blob: cadd3c54d64c02a383e5c521cca4b5d679ce0fc8 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "parallel_move_resolver.h"
#include "nodes.h"
#include "locations.h"
namespace art {
void ParallelMoveResolver::EmitNativeCode(HParallelMove* parallel_move) {
DCHECK(moves_.IsEmpty());
// Build up a worklist of moves.
BuildInitialMoveList(parallel_move);
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& move = *moves_.Get(i);
// Skip constants to perform them last. They don't block other moves
// and skipping such moves with register destinations keeps those
// registers free for the whole algorithm.
if (!move.IsEliminated() && !move.GetSource().IsConstant()) {
PerformMove(i);
}
}
// Perform the moves with constant sources.
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& move = *moves_.Get(i);
if (!move.IsEliminated()) {
DCHECK(move.GetSource().IsConstant());
EmitMove(i);
}
}
moves_.Reset();
}
void ParallelMoveResolver::BuildInitialMoveList(HParallelMove* parallel_move) {
// Perform a linear sweep of the moves to add them to the initial list of
// moves to perform, ignoring any move that is redundant (the source is
// the same as the destination, the destination is ignored and
// unallocated, or the move was already eliminated).
for (size_t i = 0; i < parallel_move->NumMoves(); ++i) {
MoveOperands* move = parallel_move->MoveOperandsAt(i);
if (!move->IsRedundant()) {
moves_.Add(move);
}
}
}
void ParallelMoveResolver::PerformMove(size_t index) {
// Each call to this function performs a move and deletes it from the move
// graph. We first recursively perform any move blocking this one. We
// mark a move as "pending" on entry to PerformMove in order to detect
// cycles in the move graph. We use operand swaps to resolve cycles,
// which means that a call to PerformMove could change any source operand
// in the move graph.
DCHECK(!moves_.Get(index)->IsPending());
DCHECK(!moves_.Get(index)->IsRedundant());
// Clear this move's destination to indicate a pending move. The actual
// destination is saved in a stack-allocated local. Recursion may allow
// multiple moves to be pending.
DCHECK(!moves_.Get(index)->GetSource().IsInvalid());
Location destination = moves_.Get(index)->MarkPending();
// Perform a depth-first traversal of the move graph to resolve
// dependencies. Any unperformed, unpending move with a source the same
// as this one's destination blocks this one so recursively perform all
// such moves.
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& other_move = *moves_.Get(i);
if (other_move.Blocks(destination) && !other_move.IsPending()) {
// Though PerformMove can change any source operand in the move graph,
// this call cannot create a blocking move via a swap (this loop does
// not miss any). Assume there is a non-blocking move with source A
// and this move is blocked on source B and there is a swap of A and
// B. Then A and B must be involved in the same cycle (or they would
// not be swapped). Since this move's destination is B and there is
// only a single incoming edge to an operand, this move must also be
// involved in the same cycle. In that case, the blocking move will
// be created but will be "pending" when we return from PerformMove.
PerformMove(i);
}
}
MoveOperands* move = moves_.Get(index);
// We are about to resolve this move and don't need it marked as
// pending, so restore its destination.
move->ClearPending(destination);
// This move's source may have changed due to swaps to resolve cycles and
// so it may now be the last move in the cycle. If so remove it.
if (move->GetSource().Equals(destination)) {
move->Eliminate();
return;
}
// The move may be blocked on a (at most one) pending move, in which case
// we have a cycle. Search for such a blocking move and perform a swap to
// resolve it.
bool do_swap = false;
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& other_move = *moves_.Get(i);
if (other_move.Blocks(destination)) {
DCHECK(other_move.IsPending());
do_swap = true;
break;
}
}
if (do_swap) {
EmitSwap(index);
// Any unperformed (including pending) move with a source of either
// this move's source or destination needs to have their source
// changed to reflect the state of affairs after the swap.
Location source = move->GetSource();
Location destination = move->GetDestination();
move->Eliminate();
for (size_t i = 0; i < moves_.Size(); ++i) {
const MoveOperands& other_move = *moves_.Get(i);
if (other_move.Blocks(source)) {
moves_.Get(i)->SetSource(destination);
} else if (other_move.Blocks(destination)) {
moves_.Get(i)->SetSource(source);
}
}
} else {
// This move is not blocked.
EmitMove(index);
move->Eliminate();
}
}
bool ParallelMoveResolver::IsScratchLocation(Location loc) {
for (size_t i = 0; i < moves_.Size(); ++i) {
if (moves_.Get(i)->Blocks(loc)) {
return false;
}
}
for (size_t i = 0; i < moves_.Size(); ++i) {
if (moves_.Get(i)->GetDestination().Equals(loc)) {
return true;
}
}
return false;
}
int ParallelMoveResolver::AllocateScratchRegister(int blocked,
int register_count,
int if_scratch,
bool* spilled) {
DCHECK_NE(blocked, if_scratch);
int scratch = -1;
for (int reg = 0; reg < register_count; ++reg) {
if ((blocked != reg) &&
IsScratchLocation(Location::RegisterLocation(ManagedRegister(reg)))) {
scratch = reg;
break;
}
}
if (scratch == -1) {
*spilled = true;
scratch = if_scratch;
} else {
*spilled = false;
}
return scratch;
}
ParallelMoveResolver::ScratchRegisterScope::ScratchRegisterScope(
ParallelMoveResolver* resolver, int blocked, int if_scratch, int number_of_registers)
: resolver_(resolver),
reg_(kNoRegister),
spilled_(false) {
reg_ = resolver_->AllocateScratchRegister(blocked, number_of_registers, if_scratch, &spilled_);
if (spilled_) {
resolver->SpillScratch(reg_);
}
}
ParallelMoveResolver::ScratchRegisterScope::~ScratchRegisterScope() {
if (spilled_) {
resolver_->RestoreScratch(reg_);
}
}
} // namespace art