| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "method_compiler.h" |
| |
| #include "backend_types.h" |
| #include "base/logging.h" |
| #include "base/stl_util.h" |
| #include "base/stringprintf.h" |
| #include "compilation_unit.h" |
| #include "compiler.h" |
| #include "dalvik_reg.h" |
| #include "greenland/inferred_reg_category_map.h" |
| #include "ir_builder.h" |
| #include "oat_compilation_unit.h" |
| #include "object.h" |
| #include "object_utils.h" |
| #include "runtime_support_func.h" |
| #include "runtime_support_llvm.h" |
| #include "utils_llvm.h" |
| #include "verifier/method_verifier.h" |
| |
| #include <iomanip> |
| |
| #include <llvm/BasicBlock.h> |
| #include <llvm/Function.h> |
| #include <llvm/GlobalVariable.h> |
| #include <llvm/Intrinsics.h> |
| |
| namespace art { |
| namespace compiler_llvm { |
| |
| using namespace runtime_support; |
| |
| |
| MethodCompiler::MethodCompiler(CompilationUnit* cunit, |
| Compiler* compiler, |
| OatCompilationUnit* oat_compilation_unit) |
| : cunit_(cunit), compiler_(compiler), |
| dex_file_(oat_compilation_unit->dex_file_), |
| code_item_(oat_compilation_unit->code_item_), |
| oat_compilation_unit_(oat_compilation_unit), |
| method_idx_(oat_compilation_unit->method_idx_), |
| access_flags_(oat_compilation_unit->access_flags_), |
| module_(cunit->GetModule()), |
| context_(cunit->GetLLVMContext()), |
| irb_(*cunit->GetIRBuilder()), |
| func_(NULL), |
| regs_(code_item_->registers_size_), |
| retval_reg_(NULL), |
| basic_block_alloca_(NULL), basic_block_shadow_frame_(NULL), |
| basic_block_reg_arg_init_(NULL), |
| basic_blocks_(code_item_->insns_size_in_code_units_), |
| basic_block_landing_pads_(code_item_->tries_size_, NULL), |
| basic_block_unwind_(NULL), |
| shadow_frame_(NULL), old_shadow_frame_(NULL), |
| already_pushed_shadow_frame_(NULL) { |
| } |
| |
| |
| MethodCompiler::~MethodCompiler() { |
| STLDeleteElements(®s_); |
| } |
| |
| |
| void MethodCompiler::CreateFunction() { |
| // LLVM function name |
| std::string func_name(ElfFuncName(cunit_->GetIndex())); |
| |
| // Get function type |
| llvm::FunctionType* func_type = |
| GetFunctionType(method_idx_, oat_compilation_unit_->IsStatic()); |
| |
| // Create function |
| func_ = llvm::Function::Create(func_type, llvm::Function::ExternalLinkage, |
| func_name, module_); |
| |
| #if !defined(NDEBUG) |
| // Set argument name |
| llvm::Function::arg_iterator arg_iter(func_->arg_begin()); |
| llvm::Function::arg_iterator arg_end(func_->arg_end()); |
| |
| DCHECK_NE(arg_iter, arg_end); |
| arg_iter->setName("method"); |
| ++arg_iter; |
| |
| if (!oat_compilation_unit_->IsStatic()) { |
| DCHECK_NE(arg_iter, arg_end); |
| arg_iter->setName("this"); |
| ++arg_iter; |
| } |
| |
| for (unsigned i = 0; arg_iter != arg_end; ++i, ++arg_iter) { |
| arg_iter->setName(StringPrintf("a%u", i)); |
| } |
| #endif |
| } |
| |
| |
| llvm::FunctionType* MethodCompiler::GetFunctionType(uint32_t method_idx, |
| bool is_static) { |
| // Get method signature |
| DexFile::MethodId const& method_id = dex_file_->GetMethodId(method_idx); |
| |
| uint32_t shorty_size; |
| const char* shorty = dex_file_->GetMethodShorty(method_id, &shorty_size); |
| CHECK_GE(shorty_size, 1u); |
| |
| // Get return type |
| llvm::Type* ret_type = irb_.getJType(shorty[0], kAccurate); |
| |
| // Get argument type |
| std::vector<llvm::Type*> args_type; |
| |
| args_type.push_back(irb_.getJObjectTy()); // method object pointer |
| |
| if (!is_static) { |
| args_type.push_back(irb_.getJType('L', kAccurate)); // "this" object pointer |
| } |
| |
| for (uint32_t i = 1; i < shorty_size; ++i) { |
| args_type.push_back(irb_.getJType(shorty[i], kAccurate)); |
| } |
| |
| return llvm::FunctionType::get(ret_type, args_type, false); |
| } |
| |
| |
| void MethodCompiler::EmitPrologue() { |
| // Create basic blocks for prologue |
| #if !defined(NDEBUG) |
| // Add a BasicBlock named as PrettyMethod for debugging. |
| llvm::BasicBlock* entry = |
| llvm::BasicBlock::Create(*context_, PrettyMethod(method_idx_, *dex_file_), func_); |
| #endif |
| basic_block_alloca_ = |
| llvm::BasicBlock::Create(*context_, "prologue.alloca", func_); |
| |
| basic_block_shadow_frame_ = |
| llvm::BasicBlock::Create(*context_, "prologue.shadowframe", func_); |
| |
| basic_block_reg_arg_init_ = |
| llvm::BasicBlock::Create(*context_, "prologue.arginit", func_); |
| |
| #if !defined(NDEBUG) |
| irb_.SetInsertPoint(entry); |
| irb_.CreateBr(basic_block_alloca_); |
| #endif |
| |
| irb_.SetInsertPoint(basic_block_alloca_); |
| |
| // Create Shadow Frame |
| if (method_info_.need_shadow_frame) { |
| EmitPrologueAllocShadowFrame(); |
| } |
| |
| // Create register array |
| for (uint16_t r = 0; r < code_item_->registers_size_; ++r) { |
| std::string name; |
| #if !defined(NDEBUG) |
| name = StringPrintf("%u", r); |
| #endif |
| regs_[r] = new DalvikReg(*this, name, GetVRegEntry(r)); |
| } |
| |
| std::string name; |
| #if !defined(NDEBUG) |
| name = "_res"; |
| #endif |
| retval_reg_.reset(new DalvikReg(*this, name, NULL)); |
| |
| // Store argument to dalvik register |
| irb_.SetInsertPoint(basic_block_reg_arg_init_); |
| EmitPrologueAssignArgRegister(); |
| |
| // Branch to start address |
| irb_.CreateBr(GetBasicBlock(0)); |
| } |
| |
| |
| void MethodCompiler::EmitStackOverflowCheck() { |
| // Call llvm intrinsic function to get frame address. |
| llvm::Function* frameaddress = |
| llvm::Intrinsic::getDeclaration(module_, llvm::Intrinsic::frameaddress); |
| |
| // The type of llvm::frameaddress is: i8* @llvm.frameaddress(i32) |
| llvm::Value* frame_address = irb_.CreateCall(frameaddress, irb_.getInt32(0)); |
| |
| // Cast i8* to int |
| frame_address = irb_.CreatePtrToInt(frame_address, irb_.getPtrEquivIntTy()); |
| |
| // Get thread.stack_end_ |
| llvm::Value* stack_end = |
| irb_.Runtime().EmitLoadFromThreadOffset(Thread::StackEndOffset().Int32Value(), |
| irb_.getPtrEquivIntTy(), |
| kTBAARuntimeInfo); |
| |
| // Check the frame address < thread.stack_end_ ? |
| llvm::Value* is_stack_overflow = irb_.CreateICmpULT(frame_address, stack_end); |
| |
| llvm::BasicBlock* block_exception = |
| llvm::BasicBlock::Create(*context_, "stack_overflow", func_); |
| |
| llvm::BasicBlock* block_continue = |
| llvm::BasicBlock::Create(*context_, "stack_overflow_cont", func_); |
| |
| irb_.CreateCondBr(is_stack_overflow, block_exception, block_continue, kUnlikely); |
| |
| // If stack overflow, throw exception. |
| irb_.SetInsertPoint(block_exception); |
| irb_.CreateCall(irb_.GetRuntime(ThrowStackOverflowException)); |
| |
| // Unwind. |
| char ret_shorty = oat_compilation_unit_->GetShorty()[0]; |
| if (ret_shorty == 'V') { |
| irb_.CreateRetVoid(); |
| } else { |
| irb_.CreateRet(irb_.getJZero(ret_shorty)); |
| } |
| |
| irb_.SetInsertPoint(block_continue); |
| } |
| |
| |
| void MethodCompiler::EmitPrologueLastBranch() { |
| llvm::BasicBlock* basic_block_stack_overflow = |
| llvm::BasicBlock::Create(*context_, "prologue.stack_overflow_check", func_); |
| |
| irb_.SetInsertPoint(basic_block_alloca_); |
| irb_.CreateBr(basic_block_stack_overflow); |
| |
| irb_.SetInsertPoint(basic_block_stack_overflow); |
| // If a method will not call to other method, and the method is small, we can avoid stack overflow |
| // check. |
| if (method_info_.has_invoke || |
| code_item_->registers_size_ > 32) { // Small leaf function is OK given |
| // the 8KB reserved at Stack End |
| EmitStackOverflowCheck(); |
| } |
| // Garbage collection safe-point |
| if (method_info_.has_invoke) { |
| EmitGuard_GarbageCollectionSuspend(DexFile::kDexNoIndex); |
| } |
| irb_.CreateBr(basic_block_shadow_frame_); |
| |
| irb_.SetInsertPoint(basic_block_shadow_frame_); |
| irb_.CreateBr(basic_block_reg_arg_init_); |
| } |
| |
| |
| void MethodCompiler::EmitPrologueAllocShadowFrame() { |
| irb_.SetInsertPoint(basic_block_alloca_); |
| |
| // Allocate the shadow frame now! |
| llvm::StructType* shadow_frame_type = irb_.getShadowFrameTy(code_item_->registers_size_); |
| shadow_frame_ = irb_.CreateAlloca(shadow_frame_type); |
| |
| // Alloca a pointer to old shadow frame |
| old_shadow_frame_ = irb_.CreateAlloca(shadow_frame_type->getElementType(0)->getPointerTo()); |
| |
| irb_.SetInsertPoint(basic_block_shadow_frame_); |
| |
| // Lazy pushing shadow frame |
| if (method_info_.lazy_push_shadow_frame) { |
| irb_.SetInsertPoint(basic_block_alloca_); |
| already_pushed_shadow_frame_ = irb_.CreateAlloca(irb_.getInt1Ty()); |
| irb_.SetInsertPoint(basic_block_shadow_frame_); |
| irb_.CreateStore(irb_.getFalse(), already_pushed_shadow_frame_, kTBAARegister); |
| return; |
| } |
| |
| EmitPushShadowFrame(true); |
| } |
| |
| |
| void MethodCompiler::EmitPrologueAssignArgRegister() { |
| uint16_t arg_reg = code_item_->registers_size_ - code_item_->ins_size_; |
| |
| llvm::Function::arg_iterator arg_iter(func_->arg_begin()); |
| llvm::Function::arg_iterator arg_end(func_->arg_end()); |
| |
| uint32_t shorty_size = 0; |
| const char* shorty = oat_compilation_unit_->GetShorty(&shorty_size); |
| CHECK_GE(shorty_size, 1u); |
| |
| ++arg_iter; // skip method object |
| |
| if (!oat_compilation_unit_->IsStatic()) { |
| regs_[arg_reg]->SetValue(kObject, kAccurate, arg_iter); |
| ++arg_iter; |
| ++arg_reg; |
| } |
| |
| for (uint32_t i = 1; i < shorty_size; ++i, ++arg_iter) { |
| regs_[arg_reg]->SetValue(shorty[i], kAccurate, arg_iter); |
| |
| ++arg_reg; |
| if (shorty[i] == 'J' || shorty[i] == 'D') { |
| // Wide types, such as long and double, are using a pair of registers |
| // to store the value, so we have to increase arg_reg again. |
| ++arg_reg; |
| } |
| } |
| |
| DCHECK_EQ(arg_end, arg_iter); |
| } |
| |
| |
| void MethodCompiler::EmitInstructions() { |
| uint32_t dex_pc = 0; |
| while (dex_pc < code_item_->insns_size_in_code_units_) { |
| const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); |
| EmitInstruction(dex_pc, insn); |
| dex_pc += insn->SizeInCodeUnits(); |
| } |
| } |
| |
| |
| void MethodCompiler::EmitInstruction(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| // Set the IRBuilder insertion point |
| irb_.SetInsertPoint(GetBasicBlock(dex_pc)); |
| |
| #define ARGS dex_pc, insn |
| |
| // Dispatch the instruction |
| switch (insn->Opcode()) { |
| case Instruction::NOP: |
| EmitInsn_Nop(ARGS); |
| break; |
| |
| case Instruction::MOVE: |
| case Instruction::MOVE_FROM16: |
| case Instruction::MOVE_16: |
| EmitInsn_Move(ARGS, kInt); |
| break; |
| |
| case Instruction::MOVE_WIDE: |
| case Instruction::MOVE_WIDE_FROM16: |
| case Instruction::MOVE_WIDE_16: |
| EmitInsn_Move(ARGS, kLong); |
| break; |
| |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_FROM16: |
| case Instruction::MOVE_OBJECT_16: |
| EmitInsn_Move(ARGS, kObject); |
| break; |
| |
| case Instruction::MOVE_RESULT: |
| EmitInsn_MoveResult(ARGS, kInt); |
| break; |
| |
| case Instruction::MOVE_RESULT_WIDE: |
| EmitInsn_MoveResult(ARGS, kLong); |
| break; |
| |
| case Instruction::MOVE_RESULT_OBJECT: |
| EmitInsn_MoveResult(ARGS, kObject); |
| break; |
| |
| case Instruction::MOVE_EXCEPTION: |
| EmitInsn_MoveException(ARGS); |
| break; |
| |
| case Instruction::RETURN_VOID: |
| EmitInsn_ReturnVoid(ARGS); |
| break; |
| |
| case Instruction::RETURN: |
| case Instruction::RETURN_WIDE: |
| case Instruction::RETURN_OBJECT: |
| EmitInsn_Return(ARGS); |
| break; |
| |
| case Instruction::CONST_4: |
| case Instruction::CONST_16: |
| case Instruction::CONST: |
| case Instruction::CONST_HIGH16: |
