increment by 1, if the result is negative. |
| // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'. |
| // Such ADD usually has latency 2, e.g. on Cortex-A55. |
| // However if one of the corrections is ADD or SUB, the sign can be detected |
| // with ADDS/SUBS. They set the N flag if the result is negative. |
| // This allows to use CINC MI which has latency 1. |
| bool use_cond_inc = false; |
| |
| // ADD/SUB correction is performed in the high 32 bits |
| // as high 32 bits are ignored because type are kInt32. |
| if (NeedToAddDividend(magic, imm)) { |
| __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32)); |
| use_cond_inc = true; |
| } else if (NeedToSubDividend(magic, imm)) { |
| __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32)); |
| use_cond_inc = true; |
| } |
| |
| // Extract the result from the high 32 bits and apply the final right shift. |
| DCHECK_LT(shift, 32); |
| if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) { |
| // No need to adjust the result for a non-negative dividend and a positive divisor. |
| if (instruction->IsDiv()) { |
| __ Lsr(out.X(), temp.X(), 32 + shift); |
| } else { |
| __ Lsr(temp.X(), temp.X(), 32 + shift); |
| GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); |
| } |
| } else { |
| __ Asr(temp.X(), temp.X(), 32 + shift); |
| |
| if (instruction->IsRem()) { |
| GenerateIncrementNegativeByOne(temp, temp, use_cond_inc); |
| GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps); |
| } else { |
| GenerateIncrementNegativeByOne(out, temp, use_cond_inc); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction, |
| int64_t divisor) { |
| DCHECK(instruction->IsDiv() || instruction->IsRem()); |
| if (instruction->GetResultType() == DataType::Type::kInt64) { |
| if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) { |
| GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction); |
| } else { |
| GenerateInt64DivRemWithAnyConstant(instruction); |
| } |
| } else { |
| GenerateInt32DivRemWithAnyConstant(instruction); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) { |
| int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); |
| |
| if (imm == 0) { |
| // Do not generate anything. DivZeroCheck would prevent any code to be executed. |
| return; |
| } |
| |
| if (IsPowerOfTwo(AbsOrMin(imm))) { |
| GenerateIntDivForPower2Denom(instruction); |
| } else { |
| // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier. |
| DCHECK(imm < -2 || imm > 2) << imm; |
| GenerateDivRemWithAnyConstant(instruction, imm); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) { |
| DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) |
| << instruction->GetResultType(); |
| |
| if (instruction->GetLocations()->InAt(1).IsConstant()) { |
| GenerateIntDivForConstDenom(instruction); |
| } else { |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| Register divisor = InputRegisterAt(instruction, 1); |
| __ Sdiv(out, dividend, divisor); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDiv(HDiv* div) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall); |
| switch (div->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << div->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) { |
| DataType::Type type = div->GetResultType(); |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| GenerateIntDiv(div); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected div type " << type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) { |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction); |
| codegen_->AddSlowPath(slow_path); |
| Location value = instruction->GetLocations()->InAt(0); |
| |
| DataType::Type type = instruction->GetType(); |
| |
| if (!DataType::IsIntegralType(type)) { |
| LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck."; |
| UNREACHABLE(); |
| } |
| |
| if (value.IsConstant()) { |
| int64_t divisor = Int64FromLocation(value); |
| if (divisor == 0) { |
| __ B(slow_path->GetEntryLabel()); |
| } else { |
| // A division by a non-null constant is valid. We don't need to perform |
| // any check, so simply fall through. |
| } |
| } else { |
| __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDoubleConstant( |
| HDoubleConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitExit(HExit* exit) { |
| exit->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) { |
| } |
| |
| void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) { |
| if (successor->IsExitBlock()) { |
| DCHECK(got->GetPrevious()->AlwaysThrows()); |
| return; // no code needed |
| } |
| |
| HBasicBlock* block = got->GetBlock(); |
| HInstruction* previous = got->GetPrevious(); |
| HLoopInformation* info = block->GetLoopInformation(); |
| |
| if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) { |
| codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false); |
| GenerateSuspendCheck(info->GetSuspendCheck(), successor); |
| return; // `GenerateSuspendCheck()` emitted the jump. |
| } |
| if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) { |
| GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| if (!codegen_->GoesToNextBlock(block, successor)) { |
| __ B(codegen_->GetLabelOf(successor)); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitGoto(HGoto* got) { |
| got->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) { |
| HandleGoto(got, got->GetSuccessor()); |
| } |
| |
| void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| try_boundary->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) { |
| HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor(); |
| if (!successor->IsExitBlock()) { |
| HandleGoto(try_boundary, successor); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction, |
| size_t condition_input_index, |
| vixl::aarch64::Label* true_target, |
| vixl::aarch64::Label* false_target) { |
| HInstruction* cond = instruction->InputAt(condition_input_index); |
| |
| if (true_target == nullptr && false_target == nullptr) { |
| // Nothing to do. The code always falls through. |
| return; |
| } else if (cond->IsIntConstant()) { |
| // Constant condition, statically compared against "true" (integer value 1). |
| if (cond->AsIntConstant()->IsTrue()) { |
| if (true_target != nullptr) { |
| __ B(true_target); |
| } |
| } else { |
| DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue(); |
| if (false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| return; |
| } |
| |
| // The following code generates these patterns: |
| // (1) true_target == nullptr && false_target != nullptr |
| // - opposite condition true => branch to false_target |
| // (2) true_target != nullptr && false_target == nullptr |
| // - condition true => branch to true_target |
| // (3) true_target != nullptr && false_target != nullptr |
| // - condition true => branch to true_target |
| // - branch to false_target |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| // The condition instruction has been materialized, compare the output to 0. |
| Location cond_val = instruction->GetLocations()->InAt(condition_input_index); |
| DCHECK(cond_val.IsRegister()); |
| if (true_target == nullptr) { |
| __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target); |
| } else { |
| __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target); |
| } |
| } else { |
| // The condition instruction has not been materialized, use its inputs as |
| // the comparison and its condition as the branch condition. |
| HCondition* condition = cond->AsCondition(); |
| |
| DataType::Type type = condition->InputAt(0)->GetType(); |
| if (DataType::IsFloatingPointType(type)) { |
| GenerateFcmp(condition); |
| if (true_target == nullptr) { |
| IfCondition opposite_condition = condition->GetOppositeCondition(); |
| __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target); |
| } else { |
| __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target); |
| } |
| } else { |
| // Integer cases. |
| Register lhs = InputRegisterAt(condition, 0); |
| Operand rhs = InputOperandAt(condition, 1); |
| |
| Condition arm64_cond; |
| vixl::aarch64::Label* non_fallthrough_target; |
| if (true_target == nullptr) { |
| arm64_cond = ARM64Condition(condition->GetOppositeCondition()); |
| non_fallthrough_target = false_target; |
| } else { |
| arm64_cond = ARM64Condition(condition->GetCondition()); |
| non_fallthrough_target = true_target; |
| } |
| |
| if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) && |
| rhs.IsImmediate() && (rhs.GetImmediate() == 0)) { |
| switch (arm64_cond) { |
| case eq: |
| __ Cbz(lhs, non_fallthrough_target); |
| break; |
| case ne: |
| __ Cbnz(lhs, non_fallthrough_target); |
| break; |
| case lt: |
| // Test the sign bit and branch accordingly. |
| __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); |
| break; |
| case ge: |
| // Test the sign bit and branch accordingly. |
| __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target); |
| break; |
| default: |
| // Without the `static_cast` the compiler throws an error for |
| // `-Werror=sign-promo`. |
| LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond); |
| } |
| } else { |
| __ Cmp(lhs, rhs); |
| __ B(arm64_cond, non_fallthrough_target); |
| } |
| } |
| } |
| |
| // If neither branch falls through (case 3), the conditional branch to `true_target` |
| // was already emitted (case 2) and we need to emit a jump to `false_target`. |
| if (true_target != nullptr && false_target != nullptr) { |
| __ B(false_target); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitIf(HIf* if_instr) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr); |
| if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) { |
| HBasicBlock* true_successor = if_instr->IfTrueSuccessor(); |
| HBasicBlock* false_successor = if_instr->IfFalseSuccessor(); |
| vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor); |
| if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) { |
| true_target = nullptr; |
| } |
| vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor); |
| if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) { |
| false_target = nullptr; |
| } |
| GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target); |
| } |
| |
| void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath); |
| InvokeRuntimeCallingConvention calling_convention; |
| RegisterSet caller_saves = RegisterSet::Empty(); |
| caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode())); |
| locations->SetCustomSlowPathCallerSaves(caller_saves); |
| if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) { |
| SlowPathCodeARM64* slow_path = |
| deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize); |
| GenerateTestAndBranch(deoptimize, |
| /* condition_input_index= */ 0, |
| slow_path->GetEntryLabel(), |
| /* false_target= */ nullptr); |
| } |
| |
| void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) |
| LocationSummary(flag, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) { |
| __ Ldr(OutputRegister(flag), |
| MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag())); |
| } |
| |
| static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) { |
| return condition->IsCondition() && |
| DataType::IsFloatingPointType(condition->InputAt(0)->GetType()); |
| } |
| |
| static inline Condition GetConditionForSelect(HCondition* condition) { |
| IfCondition cond = condition->AsCondition()->GetCondition(); |
| return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias()) |
| : ARM64Condition(cond); |
| } |
| |
| void LocationsBuilderARM64::VisitSelect(HSelect* select) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select); |
| if (DataType::IsFloatingPointType(select->GetType())) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| HConstant* cst_true_value = select->GetTrueValue()->AsConstant(); |
| HConstant* cst_false_value = select->GetFalseValue()->AsConstant(); |
| bool is_true_value_constant = cst_true_value != nullptr; |
| bool is_false_value_constant = cst_false_value != nullptr; |
| // Ask VIXL whether we should synthesize constants in registers. |
| // We give an arbitrary register to VIXL when dealing with non-constant inputs. |
| Operand true_op = is_true_value_constant ? |
| Operand(Int64FromConstant(cst_true_value)) : Operand(x1); |
| Operand false_op = is_false_value_constant ? |
| Operand(Int64FromConstant(cst_false_value)) : Operand(x2); |
| bool true_value_in_register = false; |
| bool false_value_in_register = false; |
| MacroAssembler::GetCselSynthesisInformation( |
| x0, true_op, false_op, &true_value_in_register, &false_value_in_register); |
| true_value_in_register |= !is_true_value_constant; |
| false_value_in_register |= !is_false_value_constant; |
| |
| locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister() |
| : Location::ConstantLocation(cst_true_value)); |
| locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister() |
| : Location::ConstantLocation(cst_false_value)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) { |
| locations->SetInAt(2, Location::RequiresRegister()); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) { |
| HInstruction* cond = select->GetCondition(); |
| Condition csel_cond; |
| |
| if (IsBooleanValueOrMaterializedCondition(cond)) { |
| if (cond->IsCondition() && cond->GetNext() == select) { |
| // Use the condition flags set by the previous instruction. |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } else { |
| __ Cmp(InputRegisterAt(select, 2), 0); |
| csel_cond = ne; |
| } |
| } else if (IsConditionOnFloatingPointValues(cond)) { |
| GenerateFcmp(cond); |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } else { |
| __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1)); |
| csel_cond = GetConditionForSelect(cond->AsCondition()); |
| } |
| |
| if (DataType::IsFloatingPointType(select->GetType())) { |
| __ Fcsel(OutputFPRegister(select), |
| InputFPRegisterAt(select, 1), |
| InputFPRegisterAt(select, 0), |
| csel_cond); |
| } else { |
| __ Csel(OutputRegister(select), |
| InputOperandAt(select, 1), |
| InputOperandAt(select, 0), |
| csel_cond); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) { |
| new (GetGraph()->GetAllocator()) LocationSummary(info); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) { |
| // MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile. |
| } |
| |
| void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) { |
| __ Claim(adjustment); |
| GetAssembler()->cfi().AdjustCFAOffset(adjustment); |
| } |
| |
| void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) { |
| __ Drop(adjustment); |
| GetAssembler()->cfi().AdjustCFAOffset(-adjustment); |
| } |
| |
| void CodeGeneratorARM64::GenerateNop() { |
