blob: 43e6b830e98ce65fa0efb93d6d7e06f51cd7e6e8 [file] [log] [blame]
/*
*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "builder.h"
#include "class_linker.h"
#include "dex_file.h"
#include "dex_file-inl.h"
#include "dex_instruction.h"
#include "dex_instruction-inl.h"
#include "driver/compiler_driver-inl.h"
#include "mirror/art_field.h"
#include "mirror/art_field-inl.h"
#include "mirror/class_loader.h"
#include "mirror/dex_cache.h"
#include "nodes.h"
#include "primitive.h"
#include "scoped_thread_state_change.h"
#include "thread.h"
namespace art {
/**
* Helper class to add HTemporary instructions. This class is used when
* converting a DEX instruction to multiple HInstruction, and where those
* instructions do not die at the following instruction, but instead spans
* multiple instructions.
*/
class Temporaries : public ValueObject {
public:
Temporaries(HGraph* graph, size_t count) : graph_(graph), count_(count), index_(0) {
graph_->UpdateNumberOfTemporaries(count_);
}
void Add(HInstruction* instruction) {
// We currently only support vreg size temps.
DCHECK(instruction->GetType() != Primitive::kPrimLong
&& instruction->GetType() != Primitive::kPrimDouble);
HInstruction* temp = new (graph_->GetArena()) HTemporary(index_++);
instruction->GetBlock()->AddInstruction(temp);
DCHECK(temp->GetPrevious() == instruction);
}
private:
HGraph* const graph_;
// The total number of temporaries that will be used.
const size_t count_;
// Current index in the temporary stack, updated by `Add`.
size_t index_;
};
static bool IsTypeSupported(Primitive::Type type) {
return type != Primitive::kPrimFloat && type != Primitive::kPrimDouble;
}
void HGraphBuilder::InitializeLocals(uint16_t count) {
graph_->SetNumberOfVRegs(count);
locals_.SetSize(count);
for (int i = 0; i < count; i++) {
HLocal* local = new (arena_) HLocal(i);
entry_block_->AddInstruction(local);
locals_.Put(i, local);
}
}
bool HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) {
// dex_compilation_unit_ is null only when unit testing.
if (dex_compilation_unit_ == nullptr) {
return true;
}
graph_->SetNumberOfInVRegs(number_of_parameters);
const char* shorty = dex_compilation_unit_->GetShorty();
int locals_index = locals_.Size() - number_of_parameters;
int parameter_index = 0;
if (!dex_compilation_unit_->IsStatic()) {
// Add the implicit 'this' argument, not expressed in the signature.
HParameterValue* parameter =
new (arena_) HParameterValue(parameter_index++, Primitive::kPrimNot);
entry_block_->AddInstruction(parameter);
HLocal* local = GetLocalAt(locals_index++);
entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
number_of_parameters--;
}
uint32_t pos = 1;
for (int i = 0; i < number_of_parameters; i++) {
switch (shorty[pos++]) {
case 'F':
case 'D': {
return false;
}
default: {
// integer and reference parameters.
HParameterValue* parameter =
new (arena_) HParameterValue(parameter_index++, Primitive::GetType(shorty[pos - 1]));
entry_block_->AddInstruction(parameter);
HLocal* local = GetLocalAt(locals_index++);
// Store the parameter value in the local that the dex code will use
// to reference that parameter.
entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter));
if (parameter->GetType() == Primitive::kPrimLong) {
i++;
locals_index++;
parameter_index++;
}
break;
}
}
}
return true;
}
static bool CanHandleCodeItem(const DexFile::CodeItem& code_item) {
if (code_item.tries_size_ > 0) {
return false;
}
return true;
}
template<typename T>
void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_offset) {
HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
T* comparison = new (arena_) T(first, second);
current_block_->AddInstruction(comparison);
HInstruction* ifinst = new (arena_) HIf(comparison);
current_block_->AddInstruction(ifinst);
HBasicBlock* target = FindBlockStartingAt(dex_offset + instruction.GetTargetOffset());
DCHECK(target != nullptr);
current_block_->AddSuccessor(target);
target = FindBlockStartingAt(dex_offset + instruction.SizeInCodeUnits());
DCHECK(target != nullptr);
current_block_->AddSuccessor(target);
current_block_ = nullptr;
}
template<typename T>
void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_offset) {
HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt);
T* comparison = new (arena_) T(value, GetIntConstant(0));
current_block_->AddInstruction(comparison);
HInstruction* ifinst = new (arena_) HIf(comparison);
current_block_->AddInstruction(ifinst);
HBasicBlock* target = FindBlockStartingAt(dex_offset + instruction.GetTargetOffset());
DCHECK(target != nullptr);
current_block_->AddSuccessor(target);
target = FindBlockStartingAt(dex_offset + instruction.SizeInCodeUnits());
DCHECK(target != nullptr);
current_block_->AddSuccessor(target);
current_block_ = nullptr;
}
HGraph* HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) {
if (!CanHandleCodeItem(code_item)) {
return nullptr;
}
const uint16_t* code_ptr = code_item.insns_;
const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_;
// Setup the graph with the entry block and exit block.
graph_ = new (arena_) HGraph(arena_);
entry_block_ = new (arena_) HBasicBlock(graph_);
graph_->AddBlock(entry_block_);
exit_block_ = new (arena_) HBasicBlock(graph_);
graph_->SetEntryBlock(entry_block_);
graph_->SetExitBlock(exit_block_);
InitializeLocals(code_item.registers_size_);
graph_->UpdateMaximumNumberOfOutVRegs(code_item.outs_size_);
// To avoid splitting blocks, we compute ahead of time the instructions that
// start a new block, and create these blocks.
ComputeBranchTargets(code_ptr, code_end);
if (!InitializeParameters(code_item.ins_size_)) {
return nullptr;
}
size_t dex_offset = 0;
while (code_ptr < code_end) {
// Update the current block if dex_offset starts a new block.
MaybeUpdateCurrentBlock(dex_offset);
const Instruction& instruction = *Instruction::At(code_ptr);
if (!AnalyzeDexInstruction(instruction, dex_offset)) return nullptr;
dex_offset += instruction.SizeInCodeUnits();
code_ptr += instruction.SizeInCodeUnits();
}
// Add the exit block at the end to give it the highest id.
graph_->AddBlock(exit_block_);
exit_block_->AddInstruction(new (arena_) HExit());
entry_block_->AddInstruction(new (arena_) HGoto());
return graph_;
}
void HGraphBuilder::MaybeUpdateCurrentBlock(size_t index) {
HBasicBlock* block = FindBlockStartingAt(index);
if (block == nullptr) {
return;
}
if (current_block_ != nullptr) {
// Branching instructions clear current_block, so we know
// the last instruction of the current block is not a branching
// instruction. We add an unconditional goto to the found block.
current_block_->AddInstruction(new (arena_) HGoto());
current_block_->AddSuccessor(block);
}
graph_->AddBlock(block);
current_block_ = block;
}
void HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr, const uint16_t* code_end) {
// TODO: Support switch instructions.
branch_targets_.SetSize(code_end - code_ptr);
// Create the first block for the dex instructions, single successor of the entry block.
HBasicBlock* block = new (arena_) HBasicBlock(graph_);
branch_targets_.Put(0, block);
entry_block_->AddSuccessor(block);
// Iterate over all instructions and find branching instructions. Create blocks for
// the locations these instructions branch to.
size_t dex_offset = 0;
while (code_ptr < code_end) {
const Instruction& instruction = *Instruction::At(code_ptr);
if (instruction.IsBranch()) {
int32_t target = instruction.GetTargetOffset() + dex_offset;
// Create a block for the target instruction.