| EmitInsn_LoadConstant(ARGS, kInt); |
| break; |
| |
| case Instruction::CONST_WIDE_16: |
| case Instruction::CONST_WIDE_32: |
| case Instruction::CONST_WIDE: |
| case Instruction::CONST_WIDE_HIGH16: |
| EmitInsn_LoadConstant(ARGS, kLong); |
| break; |
| |
| case Instruction::CONST_STRING: |
| case Instruction::CONST_STRING_JUMBO: |
| EmitInsn_LoadConstantString(ARGS); |
| break; |
| |
| case Instruction::CONST_CLASS: |
| EmitInsn_LoadConstantClass(ARGS); |
| break; |
| |
| case Instruction::MONITOR_ENTER: |
| EmitInsn_MonitorEnter(ARGS); |
| break; |
| |
| case Instruction::MONITOR_EXIT: |
| EmitInsn_MonitorExit(ARGS); |
| break; |
| |
| case Instruction::CHECK_CAST: |
| EmitInsn_CheckCast(ARGS); |
| break; |
| |
| case Instruction::INSTANCE_OF: |
| EmitInsn_InstanceOf(ARGS); |
| break; |
| |
| case Instruction::ARRAY_LENGTH: |
| EmitInsn_ArrayLength(ARGS); |
| break; |
| |
| case Instruction::NEW_INSTANCE: |
| EmitInsn_NewInstance(ARGS); |
| break; |
| |
| case Instruction::NEW_ARRAY: |
| EmitInsn_NewArray(ARGS); |
| break; |
| |
| case Instruction::FILLED_NEW_ARRAY: |
| EmitInsn_FilledNewArray(ARGS, false); |
| break; |
| |
| case Instruction::FILLED_NEW_ARRAY_RANGE: |
| EmitInsn_FilledNewArray(ARGS, true); |
| break; |
| |
| case Instruction::FILL_ARRAY_DATA: |
| EmitInsn_FillArrayData(ARGS); |
| break; |
| |
| case Instruction::THROW: |
| EmitInsn_ThrowException(ARGS); |
| break; |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| EmitInsn_UnconditionalBranch(ARGS); |
| break; |
| |
| case Instruction::PACKED_SWITCH: |
| EmitInsn_PackedSwitch(ARGS); |
| break; |
| |
| case Instruction::SPARSE_SWITCH: |
| EmitInsn_SparseSwitch(ARGS); |
| break; |
| |
| case Instruction::CMPL_FLOAT: |
| EmitInsn_FPCompare(ARGS, kFloat, false); |
| break; |
| |
| case Instruction::CMPG_FLOAT: |
| EmitInsn_FPCompare(ARGS, kFloat, true); |
| break; |
| |
| case Instruction::CMPL_DOUBLE: |
| EmitInsn_FPCompare(ARGS, kDouble, false); |
| break; |
| |
| case Instruction::CMPG_DOUBLE: |
| EmitInsn_FPCompare(ARGS, kDouble, true); |
| break; |
| |
| case Instruction::CMP_LONG: |
| EmitInsn_LongCompare(ARGS); |
| break; |
| |
| case Instruction::IF_EQ: |
| EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_EQ); |
| break; |
| |
| case Instruction::IF_NE: |
| EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_NE); |
| break; |
| |
| case Instruction::IF_LT: |
| EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LT); |
| break; |
| |
| case Instruction::IF_GE: |
| EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GE); |
| break; |
| |
| case Instruction::IF_GT: |
| EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_GT); |
| break; |
| |
| case Instruction::IF_LE: |
| EmitInsn_BinaryConditionalBranch(ARGS, kCondBranch_LE); |
| break; |
| |
| case Instruction::IF_EQZ: |
| EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_EQ); |
| break; |
| |
| case Instruction::IF_NEZ: |
| EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_NE); |
| break; |
| |
| case Instruction::IF_LTZ: |
| EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LT); |
| break; |
| |
| case Instruction::IF_GEZ: |
| EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GE); |
| break; |
| |
| case Instruction::IF_GTZ: |
| EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_GT); |
| break; |
| |
| case Instruction::IF_LEZ: |
| EmitInsn_UnaryConditionalBranch(ARGS, kCondBranch_LE); |
| break; |
| |
| case Instruction::AGET: |
| EmitInsn_AGet(ARGS, kInt); |
| break; |
| |
| case Instruction::AGET_WIDE: |
| EmitInsn_AGet(ARGS, kLong); |
| break; |
| |
| case Instruction::AGET_OBJECT: |
| EmitInsn_AGet(ARGS, kObject); |
| break; |
| |
| case Instruction::AGET_BOOLEAN: |
| EmitInsn_AGet(ARGS, kBoolean); |
| break; |
| |
| case Instruction::AGET_BYTE: |
| EmitInsn_AGet(ARGS, kByte); |
| break; |
| |
| case Instruction::AGET_CHAR: |
| EmitInsn_AGet(ARGS, kChar); |
| break; |
| |
| case Instruction::AGET_SHORT: |
| EmitInsn_AGet(ARGS, kShort); |
| break; |
| |
| case Instruction::APUT: |
| EmitInsn_APut(ARGS, kInt); |
| break; |
| |
| case Instruction::APUT_WIDE: |
| EmitInsn_APut(ARGS, kLong); |
| break; |
| |
| case Instruction::APUT_OBJECT: |
| EmitInsn_APut(ARGS, kObject); |
| break; |
| |
| case Instruction::APUT_BOOLEAN: |
| EmitInsn_APut(ARGS, kBoolean); |
| break; |
| |
| case Instruction::APUT_BYTE: |
| EmitInsn_APut(ARGS, kByte); |
| break; |
| |
| case Instruction::APUT_CHAR: |
| EmitInsn_APut(ARGS, kChar); |
| break; |
| |
| case Instruction::APUT_SHORT: |
| EmitInsn_APut(ARGS, kShort); |
| break; |
| |
| case Instruction::IGET: |
| EmitInsn_IGet(ARGS, kInt); |
| break; |
| |
| case Instruction::IGET_WIDE: |
| EmitInsn_IGet(ARGS, kLong); |
| break; |
| |
| case Instruction::IGET_OBJECT: |
| EmitInsn_IGet(ARGS, kObject); |
| break; |
| |
| case Instruction::IGET_BOOLEAN: |
| EmitInsn_IGet(ARGS, kBoolean); |
| break; |
| |
| case Instruction::IGET_BYTE: |
| EmitInsn_IGet(ARGS, kByte); |
| break; |
| |
| case Instruction::IGET_CHAR: |
| EmitInsn_IGet(ARGS, kChar); |
| break; |
| |
| case Instruction::IGET_SHORT: |
| EmitInsn_IGet(ARGS, kShort); |
| break; |
| |
| case Instruction::IPUT: |
| EmitInsn_IPut(ARGS, kInt); |
| break; |
| |
| case Instruction::IPUT_WIDE: |
| EmitInsn_IPut(ARGS, kLong); |
| break; |
| |
| case Instruction::IPUT_OBJECT: |
| EmitInsn_IPut(ARGS, kObject); |
| break; |
| |
| case Instruction::IPUT_BOOLEAN: |
| EmitInsn_IPut(ARGS, kBoolean); |
| break; |
| |
| case Instruction::IPUT_BYTE: |
| EmitInsn_IPut(ARGS, kByte); |
| break; |
| |
| case Instruction::IPUT_CHAR: |
| EmitInsn_IPut(ARGS, kChar); |
| break; |
| |
| case Instruction::IPUT_SHORT: |
| EmitInsn_IPut(ARGS, kShort); |
| break; |
| |
| case Instruction::SGET: |
| EmitInsn_SGet(ARGS, kInt); |
| break; |
| |
| case Instruction::SGET_WIDE: |
| EmitInsn_SGet(ARGS, kLong); |
| break; |
| |
| case Instruction::SGET_OBJECT: |
| EmitInsn_SGet(ARGS, kObject); |
| break; |
| |
| case Instruction::SGET_BOOLEAN: |
| EmitInsn_SGet(ARGS, kBoolean); |
| break; |
| |
| case Instruction::SGET_BYTE: |
| EmitInsn_SGet(ARGS, kByte); |
| break; |
| |
| case Instruction::SGET_CHAR: |
| EmitInsn_SGet(ARGS, kChar); |
| break; |
| |
| case Instruction::SGET_SHORT: |
| EmitInsn_SGet(ARGS, kShort); |
| break; |
| |
| case Instruction::SPUT: |
| EmitInsn_SPut(ARGS, kInt); |
| break; |
| |
| case Instruction::SPUT_WIDE: |
| EmitInsn_SPut(ARGS, kLong); |
| break; |
| |
| case Instruction::SPUT_OBJECT: |
| EmitInsn_SPut(ARGS, kObject); |
| break; |
| |
| case Instruction::SPUT_BOOLEAN: |
| EmitInsn_SPut(ARGS, kBoolean); |
| break; |
| |
| case Instruction::SPUT_BYTE: |
| EmitInsn_SPut(ARGS, kByte); |
| break; |
| |
| case Instruction::SPUT_CHAR: |
| EmitInsn_SPut(ARGS, kChar); |
| break; |
| |
| case Instruction::SPUT_SHORT: |
| EmitInsn_SPut(ARGS, kShort); |
| break; |
| |
| |
| case Instruction::INVOKE_VIRTUAL: |
| EmitInsn_Invoke(ARGS, kVirtual, kArgReg); |
| break; |
| |
| case Instruction::INVOKE_SUPER: |
| EmitInsn_Invoke(ARGS, kSuper, kArgReg); |
| break; |
| |
| case Instruction::INVOKE_DIRECT: |
| EmitInsn_Invoke(ARGS, kDirect, kArgReg); |
| break; |
| |
| case Instruction::INVOKE_STATIC: |
| EmitInsn_Invoke(ARGS, kStatic, kArgReg); |
| break; |
| |
| case Instruction::INVOKE_INTERFACE: |
| EmitInsn_Invoke(ARGS, kInterface, kArgReg); |
| break; |
| |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| EmitInsn_Invoke(ARGS, kVirtual, kArgRange); |
| break; |
| |
| case Instruction::INVOKE_SUPER_RANGE: |
| EmitInsn_Invoke(ARGS, kSuper, kArgRange); |
| break; |
| |
| case Instruction::INVOKE_DIRECT_RANGE: |
| EmitInsn_Invoke(ARGS, kDirect, kArgRange); |
| break; |
| |
| case Instruction::INVOKE_STATIC_RANGE: |
| EmitInsn_Invoke(ARGS, kStatic, kArgRange); |
| break; |
| |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| EmitInsn_Invoke(ARGS, kInterface, kArgRange); |
| break; |
| |
| case Instruction::NEG_INT: |
| EmitInsn_Neg(ARGS, kInt); |
| break; |
| |
| case Instruction::NOT_INT: |
| EmitInsn_Not(ARGS, kInt); |
| break; |
| |
| case Instruction::NEG_LONG: |
| EmitInsn_Neg(ARGS, kLong); |
| break; |
| |
| case Instruction::NOT_LONG: |
| EmitInsn_Not(ARGS, kLong); |
| break; |
| |
| case Instruction::NEG_FLOAT: |
| EmitInsn_FNeg(ARGS, kFloat); |
| break; |
| |
| case Instruction::NEG_DOUBLE: |
| EmitInsn_FNeg(ARGS, kDouble); |
| break; |
| |
| case Instruction::INT_TO_LONG: |
| EmitInsn_SExt(ARGS); |
| break; |
| |
| case Instruction::INT_TO_FLOAT: |
| EmitInsn_IntToFP(ARGS, kInt, kFloat); |
| break; |
| |
| case Instruction::INT_TO_DOUBLE: |
| EmitInsn_IntToFP(ARGS, kInt, kDouble); |
| break; |
| |
| case Instruction::LONG_TO_INT: |
| EmitInsn_Trunc(ARGS); |
| break; |
| |
| case Instruction::LONG_TO_FLOAT: |
| EmitInsn_IntToFP(ARGS, kLong, kFloat); |
| break; |
| |
| case Instruction::LONG_TO_DOUBLE: |
| EmitInsn_IntToFP(ARGS, kLong, kDouble); |
| break; |
| |
| case Instruction::FLOAT_TO_INT: |
| EmitInsn_FPToInt(ARGS, kFloat, kInt, art_f2i); |
| break; |
| |
| case Instruction::FLOAT_TO_LONG: |
| EmitInsn_FPToInt(ARGS, kFloat, kLong, art_f2l); |
| break; |
| |
| case Instruction::FLOAT_TO_DOUBLE: |
| EmitInsn_FExt(ARGS); |
| break; |
| |
| case Instruction::DOUBLE_TO_INT: |
| EmitInsn_FPToInt(ARGS, kDouble, kInt, art_d2i); |
| break; |
| |
| case Instruction::DOUBLE_TO_LONG: |
| EmitInsn_FPToInt(ARGS, kDouble, kLong, art_d2l); |
| break; |
| |
| case Instruction::DOUBLE_TO_FLOAT: |
| EmitInsn_FTrunc(ARGS); |
| break; |
| |
| case Instruction::INT_TO_BYTE: |
| EmitInsn_TruncAndSExt(ARGS, 8); |
| break; |
| |
| case Instruction::INT_TO_CHAR: |
| EmitInsn_TruncAndZExt(ARGS, 16); |
| break; |
| |
| case Instruction::INT_TO_SHORT: |
| EmitInsn_TruncAndSExt(ARGS, 16); |
| break; |
| |
| case Instruction::ADD_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, false); |
| break; |
| |
| case Instruction::SUB_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, false); |
| break; |
| |
| case Instruction::MUL_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, false); |
| break; |
| |
| case Instruction::DIV_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, false); |
| break; |
| |
| case Instruction::REM_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, false); |
| break; |
| |
| case Instruction::AND_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, false); |
| break; |
| |
| case Instruction::OR_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, false); |
| break; |
| |
| case Instruction::XOR_INT: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, false); |
| break; |
| |
| case Instruction::SHL_INT: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, false); |
| break; |
| |
| case Instruction::SHR_INT: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, false); |
| break; |
| |
| case Instruction::USHR_INT: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, false); |
| break; |
| |
| case Instruction::ADD_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, false); |
| break; |
| |
| case Instruction::SUB_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, false); |
| break; |
| |
| case Instruction::MUL_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, false); |
| break; |
| |
| case Instruction::DIV_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, false); |
| break; |
| |
| case Instruction::REM_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, false); |
| break; |
| |
| case Instruction::AND_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, false); |