| __ Nop(); |
| } |
| |
| void LocationsBuilderARM64::VisitPredicatedInstanceFieldGet( |
| HPredicatedInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitPredicatedInstanceFieldGet( |
| HPredicatedInstanceFieldGet* instruction) { |
| vixl::aarch64::Label finish; |
| __ Cbz(InputRegisterAt(instruction, 1), &finish); |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| __ Bind(&finish); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| // Temp is used for read barrier. |
| static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) { |
| if (kEmitCompilerReadBarrier && |
| (kUseBakerReadBarrier || |
| type_check_kind == TypeCheckKind::kAbstractClassCheck || |
| type_check_kind == TypeCheckKind::kClassHierarchyCheck || |
| type_check_kind == TypeCheckKind::kArrayObjectCheck)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Interface case has 3 temps, one for holding the number of interfaces, one for the current |
| // interface pointer, one for loading the current interface. |
| // The other checks have one temp for loading the object's class. |
| static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) { |
| if (type_check_kind == TypeCheckKind::kInterfaceCheck) { |
| return 3; |
| } |
| return 1 + NumberOfInstanceOfTemps(type_check_kind); |
| } |
| |
| void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) { |
| LocationSummary::CallKind call_kind = LocationSummary::kNoCall; |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| bool baker_read_barrier_slow_path = false; |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kAbstractClassCheck: |
| case TypeCheckKind::kClassHierarchyCheck: |
| case TypeCheckKind::kArrayObjectCheck: { |
| bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction); |
| call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall; |
| baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier; |
| break; |
| } |
| case TypeCheckKind::kArrayCheck: |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: |
| call_kind = LocationSummary::kCallOnSlowPath; |
| break; |
| case TypeCheckKind::kBitstringCheck: |
| break; |
| } |
| |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| if (baker_read_barrier_slow_path) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| // The "out" register is used as a temporary, so it overlaps with the inputs. |
| // Note that TypeCheckSlowPathARM64 uses this register too. |
| locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap); |
| // Add temps if necessary for read barriers. |
| locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = InputRegisterAt(instruction, 0); |
| Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) |
| ? Register() |
| : InputRegisterAt(instruction, 1); |
| Location out_loc = locations->Out(); |
| Register out = OutputRegister(instruction); |
| const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind); |
| DCHECK_LE(num_temps, 1u); |
| Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation(); |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| |
| vixl::aarch64::Label done, zero; |
| SlowPathCodeARM64* slow_path = nullptr; |
| |
| // Return 0 if `obj` is null. |
| // Avoid null check if we know `obj` is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Cbz(obj, &zero); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| __ Cmp(out, cls); |
| __ Cset(out, eq); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl::aarch64::Label loop, success; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Cbz(out, &done); |
| __ Cmp(out, cls); |
| __ B(ne, &loop); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Walk over the class hierarchy to find a match. |
| vixl::aarch64::Label loop, success; |
| __ Bind(&loop); |
| __ Cmp(out, cls); |
| __ B(eq, &success); |
| // /* HeapReference<Class> */ out = out->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| super_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| __ Cbnz(out, &loop); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ B(&done); |
| __ Bind(&success); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| ReadBarrierOption read_barrier_option = |
| CodeGenerator::ReadBarrierOptionForInstanceOf(instruction); |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // Do an exact check. |
| vixl::aarch64::Label exact_check; |
| __ Cmp(out, cls); |
| __ B(eq, &exact_check); |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ out = out->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| out_loc, |
| component_offset, |
| maybe_temp_loc, |
| read_barrier_option); |
| // If `out` is null, we use it for the result, and jump to `done`. |
| __ Cbz(out, &done); |
| __ Ldrh(out, HeapOperand(out, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(out, &zero); |
| __ Bind(&exact_check); |
| __ Mov(out, 1); |
| __ B(&done); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayCheck: { |
| // No read barrier since the slow path will retry upon failure. |
| // /* HeapReference<Class> */ out = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| __ Cmp(out, cls); |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( |
| instruction, /* is_fatal= */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(ne, slow_path->GetEntryLabel()); |
| __ Mov(out, 1); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| case TypeCheckKind::kInterfaceCheck: { |
| // Note that we indeed only call on slow path, but we always go |
| // into the slow path for the unresolved and interface check |
| // cases. |
| // |
| // We cannot directly call the InstanceofNonTrivial runtime |
| // entry point without resorting to a type checking slow path |
| // here (i.e. by calling InvokeRuntime directly), as it would |
| // require to assign fixed registers for the inputs of this |
| // HInstanceOf instruction (following the runtime calling |
| // convention), which might be cluttered by the potential first |
| // read barrier emission at the beginning of this method. |
| // |
| // TODO: Introduce a new runtime entry point taking the object |
| // to test (instead of its class) as argument, and let it deal |
| // with the read barrier issues. This will let us refactor this |
| // case of the `switch` code as it was previously (with a direct |
| // call to the runtime not using a type checking slow path). |
| // This should also be beneficial for the other cases above. |
| DCHECK(locations->OnlyCallsOnSlowPath()); |
| slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( |
| instruction, /* is_fatal= */ false); |
| codegen_->AddSlowPath(slow_path); |
| __ B(slow_path->GetEntryLabel()); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| out_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp_loc, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, out); |
| __ Cset(out, eq); |
| if (zero.IsLinked()) { |
| __ B(&done); |
| } |
| break; |
| } |
| } |
| |
| if (zero.IsLinked()) { |
| __ Bind(&zero); |
| __ Mov(out, 0); |
| } |
| |
| if (done.IsLinked()) { |
| __ Bind(&done); |
| } |
| |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction); |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| if (type_check_kind == TypeCheckKind::kBitstringCheck) { |
| locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)->AsConstant())); |
| locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)->AsConstant())); |
| locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)->AsConstant())); |
| } else { |
| locations->SetInAt(1, Location::RequiresRegister()); |
| } |
| // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64. |
| locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) { |
| TypeCheckKind type_check_kind = instruction->GetTypeCheckKind(); |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj_loc = locations->InAt(0); |
| Register obj = InputRegisterAt(instruction, 0); |
| Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck) |
| ? Register() |
| : InputRegisterAt(instruction, 1); |
| const size_t num_temps = NumberOfCheckCastTemps(type_check_kind); |
| DCHECK_GE(num_temps, 1u); |
| DCHECK_LE(num_temps, 3u); |
| Location temp_loc = locations->GetTemp(0); |
| Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation(); |
| Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation(); |
| Register temp = WRegisterFrom(temp_loc); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value(); |
| const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| const uint32_t object_array_data_offset = |
| mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value(); |
| |
| bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction); |
| SlowPathCodeARM64* type_check_slow_path = |
| new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64( |
| instruction, is_type_check_slow_path_fatal); |
| codegen_->AddSlowPath(type_check_slow_path); |
| |
| vixl::aarch64::Label done; |
| // Avoid null check if we know obj is not null. |
| if (instruction->MustDoNullCheck()) { |
| __ Cbz(obj, &done); |
| } |
| |
| switch (type_check_kind) { |
| case TypeCheckKind::kExactCheck: |
| case TypeCheckKind::kArrayCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| __ Cmp(temp, cls); |
| // Jump to slow path for throwing the exception or doing a |
| // more involved array check. |
| __ B(ne, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kAbstractClassCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class is abstract, we eagerly fetch the super class of the |
| // object to avoid doing a comparison we know will fail. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is null, jump to the slow path to throw the |
| // exception. |
| __ Cbz(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise, compare classes. |
| __ Cmp(temp, cls); |
| __ B(ne, &loop); |
| break; |
| } |
| |
| case TypeCheckKind::kClassHierarchyCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Walk over the class hierarchy to find a match. |
| vixl::aarch64::Label loop; |
| __ Bind(&loop); |
| __ Cmp(temp, cls); |
| __ B(eq, &done); |
| |
| // /* HeapReference<Class> */ temp = temp->super_class_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| super_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the class reference currently in `temp` is not null, jump |
| // back at the beginning of the loop. |
| __ Cbnz(temp, &loop); |
| // Otherwise, jump to the slow path to throw the exception. |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kArrayObjectCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // Do an exact check. |
| __ Cmp(temp, cls); |
| __ B(eq, &done); |
| |
| // Otherwise, we need to check that the object's class is a non-primitive array. |
| // /* HeapReference<Class> */ temp = temp->component_type_ |
| GenerateReferenceLoadOneRegister(instruction, |
| temp_loc, |
| component_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // If the component type is null, jump to the slow path to throw the exception. |
| __ Cbz(temp, type_check_slow_path->GetEntryLabel()); |
| // Otherwise, the object is indeed an array. Further check that this component type is not a |
| // primitive type. |
| __ Ldrh(temp, HeapOperand(temp, primitive_offset)); |
| static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot"); |
| __ Cbnz(temp, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| |
| case TypeCheckKind::kUnresolvedCheck: |
| // We always go into the type check slow path for the unresolved check cases. |
| // |
| // We cannot directly call the CheckCast runtime entry point |
| // without resorting to a type checking slow path here (i.e. by |
| // calling InvokeRuntime directly), as it would require to |
| // assign fixed registers for the inputs of this HInstanceOf |
| // instruction (following the runtime calling convention), which |
| // might be cluttered by the potential first read barrier |
| // emission at the beginning of this method. |
| __ B(type_check_slow_path->GetEntryLabel()); |
| break; |
| case TypeCheckKind::kInterfaceCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| // /* HeapReference<Class> */ temp = temp->iftable_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| temp_loc, |
| iftable_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| // Iftable is never null. |
| __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset)); |
| // Loop through the iftable and check if any class matches. |
| vixl::aarch64::Label start_loop; |
| __ Bind(&start_loop); |
| __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel()); |
| __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc)); |
| // Go to next interface. |
| __ Add(temp, temp, 2 * kHeapReferenceSize); |
| __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2); |
| // Compare the classes and continue the loop if they do not match. |
| __ Cmp(cls, WRegisterFrom(maybe_temp3_loc)); |
| __ B(ne, &start_loop); |
| break; |
| } |
| |
| case TypeCheckKind::kBitstringCheck: { |
| // /* HeapReference<Class> */ temp = obj->klass_ |
| GenerateReferenceLoadTwoRegisters(instruction, |
| temp_loc, |
| obj_loc, |
| class_offset, |
| maybe_temp2_loc, |
| kWithoutReadBarrier); |
| |
| GenerateBitstringTypeCheckCompare(instruction, temp); |
| __ B(ne, type_check_slow_path->GetEntryLabel()); |
| break; |
| } |
| } |
| __ Bind(&done); |
| |
| __ Bind(type_check_slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| // The trampoline uses the same calling convention as dex calling conventions, |
| // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain |
| // the method_idx. |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) { |
| codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) { |
| InvokeDexCallingConventionVisitorARM64 calling_convention_visitor; |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| HandleInvoke(invoke); |
| if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { |
| // We cannot request ip1 as it's blocked by the register allocator. |
| invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any()); |
| } |
| } |
| |
| void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction, |
| Register klass) { |
| DCHECK_EQ(klass.GetCode(), 0u); |
| // We know the destination of an intrinsic, so no need to record inline |
| // caches. |
| if (!instruction->GetLocations()->Intrinsified() && |
| GetGraph()->IsCompilingBaseline() && |
| !Runtime::Current()->IsAotCompiler()) { |
| DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke()); |
| ProfilingInfo* info = GetGraph()->GetProfilingInfo(); |
| DCHECK(info != nullptr); |
| InlineCache* cache = info->GetInlineCache(instruction->GetDexPc()); |
| uint64_t address = reinterpret_cast64<uint64_t>(cache); |
| vixl::aarch64::Label done; |
| __ Mov(x8, address); |