if (FindBlockStartingAt(target) == nullptr) {
block = new (arena_) HBasicBlock(graph_);
branch_targets_.Put(target, block);
}
dex_offset += instruction.SizeInCodeUnits();
code_ptr += instruction.SizeInCodeUnits();
if ((code_ptr < code_end) && (FindBlockStartingAt(dex_offset) == nullptr)) {
block = new (arena_) HBasicBlock(graph_);
branch_targets_.Put(dex_offset, block);
}
} else {
code_ptr += instruction.SizeInCodeUnits();
dex_offset += instruction.SizeInCodeUnits();
}
}
}
HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t index) const {
DCHECK_GE(index, 0);
return branch_targets_.Get(index);
}
template<typename T>
void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type) {
HInstruction* first = LoadLocal(instruction.VRegB(), type);
HInstruction* second = LoadLocal(instruction.VRegC(), type);
current_block_->AddInstruction(new (arena_) T(type, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type) {
HInstruction* first = LoadLocal(instruction.VRegA(), type);
HInstruction* second = LoadLocal(instruction.VRegB(), type);
current_block_->AddInstruction(new (arena_) T(type, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse) {
HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
HInstruction* second = GetIntConstant(instruction.VRegC_22s());
if (reverse) {
std::swap(first, second);
}
current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
template<typename T>
void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse) {
HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
HInstruction* second = GetIntConstant(instruction.VRegC_22b());
if (reverse) {
std::swap(first, second);
}
current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
}
void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type) {
if (type == Primitive::kPrimVoid) {
current_block_->AddInstruction(new (arena_) HReturnVoid());
} else {
HInstruction* value = LoadLocal(instruction.VRegA(), type);
current_block_->AddInstruction(new (arena_) HReturn(value));
}
current_block_->AddSuccessor(exit_block_);
current_block_ = nullptr;
}
bool HGraphBuilder::BuildInvoke(const Instruction& instruction,
uint32_t dex_offset,
uint32_t method_idx,
uint32_t number_of_vreg_arguments,
bool is_range,
uint32_t* args,
uint32_t register_index) {
const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx);
const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(method_id.proto_idx_);
const char* descriptor = dex_file_->StringDataByIdx(proto_id.shorty_idx_);
Primitive::Type return_type = Primitive::GetType(descriptor[0]);
bool is_instance_call =
instruction.Opcode() != Instruction::INVOKE_STATIC
&& instruction.Opcode() != Instruction::INVOKE_STATIC_RANGE;
const size_t number_of_arguments = strlen(descriptor) - (is_instance_call ? 0 : 1);
// Treat invoke-direct like static calls for now.
HInvoke* invoke = new (arena_) HInvokeStatic(
arena_, number_of_arguments, return_type, dex_offset, method_idx);
size_t start_index = 0;
Temporaries temps(graph_, is_instance_call ? 1 : 0);
if (is_instance_call) {
HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot);
HNullCheck* null_check = new (arena_) HNullCheck(arg, dex_offset);
current_block_->AddInstruction(null_check);
temps.Add(null_check);
invoke->SetArgumentAt(0, null_check);
start_index = 1;
}
uint32_t descriptor_index = 1;
uint32_t argument_index = start_index;
for (size_t i = start_index; i < number_of_vreg_arguments; i++, argument_index++) {
Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]);
if (!IsTypeSupported(type)) {
return false;
}
if (!is_range && type == Primitive::kPrimLong && args[i] + 1 != args[i + 1]) {
LOG(WARNING) << "Non sequential register pair in " << dex_compilation_unit_->GetSymbol()
<< " at " << dex_offset;
// We do not implement non sequential register pair.