| break; |
| |
| case Instruction::OR_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, false); |
| break; |
| |
| case Instruction::XOR_LONG: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, false); |
| break; |
| |
| case Instruction::SHL_LONG: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, false); |
| break; |
| |
| case Instruction::SHR_LONG: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, false); |
| break; |
| |
| case Instruction::USHR_LONG: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, false); |
| break; |
| |
| case Instruction::ADD_FLOAT: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, false); |
| break; |
| |
| case Instruction::SUB_FLOAT: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, false); |
| break; |
| |
| case Instruction::MUL_FLOAT: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, false); |
| break; |
| |
| case Instruction::DIV_FLOAT: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, false); |
| break; |
| |
| case Instruction::REM_FLOAT: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, false); |
| break; |
| |
| case Instruction::ADD_DOUBLE: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, false); |
| break; |
| |
| case Instruction::SUB_DOUBLE: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, false); |
| break; |
| |
| case Instruction::MUL_DOUBLE: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, false); |
| break; |
| |
| case Instruction::DIV_DOUBLE: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, false); |
| break; |
| |
| case Instruction::REM_DOUBLE: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, false); |
| break; |
| |
| case Instruction::ADD_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Add, kInt, true); |
| break; |
| |
| case Instruction::SUB_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kInt, true); |
| break; |
| |
| case Instruction::MUL_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kInt, true); |
| break; |
| |
| case Instruction::DIV_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Div, kInt, true); |
| break; |
| |
| case Instruction::REM_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kInt, true); |
| break; |
| |
| case Instruction::AND_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_And, kInt, true); |
| break; |
| |
| case Instruction::OR_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Or, kInt, true); |
| break; |
| |
| case Instruction::XOR_INT_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kInt, true); |
| break; |
| |
| case Instruction::SHL_INT_2ADDR: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kInt, true); |
| break; |
| |
| case Instruction::SHR_INT_2ADDR: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kInt, true); |
| break; |
| |
| case Instruction::USHR_INT_2ADDR: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kInt, true); |
| break; |
| |
| case Instruction::ADD_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Add, kLong, true); |
| break; |
| |
| case Instruction::SUB_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Sub, kLong, true); |
| break; |
| |
| case Instruction::MUL_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Mul, kLong, true); |
| break; |
| |
| case Instruction::DIV_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Div, kLong, true); |
| break; |
| |
| case Instruction::REM_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Rem, kLong, true); |
| break; |
| |
| case Instruction::AND_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_And, kLong, true); |
| break; |
| |
| case Instruction::OR_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Or, kLong, true); |
| break; |
| |
| case Instruction::XOR_LONG_2ADDR: |
| EmitInsn_IntArithm(ARGS, kIntArithm_Xor, kLong, true); |
| break; |
| |
| case Instruction::SHL_LONG_2ADDR: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shl, kLong, true); |
| break; |
| |
| case Instruction::SHR_LONG_2ADDR: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_Shr, kLong, true); |
| break; |
| |
| case Instruction::USHR_LONG_2ADDR: |
| EmitInsn_IntShiftArithm(ARGS, kIntArithm_UShr, kLong, true); |
| break; |
| |
| case Instruction::ADD_FLOAT_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Add, kFloat, true); |
| break; |
| |
| case Instruction::SUB_FLOAT_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kFloat, true); |
| break; |
| |
| case Instruction::MUL_FLOAT_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kFloat, true); |
| break; |
| |
| case Instruction::DIV_FLOAT_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Div, kFloat, true); |
| break; |
| |
| case Instruction::REM_FLOAT_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kFloat, true); |
| break; |
| |
| case Instruction::ADD_DOUBLE_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Add, kDouble, true); |
| break; |
| |
| case Instruction::SUB_DOUBLE_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Sub, kDouble, true); |
| break; |
| |
| case Instruction::MUL_DOUBLE_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Mul, kDouble, true); |
| break; |
| |
| case Instruction::DIV_DOUBLE_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Div, kDouble, true); |
| break; |
| |
| case Instruction::REM_DOUBLE_2ADDR: |
| EmitInsn_FPArithm(ARGS, kFPArithm_Rem, kDouble, true); |
| break; |
| |
| case Instruction::ADD_INT_LIT16: |
| case Instruction::ADD_INT_LIT8: |
| EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Add); |
| break; |
| |
| case Instruction::RSUB_INT: |
| case Instruction::RSUB_INT_LIT8: |
| EmitInsn_RSubImmediate(ARGS); |
| break; |
| |
| case Instruction::MUL_INT_LIT16: |
| case Instruction::MUL_INT_LIT8: |
| EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Mul); |
| break; |
| |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::DIV_INT_LIT8: |
| EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Div); |
| break; |
| |
| case Instruction::REM_INT_LIT16: |
| case Instruction::REM_INT_LIT8: |
| EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Rem); |
| break; |
| |
| case Instruction::AND_INT_LIT16: |
| case Instruction::AND_INT_LIT8: |
| EmitInsn_IntArithmImmediate(ARGS, kIntArithm_And); |
| break; |
| |
| case Instruction::OR_INT_LIT16: |
| case Instruction::OR_INT_LIT8: |
| EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Or); |
| break; |
| |
| case Instruction::XOR_INT_LIT16: |
| case Instruction::XOR_INT_LIT8: |
| EmitInsn_IntArithmImmediate(ARGS, kIntArithm_Xor); |
| break; |
| |
| case Instruction::SHL_INT_LIT8: |
| EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shl); |
| break; |
| |
| case Instruction::SHR_INT_LIT8: |
| EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_Shr); |
| break; |
| |
| case Instruction::USHR_INT_LIT8: |
| EmitInsn_IntShiftArithmImmediate(ARGS, kIntArithm_UShr); |
| break; |
| |
| case Instruction::UNUSED_3E: |
| case Instruction::UNUSED_3F: |
| case Instruction::UNUSED_40: |
| case Instruction::UNUSED_41: |
| case Instruction::UNUSED_42: |
| case Instruction::UNUSED_43: |
| case Instruction::UNUSED_73: |
| case Instruction::UNUSED_79: |
| case Instruction::UNUSED_7A: |
| case Instruction::UNUSED_E3: |
| case Instruction::UNUSED_E4: |
| case Instruction::UNUSED_E5: |
| case Instruction::UNUSED_E6: |
| case Instruction::UNUSED_E7: |
| case Instruction::UNUSED_E8: |
| case Instruction::UNUSED_E9: |
| case Instruction::UNUSED_EA: |
| case Instruction::UNUSED_EB: |
| case Instruction::UNUSED_EC: |
| case Instruction::UNUSED_ED: |
| case Instruction::UNUSED_EE: |
| case Instruction::UNUSED_EF: |
| case Instruction::UNUSED_F0: |
| case Instruction::UNUSED_F1: |
| case Instruction::UNUSED_F2: |
| case Instruction::UNUSED_F3: |
| case Instruction::UNUSED_F4: |
| case Instruction::UNUSED_F5: |
| case Instruction::UNUSED_F6: |
| case Instruction::UNUSED_F7: |
| case Instruction::UNUSED_F8: |
| case Instruction::UNUSED_F9: |
| case Instruction::UNUSED_FA: |
| case Instruction::UNUSED_FB: |
| case Instruction::UNUSED_FC: |
| case Instruction::UNUSED_FD: |
| case Instruction::UNUSED_FE: |
| case Instruction::UNUSED_FF: |
| LOG(FATAL) << "Dex file contains UNUSED bytecode: " << insn->Opcode(); |
| break; |
| } |
| |
| #undef ARGS |
| } |
| |
| |
| void MethodCompiler::EmitInsn_Nop(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| uint16_t insn_signature = code_item_->insns_[dex_pc]; |
| |
| if (insn_signature == Instruction::kPackedSwitchSignature || |
| insn_signature == Instruction::kSparseSwitchSignature || |
| insn_signature == Instruction::kArrayDataSignature) { |
| irb_.CreateUnreachable(); |
| } else { |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| } |
| |
| |
| void MethodCompiler::EmitInsn_Move(uint32_t dex_pc, |
| const Instruction* insn, |
| JType jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, jty, kReg); |
| EmitStoreDalvikReg(dec_insn.vA, jty, kReg, src_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_MoveResult(uint32_t dex_pc, |
| const Instruction* insn, |
| JType jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikRetValReg(jty, kReg); |
| EmitStoreDalvikReg(dec_insn.vA, jty, kReg, src_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_MoveException(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* exception_object_addr = irb_.Runtime().EmitGetAndClearException(); |
| |
| // Keep the exception object in the Dalvik register |
| EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, exception_object_addr); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_ThrowException(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* exception_addr = |
| EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| irb_.CreateCall(irb_.GetRuntime(ThrowException), exception_addr); |
| |
| EmitBranchExceptionLandingPad(dex_pc); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_ReturnVoid(uint32_t dex_pc, |
| const Instruction* insn) { |
| // Pop the shadow frame |
| EmitPopShadowFrame(); |
| |
| // Return! |
| irb_.CreateRetVoid(); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_Return(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| // Pop the shadow frame |
| EmitPopShadowFrame(); |
| // NOTE: It is important to keep this AFTER the GC safe-point. Otherwise, |
| // the return value might be collected since the shadow stack is popped. |
| |
| // Return! |
| char ret_shorty = oat_compilation_unit_->GetShorty()[0]; |
| llvm::Value* retval = EmitLoadDalvikReg(dec_insn.vA, ret_shorty, kAccurate); |
| |
| irb_.CreateRet(retval); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_LoadConstant(uint32_t dex_pc, |
| const Instruction* insn, |
| JType imm_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(imm_jty == kInt || imm_jty == kLong) << imm_jty; |
| |
| int64_t imm = 0; |
| |
| switch (insn->Opcode()) { |
| // 32-bit Immediate |
| case Instruction::CONST_4: |
| case Instruction::CONST_16: |
| case Instruction::CONST: |
| case Instruction::CONST_WIDE_16: |
| case Instruction::CONST_WIDE_32: |
| imm = static_cast<int64_t>(static_cast<int32_t>(dec_insn.vB)); |
| break; |
| |
| case Instruction::CONST_HIGH16: |
| imm = static_cast<int64_t>(static_cast<int32_t>( |
| static_cast<uint32_t>(static_cast<uint16_t>(dec_insn.vB)) << 16)); |
| break; |
| |
| // 64-bit Immediate |
| case Instruction::CONST_WIDE: |
| imm = static_cast<int64_t>(dec_insn.vB_wide); |
| break; |
| |
| case Instruction::CONST_WIDE_HIGH16: |
| imm = static_cast<int64_t>( |