| __ Ldr(x9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value())); |
| // Fast path for a monomorphic cache. |
| __ Cmp(klass, x9); |
| __ B(eq, &done); |
| InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc()); |
| __ Bind(&done); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) { |
| // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError. |
| LocationSummary* locations = invoke->GetLocations(); |
| Register temp = XRegisterFrom(locations->GetTemp(0)); |
| Location receiver = locations->InAt(0); |
| Offset class_offset = mirror::Object::ClassOffset(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); |
| |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| if (receiver.IsStackSlot()) { |
| __ Ldr(temp.W(), StackOperandFrom(receiver)); |
| { |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| // /* HeapReference<Class> */ temp = temp->klass_ |
| __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| } |
| } else { |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset)); |
| codegen_->MaybeRecordImplicitNullCheck(invoke); |
| } |
| |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // However this is not required in practice, as this is an |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); |
| |
| // If we're compiling baseline, update the inline cache. |
| codegen_->MaybeGenerateInlineCacheCheck(invoke, temp); |
| |
| // The register ip1 is required to be used for the hidden argument in |
| // art_quick_imt_conflict_trampoline, so prevent VIXL from using it. |
| MacroAssembler* masm = GetVIXLAssembler(); |
| UseScratchRegisterScope scratch_scope(masm); |
| scratch_scope.Exclude(ip1); |
| if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) { |
| Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1); |
| if (interface_method.IsStackSlot()) { |
| __ Ldr(ip1, StackOperandFrom(interface_method)); |
| } else { |
| __ Mov(ip1, XRegisterFrom(interface_method)); |
| } |
| // If the load kind is through a runtime call, we will pass the method we |
| // fetch the IMT, which will either be a no-op if we don't hit the conflict |
| // stub, or will make us always go through the trampoline when there is a |
| // conflict. |
| } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) { |
| codegen_->LoadMethod( |
| invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke); |
| } |
| |
| __ Ldr(temp, |
| MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| invoke->GetImtIndex(), kArm64PointerSize)); |
| // temp = temp->GetImtEntryAt(method_offset); |
| __ Ldr(temp, MemOperand(temp, method_offset)); |
| if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) { |
| // We pass the method from the IMT in case of a conflict. This will ensure |
| // we go into the runtime to resolve the actual method. |
| __ Mov(ip1, temp); |
| } |
| // lr = temp->GetEntryPoint(); |
| __ Ldr(lr, MemOperand(temp, entry_point.Int32Value())); |
| |
| { |
| // Ensure the pc position is recorded immediately after the `blr` instruction. |
| ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); |
| |
| // lr(); |
| __ blr(lr); |
| DCHECK(!codegen_->IsLeafMethod()); |
| codegen_->RecordPcInfo(invoke, invoke->GetDexPc()); |
| } |
| |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| HandleInvoke(invoke); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| |
| if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { |
| CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor( |
| /*for_register_allocation=*/ true); |
| CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor); |
| } else { |
| HandleInvoke(invoke); |
| } |
| } |
| |
| static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) { |
| if (invoke->GetLocations()->Intrinsified()) { |
| IntrinsicCodeGeneratorARM64 intrinsic(codegen); |
| intrinsic.Dispatch(invoke); |
| return true; |
| } |
| return false; |
| } |
| |
| HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch( |
| const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, |
| ArtMethod* method ATTRIBUTE_UNUSED) { |
| // On ARM64 we support all dispatch types. |
| return desired_dispatch_info; |
| } |
| |
| void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) { |
| switch (load_kind) { |
| case MethodLoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); |
| // Add ADRP with its PC-relative method patch. |
| vixl::aarch64::Label* adrp_label = |
| NewBootImageMethodPatch(invoke->GetResolvedMethodReference()); |
| EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); |
| // Add ADD with its PC-relative method patch. |
| vixl::aarch64::Label* add_label = |
| NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label); |
| EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp)); |
| break; |
| } |
| case MethodLoadKind::kBootImageRelRo: { |
| // Add ADRP with its PC-relative .data.bimg.rel.ro patch. |
| uint32_t boot_image_offset = GetBootImageOffset(invoke); |
| vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset); |
| EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); |
| // Add LDR with its PC-relative .data.bimg.rel.ro patch. |
| vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label); |
| // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load. |
| EmitLdrOffsetPlaceholder(ldr_label, WRegisterFrom(temp), XRegisterFrom(temp)); |
| break; |
| } |
| case MethodLoadKind::kBssEntry: { |
| // Add ADRP with its PC-relative .bss entry patch. |
| vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference()); |
| EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp)); |
| // Add LDR with its PC-relative .bss entry patch. |
| vixl::aarch64::Label* ldr_label = |
| NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label); |
| // All aligned loads are implicitly atomic consume operations on ARM64. |
| EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp)); |
| break; |
| } |
| case MethodLoadKind::kJitDirectAddress: { |
| // Load method address from literal pool. |
| __ Ldr(XRegisterFrom(temp), |
| DeduplicateUint64Literal(reinterpret_cast<uint64_t>(invoke->GetResolvedMethod()))); |
| break; |
| } |
| case MethodLoadKind::kRuntimeCall: { |
| // Test situation, don't do anything. |
| break; |
| } |
| default: { |
| LOG(FATAL) << "Load kind should have already been handled " << load_kind; |
| UNREACHABLE(); |
| } |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateStaticOrDirectCall( |
| HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) { |
| // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention. |
| Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp. |
| switch (invoke->GetMethodLoadKind()) { |
| case MethodLoadKind::kStringInit: { |
| uint32_t offset = |
| GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value(); |
| // temp = thread->string_init_entrypoint |
| __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset)); |
| break; |
| } |
| case MethodLoadKind::kRecursive: { |
| callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex()); |
| break; |
| } |
| case MethodLoadKind::kRuntimeCall: { |
| GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path); |
| return; // No code pointer retrieval; the runtime performs the call directly. |
| } |
| case MethodLoadKind::kBootImageLinkTimePcRelative: |
| DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()); |
| if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) { |
| // Do not materialize the method pointer, load directly the entrypoint. |
| // Add ADRP with its PC-relative JNI entrypoint patch. |
| vixl::aarch64::Label* adrp_label = |
| NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference()); |
| EmitAdrpPlaceholder(adrp_label, lr); |
| // Add the LDR with its PC-relative method patch. |
| vixl::aarch64::Label* add_label = |
| NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label); |
| EmitLdrOffsetPlaceholder(add_label, lr, lr); |
| break; |
| } |
| FALLTHROUGH_INTENDED; |
| default: { |
| LoadMethod(invoke->GetMethodLoadKind(), temp, invoke); |
| break; |
| } |
| } |
| |
| auto call_lr = [&]() { |
| // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. |
| ExactAssemblyScope eas(GetVIXLAssembler(), |
| kInstructionSize, |
| CodeBufferCheckScope::kExactSize); |
| // lr() |
| __ blr(lr); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| }; |
| switch (invoke->GetCodePtrLocation()) { |
| case CodePtrLocation::kCallSelf: |
| { |
| DCHECK(!GetGraph()->HasShouldDeoptimizeFlag()); |
| // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. |
| ExactAssemblyScope eas(GetVIXLAssembler(), |
| kInstructionSize, |
| CodeBufferCheckScope::kExactSize); |
| __ bl(&frame_entry_label_); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| break; |
| case CodePtrLocation::kCallCriticalNative: { |
| size_t out_frame_size = |
| PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64, |
| kAapcs64StackAlignment, |
| GetCriticalNativeDirectCallFrameSize>(invoke); |
| if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) { |
| call_lr(); |
| } else { |
| // LR = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni |
| MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize); |
| __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value())); |
| // lr() |
| call_lr(); |
| } |
| // Zero-/sign-extend the result when needed due to native and managed ABI mismatch. |
| switch (invoke->GetType()) { |
| case DataType::Type::kBool: |
| __ Ubfx(w0, w0, 0, 8); |
| break; |
| case DataType::Type::kInt8: |
| __ Sbfx(w0, w0, 0, 8); |
| break; |
| case DataType::Type::kUint16: |
| __ Ubfx(w0, w0, 0, 16); |
| break; |
| case DataType::Type::kInt16: |
| __ Sbfx(w0, w0, 0, 16); |
| break; |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| case DataType::Type::kVoid: |
| break; |
| default: |
| DCHECK(false) << invoke->GetType(); |
| break; |
| } |
| if (out_frame_size != 0u) { |
| DecreaseFrame(out_frame_size); |
| } |
| break; |
| } |
| case CodePtrLocation::kCallArtMethod: { |
| // LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_; |
| MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); |
| __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value())); |
| // lr() |
| call_lr(); |
| break; |
| } |
| } |
| |
| DCHECK(!IsLeafMethod()); |
| } |
| |
| void CodeGeneratorARM64::GenerateVirtualCall( |
| HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) { |
| // Use the calling convention instead of the location of the receiver, as |
| // intrinsics may have put the receiver in a different register. In the intrinsics |
| // slow path, the arguments have been moved to the right place, so here we are |
| // guaranteed that the receiver is the first register of the calling convention. |
| InvokeDexCallingConvention calling_convention; |
| Register receiver = calling_convention.GetRegisterAt(0); |
| Register temp = XRegisterFrom(temp_in); |
| size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| invoke->GetVTableIndex(), kArm64PointerSize).SizeValue(); |
| Offset class_offset = mirror::Object::ClassOffset(); |
| Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize); |
| |
| DCHECK(receiver.IsRegister()); |
| |
| { |
| // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| // /* HeapReference<Class> */ temp = receiver->klass_ |
| __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset)); |
| MaybeRecordImplicitNullCheck(invoke); |
| } |
| // Instead of simply (possibly) unpoisoning `temp` here, we should |
| // emit a read barrier for the previous class reference load. |
| // intermediate/temporary reference and because the current |
| // concurrent copying collector keeps the from-space memory |
| // intact/accessible until the end of the marking phase (the |
| // concurrent copying collector may not in the future). |
| GetAssembler()->MaybeUnpoisonHeapReference(temp.W()); |
| |
| // If we're compiling baseline, update the inline cache. |
| MaybeGenerateInlineCacheCheck(invoke, temp); |
| |
| // temp = temp->GetMethodAt(method_offset); |
| __ Ldr(temp, MemOperand(temp, method_offset)); |
| // lr = temp->GetEntryPoint(); |
| __ Ldr(lr, MemOperand(temp, entry_point.SizeValue())); |
| { |
| // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc. |
| ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize); |
| // lr(); |
| __ blr(lr); |
| RecordPcInfo(invoke, invoke->GetDexPc(), slow_path); |
| } |
| } |
| |
| void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) { |
| if (!trg.IsValid()) { |
| DCHECK(type == DataType::Type::kVoid); |
| return; |
| } |
| |
| DCHECK_NE(type, DataType::Type::kVoid); |
| |
| if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) { |
| Register trg_reg = RegisterFrom(trg, type); |
| Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type); |
| __ Mov(trg_reg, res_reg, kDiscardForSameWReg); |
| } else { |
| VRegister trg_reg = FPRegisterFrom(trg, type); |
| VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type); |
| __ Fmov(trg_reg, res_reg); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_); |
| if (intrinsic.TryDispatch(invoke)) { |
| return; |
| } |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| return; |
| } |
| codegen_->GenerateInvokePolymorphicCall(invoke); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) { |
| HandleInvoke(invoke); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) { |
| codegen_->GenerateInvokeCustomCall(invoke); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch( |
| uint32_t intrinsic_data, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch( |
| /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch( |
| uint32_t boot_image_offset, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch( |
| /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch( |
| MethodReference target_method, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch( |
| MethodReference target_method, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch( |
| const DexFile& dex_file, |
| dex::TypeIndex type_index, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch( |
| HLoadClass* load_class, |
| vixl::aarch64::Label* adrp_label) { |
| const DexFile& dex_file = load_class->GetDexFile(); |
| dex::TypeIndex type_index = load_class->GetTypeIndex(); |
| ArenaDeque<PcRelativePatchInfo>* patches = nullptr; |
| switch (load_class->GetLoadKind()) { |
| case HLoadClass::LoadKind::kBssEntry: |
| patches = &type_bss_entry_patches_; |
| break; |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| patches = &public_type_bss_entry_patches_; |
| break; |
| case HLoadClass::LoadKind::kBssEntryPackage: |
| patches = &package_type_bss_entry_patches_; |
| break; |
| default: |
| LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind(); |