return false;
}
HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type);
invoke->SetArgumentAt(argument_index, arg);
if (type == Primitive::kPrimLong) {
i++;
}
}
if (!IsTypeSupported(return_type)) {
return false;
}
DCHECK_EQ(argument_index, number_of_arguments);
current_block_->AddInstruction(invoke);
return true;
}
bool HGraphBuilder::BuildFieldAccess(const Instruction& instruction,
uint32_t dex_offset,
bool is_put) {
uint32_t source_or_dest_reg = instruction.VRegA_22c();
uint32_t obj_reg = instruction.VRegB_22c();
uint16_t field_index = instruction.VRegC_22c();
ScopedObjectAccess soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
Handle<mirror::ArtField> resolved_field(hs.NewHandle(
compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa)));
if (resolved_field.Get() == nullptr) {
return false;
}
if (resolved_field->IsVolatile()) {
return false;
}
Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType();
if (!IsTypeSupported(field_type)) {
return false;
}
HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot);
current_block_->AddInstruction(new (arena_) HNullCheck(object, dex_offset));
if (is_put) {
Temporaries temps(graph_, 1);
HInstruction* null_check = current_block_->GetLastInstruction();
// We need one temporary for the null check.
temps.Add(null_check);
HInstruction* value = LoadLocal(source_or_dest_reg, field_type);
current_block_->AddInstruction(new (arena_) HInstanceFieldSet(
null_check,
value,
resolved_field->GetOffset()));
} else {
current_block_->AddInstruction(new (arena_) HInstanceFieldGet(
current_block_->GetLastInstruction(),
field_type,
resolved_field->GetOffset()));
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
return true;
}
void HGraphBuilder::BuildArrayAccess(const Instruction& instruction,
uint32_t dex_offset,
bool is_put,
Primitive::Type anticipated_type) {
uint8_t source_or_dest_reg = instruction.VRegA_23x();
uint8_t array_reg = instruction.VRegB_23x();
uint8_t index_reg = instruction.VRegC_23x();
DCHECK(IsTypeSupported(anticipated_type));
// We need one temporary for the null check, one for the index, and one for the length.
Temporaries temps(graph_, 3);
HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot);
object = new (arena_) HNullCheck(object, dex_offset);
current_block_->AddInstruction(object);
temps.Add(object);
HInstruction* length = new (arena_) HArrayLength(object);
current_block_->AddInstruction(length);
temps.Add(length);
HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt);
index = new (arena_) HBoundsCheck(index, length, dex_offset);
current_block_->AddInstruction(index);
temps.Add(index);
if (is_put) {
HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type);
// TODO: Insert a type check node if the type is Object.
current_block_->AddInstruction(new (arena_) HArraySet(object, index, value, dex_offset));
} else {
current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type));
UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction());
}
}
bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, int32_t dex_offset) {
if (current_block_ == nullptr) {
return true; // Dead code
}
switch (instruction.Opcode()) {
case Instruction::CONST_4: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = GetIntConstant(instruction.VRegB_11n());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_16: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = GetIntConstant(instruction.VRegB_21s());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = GetIntConstant(instruction.VRegB_31i());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_HIGH16: {
int32_t register_index = instruction.VRegA();
HIntConstant* constant = GetIntConstant(instruction.VRegB_21h() << 16);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_16: {
int32_t register_index = instruction.VRegA();
// Get 16 bits of constant value, sign extended to 64 bits.
int64_t value = instruction.VRegB_21s();
value <<= 48;
value >>= 48;
HLongConstant* constant = GetLongConstant(value);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_32: {
int32_t register_index = instruction.VRegA();
// Get 32 bits of constant value, sign extended to 64 bits.
int64_t value = instruction.VRegB_31i();
value <<= 32;
value >>= 32;
HLongConstant* constant = GetLongConstant(value);
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE: {
int32_t register_index = instruction.VRegA();
HLongConstant* constant = GetLongConstant(instruction.VRegB_51l());
UpdateLocal(register_index, constant);
break;
}
case Instruction::CONST_WIDE_HIGH16: {
int32_t register_index = instruction.VRegA();
int64_t value = static_cast<int64_t>(instruction.VRegB_21h()) << 48;
HLongConstant* constant = GetLongConstant(value);
UpdateLocal(register_index, constant);
break;
}
// TODO: these instructions are also used to move floating point values, so what is
// the type (int or float)?