| static_cast<uint64_t>(static_cast<uint16_t>(dec_insn.vB)) << 48); |
| break; |
| |
| // Unknown opcode for load constant (unreachable) |
| default: |
| LOG(FATAL) << "Unknown opcode for load constant: " << insn->Opcode(); |
| break; |
| } |
| |
| // Store the non-object register |
| llvm::Type* imm_type = irb_.getJType(imm_jty, kAccurate); |
| llvm::Constant* imm_value = llvm::ConstantInt::getSigned(imm_type, imm); |
| EmitStoreDalvikReg(dec_insn.vA, imm_jty, kAccurate, imm_value); |
| |
| // Store the object register if it is possible to be null. |
| if (imm_jty == kInt && imm == 0) { |
| EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, irb_.getJNull()); |
| } |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_LoadConstantString(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| uint32_t string_idx = dec_insn.vB; |
| |
| llvm::Value* string_field_addr = EmitLoadDexCacheStringFieldAddr(string_idx); |
| |
| llvm::Value* string_addr = irb_.CreateLoad(string_field_addr, kTBAARuntimeInfo); |
| |
| if (!compiler_->CanAssumeStringIsPresentInDexCache(*dex_file_, string_idx)) { |
| llvm::BasicBlock* block_str_exist = |
| CreateBasicBlockWithDexPC(dex_pc, "str_exist"); |
| |
| llvm::BasicBlock* block_str_resolve = |
| CreateBasicBlockWithDexPC(dex_pc, "str_resolve"); |
| |
| // Test: Is the string resolved and in the dex cache? |
| llvm::Value* equal_null = irb_.CreateICmpEQ(string_addr, irb_.getJNull()); |
| |
| irb_.CreateCondBr(equal_null, block_str_resolve, block_str_exist, kUnlikely); |
| |
| // String is resolved, go to next basic block. |
| irb_.SetInsertPoint(block_str_exist); |
| EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, string_addr); |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| |
| // String is not resolved yet, resolve it now. |
| irb_.SetInsertPoint(block_str_resolve); |
| |
| llvm::Function* runtime_func = irb_.GetRuntime(ResolveString); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* string_idx_value = irb_.getInt32(string_idx); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| string_addr = irb_.CreateCall2(runtime_func, method_object_addr, |
| string_idx_value); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| } |
| |
| // Store the string object to the Dalvik register |
| EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, string_addr); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitLoadConstantClass(uint32_t dex_pc, |
| uint32_t type_idx) { |
| if (!compiler_->CanAccessTypeWithoutChecks(method_idx_, *dex_file_, type_idx)) { |
| llvm::Value* type_idx_value = irb_.getInt32(type_idx); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); |
| |
| llvm::Function* runtime_func = |
| irb_.GetRuntime(InitializeTypeAndVerifyAccess); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| llvm::Value* type_object_addr = |
| irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, false); |
| |
| return type_object_addr; |
| |
| } else { |
| // Try to load the class (type) object from the test cache. |
| llvm::Value* type_field_addr = |
| EmitLoadDexCacheResolvedTypeFieldAddr(type_idx); |
| |
| llvm::Value* type_object_addr = irb_.CreateLoad(type_field_addr, kTBAARuntimeInfo); |
| |
| if (compiler_->CanAssumeTypeIsPresentInDexCache(*dex_file_, type_idx)) { |
| return type_object_addr; |
| } |
| |
| llvm::BasicBlock* block_original = irb_.GetInsertBlock(); |
| |
| // Test whether class (type) object is in the dex cache or not |
| llvm::Value* equal_null = |
| irb_.CreateICmpEQ(type_object_addr, irb_.getJNull()); |
| |
| llvm::BasicBlock* block_cont = |
| CreateBasicBlockWithDexPC(dex_pc, "cont"); |
| |
| llvm::BasicBlock* block_load_class = |
| CreateBasicBlockWithDexPC(dex_pc, "load_class"); |
| |
| irb_.CreateCondBr(equal_null, block_load_class, block_cont, kUnlikely); |
| |
| // Failback routine to load the class object |
| irb_.SetInsertPoint(block_load_class); |
| |
| llvm::Function* runtime_func = irb_.GetRuntime(InitializeType); |
| |
| llvm::Constant* type_idx_value = irb_.getInt32(type_idx); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| llvm::Value* loaded_type_object_addr = |
| irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, false); |
| |
| llvm::BasicBlock* block_after_load_class = irb_.GetInsertBlock(); |
| |
| irb_.CreateBr(block_cont); |
| |
| // Now the class object must be loaded |
| irb_.SetInsertPoint(block_cont); |
| |
| llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2); |
| |
| phi->addIncoming(type_object_addr, block_original); |
| phi->addIncoming(loaded_type_object_addr, block_after_load_class); |
| |
| return phi; |
| } |
| } |
| |
| |
| void MethodCompiler::EmitInsn_LoadConstantClass(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vB); |
| EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, type_object_addr); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_MonitorEnter(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* object_addr = |
| EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| |
| if (!(method_info_.this_will_not_be_null && dec_insn.vA == method_info_.this_reg_idx)) { |
| EmitGuard_NullPointerException(dex_pc, object_addr); |
| } |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| irb_.Runtime().EmitLockObject(object_addr); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_MonitorExit(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* object_addr = |
| EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| |
| if (!(method_info_.this_will_not_be_null && dec_insn.vA == method_info_.this_reg_idx)) { |
| EmitGuard_NullPointerException(dex_pc, object_addr); |
| } |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| irb_.Runtime().EmitUnlockObject(object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_CheckCast(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::BasicBlock* block_test_class = |
| CreateBasicBlockWithDexPC(dex_pc, "test_class"); |
| |
| llvm::BasicBlock* block_test_sub_class = |
| CreateBasicBlockWithDexPC(dex_pc, "test_sub_class"); |
| |
| llvm::Value* object_addr = |
| EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| |
| // Test: Is the reference equal to null? Act as no-op when it is null. |
| llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull()); |
| |
| irb_.CreateCondBr(equal_null, |
| GetNextBasicBlock(dex_pc), |
| block_test_class); |
| |
| // Test: Is the object instantiated from the given class? |
| irb_.SetInsertPoint(block_test_class); |
| llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vB); |
| DCHECK_EQ(Object::ClassOffset().Int32Value(), 0); |
| |
| llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy(); |
| |
| llvm::Value* object_type_field_addr = |
| irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo()); |
| |
| llvm::Value* object_type_object_addr = |
| irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject); |
| |
| llvm::Value* equal_class = |
| irb_.CreateICmpEQ(type_object_addr, object_type_object_addr); |
| |
| irb_.CreateCondBr(equal_class, |
| GetNextBasicBlock(dex_pc), |
| block_test_sub_class); |
| |
| // Test: Is the object instantiated from the subclass of the given class? |
| irb_.SetInsertPoint(block_test_sub_class); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| irb_.CreateCall2(irb_.GetRuntime(CheckCast), |
| type_object_addr, object_type_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_InstanceOf(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Constant* zero = irb_.getJInt(0); |
| llvm::Constant* one = irb_.getJInt(1); |
| |
| llvm::BasicBlock* block_nullp = CreateBasicBlockWithDexPC(dex_pc, "nullp"); |
| |
| llvm::BasicBlock* block_test_class = |
| CreateBasicBlockWithDexPC(dex_pc, "test_class"); |
| |
| llvm::BasicBlock* block_class_equals = |
| CreateBasicBlockWithDexPC(dex_pc, "class_eq"); |
| |
| llvm::BasicBlock* block_test_sub_class = |
| CreateBasicBlockWithDexPC(dex_pc, "test_sub_class"); |
| |
| llvm::Value* object_addr = |
| EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); |
| |
| // Overview of the following code : |
| // We check for null, if so, then false, otherwise check for class == . If so |
| // then true, otherwise do callout slowpath. |
| // |
| // Test: Is the reference equal to null? Set 0 when it is null. |
| llvm::Value* equal_null = irb_.CreateICmpEQ(object_addr, irb_.getJNull()); |
| |
| irb_.CreateCondBr(equal_null, block_nullp, block_test_class); |
| |
| irb_.SetInsertPoint(block_nullp); |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, zero); |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| |
| // Test: Is the object instantiated from the given class? |
| irb_.SetInsertPoint(block_test_class); |
| llvm::Value* type_object_addr = EmitLoadConstantClass(dex_pc, dec_insn.vC); |
| DCHECK_EQ(Object::ClassOffset().Int32Value(), 0); |
| |
| llvm::PointerType* jobject_ptr_ty = irb_.getJObjectTy(); |
| |
| llvm::Value* object_type_field_addr = |
| irb_.CreateBitCast(object_addr, jobject_ptr_ty->getPointerTo()); |
| |
| llvm::Value* object_type_object_addr = |
| irb_.CreateLoad(object_type_field_addr, kTBAAConstJObject); |
| |
| llvm::Value* equal_class = |
| irb_.CreateICmpEQ(type_object_addr, object_type_object_addr); |
| |
| irb_.CreateCondBr(equal_class, block_class_equals, block_test_sub_class); |
| |
| irb_.SetInsertPoint(block_class_equals); |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, one); |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| |
| // Test: Is the object instantiated from the subclass of the given class? |
| irb_.SetInsertPoint(block_test_sub_class); |
| |
| llvm::Value* result = |
| irb_.CreateCall2(irb_.GetRuntime(IsAssignable), |
| type_object_addr, object_type_object_addr); |
| |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitLoadArrayLength(llvm::Value* array) { |
| // Load array length |
| return irb_.LoadFromObjectOffset(array, |
| Array::LengthOffset().Int32Value(), |
| irb_.getJIntTy(), |
| kTBAAConstJObject); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_ArrayLength(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| // Get the array object address |
| llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); |
| EmitGuard_NullPointerException(dex_pc, array_addr); |
| |
| // Get the array length and store it to the register |
| llvm::Value* array_len = EmitLoadArrayLength(array_addr); |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, array_len); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_NewInstance(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Function* runtime_func; |
| if (compiler_->CanAccessInstantiableTypeWithoutChecks( |
| method_idx_, *dex_file_, dec_insn.vB)) { |
| runtime_func = irb_.GetRuntime(AllocObject); |
| } else { |
| runtime_func = irb_.GetRuntime(AllocObjectWithAccessCheck); |
| } |
| |
| llvm::Constant* type_index_value = irb_.getInt32(dec_insn.vB); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| llvm::Value* object_addr = |
| irb_.CreateCall3(runtime_func, type_index_value, method_object_addr, thread_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, object_addr); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitAllocNewArray(uint32_t dex_pc, |
| int32_t length, |
| uint32_t type_idx, |
| bool is_filled_new_array) { |
| llvm::Function* runtime_func; |
| |
| bool skip_access_check = |
| compiler_->CanAccessTypeWithoutChecks(method_idx_, *dex_file_, type_idx); |
| |
| llvm::Value* array_length_value; |
| |
| if (is_filled_new_array) { |
| runtime_func = skip_access_check ? |