| UNREACHABLE(); |
| } |
| return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch( |
| &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch( |
| const DexFile& dex_file, |
| dex::StringIndex string_index, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_); |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch( |
| MethodReference target_method, |
| vixl::aarch64::Label* adrp_label) { |
| return NewPcRelativePatch( |
| target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_); |
| } |
| |
| void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) { |
| DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope. |
| DCHECK(!GetCompilerOptions().IsJitCompiler()); |
| call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value()); |
| vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label; |
| __ bind(bl_label); |
| __ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time. |
| } |
| |
| void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) { |
| DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope. |
| if (GetCompilerOptions().IsJitCompiler()) { |
| auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data); |
| vixl::aarch64::Label* slow_path_entry = &it->second.label; |
| __ cbnz(mr, slow_path_entry); |
| } else { |
| baker_read_barrier_patches_.emplace_back(custom_data); |
| vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label; |
| __ bind(cbnz_label); |
| __ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time. |
| } |
| } |
| |
| vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch( |
| const DexFile* dex_file, |
| uint32_t offset_or_index, |
| vixl::aarch64::Label* adrp_label, |
| ArenaDeque<PcRelativePatchInfo>* patches) { |
| // Add a patch entry and return the label. |
| patches->emplace_back(dex_file, offset_or_index); |
| PcRelativePatchInfo* info = &patches->back(); |
| vixl::aarch64::Label* label = &info->label; |
| // If adrp_label is null, this is the ADRP patch and needs to point to its own label. |
| info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label; |
| return label; |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral( |
| uint64_t address) { |
| return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address)); |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral( |
| const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) { |
| ReserveJitStringRoot(StringReference(&dex_file, string_index), handle); |
| return jit_string_patches_.GetOrCreate( |
| StringReference(&dex_file, string_index), |
| [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); }); |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral( |
| const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) { |
| ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle); |
| return jit_class_patches_.GetOrCreate( |
| TypeReference(&dex_file, type_index), |
| [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); }); |
| } |
| |
| void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label, |
| vixl::aarch64::Register reg) { |
| DCHECK(reg.IsX()); |
| SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0)); |
| } |
| |
| void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label, |
| vixl::aarch64::Register out, |
| vixl::aarch64::Register base) { |
| DCHECK(out.IsX()); |
| DCHECK(base.IsX()); |
| SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ add(out, base, Operand(/* offset placeholder */ 0)); |
| } |
| |
| void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label, |
| vixl::aarch64::Register out, |
| vixl::aarch64::Register base) { |
| DCHECK(base.IsX()); |
| SingleEmissionCheckScope guard(GetVIXLAssembler()); |
| __ Bind(fixup_label); |
| __ ldr(out, MemOperand(base, /* offset placeholder */ 0)); |
| } |
| |
| void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg, |
| uint32_t boot_image_reference) { |
| if (GetCompilerOptions().IsBootImage()) { |
| // Add ADRP with its PC-relative type patch. |
| vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference); |
| EmitAdrpPlaceholder(adrp_label, reg.X()); |
| // Add ADD with its PC-relative type patch. |
| vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label); |
| EmitAddPlaceholder(add_label, reg.X(), reg.X()); |
| } else if (GetCompilerOptions().GetCompilePic()) { |
| // Add ADRP with its PC-relative .data.bimg.rel.ro patch. |
| vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_reference); |
| EmitAdrpPlaceholder(adrp_label, reg.X()); |
| // Add LDR with its PC-relative .data.bimg.rel.ro patch. |
| vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_reference, adrp_label); |
| EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X()); |
| } else { |
| DCHECK(GetCompilerOptions().IsJitCompiler()); |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| DCHECK(!heap->GetBootImageSpaces().empty()); |
| const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference; |
| __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address))); |
| } |
| } |
| |
| void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg, |
| TypeReference target_type) { |
| // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative. |
| DCHECK(GetCompilerOptions().IsBootImage()); |
| // Add ADRP with its PC-relative type patch. |
| vixl::aarch64::Label* adrp_label = |
| NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex()); |
| EmitAdrpPlaceholder(adrp_label, reg.X()); |
| // Add ADD with its PC-relative type patch. |
| vixl::aarch64::Label* add_label = |
| NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label); |
| EmitAddPlaceholder(add_label, reg.X(), reg.X()); |
| } |
| |
| void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) { |
| DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone); |
| if (GetCompilerOptions().IsBootImage()) { |
| MethodReference target_method = invoke->GetResolvedMethodReference(); |
| dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_; |
| LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx)); |
| } else { |
| uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke); |
| LoadBootImageAddress(reg, boot_image_offset); |
| } |
| } |
| |
| void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg, |
| ClassRoot class_root) { |
| if (GetCompilerOptions().IsBootImage()) { |
| ScopedObjectAccess soa(Thread::Current()); |
| ObjPtr<mirror::Class> klass = GetClassRoot(class_root); |
| TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex()); |
| LoadTypeForBootImageIntrinsic(reg, target_type); |
| } else { |
| uint32_t boot_image_offset = GetBootImageOffset(class_root); |
| LoadBootImageAddress(reg, boot_image_offset); |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> |
| inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches( |
| const ArenaDeque<PcRelativePatchInfo>& infos, |
| ArenaVector<linker::LinkerPatch>* linker_patches) { |
| for (const PcRelativePatchInfo& info : infos) { |
| linker_patches->push_back(Factory(info.label.GetLocation(), |
| info.target_dex_file, |
| info.pc_insn_label->GetLocation(), |
| info.offset_or_index)); |
| } |
| } |
| |
| template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)> |
| linker::LinkerPatch NoDexFileAdapter(size_t literal_offset, |
| const DexFile* target_dex_file, |
| uint32_t pc_insn_offset, |
| uint32_t boot_image_offset) { |
| DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null. |
| return Factory(literal_offset, pc_insn_offset, boot_image_offset); |
| } |
| |
| void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) { |
| DCHECK(linker_patches->empty()); |
| size_t size = |
| boot_image_method_patches_.size() + |
| method_bss_entry_patches_.size() + |
| boot_image_type_patches_.size() + |
| type_bss_entry_patches_.size() + |
| public_type_bss_entry_patches_.size() + |
| package_type_bss_entry_patches_.size() + |
| boot_image_string_patches_.size() + |
| string_bss_entry_patches_.size() + |
| boot_image_jni_entrypoint_patches_.size() + |
| boot_image_other_patches_.size() + |
| call_entrypoint_patches_.size() + |
| baker_read_barrier_patches_.size(); |
| linker_patches->reserve(size); |
| if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) { |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>( |
| boot_image_method_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>( |
| boot_image_type_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>( |
| boot_image_string_patches_, linker_patches); |
| } else { |
| DCHECK(boot_image_method_patches_.empty()); |
| DCHECK(boot_image_type_patches_.empty()); |
| DCHECK(boot_image_string_patches_.empty()); |
| } |
| if (GetCompilerOptions().IsBootImage()) { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>( |
| boot_image_other_patches_, linker_patches); |
| } else { |
| EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>( |
| boot_image_other_patches_, linker_patches); |
| } |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>( |
| method_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>( |
| type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>( |
| public_type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>( |
| package_type_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>( |
| string_bss_entry_patches_, linker_patches); |
| EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>( |
| boot_image_jni_entrypoint_patches_, linker_patches); |
| for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) { |
| DCHECK(info.target_dex_file == nullptr); |
| linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch( |
| info.label.GetLocation(), info.offset_or_index)); |
| } |
| for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) { |
| linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch( |
| info.label.GetLocation(), info.custom_data)); |
| } |
| DCHECK_EQ(size, linker_patches->size()); |
| } |
| |
| bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const { |
| return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint || |
| patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch || |
| patch.GetType() == linker::LinkerPatch::Type::kCallRelative; |
| } |
| |
| void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch, |
| /*out*/ ArenaVector<uint8_t>* code, |
| /*out*/ std::string* debug_name) { |
| Arm64Assembler assembler(GetGraph()->GetAllocator()); |
| switch (patch.GetType()) { |
| case linker::LinkerPatch::Type::kCallRelative: { |
| // The thunk just uses the entry point in the ArtMethod. This works even for calls |
| // to the generic JNI and interpreter trampolines. |
| Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset( |
| kArm64PointerSize).Int32Value()); |
| assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0)); |
| if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { |
| *debug_name = "MethodCallThunk"; |
| } |
| break; |
| } |
| case linker::LinkerPatch::Type::kCallEntrypoint: { |
| Offset offset(patch.EntrypointOffset()); |
| assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0)); |
| if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { |
| *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value()); |
| } |
| break; |
| } |
| case linker::LinkerPatch::Type::kBakerReadBarrierBranch: { |
| DCHECK_EQ(patch.GetBakerCustomValue2(), 0u); |
| CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected patch type " << patch.GetType(); |
| UNREACHABLE(); |
| } |
| |
| // Ensure we emit the literal pool if any. |
| assembler.FinalizeCode(); |
| code->resize(assembler.CodeSize()); |
| MemoryRegion code_region(code->data(), code->size()); |
| assembler.FinalizeInstructions(code_region); |
| } |
| |
| vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) { |
| return uint32_literals_.GetOrCreate( |
| value, |
| [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); }); |
| } |
| |
| vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) { |
| return uint64_literals_.GetOrCreate( |
| value, |
| [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); }); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) { |
| // Explicit clinit checks triggered by static invokes must have been pruned by |
| // art::PrepareForRegisterAllocation. |
| DCHECK(!invoke->IsStaticWithExplicitClinitCheck()); |
| |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| return; |
| } |
| |
| LocationSummary* locations = invoke->GetLocations(); |
| codegen_->GenerateStaticOrDirectCall( |
| invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation()); |
| |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) { |
| if (TryGenerateIntrinsicCode(invoke, codegen_)) { |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| return; |
| } |
| |
| { |
| // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there |
| // are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes); |
| codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0)); |
| DCHECK(!codegen_->IsLeafMethod()); |
| } |
| |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind( |
| HLoadClass::LoadKind desired_class_load_kind) { |
| switch (desired_class_load_kind) { |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| case HLoadClass::LoadKind::kReferrersClass: |
| break; |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadClass::LoadKind::kBootImageRelRo: |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| case HLoadClass::LoadKind::kBssEntryPackage: |
| DCHECK(!GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadClass::LoadKind::kJitBootImageAddress: |
| case HLoadClass::LoadKind::kJitTableAddress: |
| DCHECK(GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadClass::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_class_load_kind; |
| } |
| |
| void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| CodeGenerator::CreateLoadClassRuntimeCallLocationSummary( |
| cls, |
| LocationFrom(calling_convention.GetRegisterAt(0)), |
| LocationFrom(vixl::aarch64::x0)); |
| DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0)); |
| return; |
| } |
| DCHECK_EQ(cls->NeedsAccessCheck(), |
| load_kind == HLoadClass::LoadKind::kBssEntryPublic || |
| load_kind == HLoadClass::LoadKind::kBssEntryPackage); |
| |
| const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage(); |
| LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier) |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind); |
| if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| |
| if (load_kind == HLoadClass::LoadKind::kReferrersClass) { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| locations->SetOut(Location::RequiresRegister()); |