case Instruction::MOVE:
case Instruction::MOVE_FROM16:
case Instruction::MOVE_16: {
HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt);
UpdateLocal(instruction.VRegA(), value);
break;
}
// TODO: these instructions are also used to move floating point values, so what is
// the type (long or double)?
case Instruction::MOVE_WIDE:
case Instruction::MOVE_WIDE_FROM16:
case Instruction::MOVE_WIDE_16: {
HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong);
UpdateLocal(instruction.VRegA(), value);
break;
}
case Instruction::MOVE_OBJECT:
case Instruction::MOVE_OBJECT_16:
case Instruction::MOVE_OBJECT_FROM16: {
HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot);
UpdateLocal(instruction.VRegA(), value);
break;
}
case Instruction::RETURN_VOID: {
BuildReturn(instruction, Primitive::kPrimVoid);
break;
}
#define IF_XX(comparison, cond) \
case Instruction::IF_##cond: If_22t<comparison>(instruction, dex_offset); break; \
case Instruction::IF_##cond##Z: If_21t<comparison>(instruction, dex_offset); break
IF_XX(HEqual, EQ);
IF_XX(HNotEqual, NE);
IF_XX(HLessThan, LT);
IF_XX(HLessThanOrEqual, LE);
IF_XX(HGreaterThan, GT);
IF_XX(HGreaterThanOrEqual, GE);
case Instruction::GOTO:
case Instruction::GOTO_16:
case Instruction::GOTO_32: {
HBasicBlock* target = FindBlockStartingAt(instruction.GetTargetOffset() + dex_offset);
DCHECK(target != nullptr);
current_block_->AddInstruction(new (arena_) HGoto());
current_block_->AddSuccessor(target);
current_block_ = nullptr;
break;
}
case Instruction::RETURN: {
BuildReturn(instruction, Primitive::kPrimInt);
break;
}
case Instruction::RETURN_OBJECT: {
BuildReturn(instruction, Primitive::kPrimNot);
break;
}
case Instruction::RETURN_WIDE: {
BuildReturn(instruction, Primitive::kPrimLong);
break;
}
case Instruction::INVOKE_STATIC:
case Instruction::INVOKE_DIRECT: {
uint32_t method_idx = instruction.VRegB_35c();
uint32_t number_of_vreg_arguments = instruction.VRegA_35c();
uint32_t args[5];
instruction.GetVarArgs(args);
if (!BuildInvoke(instruction, dex_offset, method_idx, number_of_vreg_arguments, false, args, -1)) {
return false;
}
break;
}
case Instruction::INVOKE_STATIC_RANGE:
case Instruction::INVOKE_DIRECT_RANGE: {
uint32_t method_idx = instruction.VRegB_3rc();
uint32_t number_of_vreg_arguments = instruction.VRegA_3rc();
uint32_t register_index = instruction.VRegC();
if (!BuildInvoke(instruction, dex_offset, method_idx,
number_of_vreg_arguments, true, nullptr, register_index)) {
return false;
}
break;
}
case Instruction::ADD_INT: {
Binop_23x<HAdd>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::ADD_LONG: {
Binop_23x<HAdd>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::SUB_INT: {
Binop_23x<HSub>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SUB_LONG: {
Binop_23x<HSub>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::ADD_INT_2ADDR: {
Binop_12x<HAdd>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::ADD_LONG_2ADDR: {
Binop_12x<HAdd>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::SUB_INT_2ADDR: {
Binop_12x<HSub>(instruction, Primitive::kPrimInt);
break;
}
case Instruction::SUB_LONG_2ADDR: {
Binop_12x<HSub>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::ADD_INT_LIT16: {
Binop_22s<HAdd>(instruction, false);
break;
}
case Instruction::RSUB_INT: {
Binop_22s<HSub>(instruction, true);
break;