| irb_.GetRuntime(CheckAndAllocArray) : |
| irb_.GetRuntime(CheckAndAllocArrayWithAccessCheck); |
| array_length_value = irb_.getInt32(length); |
| } else { |
| runtime_func = skip_access_check ? |
| irb_.GetRuntime(AllocArray) : |
| irb_.GetRuntime(AllocArrayWithAccessCheck); |
| array_length_value = EmitLoadDalvikReg(length, kInt, kAccurate); |
| } |
| |
| llvm::Constant* type_index_value = irb_.getInt32(type_idx); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| llvm::Value* object_addr = |
| irb_.CreateCall4(runtime_func, type_index_value, method_object_addr, |
| array_length_value, thread_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, false); |
| |
| return object_addr; |
| } |
| |
| |
| void MethodCompiler::EmitInsn_NewArray(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* object_addr = |
| EmitAllocNewArray(dex_pc, dec_insn.vB, dec_insn.vC, false); |
| |
| EmitStoreDalvikReg(dec_insn.vA, kObject, kAccurate, object_addr); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FilledNewArray(uint32_t dex_pc, |
| const Instruction* insn, |
| bool is_range) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* object_addr = |
| EmitAllocNewArray(dex_pc, dec_insn.vA, dec_insn.vB, true); |
| |
| if (dec_insn.vA > 0) { |
| // Check for the element type |
| uint32_t type_desc_len = 0; |
| const char* type_desc = |
| dex_file_->StringByTypeIdx(dec_insn.vB, &type_desc_len); |
| |
| DCHECK_GE(type_desc_len, 2u); // should be guaranteed by verifier |
| DCHECK_EQ(type_desc[0], '['); // should be guaranteed by verifier |
| bool is_elem_int_ty = (type_desc[1] == 'I'); |
| |
| uint32_t alignment; |
| llvm::Constant* elem_size; |
| llvm::PointerType* field_type; |
| |
| // NOTE: Currently filled-new-array only supports 'L', '[', and 'I' |
| // as the element, thus we are only checking 2 cases: primitive int and |
| // non-primitive type. |
| if (is_elem_int_ty) { |
| alignment = sizeof(int32_t); |
| elem_size = irb_.getPtrEquivInt(sizeof(int32_t)); |
| field_type = irb_.getJIntTy()->getPointerTo(); |
| } else { |
| alignment = irb_.getSizeOfPtrEquivInt(); |
| elem_size = irb_.getSizeOfPtrEquivIntValue(); |
| field_type = irb_.getJObjectTy()->getPointerTo(); |
| } |
| |
| llvm::Value* data_field_offset = |
| irb_.getPtrEquivInt(Array::DataOffset(alignment).Int32Value()); |
| |
| llvm::Value* data_field_addr = |
| irb_.CreatePtrDisp(object_addr, data_field_offset, field_type); |
| |
| // TODO: Tune this code. Currently we are generating one instruction for |
| // one element which may be very space consuming. Maybe changing to use |
| // memcpy may help; however, since we can't guarantee that the alloca of |
| // dalvik register are continuous, we can't perform such optimization yet. |
| for (uint32_t i = 0; i < dec_insn.vA; ++i) { |
| int reg_index; |
| if (is_range) { |
| reg_index = dec_insn.vC + i; |
| } else { |
| reg_index = dec_insn.arg[i]; |
| } |
| |
| llvm::Value* reg_value; |
| if (is_elem_int_ty) { |
| reg_value = EmitLoadDalvikReg(reg_index, kInt, kAccurate); |
| } else { |
| reg_value = EmitLoadDalvikReg(reg_index, kObject, kAccurate); |
| } |
| |
| irb_.CreateStore(reg_value, data_field_addr, kTBAAHeapArray); |
| |
| data_field_addr = |
| irb_.CreatePtrDisp(data_field_addr, elem_size, field_type); |
| } |
| } |
| |
| EmitStoreDalvikRetValReg(kObject, kAccurate, object_addr); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FillArrayData(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| // Read the payload |
| int32_t payload_offset = static_cast<int32_t>(dex_pc) + |
| static_cast<int32_t>(dec_insn.vB); |
| |
| const Instruction::ArrayDataPayload* payload = |
| reinterpret_cast<const Instruction::ArrayDataPayload*>( |
| code_item_->insns_ + payload_offset); |
| |
| // Load array object |
| llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| |
| if (payload->element_count == 0) { |
| // When the number of the elements in the payload is zero, we don't have |
| // to copy any numbers. However, we should check whether the array object |
| // address is equal to null or not. |
| EmitGuard_NullPointerException(dex_pc, array_addr); |
| } else { |
| // To save the code size, we are going to call the runtime function to |
| // copy the content from DexFile. |
| |
| // NOTE: We will check for the NullPointerException in the runtime. |
| |
| llvm::Function* runtime_func = irb_.GetRuntime(FillArrayData); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| irb_.CreateCall4(runtime_func, |
| method_object_addr, irb_.getInt32(dex_pc), |
| array_addr, irb_.getInt32(payload_offset)); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| } |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_UnconditionalBranch(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| int32_t branch_offset = dec_insn.vA; |
| |
| if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { |
| // Garbage collection safe-point on backward branch |
| EmitGuard_GarbageCollectionSuspend(dex_pc); |
| } |
| |
| irb_.CreateBr(GetBasicBlock(dex_pc + branch_offset)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_PackedSwitch(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| int32_t payload_offset = static_cast<int32_t>(dex_pc) + |
| static_cast<int32_t>(dec_insn.vB); |
| |
| const Instruction::PackedSwitchPayload* payload = |
| reinterpret_cast<const Instruction::PackedSwitchPayload*>( |
| code_item_->insns_ + payload_offset); |
| |
| llvm::Value* value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); |
| |
| llvm::SwitchInst* sw = |
| irb_.CreateSwitch(value, GetNextBasicBlock(dex_pc), payload->case_count); |
| |
| for (uint16_t i = 0; i < payload->case_count; ++i) { |
| sw->addCase(irb_.getInt32(payload->first_key + i), |
| GetBasicBlock(dex_pc + payload->targets[i])); |
| } |
| } |
| |
| |
| void MethodCompiler::EmitInsn_SparseSwitch(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| int32_t payload_offset = static_cast<int32_t>(dex_pc) + |
| static_cast<int32_t>(dec_insn.vB); |
| |
| const Instruction::SparseSwitchPayload* payload = |
| reinterpret_cast<const Instruction::SparseSwitchPayload*>( |
| code_item_->insns_ + payload_offset); |
| |
| const int32_t* keys = payload->GetKeys(); |
| const int32_t* targets = payload->GetTargets(); |
| |
| llvm::Value* value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); |
| |
| llvm::SwitchInst* sw = |
| irb_.CreateSwitch(value, GetNextBasicBlock(dex_pc), payload->case_count); |
| |
| for (size_t i = 0; i < payload->case_count; ++i) { |
| sw->addCase(irb_.getInt32(keys[i]), GetBasicBlock(dex_pc + targets[i])); |
| } |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FPCompare(uint32_t dex_pc, |
| const Instruction* insn, |
| JType fp_jty, |
| bool gt_bias) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(fp_jty == kFloat || fp_jty == kDouble) << "JType: " << fp_jty; |
| |
| llvm::Value* src1_value = EmitLoadDalvikReg(dec_insn.vB, fp_jty, kAccurate); |
| llvm::Value* src2_value = EmitLoadDalvikReg(dec_insn.vC, fp_jty, kAccurate); |
| |
| llvm::Value* cmp_eq = irb_.CreateFCmpOEQ(src1_value, src2_value); |
| llvm::Value* cmp_lt; |
| |
| if (gt_bias) { |
| cmp_lt = irb_.CreateFCmpOLT(src1_value, src2_value); |
| } else { |
| cmp_lt = irb_.CreateFCmpULT(src1_value, src2_value); |
| } |
| |
| llvm::Value* result = EmitCompareResultSelection(cmp_eq, cmp_lt); |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_LongCompare(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src1_value = EmitLoadDalvikReg(dec_insn.vB, kLong, kAccurate); |
| llvm::Value* src2_value = EmitLoadDalvikReg(dec_insn.vC, kLong, kAccurate); |
| |
| llvm::Value* cmp_eq = irb_.CreateICmpEQ(src1_value, src2_value); |
| llvm::Value* cmp_lt = irb_.CreateICmpSLT(src1_value, src2_value); |
| |
| llvm::Value* result = EmitCompareResultSelection(cmp_eq, cmp_lt); |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitCompareResultSelection(llvm::Value* cmp_eq, |
| llvm::Value* cmp_lt) { |
| |
| llvm::Constant* zero = irb_.getJInt(0); |
| llvm::Constant* pos1 = irb_.getJInt(1); |
| llvm::Constant* neg1 = irb_.getJInt(-1); |
| |
| llvm::Value* result_lt = irb_.CreateSelect(cmp_lt, neg1, pos1); |
| llvm::Value* result_eq = irb_.CreateSelect(cmp_eq, zero, result_lt); |
| |
| return result_eq; |
| } |
| |
| |
| void MethodCompiler::EmitInsn_BinaryConditionalBranch(uint32_t dex_pc, |
| const Instruction* insn, |
| CondBranchKind cond) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| greenland::RegCategory src1_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA); |
| greenland::RegCategory src2_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vB); |
| |
| DCHECK_NE(greenland::kRegUnknown, src1_reg_cat); |
| DCHECK_NE(greenland::kRegUnknown, src2_reg_cat); |
| DCHECK_NE(greenland::kRegCat2, src1_reg_cat); |
| DCHECK_NE(greenland::kRegCat2, src2_reg_cat); |
| |
| int32_t branch_offset = dec_insn.vC; |
| |
| if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { |
| // Garbage collection safe-point on backward branch |
| EmitGuard_GarbageCollectionSuspend(dex_pc); |
| } |
| |
| llvm::Value* src1_value; |
| llvm::Value* src2_value; |
| |
| if (src1_reg_cat == greenland::kRegZero && src2_reg_cat == greenland::kRegZero) { |
| src1_value = irb_.getInt32(0); |
| src2_value = irb_.getInt32(0); |
| } else if (src1_reg_cat != greenland::kRegZero && src2_reg_cat != greenland::kRegZero) { |
| CHECK_EQ(src1_reg_cat, src2_reg_cat); |
| |
| if (src1_reg_cat == greenland::kRegCat1nr) { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| } else { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); |
| } |
| } else { |
| DCHECK(src1_reg_cat == greenland::kRegZero || |
| src2_reg_cat == greenland::kRegZero); |
| |
| if (src1_reg_cat == greenland::kRegZero) { |
| if (src2_reg_cat == greenland::kRegCat1nr) { |
| src1_value = irb_.getJInt(0); |
| src2_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); |
| } else { |
| src1_value = irb_.getJNull(); |
| src2_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| } |
| } else { // src2_reg_cat == kRegZero |
| if (src2_reg_cat == greenland::kRegCat1nr) { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); |
| src2_value = irb_.getJInt(0); |
| } else { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| src2_value = irb_.getJNull(); |
| } |
| } |
| } |
| |
| llvm::Value* cond_value = |
| EmitConditionResult(src1_value, src2_value, cond); |
| |
| irb_.CreateCondBr(cond_value, |
| GetBasicBlock(dex_pc + branch_offset), |
| GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_UnaryConditionalBranch(uint32_t dex_pc, |
| const Instruction* insn, |
| CondBranchKind cond) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| greenland::RegCategory src_reg_cat = GetInferredRegCategory(dex_pc, dec_insn.vA); |
| |
| DCHECK_NE(greenland::kRegUnknown, src_reg_cat); |
| DCHECK_NE(greenland::kRegCat2, src_reg_cat); |
| |
| int32_t branch_offset = dec_insn.vB; |
| |
| if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { |
| // Garbage collection safe-point on backward branch |
| EmitGuard_GarbageCollectionSuspend(dex_pc); |
| } |
| |
| llvm::Value* src1_value; |
| llvm::Value* src2_value; |
| |
| if (src_reg_cat == greenland::kRegZero) { |
| src1_value = irb_.getInt32(0); |
| src2_value = irb_.getInt32(0); |
| } else if (src_reg_cat == greenland::kRegCat1nr) { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, kInt, kAccurate); |
| src2_value = irb_.getInt32(0); |