| if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the type resolution or initialization and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS { |
| HLoadClass::LoadKind load_kind = cls->GetLoadKind(); |
| if (load_kind == HLoadClass::LoadKind::kRuntimeCall) { |
| codegen_->GenerateLoadClassRuntimeCall(cls); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| return; |
| } |
| DCHECK_EQ(cls->NeedsAccessCheck(), |
| load_kind == HLoadClass::LoadKind::kBssEntryPublic || |
| load_kind == HLoadClass::LoadKind::kBssEntryPackage); |
| |
| Location out_loc = cls->GetLocations()->Out(); |
| Register out = OutputRegister(cls); |
| |
| const ReadBarrierOption read_barrier_option = cls->IsInBootImage() |
| ? kWithoutReadBarrier |
| : kCompilerReadBarrierOption; |
| bool generate_null_check = false; |
| switch (load_kind) { |
| case HLoadClass::LoadKind::kReferrersClass: { |
| DCHECK(!cls->CanCallRuntime()); |
| DCHECK(!cls->MustGenerateClinitCheck()); |
| // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_ |
| Register current_method = InputRegisterAt(cls, 0); |
| codegen_->GenerateGcRootFieldLoad(cls, |
| out_loc, |
| current_method, |
| ArtMethod::DeclaringClassOffset().Int32Value(), |
| /* fixup_label= */ nullptr, |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage() || |
| codegen_->GetCompilerOptions().IsBootImageExtension()); |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| // Add ADRP with its PC-relative type patch. |
| const DexFile& dex_file = cls->GetDexFile(); |
| dex::TypeIndex type_index = cls->GetTypeIndex(); |
| vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index); |
| codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); |
| // Add ADD with its PC-relative type patch. |
| vixl::aarch64::Label* add_label = |
| codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label); |
| codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); |
| break; |
| } |
| case HLoadClass::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls); |
| // Add ADRP with its PC-relative .data.bimg.rel.ro patch. |
| vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset); |
| codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); |
| // Add LDR with its PC-relative .data.bimg.rel.ro patch. |
| vixl::aarch64::Label* ldr_label = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label); |
| codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X()); |
| break; |
| } |
| case HLoadClass::LoadKind::kBssEntry: |
| case HLoadClass::LoadKind::kBssEntryPublic: |
| case HLoadClass::LoadKind::kBssEntryPackage: { |
| // Add ADRP with its PC-relative Class .bss entry patch. |
| vixl::aarch64::Register temp = XRegisterFrom(out_loc); |
| vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls); |
| codegen_->EmitAdrpPlaceholder(adrp_label, temp); |
| // Add LDR with its PC-relative Class .bss entry patch. |
| vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label); |
| // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */ |
| // All aligned loads are implicitly atomic consume operations on ARM64. |
| codegen_->GenerateGcRootFieldLoad(cls, |
| out_loc, |
| temp, |
| /* offset placeholder */ 0u, |
| ldr_label, |
| read_barrier_option); |
| generate_null_check = true; |
| break; |
| } |
| case HLoadClass::LoadKind::kJitBootImageAddress: { |
| DCHECK_EQ(read_barrier_option, kWithoutReadBarrier); |
| uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get()); |
| DCHECK_NE(address, 0u); |
| __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); |
| break; |
| } |
| case HLoadClass::LoadKind::kJitTableAddress: { |
| __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(), |
| cls->GetTypeIndex(), |
| cls->GetClass())); |
| codegen_->GenerateGcRootFieldLoad(cls, |
| out_loc, |
| out.X(), |
| /* offset= */ 0, |
| /* fixup_label= */ nullptr, |
| read_barrier_option); |
| break; |
| } |
| case HLoadClass::LoadKind::kRuntimeCall: |
| case HLoadClass::LoadKind::kInvalid: |
| LOG(FATAL) << "UNREACHABLE"; |
| UNREACHABLE(); |
| } |
| |
| bool do_clinit = cls->MustGenerateClinitCheck(); |
| if (generate_null_check || do_clinit) { |
| DCHECK(cls->CanCallRuntime()); |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls); |
| codegen_->AddSlowPath(slow_path); |
| if (generate_null_check) { |
| __ Cbz(out, slow_path->GetEntryLabel()); |
| } |
| if (cls->MustGenerateClinitCheck()) { |
| GenerateClassInitializationCheck(slow_path, out); |
| } else { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location location = LocationFrom(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) { |
| codegen_->GenerateLoadMethodHandleRuntimeCall(load); |
| } |
| |
| void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) { |
| InvokeRuntimeCallingConvention calling_convention; |
| Location location = LocationFrom(calling_convention.GetRegisterAt(0)); |
| CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) { |
| codegen_->GenerateLoadMethodTypeRuntimeCall(load); |
| } |
| |
| static MemOperand GetExceptionTlsAddress() { |
| return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value()); |
| } |
| |
| void LocationsBuilderARM64::VisitLoadException(HLoadException* load) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) { |
| __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress()); |
| } |
| |
| void LocationsBuilderARM64::VisitClearException(HClearException* clear) { |
| new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) { |
| __ Str(wzr, GetExceptionTlsAddress()); |
| } |
| |
| HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind( |
| HLoadString::LoadKind desired_string_load_kind) { |
| switch (desired_string_load_kind) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: |
| case HLoadString::LoadKind::kBootImageRelRo: |
| case HLoadString::LoadKind::kBssEntry: |
| DCHECK(!GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadString::LoadKind::kJitBootImageAddress: |
| case HLoadString::LoadKind::kJitTableAddress: |
| DCHECK(GetCompilerOptions().IsJitCompiler()); |
| break; |
| case HLoadString::LoadKind::kRuntimeCall: |
| break; |
| } |
| return desired_string_load_kind; |
| } |
| |
| void LocationsBuilderARM64::VisitLoadString(HLoadString* load) { |
| LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load); |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind); |
| if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(calling_convention.GetReturnLocation(load->GetType())); |
| } else { |
| locations->SetOut(Location::RequiresRegister()); |
| if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) { |
| if (!kUseReadBarrier || kUseBakerReadBarrier) { |
| // Rely on the pResolveString and marking to save everything we need. |
| locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves()); |
| } else { |
| // For non-Baker read barrier we have a temp-clobbering call. |
| } |
| } |
| } |
| } |
| |
| // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not |
| // move. |
| void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS { |
| Register out = OutputRegister(load); |
| Location out_loc = load->GetLocations()->Out(); |
| |
| switch (load->GetLoadKind()) { |
| case HLoadString::LoadKind::kBootImageLinkTimePcRelative: { |
| DCHECK(codegen_->GetCompilerOptions().IsBootImage() || |
| codegen_->GetCompilerOptions().IsBootImageExtension()); |
| // Add ADRP with its PC-relative String patch. |
| const DexFile& dex_file = load->GetDexFile(); |
| const dex::StringIndex string_index = load->GetStringIndex(); |
| vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index); |
| codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); |
| // Add ADD with its PC-relative String patch. |
| vixl::aarch64::Label* add_label = |
| codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label); |
| codegen_->EmitAddPlaceholder(add_label, out.X(), out.X()); |
| return; |
| } |
| case HLoadString::LoadKind::kBootImageRelRo: { |
| DCHECK(!codegen_->GetCompilerOptions().IsBootImage()); |
| // Add ADRP with its PC-relative .data.bimg.rel.ro patch. |
| uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load); |
| vixl::aarch64::Label* adrp_label = codegen_->NewBootImageRelRoPatch(boot_image_offset); |
| codegen_->EmitAdrpPlaceholder(adrp_label, out.X()); |
| // Add LDR with its PC-relative .data.bimg.rel.ro patch. |
| vixl::aarch64::Label* ldr_label = |
| codegen_->NewBootImageRelRoPatch(boot_image_offset, adrp_label); |
| codegen_->EmitLdrOffsetPlaceholder(ldr_label, out.W(), out.X()); |
| return; |
| } |
| case HLoadString::LoadKind::kBssEntry: { |
| // Add ADRP with its PC-relative String .bss entry patch. |
| const DexFile& dex_file = load->GetDexFile(); |
| const dex::StringIndex string_index = load->GetStringIndex(); |
| Register temp = XRegisterFrom(out_loc); |
| vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index); |
| codegen_->EmitAdrpPlaceholder(adrp_label, temp); |
| // Add LDR with its PC-relative String .bss entry patch. |
| vixl::aarch64::Label* ldr_label = |
| codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label); |
| // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */ |
| // All aligned loads are implicitly atomic consume operations on ARM64. |
| codegen_->GenerateGcRootFieldLoad(load, |
| out_loc, |
| temp, |
| /* offset placeholder */ 0u, |
| ldr_label, |
| kCompilerReadBarrierOption); |
| SlowPathCodeARM64* slow_path = |
| new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load); |
| codegen_->AddSlowPath(slow_path); |
| __ Cbz(out.X(), slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| return; |
| } |
| case HLoadString::LoadKind::kJitBootImageAddress: { |
| uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get()); |
| DCHECK_NE(address, 0u); |
| __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address)); |
| return; |
| } |
| case HLoadString::LoadKind::kJitTableAddress: { |
| __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(), |
| load->GetStringIndex(), |
| load->GetString())); |
| codegen_->GenerateGcRootFieldLoad(load, |
| out_loc, |
| out.X(), |
| /* offset= */ 0, |
| /* fixup_label= */ nullptr, |
| kCompilerReadBarrierOption); |
| return; |
| } |
| default: |
| break; |
| } |
| |
| // TODO: Re-add the compiler code to do string dex cache lookup again. |
| InvokeRuntimeCallingConvention calling_convention; |
| DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode()); |
| __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_); |
| codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc()); |
| CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>(); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant); |
| locations->SetOut(Location::ConstantLocation(constant)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) { |
| // Will be generated at use site. |
| } |
| |
| void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) { |
| codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject, |
| instruction, |
| instruction->GetDexPc()); |
| if (instruction->IsEnter()) { |
| CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>(); |
| } else { |
| CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>(); |
| } |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::VisitMul(HMul* mul) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall); |
| switch (mul->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetInAt(1, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) { |
| switch (mul->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1)); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected mul type " << mul->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNeg(HNeg* neg) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall); |
| switch (neg->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg)); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) { |
| switch (neg->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| __ Neg(OutputRegister(neg), InputOperandAt(neg, 0)); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected neg type " << neg->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetOut(LocationFrom(x0)); |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) { |
| // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference. |
| QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction); |
| codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>(); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) { |
| codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>(); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::VisitNot(HNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) { |
| switch (instruction->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) { |
| __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1)); |
| } |
| |
| void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) { |
| LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) { |
| if (CanMoveNullCheckToUser(instruction)) { |
| return; |
| } |
| { |
| // Ensure that between load and RecordPcInfo there are no pools emitted. |
| EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes); |
| Location obj = instruction->GetLocations()->InAt(0); |
| __ Ldr(wzr, HeapOperandFrom(obj, Offset(0))); |
| RecordPcInfo(instruction, instruction->GetDexPc()); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) { |
| SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction); |
| AddSlowPath(slow_path); |
| |
| LocationSummary* locations = instruction->GetLocations(); |
| Location obj = locations->InAt(0); |
| |
| __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) { |
| codegen_->GenerateNullCheck(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) { |
| if (instruction->GetNext()->IsSuspendCheck() && |
| instruction->GetBlock()->GetLoopInformation() != nullptr) { |
| HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck(); |
| // The back edge will generate the suspend check. |
| codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction); |
| } |
| |
| codegen_->GetMoveResolver()->EmitNativeCode(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| Location location = parameter_visitor_.GetNextLocation(instruction->GetType()); |
| if (location.IsStackSlot()) { |
| location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } else if (location.IsDoubleStackSlot()) { |
| location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize()); |
| } |
| locations->SetOut(location); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitParameterValue( |
| HParameterValue* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the parameter is already at its location. |
| } |
| |