}
case Instruction::ADD_INT_LIT8: {
Binop_22b<HAdd>(instruction, false);
break;
}
case Instruction::RSUB_INT_LIT8: {
Binop_22b<HSub>(instruction, true);
break;
}
case Instruction::NEW_INSTANCE: {
current_block_->AddInstruction(
new (arena_) HNewInstance(dex_offset, instruction.VRegB_21c()));
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
break;
}
case Instruction::MOVE_RESULT:
case Instruction::MOVE_RESULT_WIDE:
case Instruction::MOVE_RESULT_OBJECT:
UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction());
break;
case Instruction::CMP_LONG: {
Binop_23x<HCompare>(instruction, Primitive::kPrimLong);
break;
}
case Instruction::NOP:
break;
case Instruction::IGET:
case Instruction::IGET_WIDE:
case Instruction::IGET_OBJECT:
case Instruction::IGET_BOOLEAN:
case Instruction::IGET_BYTE:
case Instruction::IGET_CHAR:
case Instruction::IGET_SHORT: {
if (!BuildFieldAccess(instruction, dex_offset, false)) {
return false;
}
break;
}
case Instruction::IPUT:
case Instruction::IPUT_WIDE:
case Instruction::IPUT_OBJECT:
case Instruction::IPUT_BOOLEAN:
case Instruction::IPUT_BYTE:
case Instruction::IPUT_CHAR:
case Instruction::IPUT_SHORT: {
if (!BuildFieldAccess(instruction, dex_offset, true)) {
return false;
}
break;
}
#define ARRAY_XX(kind, anticipated_type) \
case Instruction::AGET##kind: { \
BuildArrayAccess(instruction, dex_offset, false, anticipated_type); \
break; \
} \
case Instruction::APUT##kind: { \
BuildArrayAccess(instruction, dex_offset, true, anticipated_type); \
break; \
}
ARRAY_XX(, Primitive::kPrimInt);
ARRAY_XX(_WIDE, Primitive::kPrimLong);
ARRAY_XX(_OBJECT, Primitive::kPrimNot);
ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean);
ARRAY_XX(_BYTE, Primitive::kPrimByte);
ARRAY_XX(_CHAR, Primitive::kPrimChar);
ARRAY_XX(_SHORT, Primitive::kPrimShort);
default:
return false;
}
return true;
}
HIntConstant* HGraphBuilder::GetIntConstant0() {
if (constant0_ != nullptr) {
return constant0_;
}
constant0_ = new(arena_) HIntConstant(0);
entry_block_->AddInstruction(constant0_);
return constant0_;
}
HIntConstant* HGraphBuilder::GetIntConstant1() {
if (constant1_ != nullptr) {
return constant1_;
}
constant1_ = new(arena_) HIntConstant(1);
entry_block_->AddInstruction(constant1_);
return constant1_;
}
HIntConstant* HGraphBuilder::GetIntConstant(int32_t constant) {
switch (constant) {
case 0: return GetIntConstant0();
case 1: return GetIntConstant1();
default: {
HIntConstant* instruction = new (arena_) HIntConstant(constant);
entry_block_->AddInstruction(instruction);
return instruction;
}
}
}
HLongConstant* HGraphBuilder::GetLongConstant(int64_t constant) {
HLongConstant* instruction = new (arena_) HLongConstant(constant);
entry_block_->AddInstruction(instruction);
return instruction;
}
HLocal* HGraphBuilder::GetLocalAt(int register_index) const {
return locals_.Get(register_index);
}
void HGraphBuilder::UpdateLocal(int register_index, HInstruction* instruction) const {
HLocal* local = GetLocalAt(register_index);
current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction));
}
HInstruction* HGraphBuilder::LoadLocal(int register_index, Primitive::Type type) const {
HLocal* local = GetLocalAt(register_index);
current_block_->AddInstruction(new (arena_) HLoadLocal(local, type));
return current_block_->GetLastInstruction();
}
} // namespace art