| } else { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, kObject, kAccurate); |
| src2_value = irb_.getJNull(); |
| } |
| |
| llvm::Value* cond_value = |
| EmitConditionResult(src1_value, src2_value, cond); |
| |
| irb_.CreateCondBr(cond_value, |
| GetBasicBlock(dex_pc + branch_offset), |
| GetNextBasicBlock(dex_pc)); |
| } |
| |
| const greenland::InferredRegCategoryMap* MethodCompiler::GetInferredRegCategoryMap() { |
| Compiler::MethodReference mref(dex_file_, method_idx_); |
| |
| const greenland::InferredRegCategoryMap* map = |
| verifier::MethodVerifier::GetInferredRegCategoryMap(mref); |
| |
| CHECK_NE(map, static_cast<greenland::InferredRegCategoryMap*>(NULL)); |
| |
| return map; |
| } |
| |
| greenland::RegCategory MethodCompiler::GetInferredRegCategory(uint32_t dex_pc, |
| uint16_t reg_idx) { |
| const greenland::InferredRegCategoryMap* map = GetInferredRegCategoryMap(); |
| |
| return map->GetRegCategory(dex_pc, reg_idx); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitConditionResult(llvm::Value* lhs, |
| llvm::Value* rhs, |
| CondBranchKind cond) { |
| switch (cond) { |
| case kCondBranch_EQ: |
| return irb_.CreateICmpEQ(lhs, rhs); |
| |
| case kCondBranch_NE: |
| return irb_.CreateICmpNE(lhs, rhs); |
| |
| case kCondBranch_LT: |
| return irb_.CreateICmpSLT(lhs, rhs); |
| |
| case kCondBranch_GE: |
| return irb_.CreateICmpSGE(lhs, rhs); |
| |
| case kCondBranch_GT: |
| return irb_.CreateICmpSGT(lhs, rhs); |
| |
| case kCondBranch_LE: |
| return irb_.CreateICmpSLE(lhs, rhs); |
| |
| default: // Unreachable |
| LOG(FATAL) << "Unknown conditional branch kind: " << cond; |
| return NULL; |
| } |
| } |
| |
| void MethodCompiler::EmitMarkGCCard(llvm::Value* value, llvm::Value* target_addr) { |
| // Using runtime support, let the target can override by InlineAssembly. |
| irb_.Runtime().EmitMarkGCCard(value, target_addr); |
| } |
| |
| void |
| MethodCompiler::EmitGuard_ArrayIndexOutOfBoundsException(uint32_t dex_pc, |
| llvm::Value* array, |
| llvm::Value* index) { |
| llvm::Value* array_len = EmitLoadArrayLength(array); |
| |
| llvm::Value* cmp = irb_.CreateICmpUGE(index, array_len); |
| |
| llvm::BasicBlock* block_exception = |
| CreateBasicBlockWithDexPC(dex_pc, "overflow"); |
| |
| llvm::BasicBlock* block_continue = |
| CreateBasicBlockWithDexPC(dex_pc, "cont"); |
| |
| irb_.CreateCondBr(cmp, block_exception, block_continue, kUnlikely); |
| |
| irb_.SetInsertPoint(block_exception); |
| |
| EmitUpdateDexPC(dex_pc); |
| irb_.CreateCall2(irb_.GetRuntime(ThrowIndexOutOfBounds), index, array_len); |
| EmitBranchExceptionLandingPad(dex_pc); |
| |
| irb_.SetInsertPoint(block_continue); |
| } |
| |
| |
| void MethodCompiler::EmitGuard_ArrayException(uint32_t dex_pc, |
| llvm::Value* array, |
| llvm::Value* index) { |
| EmitGuard_NullPointerException(dex_pc, array); |
| EmitGuard_ArrayIndexOutOfBoundsException(dex_pc, array, index); |
| } |
| |
| |
| // Emit Array GetElementPtr |
| llvm::Value* MethodCompiler::EmitArrayGEP(llvm::Value* array_addr, |
| llvm::Value* index_value, |
| JType elem_jty) { |
| |
| int data_offset; |
| if (elem_jty == kLong || elem_jty == kDouble || |
| (elem_jty == kObject && sizeof(uint64_t) == sizeof(Object*))) { |
| data_offset = Array::DataOffset(sizeof(int64_t)).Int32Value(); |
| } else { |
| data_offset = Array::DataOffset(sizeof(int32_t)).Int32Value(); |
| } |
| |
| llvm::Constant* data_offset_value = |
| irb_.getPtrEquivInt(data_offset); |
| |
| llvm::Type* elem_type = irb_.getJType(elem_jty, kArray); |
| |
| llvm::Value* array_data_addr = |
| irb_.CreatePtrDisp(array_addr, data_offset_value, |
| elem_type->getPointerTo()); |
| |
| return irb_.CreateGEP(array_data_addr, index_value); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_AGet(uint32_t dex_pc, |
| const Instruction* insn, |
| JType elem_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); |
| llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate); |
| |
| EmitGuard_ArrayException(dex_pc, array_addr, index_value); |
| |
| llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); |
| |
| llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, elem_jty); |
| |
| EmitStoreDalvikReg(dec_insn.vA, elem_jty, kArray, array_elem_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_APut(uint32_t dex_pc, |
| const Instruction* insn, |
| JType elem_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* array_addr = EmitLoadDalvikReg(dec_insn.vB, kObject, kAccurate); |
| llvm::Value* index_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate); |
| |
| EmitGuard_ArrayException(dex_pc, array_addr, index_value); |
| |
| llvm::Value* array_elem_addr = EmitArrayGEP(array_addr, index_value, elem_jty); |
| |
| llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, elem_jty, kArray); |
| |
| if (elem_jty == kObject) { // If put an object, check the type, and mark GC card table. |
| llvm::Function* runtime_func = irb_.GetRuntime(CheckPutArrayElement); |
| |
| irb_.CreateCall2(runtime_func, new_value, array_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, false); |
| |
| EmitMarkGCCard(new_value, array_addr); |
| } |
| |
| irb_.CreateStore(new_value, array_elem_addr, kTBAAHeapArray, elem_jty); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_IGet(uint32_t dex_pc, |
| const Instruction* insn, |
| JType field_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| uint32_t reg_idx = dec_insn.vB; |
| uint32_t field_idx = dec_insn.vC; |
| |
| llvm::Value* object_addr = EmitLoadDalvikReg(reg_idx, kObject, kAccurate); |
| |
| if (!(method_info_.this_will_not_be_null && reg_idx == method_info_.this_reg_idx)) { |
| EmitGuard_NullPointerException(dex_pc, object_addr); |
| } |
| |
| llvm::Value* field_value; |
| |
| int field_offset; |
| bool is_volatile; |
| bool is_fast_path = compiler_->ComputeInstanceFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, is_volatile, false); |
| |
| if (!is_fast_path) { |
| llvm::Function* runtime_func; |
| |
| if (field_jty == kObject) { |
| runtime_func = irb_.GetRuntime(GetObjectInstance); |
| } else if (field_jty == kLong || field_jty == kDouble) { |
| runtime_func = irb_.GetRuntime(Get64Instance); |
| } else { |
| runtime_func = irb_.GetRuntime(Get32Instance); |
| } |
| |
| llvm::ConstantInt* field_idx_value = irb_.getInt32(field_idx); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| field_value = irb_.CreateCall3(runtime_func, field_idx_value, |
| method_object_addr, object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| } else { |
| DCHECK_GE(field_offset, 0); |
| |
| llvm::PointerType* field_type = |
| irb_.getJType(field_jty, kField)->getPointerTo(); |
| |
| llvm::ConstantInt* field_offset_value = irb_.getPtrEquivInt(field_offset); |
| |
| llvm::Value* field_addr = |
| irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); |
| |
| // TODO: Check is_volatile. We need to generate atomic load instruction |
| // when is_volatile is true. |
| field_value = irb_.CreateLoad(field_addr, kTBAAHeapInstance, field_jty); |
| } |
| |
| EmitStoreDalvikReg(dec_insn.vA, field_jty, kField, field_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_IPut(uint32_t dex_pc, |
| const Instruction* insn, |
| JType field_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| uint32_t reg_idx = dec_insn.vB; |
| uint32_t field_idx = dec_insn.vC; |
| |
| llvm::Value* object_addr = EmitLoadDalvikReg(reg_idx, kObject, kAccurate); |
| |
| if (!(method_info_.this_will_not_be_null && reg_idx == method_info_.this_reg_idx)) { |
| EmitGuard_NullPointerException(dex_pc, object_addr); |
| } |
| |
| llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, field_jty, kField); |
| |
| int field_offset; |
| bool is_volatile; |
| bool is_fast_path = compiler_->ComputeInstanceFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, is_volatile, true); |
| |
| if (!is_fast_path) { |
| llvm::Function* runtime_func; |
| |
| if (field_jty == kObject) { |
| runtime_func = irb_.GetRuntime(SetObjectInstance); |
| } else if (field_jty == kLong || field_jty == kDouble) { |
| runtime_func = irb_.GetRuntime(Set64Instance); |
| } else { |
| runtime_func = irb_.GetRuntime(Set32Instance); |
| } |
| |
| llvm::Value* field_idx_value = irb_.getInt32(field_idx); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| irb_.CreateCall4(runtime_func, field_idx_value, |
| method_object_addr, object_addr, new_value); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| } else { |
| DCHECK_GE(field_offset, 0); |
| |
| llvm::PointerType* field_type = |
| irb_.getJType(field_jty, kField)->getPointerTo(); |
| |
| llvm::Value* field_offset_value = irb_.getPtrEquivInt(field_offset); |
| |
| llvm::Value* field_addr = |
| irb_.CreatePtrDisp(object_addr, field_offset_value, field_type); |
| |
| // TODO: Check is_volatile. We need to generate atomic store instruction |
| // when is_volatile is true. |
| irb_.CreateStore(new_value, field_addr, kTBAAHeapInstance, field_jty); |
| |
| if (field_jty == kObject) { // If put an object, mark the GC card table. |
| EmitMarkGCCard(new_value, object_addr); |
| } |
| } |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitLoadStaticStorage(uint32_t dex_pc, |
| uint32_t type_idx) { |
| llvm::BasicBlock* block_load_static = |
| CreateBasicBlockWithDexPC(dex_pc, "load_static"); |
| |
| llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); |
| |
| // Load static storage from dex cache |
| llvm::Value* storage_field_addr = |
| EmitLoadDexCacheStaticStorageFieldAddr(type_idx); |
| |
| llvm::Value* storage_object_addr = irb_.CreateLoad(storage_field_addr, kTBAARuntimeInfo); |
| |
| llvm::BasicBlock* block_original = irb_.GetInsertBlock(); |
| |
| // Test: Is the static storage of this class initialized? |
| llvm::Value* equal_null = |
| irb_.CreateICmpEQ(storage_object_addr, irb_.getJNull()); |
| |
| irb_.CreateCondBr(equal_null, block_load_static, block_cont, kUnlikely); |
| |
| // Failback routine to load the class object |
| irb_.SetInsertPoint(block_load_static); |
| |
| llvm::Function* runtime_func = |
| irb_.GetRuntime(InitializeStaticStorage); |
| |
| llvm::Constant* type_idx_value = irb_.getInt32(type_idx); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| llvm::Value* loaded_storage_object_addr = |
| irb_.CreateCall3(runtime_func, type_idx_value, method_object_addr, thread_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, false); |
| |
| llvm::BasicBlock* block_after_load_static = irb_.GetInsertBlock(); |
| |
| irb_.CreateBr(block_cont); |
| |
| // Now the class object must be loaded |
| irb_.SetInsertPoint(block_cont); |
| |
| llvm::PHINode* phi = irb_.CreatePHI(irb_.getJObjectTy(), 2); |
| |
| phi->addIncoming(storage_object_addr, block_original); |
| phi->addIncoming(loaded_storage_object_addr, block_after_load_static); |
| |
| return phi; |
| } |
| |
| |
| void MethodCompiler::EmitInsn_SGet(uint32_t dex_pc, |
| const Instruction* insn, |
| JType field_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| uint32_t field_idx = dec_insn.vB; |
| |
| int field_offset; |
| int ssb_index; |
| bool is_referrers_class; |
| bool is_volatile; |
| |
| bool is_fast_path = compiler_->ComputeStaticFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, ssb_index, |
| is_referrers_class, is_volatile, false); |
| |
| llvm::Value* static_field_value; |
| |
| if (!is_fast_path) { |
| llvm::Function* runtime_func; |
| |
| if (field_jty == kObject) { |
| runtime_func = irb_.GetRuntime(GetObjectStatic); |