| void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetOut(LocationFrom(kArtMethodRegister)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitCurrentMethod( |
| HCurrentMethod* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, the method is already at its location. |
| } |
| |
| void LocationsBuilderARM64::VisitPhi(HPhi* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { |
| locations->SetInAt(i, Location::Any()); |
| } |
| locations->SetOut(Location::Any()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) { |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void LocationsBuilderARM64::VisitRem(HRem* rem) { |
| DataType::Type type = rem->GetResultType(); |
| LocationSummary::CallKind call_kind = |
| DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly |
| : LocationSummary::kNoCall; |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1))); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(calling_convention.GetReturnLocation(type)); |
| |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) { |
| int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); |
| uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm)); |
| DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm; |
| |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| |
| if (HasNonNegativeOrMinIntInputAt(instruction, 0)) { |
| // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends. |
| // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends. |
| // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits |
| // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros. |
| // So 'and' always produces zero. |
| __ And(out, dividend, abs_imm - 1); |
| } else { |
| if (abs_imm == 2) { |
| __ Cmp(dividend, 0); |
| __ And(out, dividend, 1); |
| __ Csneg(out, out, out, ge); |
| } else { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| |
| __ Negs(temp, dividend); |
| __ And(out, dividend, abs_imm - 1); |
| __ And(temp, temp, abs_imm - 1); |
| __ Csneg(out, out, temp, mi); |
| } |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) { |
| int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1)); |
| |
| if (imm == 0) { |
| // Do not generate anything. |
| // DivZeroCheck would prevent any code to be executed. |
| return; |
| } |
| |
| if (IsPowerOfTwo(AbsOrMin(imm))) { |
| // Cases imm == -1 or imm == 1 are handled in constant folding by |
| // InstructionWithAbsorbingInputSimplifier. |
| // If the cases have survided till code generation they are handled in |
| // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0). |
| // The correct code is generated for them, just more instructions. |
| GenerateIntRemForPower2Denom(instruction); |
| } else { |
| DCHECK(imm < -2 || imm > 2) << imm; |
| GenerateDivRemWithAnyConstant(instruction, imm); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) { |
| DCHECK(DataType::IsIntOrLongType(instruction->GetResultType())) |
| << instruction->GetResultType(); |
| |
| if (instruction->GetLocations()->InAt(1).IsConstant()) { |
| GenerateIntRemForConstDenom(instruction); |
| } else { |
| Register out = OutputRegister(instruction); |
| Register dividend = InputRegisterAt(instruction, 0); |
| Register divisor = InputRegisterAt(instruction, 1); |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temps.AcquireSameSizeAs(out); |
| __ Sdiv(temp, dividend, divisor); |
| __ Msub(out, temp, divisor, dividend); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) { |
| DataType::Type type = rem->GetResultType(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| GenerateIntRem(rem); |
| break; |
| } |
| |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| QuickEntrypointEnum entrypoint = |
| (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod; |
| codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc()); |
| if (type == DataType::Type::kFloat32) { |
| CheckEntrypointTypes<kQuickFmodf, float, float, float>(); |
| } else { |
| CheckEntrypointTypes<kQuickFmod, double, double, double>(); |
| } |
| break; |
| } |
| |
| default: |
| LOG(FATAL) << "Unexpected rem type " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitMin(HMin* min) { |
| HandleBinaryOp(min); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMin(HMin* min) { |
| HandleBinaryOp(min); |
| } |
| |
| void LocationsBuilderARM64::VisitMax(HMax* max) { |
| HandleBinaryOp(max); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMax(HMax* max) { |
| HandleBinaryOp(max); |
| } |
| |
| void LocationsBuilderARM64::VisitAbs(HAbs* abs) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs); |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| break; |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) { |
| switch (abs->GetResultType()) { |
| case DataType::Type::kInt32: |
| case DataType::Type::kInt64: { |
| Register in_reg = InputRegisterAt(abs, 0); |
| Register out_reg = OutputRegister(abs); |
| __ Cmp(in_reg, Operand(0)); |
| __ Cneg(out_reg, in_reg, lt); |
| break; |
| } |
| case DataType::Type::kFloat32: |
| case DataType::Type::kFloat64: { |
| VRegister in_reg = InputFPRegisterAt(abs, 0); |
| VRegister out_reg = OutputFPRegister(abs); |
| __ Fabs(out_reg, in_reg); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType(); |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) { |
| constructor_fence->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitConstructorFence( |
| HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) { |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore); |
| } |
| |
| void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| memory_barrier->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) { |
| codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind()); |
| } |
| |
| void LocationsBuilderARM64::VisitReturn(HReturn* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction); |
| DataType::Type return_type = instruction->InputAt(0)->GetType(); |
| locations->SetInAt(0, ARM64ReturnLocation(return_type)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) { |
| if (GetGraph()->IsCompilingOsr()) { |
| // To simplify callers of an OSR method, we put the return value in both |
| // floating point and core register. |
| switch (ret->InputAt(0)->GetType()) { |
| case DataType::Type::kFloat32: |
| __ Fmov(w0, s0); |
| break; |
| case DataType::Type::kFloat64: |
| __ Fmov(x0, d0); |
| break; |
| default: |
| break; |
| } |
| } |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) { |
| instruction->SetLocations(nullptr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) { |
| codegen_->GenerateFrameExit(); |
| } |
| |
| void LocationsBuilderARM64::VisitRor(HRor* ror) { |
| HandleBinaryOp(ror); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) { |
| HandleBinaryOp(ror); |
| } |
| |
| void LocationsBuilderARM64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) { |
| HandleShift(shl); |
| } |
| |
| void LocationsBuilderARM64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) { |
| HandleShift(shr); |
| } |
| |
| void LocationsBuilderARM64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) { |
| HandleFieldGet(instruction, instruction->GetFieldInfo()); |
| } |
| |
| void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) { |
| HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull()); |
| } |
| |
| void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { |
| codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0)); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) { |
| __ Mov(w0, instruction->GetFormat()->GetValue()); |
| codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc()); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet( |
| HUnresolvedInstanceFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet( |
| HUnresolvedInstanceFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet( |
| HUnresolvedStaticFieldGet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->CreateUnresolvedFieldLocationSummary( |
| instruction, instruction->GetFieldType(), calling_convention); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet( |
| HUnresolvedStaticFieldSet* instruction) { |
| FieldAccessCallingConventionARM64 calling_convention; |
| codegen_->GenerateUnresolvedFieldAccess(instruction, |
| instruction->GetFieldType(), |
| instruction->GetFieldIndex(), |
| instruction->GetDexPc(), |
| calling_convention); |
| } |
| |
| void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnSlowPath); |
| // In suspend check slow path, usually there are no caller-save registers at all. |
| // If SIMD instructions are present, however, we force spilling all live SIMD |
| // registers in full width (since the runtime only saves/restores lower part). |
| locations->SetCustomSlowPathCallerSaves( |
| GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) { |
| HBasicBlock* block = instruction->GetBlock(); |
| if (block->GetLoopInformation() != nullptr) { |
| DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction); |
| // The back edge will generate the suspend check. |
| return; |
| } |
| if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) { |
| // The goto will generate the suspend check. |
| return; |
| } |
| GenerateSuspendCheck(instruction, nullptr); |
| codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void LocationsBuilderARM64::VisitThrow(HThrow* instruction) { |
| LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary( |
| instruction, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) { |
| codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc()); |
| CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); |
| } |
| |
| void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall); |
| DataType::Type input_type = conversion->GetInputType(); |
| DataType::Type result_type = conversion->GetResultType(); |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) || |
| (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) { |
| LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type; |
| } |
| |
| if (DataType::IsFloatingPointType(input_type)) { |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| } else { |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| if (DataType::IsFloatingPointType(result_type)) { |
| locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap); |
| } else { |
| locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) { |
| DataType::Type result_type = conversion->GetResultType(); |
| DataType::Type input_type = conversion->GetInputType(); |
| |
| DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type)) |
| << input_type << " -> " << result_type; |
| |
| if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) { |
| int result_size = DataType::Size(result_type); |
| int input_size = DataType::Size(input_type); |
| int min_size = std::min(result_size, input_size); |
| Register output = OutputRegister(conversion); |
| Register source = InputRegisterAt(conversion, 0); |
| if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) { |
| // 'int' values are used directly as W registers, discarding the top |
| // bits, so we don't need to sign-extend and can just perform a move. |
| // We do not pass the `kDiscardForSameWReg` argument to force clearing the |
| // top 32 bits of the target register. We theoretically could leave those |
| // bits unchanged, but we would have to make sure that no code uses a |
| // 32bit input value as a 64bit value assuming that the top 32 bits are |
| // zero. |
| __ Mov(output.W(), source.W()); |
| } else if (DataType::IsUnsignedType(result_type) || |
| (DataType::IsUnsignedType(input_type) && input_size < result_size)) { |
| __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte); |
| } else { |
| __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte); |
| } |
| } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) { |
| __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0)); |
| } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) { |
| CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64); |
| __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0)); |
| } else if (DataType::IsFloatingPointType(result_type) && |
| DataType::IsFloatingPointType(input_type)) { |
| __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0)); |
| } else { |
| LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type |
| << " to " << result_type; |
| } |
| } |
| |
| void LocationsBuilderARM64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) { |
| HandleShift(ushr); |
| } |
| |
| void LocationsBuilderARM64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) { |
| HandleBinaryOp(instruction); |
| } |
| |
| void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) { |
| // Nothing to do, this should be removed during prepare for register allocator. |
| LOG(FATAL) << "Unreachable"; |
| } |
| |
| // Simple implementation of packed switch - generate cascaded compare/jumps. |
| void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) { |
| int32_t lower_bound = switch_instr->GetStartValue(); |
| uint32_t num_entries = switch_instr->GetNumEntries(); |
| Register value_reg = InputRegisterAt(switch_instr, 0); |
| HBasicBlock* default_block = switch_instr->GetDefaultBlock(); |
| |
| // Roughly set 16 as max average assemblies generated per HIR in a graph. |
| static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize; |
| // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to |
| // make sure we don't emit it if the target may run out of range. |
| // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR |
| // ranges and emit the tables only as required. |
| static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction; |
| |
| if (num_entries <= kPackedSwitchCompareJumpThreshold || |
| // Current instruction id is an upper bound of the number of HIRs in the graph. |
| GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) { |
| // Create a series of compare/jumps. |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| Register temp = temps.AcquireW(); |
| __ Subs(temp, value_reg, Operand(lower_bound)); |
| |
| const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors(); |
| // Jump to successors[0] if value == lower_bound. |
| __ B(eq, codegen_->GetLabelOf(successors[0])); |
| int32_t last_index = 0; |
| for (; num_entries - last_index > 2; last_index += 2) { |
| __ Subs(temp, temp, Operand(2)); |
| // Jump to successors[last_index + 1] if value < case_value[last_index + 2]. |
| __ B(lo, codegen_->GetLabelOf(successors[last_index + 1])); |
| // Jump to successors[last_index + 2] if value == case_value[last_index + 2]. |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 2])); |
| } |
| if (num_entries - last_index == 2) { |
| // The last missing case_value. |
| __ Cmp(temp, Operand(1)); |
| __ B(eq, codegen_->GetLabelOf(successors[last_index + 1])); |
| } |
| |
| // And the default for any other value. |
| if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) { |
| __ B(codegen_->GetLabelOf(default_block)); |
| } |
| } else { |
| JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr); |
| |
| UseScratchRegisterScope temps(codegen_->GetVIXLAssembler()); |
| |
| // Below instructions should use at most one blocked register. Since there are two blocked |
| // registers, we are free to block one. |
| Register temp_w = temps.AcquireW(); |
| Register index; |
| // Remove the bias. |
| if (lower_bound != 0) { |
| index = temp_w; |
| __ Sub(index, value_reg, Operand(lower_bound)); |
| } else { |
| index = value_reg; |
| } |
| |
| // Jump to default block if index is out of the range. |
| __ Cmp(index, Operand(num_entries)); |
| __ B(hs, codegen_->GetLabelOf(default_block)); |
| |
| // In current VIXL implementation, it won't require any blocked registers to encode the |
| // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the |
| // register pressure. |
| Register table_base = temps.AcquireX(); |
| // Load jump offset from the table. |
| __ Adr(table_base, jump_table->GetTableStartLabel()); |
| Register jump_offset = temp_w; |
| __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2)); |
| |
| // Jump to target block by branching to table_base(pc related) + offset. |
| Register target_address = table_base; |
| __ Add(target_address, table_base, Operand(jump_offset, SXTW)); |
| __ Br(target_address); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister( |
| HInstruction* instruction, |
| Location out, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| DataType::Type type = DataType::Type::kReference; |
| Register out_reg = RegisterFrom(out, type); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| out_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // Save the value of `out` into `maybe_temp` before overwriting it |
| // in the following move operation, as we will need it for the |
| // read barrier below. |
| Register temp_reg = RegisterFrom(maybe_temp, type); |
| __ Mov(temp_reg, out_reg); |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Ldr(out_reg, HeapOperand(out_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(out + offset) |
| __ Ldr(out_reg, HeapOperand(out_reg, offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters( |
| HInstruction* instruction, |
| Location out, |
| Location obj, |
| uint32_t offset, |
| Location maybe_temp, |
| ReadBarrierOption read_barrier_option) { |
| DataType::Type type = DataType::Type::kReference; |
| Register out_reg = RegisterFrom(out, type); |
| Register obj_reg = RegisterFrom(obj, type); |
| if (read_barrier_option == kWithReadBarrier) { |
| CHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Load with fast path based Baker's read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction, |
| out, |
| obj_reg, |
| offset, |
| maybe_temp, |
| /* needs_null_check= */ false, |
| /* use_load_acquire= */ false); |
| } else { |
| // Load with slow path based read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Ldr(out_reg, HeapOperand(obj_reg, offset)); |
| codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset); |
| } |
| } else { |
| // Plain load with no read barrier. |
| // /* HeapReference<Object> */ out = *(obj + offset) |
| __ Ldr(out_reg, HeapOperand(obj_reg, offset)); |
| GetAssembler()->MaybeUnpoisonHeapReference(out_reg); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateGcRootFieldLoad( |
| HInstruction* instruction, |
| Location root, |
| Register obj, |
| uint32_t offset, |
| vixl::aarch64::Label* fixup_label, |
| ReadBarrierOption read_barrier_option) { |
| DCHECK(fixup_label == nullptr || offset == 0u); |
| Register root_reg = RegisterFrom(root, DataType::Type::kReference); |
| if (read_barrier_option == kWithReadBarrier) { |
| DCHECK(kEmitCompilerReadBarrier); |
| if (kUseBakerReadBarrier) { |
| // Fast path implementation of art::ReadBarrier::BarrierForRoot when |
| // Baker's read barrier are used. |
| |
| // Query `art::Thread::Current()->GetIsGcMarking()` (stored in |
| // the Marking Register) to decide whether we need to enter |
| // the slow path to mark the GC root. |
| // |
| // We use shared thunks for the slow path; shared within the method |
| // for JIT, across methods for AOT. That thunk checks the reference |
| // and jumps to the entrypoint if needed. |
| // |
| // lr = &return_address; |
| // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load. |
| // if (mr) { // Thread::Current()->GetIsGcMarking() |
| // goto gc_root_thunk<root_reg>(lr) |
| // } |
| // return_address: |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| DCHECK(temps.IsAvailable(ip0)); |
| DCHECK(temps.IsAvailable(ip1)); |
| temps.Exclude(ip0, ip1); |
| uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode()); |
| |
| ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); |
| vixl::aarch64::Label return_address; |
| __ adr(lr, &return_address); |
| if (fixup_label != nullptr) { |
| __ bind(fixup_label); |
| } |
| static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, |
| "GC root LDR must be 2 instructions (8B) before the return address label."); |
| __ ldr(root_reg, MemOperand(obj.X(), offset)); |
| EmitBakerReadBarrierCbnz(custom_data); |
| __ bind(&return_address); |
| } else { |
| // GC root loaded through a slow path for read barriers other |
| // than Baker's. |
| // /* GcRoot<mirror::Object>* */ root = obj + offset |
| if (fixup_label == nullptr) { |
| __ Add(root_reg.X(), obj.X(), offset); |
| } else { |
| EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X()); |
| } |
| // /* mirror::Object* */ root = root->Read() |
| GenerateReadBarrierForRootSlow(instruction, root, root); |
| } |
| } else { |
| // Plain GC root load with no read barrier. |
| // /* GcRoot<mirror::Object> */ root = *(obj + offset) |
| if (fixup_label == nullptr) { |
| __ Ldr(root_reg, MemOperand(obj, offset)); |
| } else { |
| EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X()); |
| } |
| // Note that GC roots are not affected by heap poisoning, thus we |
| // do not have to unpoison `root_reg` here. |
| } |
| MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__); |
| } |
| |
| void CodeGeneratorARM64::GenerateIntrinsicCasMoveWithBakerReadBarrier( |
| vixl::aarch64::Register marked_old_value, |
| vixl::aarch64::Register old_value) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR. |
| uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode()); |
| |
| ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize); |
| vixl::aarch64::Label return_address; |
| __ adr(lr, &return_address); |
| static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8, |
| "GC root LDR must be 2 instructions (8B) before the return address label."); |
| __ mov(marked_old_value, old_value); |
| EmitBakerReadBarrierCbnz(custom_data); |
| __ bind(&return_address); |
| } |
| |
| void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| vixl::aarch64::Register obj, |
| const vixl::aarch64::MemOperand& src, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the |
| // Marking Register) to decide whether we need to enter the slow |
| // path to mark the reference. Then, in the slow path, check the |
| // gray bit in the lock word of the reference's holder (`obj`) to |
| // decide whether to mark `ref` or not. |
| // |
| // We use shared thunks for the slow path; shared within the method |
| // for JIT, across methods for AOT. That thunk checks the holder |
| // and jumps to the entrypoint if needed. If the holder is not gray, |
| // it creates a fake dependency and returns to the LDR instruction. |
| // |
| // lr = &gray_return_address; |
| // if (mr) { // Thread::Current()->GetIsGcMarking() |
| // goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr) |
| // } |
| // not_gray_return_address: |
| // // Original reference load. If the offset is too large to fit |
| // // into LDR, we use an adjusted base register here. |
| // HeapReference<mirror::Object> reference = *(obj+offset); |
| // gray_return_address: |
| |
| DCHECK(src.GetAddrMode() == vixl::aarch64::Offset); |
| DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>)); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| DCHECK(temps.IsAvailable(ip0)); |
| DCHECK(temps.IsAvailable(ip1)); |
| temps.Exclude(ip0, ip1); |
| uint32_t custom_data = use_load_acquire |
| ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode()) |
| : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode()); |
| |
| { |
| ExactAssemblyScope guard(GetVIXLAssembler(), |
| (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); |
| vixl::aarch64::Label return_address; |
| __ adr(lr, &return_address); |
| EmitBakerReadBarrierCbnz(custom_data); |
| static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), |
| "Field LDR must be 1 instruction (4B) before the return address label; " |
| " 2 instructions (8B) for heap poisoning."); |
| Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); |
| if (use_load_acquire) { |
| DCHECK_EQ(src.GetOffset(), 0); |
| __ ldar(ref_reg, src); |
| } else { |
| __ ldr(ref_reg, src); |
| } |
| if (needs_null_check) { |
| MaybeRecordImplicitNullCheck(instruction); |
| } |
| // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses |
| // macro instructions disallowed in ExactAssemblyScope. |
| if (kPoisonHeapReferences) { |
| __ neg(ref_reg, Operand(ref_reg)); |
| } |
| __ bind(&return_address); |
| } |
| MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); |
| } |
| |
| void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, |
| Location ref, |
| Register obj, |
| uint32_t offset, |
| Location maybe_temp, |
| bool needs_null_check, |
| bool use_load_acquire) { |
| DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>)); |
| Register base = obj; |
| if (use_load_acquire) { |
| DCHECK(maybe_temp.IsRegister()); |
| base = WRegisterFrom(maybe_temp); |
| __ Add(base, obj, offset); |
| offset = 0u; |
| } else if (offset >= kReferenceLoadMinFarOffset) { |
| DCHECK(maybe_temp.IsRegister()); |
| base = WRegisterFrom(maybe_temp); |
| static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2."); |
| __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u))); |
| offset &= (kReferenceLoadMinFarOffset - 1u); |
| } |
| MemOperand src(base.X(), offset); |
| GenerateFieldLoadWithBakerReadBarrier( |
| instruction, ref, obj, src, needs_null_check, use_load_acquire); |
| } |
| |
| void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction, |
| Location ref, |
| Register obj, |
| uint32_t data_offset, |
| Location index, |
| bool needs_null_check) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| |
| static_assert( |
| sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t), |
| "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes."); |
| size_t scale_factor = DataType::SizeShift(DataType::Type::kReference); |
| |
| // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the |
| // Marking Register) to decide whether we need to enter the slow |
| // path to mark the reference. Then, in the slow path, check the |
| // gray bit in the lock word of the reference's holder (`obj`) to |
| // decide whether to mark `ref` or not. |
| // |
| // We use shared thunks for the slow path; shared within the method |
| // for JIT, across methods for AOT. That thunk checks the holder |
| // and jumps to the entrypoint if needed. If the holder is not gray, |
| // it creates a fake dependency and returns to the LDR instruction. |
| // |
| // lr = &gray_return_address; |
| // if (mr) { // Thread::Current()->GetIsGcMarking() |
| // goto array_thunk<base_reg>(lr) |
| // } |
| // not_gray_return_address: |
| // // Original reference load. If the offset is too large to fit |
| // // into LDR, we use an adjusted base register here. |
| // HeapReference<mirror::Object> reference = data[index]; |
| // gray_return_address: |
| |
| DCHECK(index.IsValid()); |
| Register index_reg = RegisterFrom(index, DataType::Type::kInt32); |
| Register ref_reg = RegisterFrom(ref, DataType::Type::kReference); |
| |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| DCHECK(temps.IsAvailable(ip0)); |
| DCHECK(temps.IsAvailable(ip1)); |
| temps.Exclude(ip0, ip1); |
| |
| Register temp; |
| if (instruction->GetArray()->IsIntermediateAddress()) { |
| // We do not need to compute the intermediate address from the array: the |
| // input instruction has done it already. See the comment in |
| // `TryExtractArrayAccessAddress()`. |
| if (kIsDebugBuild) { |
| HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress(); |
| DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset); |
| } |
| temp = obj; |
| } else { |
| temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0)); |
| __ Add(temp.X(), obj.X(), Operand(data_offset)); |
| } |
| |
| uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode()); |
| |
| { |
| ExactAssemblyScope guard(GetVIXLAssembler(), |
| (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize); |
| vixl::aarch64::Label return_address; |
| __ adr(lr, &return_address); |
| EmitBakerReadBarrierCbnz(custom_data); |
| static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), |
| "Array LDR must be 1 instruction (4B) before the return address label; " |
| " 2 instructions (8B) for heap poisoning."); |
| __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor)); |
| DCHECK(!needs_null_check); // The thunk cannot handle the null check. |
| // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses |
| // macro instructions disallowed in ExactAssemblyScope. |
| if (kPoisonHeapReferences) { |
| __ neg(ref_reg, Operand(ref_reg)); |
| } |
| __ bind(&return_address); |
| } |
| MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1)); |
| } |
| |
| void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) { |
| // The following condition is a compile-time one, so it does not have a run-time cost. |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier && kIsDebugBuild) { |
| // The following condition is a run-time one; it is executed after the |
| // previous compile-time test, to avoid penalizing non-debug builds. |
| if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) { |
| UseScratchRegisterScope temps(GetVIXLAssembler()); |
| Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW(); |
| GetAssembler()->GenerateMarkingRegisterCheck(temp, code); |
| } |
| } |
| } |
| |
| SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) |
| ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index); |