| } else if (field_jty == kLong || field_jty == kDouble) { |
| runtime_func = irb_.GetRuntime(Get64Static); |
| } else { |
| runtime_func = irb_.GetRuntime(Get32Static); |
| } |
| |
| llvm::Constant* field_idx_value = irb_.getInt32(dec_insn.vB); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| static_field_value = |
| irb_.CreateCall2(runtime_func, field_idx_value, method_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| } else { |
| DCHECK_GE(field_offset, 0); |
| |
| llvm::Value* static_storage_addr = NULL; |
| |
| if (is_referrers_class) { |
| // Fast path, static storage base is this method's class |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| static_storage_addr = |
| irb_.LoadFromObjectOffset(method_object_addr, |
| AbstractMethod::DeclaringClassOffset().Int32Value(), |
| irb_.getJObjectTy(), |
| kTBAAConstJObject); |
| } else { |
| // Medium path, static storage base in a different class which |
| // requires checks that the other class is initialized |
| DCHECK_GE(ssb_index, 0); |
| static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index); |
| } |
| |
| llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); |
| |
| llvm::Value* static_field_addr = |
| irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, |
| irb_.getJType(field_jty, kField)->getPointerTo()); |
| |
| // TODO: Check is_volatile. We need to generate atomic load instruction |
| // when is_volatile is true. |
| static_field_value = irb_.CreateLoad(static_field_addr, kTBAAHeapStatic, field_jty); |
| } |
| |
| EmitStoreDalvikReg(dec_insn.vA, field_jty, kField, static_field_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_SPut(uint32_t dex_pc, |
| const Instruction* insn, |
| JType field_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| uint32_t field_idx = dec_insn.vB; |
| |
| llvm::Value* new_value = EmitLoadDalvikReg(dec_insn.vA, field_jty, kField); |
| |
| int field_offset; |
| int ssb_index; |
| bool is_referrers_class; |
| bool is_volatile; |
| |
| bool is_fast_path = compiler_->ComputeStaticFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, ssb_index, |
| is_referrers_class, is_volatile, true); |
| |
| if (!is_fast_path) { |
| llvm::Function* runtime_func; |
| |
| if (field_jty == kObject) { |
| runtime_func = irb_.GetRuntime(SetObjectStatic); |
| } else if (field_jty == kLong || field_jty == kDouble) { |
| runtime_func = irb_.GetRuntime(Set64Static); |
| } else { |
| runtime_func = irb_.GetRuntime(Set32Static); |
| } |
| |
| llvm::Constant* field_idx_value = irb_.getInt32(dec_insn.vB); |
| |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| irb_.CreateCall3(runtime_func, field_idx_value, |
| method_object_addr, new_value); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| } else { |
| DCHECK_GE(field_offset, 0); |
| |
| llvm::Value* static_storage_addr = NULL; |
| |
| if (is_referrers_class) { |
| // Fast path, static storage base is this method's class |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| static_storage_addr = |
| irb_.LoadFromObjectOffset(method_object_addr, |
| AbstractMethod::DeclaringClassOffset().Int32Value(), |
| irb_.getJObjectTy(), |
| kTBAAConstJObject); |
| } else { |
| // Medium path, static storage base in a different class which |
| // requires checks that the other class is initialized |
| DCHECK_GE(ssb_index, 0); |
| static_storage_addr = EmitLoadStaticStorage(dex_pc, ssb_index); |
| } |
| |
| llvm::Value* static_field_offset_value = irb_.getPtrEquivInt(field_offset); |
| |
| llvm::Value* static_field_addr = |
| irb_.CreatePtrDisp(static_storage_addr, static_field_offset_value, |
| irb_.getJType(field_jty, kField)->getPointerTo()); |
| |
| // TODO: Check is_volatile. We need to generate atomic store instruction |
| // when is_volatile is true. |
| irb_.CreateStore(new_value, static_field_addr, kTBAAHeapStatic, field_jty); |
| |
| if (field_jty == kObject) { // If put an object, mark the GC card table. |
| EmitMarkGCCard(new_value, static_storage_addr); |
| } |
| } |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler:: |
| EmitLoadActualParameters(std::vector<llvm::Value*>& args, |
| uint32_t callee_method_idx, |
| DecodedInstruction const& dec_insn, |
| InvokeArgFmt arg_fmt, |
| bool is_static) { |
| |
| // Get method signature |
| DexFile::MethodId const& method_id = |
| dex_file_->GetMethodId(callee_method_idx); |
| |
| uint32_t shorty_size; |
| const char* shorty = dex_file_->GetMethodShorty(method_id, &shorty_size); |
| CHECK_GE(shorty_size, 1u); |
| |
| // Load argument values according to the shorty (without "this") |
| uint16_t reg_count = 0; |
| |
| if (!is_static) { |
| ++reg_count; // skip the "this" pointer |
| } |
| |
| bool is_range = (arg_fmt == kArgRange); |
| |
| for (uint32_t i = 1; i < shorty_size; ++i) { |
| uint32_t reg_idx = (is_range) ? (dec_insn.vC + reg_count) |
| : (dec_insn.arg[reg_count]); |
| |
| args.push_back(EmitLoadDalvikReg(reg_idx, shorty[i], kAccurate)); |
| |
| ++reg_count; |
| if (shorty[i] == 'J' || shorty[i] == 'D') { |
| // Wide types, such as long and double, are using a pair of registers |
| // to store the value, so we have to increase arg_reg again. |
| ++reg_count; |
| } |
| } |
| |
| DCHECK_EQ(reg_count, dec_insn.vA) |
| << "Actual argument mismatch for callee: " |
| << PrettyMethod(callee_method_idx, *dex_file_); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_Invoke(uint32_t dex_pc, |
| const Instruction* insn, |
| InvokeType invoke_type, |
| InvokeArgFmt arg_fmt) { |
| DecodedInstruction dec_insn(insn); |
| |
| bool is_static = (invoke_type == kStatic); |
| uint32_t callee_method_idx = dec_insn.vB; |
| |
| // Compute invoke related information for compiler decision |
| int vtable_idx = -1; |
| uintptr_t direct_code = 0; |
| uintptr_t direct_method = 0; |
| bool is_fast_path = compiler_-> |
| ComputeInvokeInfo(callee_method_idx, oat_compilation_unit_, |
| invoke_type, vtable_idx, direct_code, direct_method); |
| |
| // Load *this* actual parameter |
| uint32_t this_reg = -1u; |
| llvm::Value* this_addr = NULL; |
| |
| if (!is_static) { |
| // Test: Is *this* parameter equal to null? |
| this_reg = (arg_fmt == kArgReg) ? dec_insn.arg[0] : (dec_insn.vC + 0); |
| this_addr = EmitLoadDalvikReg(this_reg, kObject, kAccurate); |
| } |
| |
| // Load the method object |
| llvm::Value* callee_method_object_addr = NULL; |
| |
| if (!is_fast_path) { |
| callee_method_object_addr = |
| EmitCallRuntimeForCalleeMethodObjectAddr(callee_method_idx, invoke_type, |
| this_addr, dex_pc, is_fast_path); |
| |
| if (!is_static && (!method_info_.this_will_not_be_null || |
| this_reg != method_info_.this_reg_idx)) { |
| // NOTE: The null pointer test should come after the method resolution. |
| // So that the "NoSuchMethodError" can be thrown before the |
| // "NullPointerException". |
| EmitGuard_NullPointerException(dex_pc, this_addr); |
| } |
| |
| } else { |
| if (!is_static && (!method_info_.this_will_not_be_null || |
| this_reg != method_info_.this_reg_idx)) { |
| // NOTE: In the fast path, we should do the null pointer check |
| // before the access to the class object and/or direct invocation. |
| EmitGuard_NullPointerException(dex_pc, this_addr); |
| } |
| |
| switch (invoke_type) { |
| case kStatic: |
| case kDirect: |
| if (direct_method != 0u && |
| direct_method != static_cast<uintptr_t>(-1)) { |
| callee_method_object_addr = |
| irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_method), |
| irb_.getJObjectTy()); |
| } else { |
| callee_method_object_addr = |
| EmitLoadSDCalleeMethodObjectAddr(callee_method_idx); |
| } |
| break; |
| |
| case kVirtual: |
| DCHECK(vtable_idx != -1); |
| callee_method_object_addr = |
| EmitLoadVirtualCalleeMethodObjectAddr(vtable_idx, this_addr); |
| break; |
| |
| case kSuper: |
| LOG(FATAL) << "invoke-super should be promoted to invoke-direct in " |
| "the fast path."; |
| break; |
| |
| case kInterface: |
| callee_method_object_addr = |
| EmitCallRuntimeForCalleeMethodObjectAddr(callee_method_idx, |
| invoke_type, this_addr, |
| dex_pc, is_fast_path); |
| break; |
| } |
| } |
| |
| // Load the actual parameter |
| std::vector<llvm::Value*> args; |
| |
| args.push_back(callee_method_object_addr); // method object for callee |
| |
| if (!is_static) { |
| DCHECK(this_addr != NULL); |
| args.push_back(this_addr); // "this" object for callee |
| } |
| |
| EmitLoadActualParameters(args, callee_method_idx, dec_insn, |
| arg_fmt, is_static); |
| |
| if (is_fast_path && (invoke_type == kDirect || invoke_type == kStatic)) { |
| bool need_retry = EmitInlineJavaIntrinsic(PrettyMethod(callee_method_idx, *dex_file_), |
| args, |
| GetNextBasicBlock(dex_pc)); |
| if (!need_retry) { |
| return; |
| } |
| } |
| |
| llvm::Value* code_addr; |
| if (direct_code != 0u && |
| direct_code != static_cast<uintptr_t>(-1)) { |
| code_addr = |
| irb_.CreateIntToPtr(irb_.getPtrEquivInt(direct_code), |
| GetFunctionType(callee_method_idx, is_static)->getPointerTo()); |
| } else { |
| code_addr = |
| irb_.LoadFromObjectOffset(callee_method_object_addr, |
| AbstractMethod::GetCodeOffset().Int32Value(), |
| GetFunctionType(callee_method_idx, is_static)->getPointerTo(), |
| kTBAARuntimeInfo); |
| } |
| |
| // Invoke callee |
| EmitUpdateDexPC(dex_pc); |
| llvm::Value* retval = irb_.CreateCall(code_addr, args); |
| EmitGuard_ExceptionLandingPad(dex_pc, true); |
| |
| uint32_t callee_access_flags = is_static ? kAccStatic : 0; |
| UniquePtr<OatCompilationUnit> callee_oat_compilation_unit( |
| oat_compilation_unit_->GetCallee(callee_method_idx, callee_access_flags)); |
| |
| char ret_shorty = callee_oat_compilation_unit->GetShorty()[0]; |
| if (ret_shorty != 'V') { |
| EmitStoreDalvikRetValReg(ret_shorty, kAccurate, retval); |
| } |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* MethodCompiler:: |
| EmitLoadSDCalleeMethodObjectAddr(uint32_t callee_method_idx) { |
| llvm::Value* callee_method_object_field_addr = |
| EmitLoadDexCacheResolvedMethodFieldAddr(callee_method_idx); |
| |
| return irb_.CreateLoad(callee_method_object_field_addr, kTBAARuntimeInfo); |
| } |
| |
| |
| llvm::Value* MethodCompiler:: |
| EmitLoadVirtualCalleeMethodObjectAddr(int vtable_idx, |
| llvm::Value* this_addr) { |
| // Load class object of *this* pointer |
| llvm::Value* class_object_addr = |
| irb_.LoadFromObjectOffset(this_addr, |
| Object::ClassOffset().Int32Value(), |
| irb_.getJObjectTy(), |
| kTBAAConstJObject); |
| |
| // Load vtable address |
| llvm::Value* vtable_addr = |
| irb_.LoadFromObjectOffset(class_object_addr, |
| Class::VTableOffset().Int32Value(), |
| irb_.getJObjectTy(), |
| kTBAAConstJObject); |
| |
| // Load callee method object |
| llvm::Value* vtable_idx_value = |
| irb_.getPtrEquivInt(static_cast<uint64_t>(vtable_idx)); |
| |
| llvm::Value* method_field_addr = |
| EmitArrayGEP(vtable_addr, vtable_idx_value, kObject); |
| |
| return irb_.CreateLoad(method_field_addr, kTBAAConstJObject); |
| } |
| |
| |
| llvm::Value* MethodCompiler:: |
| EmitCallRuntimeForCalleeMethodObjectAddr(uint32_t callee_method_idx, |
| InvokeType invoke_type, |
| llvm::Value* this_addr, |
| uint32_t dex_pc, |
| bool is_fast_path) { |
| |
| llvm::Function* runtime_func = NULL; |
| |
| switch (invoke_type) { |
| case kStatic: |
| runtime_func = irb_.GetRuntime(FindStaticMethodWithAccessCheck); |
| break; |
| |
| case kDirect: |
| runtime_func = irb_.GetRuntime(FindDirectMethodWithAccessCheck); |
| break; |
| |
| case kVirtual: |
| runtime_func = irb_.GetRuntime(FindVirtualMethodWithAccessCheck); |