| AddSlowPath(slow_path); |
| return slow_path; |
| } |
| |
| void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the reference load. |
| // |
| // If heap poisoning is enabled, the unpoisoning of the loaded |
| // reference will be carried out by the runtime within the slow |
| // path. |
| // |
| // Note that `ref` currently does not get unpoisoned (when heap |
| // poisoning is enabled), which is alright as the `ref` argument is |
| // not used by the artReadBarrierSlow entry point. |
| // |
| // TODO: Unpoison `ref` when it is used by artReadBarrierSlow. |
| SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction, |
| Location out, |
| Location ref, |
| Location obj, |
| uint32_t offset, |
| Location index) { |
| if (kEmitCompilerReadBarrier) { |
| // Baker's read barriers shall be handled by the fast path |
| // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier). |
| DCHECK(!kUseBakerReadBarrier); |
| // If heap poisoning is enabled, unpoisoning will be taken care of |
| // by the runtime within the slow path. |
| GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index); |
| } else if (kPoisonHeapReferences) { |
| GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out)); |
| } |
| } |
| |
| void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction, |
| Location out, |
| Location root) { |
| DCHECK(kEmitCompilerReadBarrier); |
| |
| // Insert a slow path based read barrier *after* the GC root load. |
| // |
| // Note that GC roots are not affected by heap poisoning, so we do |
| // not need to do anything special for this here. |
| SlowPathCodeARM64* slow_path = |
| new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root); |
| AddSlowPath(slow_path); |
| |
| __ B(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = |
| new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) { |
| LocationSummary* locations = instruction->GetLocations(); |
| if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) { |
| uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset( |
| instruction->GetIndex(), kArm64PointerSize).SizeValue(); |
| __ Ldr(XRegisterFrom(locations->Out()), |
| MemOperand(XRegisterFrom(locations->InAt(0)), method_offset)); |
| } else { |
| uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement( |
| instruction->GetIndex(), kArm64PointerSize)); |
| __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)), |
| mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value())); |
| __ Ldr(XRegisterFrom(locations->Out()), |
| MemOperand(XRegisterFrom(locations->Out()), method_offset)); |
| } |
| } |
| |
| static void PatchJitRootUse(uint8_t* code, |
| const uint8_t* roots_data, |
| vixl::aarch64::Literal<uint32_t>* literal, |
| uint64_t index_in_table) { |
| uint32_t literal_offset = literal->GetOffset(); |
| uintptr_t address = |
| reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>); |
| uint8_t* data = code + literal_offset; |
| reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address); |
| } |
| |
| void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) { |
| for (const auto& entry : jit_string_patches_) { |
| const StringReference& string_reference = entry.first; |
| vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; |
| uint64_t index_in_table = GetJitStringRootIndex(string_reference); |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| for (const auto& entry : jit_class_patches_) { |
| const TypeReference& type_reference = entry.first; |
| vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second; |
| uint64_t index_in_table = GetJitClassRootIndex(type_reference); |
| PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table); |
| } |
| } |
| |
| MemOperand InstructionCodeGeneratorARM64::VecNEONAddress( |
| HVecMemoryOperation* instruction, |
| UseScratchRegisterScope* temps_scope, |
| size_t size, |
| bool is_string_char_at, |
| /*out*/ Register* scratch) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register base = InputRegisterAt(instruction, 0); |
| |
| if (instruction->InputAt(1)->IsIntermediateAddressIndex()) { |
| DCHECK(!is_string_char_at); |
| return MemOperand(base.X(), InputRegisterAt(instruction, 1).X()); |
| } |
| |
| Location index = locations->InAt(1); |
| uint32_t offset = is_string_char_at |
| ? mirror::String::ValueOffset().Uint32Value() |
| : mirror::Array::DataOffset(size).Uint32Value(); |
| size_t shift = ComponentSizeShiftWidth(size); |
| |
| // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet. |
| DCHECK(!instruction->InputAt(0)->IsIntermediateAddress()); |
| |
| if (index.IsConstant()) { |
| offset += Int64FromLocation(index) << shift; |
| return HeapOperand(base, offset); |
| } else { |
| *scratch = temps_scope->AcquireSameSizeAs(base); |
| __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift)); |
| return HeapOperand(*scratch, offset); |
| } |
| } |
| |
| SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress( |
| HVecMemoryOperation* instruction, |
| UseScratchRegisterScope* temps_scope, |
| size_t size, |
| bool is_string_char_at, |
| /*out*/ Register* scratch) { |
| LocationSummary* locations = instruction->GetLocations(); |
| Register base = InputRegisterAt(instruction, 0); |
| Location index = locations->InAt(1); |
| |
| DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex()); |
| DCHECK(!index.IsConstant()); |
| |
| uint32_t offset = is_string_char_at |
| ? mirror::String::ValueOffset().Uint32Value() |
| : mirror::Array::DataOffset(size).Uint32Value(); |
| size_t shift = ComponentSizeShiftWidth(size); |
| |
| if (instruction->InputAt(0)->IsIntermediateAddress()) { |
| return SVEMemOperand(base.X(), XRegisterFrom(index), LSL, shift); |
| } |
| |
| *scratch = temps_scope->AcquireSameSizeAs(base); |
| __ Add(*scratch, base, offset); |
| return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift); |
| } |
| |
| #undef __ |
| #undef QUICK_ENTRY_POINT |
| |
| #define __ assembler.GetVIXLAssembler()-> |
| |
| static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler, |
| vixl::aarch64::Register base_reg, |
| vixl::aarch64::MemOperand& lock_word, |
| vixl::aarch64::Label* slow_path, |
| vixl::aarch64::Label* throw_npe = nullptr) { |
| // Load the lock word containing the rb_state. |
| __ Ldr(ip0.W(), lock_word); |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path); |
| static_assert( |
| BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET, |
| "Field and array LDR offsets must be the same to reuse the same code."); |
| // To throw NPE, we return to the fast path; the artificial dependence below does not matter. |
| if (throw_npe != nullptr) { |
| __ Bind(throw_npe); |
| } |
| // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning). |
| static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), |
| "Field LDR must be 1 instruction (4B) before the return address label; " |
| " 2 instructions (8B) for heap poisoning."); |
| __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); |
| // Introduce a dependency on the lock_word including rb_state, |
| // to prevent load-load reordering, and without using |
| // a memory barrier (which would be more expensive). |
| __ Add(base_reg, base_reg, Operand(ip0, LSR, 32)); |
| __ Br(lr); // And return back to the function. |
| // Note: The fake dependency is unnecessary for the slow path. |
| } |
| |
| // Load the read barrier introspection entrypoint in register `entrypoint`. |
| static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler, |
| vixl::aarch64::Register entrypoint) { |
| // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. |
| DCHECK_EQ(ip0.GetCode(), 16u); |
| const int32_t entry_point_offset = |
| Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode()); |
| __ Ldr(entrypoint, MemOperand(tr, entry_point_offset)); |
| } |
| |
| void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler, |
| uint32_t encoded_data, |
| /*out*/ std::string* debug_name) { |
| BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); |
| switch (kind) { |
| case BakerReadBarrierKind::kField: |
| case BakerReadBarrierKind::kAcquire: { |
| Register base_reg = |
| vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); |
| CheckValidReg(base_reg.GetCode()); |
| Register holder_reg = |
| vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| CheckValidReg(holder_reg.GetCode()); |
| UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); |
| temps.Exclude(ip0, ip1); |
| // In the case of a field load (with relaxed semantic), if `base_reg` differs from |
| // `holder_reg`, the offset was too large and we must have emitted (during the construction |
| // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved |
| // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before |
| // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do |
| // not necessarily do that check before going to the thunk. |
| // |
| // In the case of a field load with load-acquire semantics (where `base_reg` always differs |
| // from `holder_reg`), we also need an explicit null check when implicit null checks are |
| // allowed, as we do not emit one before going to the thunk. |
| vixl::aarch64::Label throw_npe_label; |
| vixl::aarch64::Label* throw_npe = nullptr; |
| if (GetCompilerOptions().GetImplicitNullChecks() && |
| (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) { |
| throw_npe = &throw_npe_label; |
| __ Cbz(holder_reg.W(), throw_npe); |
| } |
| // Check if the holder is gray and, if not, add fake dependency to the base register |
| // and return to the LDR instruction to load the reference. Otherwise, use introspection |
| // to load the reference and call the entrypoint that performs further checks on the |
| // reference and marks it if needed. |
| vixl::aarch64::Label slow_path; |
| MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value()); |
| EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe); |
| __ Bind(&slow_path); |
| if (kind == BakerReadBarrierKind::kField) { |
| MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); |
| __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset. |
| LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); |
| __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset. |
| __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference. |
| } else { |
| DCHECK(kind == BakerReadBarrierKind::kAcquire); |
| DCHECK(!base_reg.Is(holder_reg)); |
| LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); |
| __ Ldar(ip0.W(), MemOperand(base_reg)); |
| } |
| // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference. |
| __ Br(ip1); // Jump to the entrypoint. |
| break; |
| } |
| case BakerReadBarrierKind::kArray: { |
| Register base_reg = |
| vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); |
| CheckValidReg(base_reg.GetCode()); |
| DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, |
| BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); |
| temps.Exclude(ip0, ip1); |
| vixl::aarch64::Label slow_path; |
| int32_t data_offset = |
| mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value(); |
| MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset); |
| DCHECK_LT(lock_word.GetOffset(), 0); |
| EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); |
| __ Bind(&slow_path); |
| MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET); |
| __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset. |
| LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); |
| __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set). |
| __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create |
| // a switch case target based on the index register. |
| __ Mov(ip0, base_reg); // Move the base register to ip0. |
| __ Br(ip1); // Jump to the entrypoint's array switch case. |
| break; |
| } |
| case BakerReadBarrierKind::kGcRoot: { |
| // Check if the reference needs to be marked and if so (i.e. not null, not marked yet |
| // and it does not have a forwarding address), call the correct introspection entrypoint; |
| // otherwise return the reference (or the extracted forwarding address). |
| // There is no gray bit check for GC roots. |
| Register root_reg = |
| vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data)); |
| CheckValidReg(root_reg.GetCode()); |
| DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, |
| BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); |
| temps.Exclude(ip0, ip1); |
| vixl::aarch64::Label return_label, not_marked, forwarding_address; |
| __ Cbz(root_reg, &return_label); |
| MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value()); |
| __ Ldr(ip0.W(), lock_word); |
| __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked); |
| __ Bind(&return_label); |
| __ Br(lr); |
| __ Bind(¬_marked); |
| __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1)); |
| __ B(&forwarding_address, mi); |
| LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); |
| // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to |
| // art_quick_read_barrier_mark_introspection_gc_roots. |
| __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET)); |
| __ Mov(ip0.W(), root_reg); |
| __ Br(ip1); |
| __ Bind(&forwarding_address); |
| __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift); |
| __ Br(lr); |
| break; |
| } |
| default: |
| LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind); |
| UNREACHABLE(); |
| } |
| |
| // For JIT, the slow path is considered part of the compiled method, |
| // so JIT should pass null as `debug_name`. |
| DCHECK(!GetCompilerOptions().IsJitCompiler() || debug_name == nullptr); |
| if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) { |
| std::ostringstream oss; |
| oss << "BakerReadBarrierThunk"; |
| switch (kind) { |
| case BakerReadBarrierKind::kField: |
| oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) |
| << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); |
| break; |
| case BakerReadBarrierKind::kAcquire: |
| oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data) |
| << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data); |
| break; |
| case BakerReadBarrierKind::kArray: |
| oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); |
| DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, |
| BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| break; |
| case BakerReadBarrierKind::kGcRoot: |
| oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data); |
| DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg, |
| BakerReadBarrierSecondRegField::Decode(encoded_data)); |
| break; |
| } |
| *debug_name = oss.str(); |
| } |
| } |
| |
| #undef __ |
| |
| } // namespace arm64 |
| } // namespace art |