| break; |
| |
| case kSuper: |
| runtime_func = irb_.GetRuntime(FindSuperMethodWithAccessCheck); |
| break; |
| |
| case kInterface: |
| if (is_fast_path) { |
| runtime_func = irb_.GetRuntime(FindInterfaceMethod); |
| } else { |
| runtime_func = irb_.GetRuntime(FindInterfaceMethodWithAccessCheck); |
| } |
| break; |
| } |
| |
| llvm::Value* callee_method_idx_value = irb_.getInt32(callee_method_idx); |
| |
| if (this_addr == NULL) { |
| DCHECK_EQ(invoke_type, kStatic); |
| this_addr = irb_.getJNull(); |
| } |
| |
| llvm::Value* caller_method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* thread_object_addr = irb_.Runtime().EmitGetCurrentThread(); |
| |
| EmitUpdateDexPC(dex_pc); |
| |
| llvm::Value* callee_method_object_addr = |
| irb_.CreateCall4(runtime_func, |
| callee_method_idx_value, |
| this_addr, |
| caller_method_object_addr, |
| thread_object_addr); |
| |
| EmitGuard_ExceptionLandingPad(dex_pc, false); |
| |
| return callee_method_object_addr; |
| } |
| |
| |
| void MethodCompiler::EmitInsn_Neg(uint32_t dex_pc, |
| const Instruction* insn, |
| JType op_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| llvm::Value* result_value = irb_.CreateNeg(src_value); |
| EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_Not(uint32_t dex_pc, |
| const Instruction* insn, |
| JType op_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| llvm::Value* result_value = |
| irb_.CreateXor(src_value, static_cast<uint64_t>(-1)); |
| |
| EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_SExt(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| llvm::Value* result_value = irb_.CreateSExt(src_value, irb_.getJLongTy()); |
| EmitStoreDalvikReg(dec_insn.vA, kLong, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_Trunc(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kLong, kAccurate); |
| llvm::Value* result_value = irb_.CreateTrunc(src_value, irb_.getJIntTy()); |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_TruncAndSExt(uint32_t dex_pc, |
| const Instruction* insn, |
| unsigned N) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| |
| llvm::Value* trunc_value = |
| irb_.CreateTrunc(src_value, llvm::Type::getIntNTy(*context_, N)); |
| |
| llvm::Value* result_value = irb_.CreateSExt(trunc_value, irb_.getJIntTy()); |
| |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_TruncAndZExt(uint32_t dex_pc, |
| const Instruction* insn, |
| unsigned N) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| |
| llvm::Value* trunc_value = |
| irb_.CreateTrunc(src_value, llvm::Type::getIntNTy(*context_, N)); |
| |
| llvm::Value* result_value = irb_.CreateZExt(trunc_value, irb_.getJIntTy()); |
| |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FNeg(uint32_t dex_pc, |
| const Instruction* insn, |
| JType op_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(op_jty == kFloat || op_jty == kDouble) << op_jty; |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| llvm::Value* result_value = irb_.CreateFNeg(src_value); |
| EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_IntToFP(uint32_t dex_pc, |
| const Instruction* insn, |
| JType src_jty, |
| JType dest_jty) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(src_jty == kInt || src_jty == kLong) << src_jty; |
| DCHECK(dest_jty == kFloat || dest_jty == kDouble) << dest_jty; |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, src_jty, kAccurate); |
| llvm::Type* dest_type = irb_.getJType(dest_jty, kAccurate); |
| llvm::Value* dest_value = irb_.CreateSIToFP(src_value, dest_type); |
| EmitStoreDalvikReg(dec_insn.vA, dest_jty, kAccurate, dest_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FPToInt(uint32_t dex_pc, |
| const Instruction* insn, |
| JType src_jty, |
| JType dest_jty, |
| runtime_support::RuntimeId runtime_func_id) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(src_jty == kFloat || src_jty == kDouble) << src_jty; |
| DCHECK(dest_jty == kInt || dest_jty == kLong) << dest_jty; |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, src_jty, kAccurate); |
| llvm::Value* dest_value = irb_.CreateCall(irb_.GetRuntime(runtime_func_id), src_value); |
| EmitStoreDalvikReg(dec_insn.vA, dest_jty, kAccurate, dest_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FExt(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kFloat, kAccurate); |
| llvm::Value* result_value = irb_.CreateFPExt(src_value, irb_.getJDoubleTy()); |
| EmitStoreDalvikReg(dec_insn.vA, kDouble, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FTrunc(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kDouble, kAccurate); |
| llvm::Value* result_value = irb_.CreateFPTrunc(src_value, irb_.getJFloatTy()); |
| EmitStoreDalvikReg(dec_insn.vA, kFloat, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_IntArithm(uint32_t dex_pc, |
| const Instruction* insn, |
| IntArithmKind arithm, |
| JType op_jty, |
| bool is_2addr) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; |
| |
| llvm::Value* src1_value; |
| llvm::Value* src2_value; |
| |
| if (is_2addr) { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| } else { |
| src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate); |
| } |
| |
| llvm::Value* result_value = |
| EmitIntArithmResultComputation(dex_pc, src1_value, src2_value, |
| arithm, op_jty); |
| |
| EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_IntArithmImmediate(uint32_t dex_pc, |
| const Instruction* insn, |
| IntArithmKind arithm) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| |
| llvm::Value* imm_value = irb_.getInt32(dec_insn.vC); |
| |
| llvm::Value* result_value = |
| EmitIntArithmResultComputation(dex_pc, src_value, imm_value, arithm, kInt); |
| |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* |
| MethodCompiler::EmitIntArithmResultComputation(uint32_t dex_pc, |
| llvm::Value* lhs, |
| llvm::Value* rhs, |
| IntArithmKind arithm, |
| JType op_jty) { |
| DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; |
| |
| switch (arithm) { |
| case kIntArithm_Add: |
| return irb_.CreateAdd(lhs, rhs); |
| |
| case kIntArithm_Sub: |
| return irb_.CreateSub(lhs, rhs); |
| |
| case kIntArithm_Mul: |
| return irb_.CreateMul(lhs, rhs); |
| |
| case kIntArithm_Div: |
| case kIntArithm_Rem: |
| return EmitIntDivRemResultComputation(dex_pc, lhs, rhs, arithm, op_jty); |
| |
| case kIntArithm_And: |
| return irb_.CreateAnd(lhs, rhs); |
| |
| case kIntArithm_Or: |
| return irb_.CreateOr(lhs, rhs); |
| |
| case kIntArithm_Xor: |
| return irb_.CreateXor(lhs, rhs); |
| |
| default: |
| LOG(FATAL) << "Unknown integer arithmetic kind: " << arithm; |
| return NULL; |
| } |
| } |
| |
| |
| llvm::Value* |
| MethodCompiler::EmitIntDivRemResultComputation(uint32_t dex_pc, |
| llvm::Value* dividend, |
| llvm::Value* divisor, |
| IntArithmKind arithm, |
| JType op_jty) { |
| // Throw exception if the divisor is 0. |
| EmitGuard_DivZeroException(dex_pc, divisor, op_jty); |
| |
| // Check the special case: MININT / -1 = MININT |
| // That case will cause overflow, which is undefined behavior in llvm. |
| // So we check the divisor is -1 or not, if the divisor is -1, we do |
| // the special path to avoid undefined behavior. |
| llvm::Type* op_type = irb_.getJType(op_jty, kAccurate); |
| llvm::Value* zero = irb_.getJZero(op_jty); |
| llvm::Value* neg_one = llvm::ConstantInt::getSigned(op_type, -1); |
| llvm::Value* result = irb_.CreateAlloca(op_type); |
| |
| llvm::BasicBlock* eq_neg_one = CreateBasicBlockWithDexPC(dex_pc, "eq_neg_one"); |
| llvm::BasicBlock* ne_neg_one = CreateBasicBlockWithDexPC(dex_pc, "ne_neg_one"); |
| llvm::BasicBlock* neg_one_cont = CreateBasicBlockWithDexPC(dex_pc, "neg_one_cont"); |
| |
| llvm::Value* is_equal_neg_one = EmitConditionResult(divisor, neg_one, kCondBranch_EQ); |
| irb_.CreateCondBr(is_equal_neg_one, eq_neg_one, ne_neg_one, kUnlikely); |
| |
| // If divisor == -1 |
| irb_.SetInsertPoint(eq_neg_one); |
| llvm::Value* eq_result; |
| if (arithm == kIntArithm_Div) { |
| // We can just change from "dividend div -1" to "neg dividend". |
| // The sub don't care the sign/unsigned because of two's complement representation. |
| // And the behavior is what we want: |
| // -(2^n) (2^n)-1 |
| // MININT < k <= MAXINT -> mul k -1 = -k |
| // MININT == k -> mul k -1 = k |
| // |
| // LLVM use sub to represent 'neg' |
| eq_result = irb_.CreateSub(zero, dividend); |
| } else { |
| // Everything modulo -1 will be 0. |
| eq_result = zero; |
| } |
| irb_.CreateStore(eq_result, result, kTBAAStackTemp); |
| irb_.CreateBr(neg_one_cont); |
| |
| // If divisor != -1, just do the division. |
| irb_.SetInsertPoint(ne_neg_one); |
| llvm::Value* ne_result; |
| if (arithm == kIntArithm_Div) { |
| ne_result = irb_.CreateSDiv(dividend, divisor); |
| } else { |
| ne_result = irb_.CreateSRem(dividend, divisor); |
| } |
| irb_.CreateStore(ne_result, result, kTBAAStackTemp); |
| irb_.CreateBr(neg_one_cont); |
| |
| irb_.SetInsertPoint(neg_one_cont); |
| return irb_.CreateLoad(result, kTBAAStackTemp); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_IntShiftArithm(uint32_t dex_pc, |
| const Instruction* insn, |
| IntShiftArithmKind arithm, |
| JType op_jty, |
| bool is_2addr) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; |
| |
| llvm::Value* src1_value; |
| llvm::Value* src2_value; |
| |
| // NOTE: The 2nd operand of the shift arithmetic instruction is |
| // 32-bit integer regardless of the 1st operand. |
| if (is_2addr) { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| } else { |
| src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vC, kInt, kAccurate); |
| } |
| |
| llvm::Value* result_value = |
| EmitIntShiftArithmResultComputation(dex_pc, src1_value, src2_value, |
| arithm, op_jty); |
| |
| EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler:: |
| EmitInsn_IntShiftArithmImmediate(uint32_t dex_pc, |
| const Instruction* insn, |
| IntShiftArithmKind arithm) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| |
| llvm::Value* imm_value = irb_.getInt32(dec_insn.vC); |
| |
| llvm::Value* result_value = |
| EmitIntShiftArithmResultComputation(dex_pc, src_value, imm_value, |
| arithm, kInt); |
| |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* |
| MethodCompiler::EmitIntShiftArithmResultComputation(uint32_t dex_pc, |
| llvm::Value* lhs, |
| llvm::Value* rhs, |
| IntShiftArithmKind arithm, |
| JType op_jty) { |
| DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; |
| |
| if (op_jty == kInt) { |
| rhs = irb_.CreateAnd(rhs, 0x1f); |
| } else { |
| llvm::Value* masked_rhs = irb_.CreateAnd(rhs, 0x3f); |
| rhs = irb_.CreateZExt(masked_rhs, irb_.getJLongTy()); |
| } |
| |
| switch (arithm) { |
| case kIntArithm_Shl: |
| return irb_.CreateShl(lhs, rhs); |
| |
| case kIntArithm_Shr: |
| return irb_.CreateAShr(lhs, rhs); |
| |
| case kIntArithm_UShr: |
| return irb_.CreateLShr(lhs, rhs); |
| |
| default: |
| LOG(FATAL) << "Unknown integer shift arithmetic kind: " << arithm; |
| return NULL; |
| } |
| } |
| |
| |
| void MethodCompiler::EmitInsn_RSubImmediate(uint32_t dex_pc, |
| const Instruction* insn) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| llvm::Value* src_value = EmitLoadDalvikReg(dec_insn.vB, kInt, kAccurate); |
| llvm::Value* imm_value = irb_.getInt32(dec_insn.vC); |
| llvm::Value* result_value = irb_.CreateSub(imm_value, src_value); |
| EmitStoreDalvikReg(dec_insn.vA, kInt, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| void MethodCompiler::EmitInsn_FPArithm(uint32_t dex_pc, |
| const Instruction* insn, |
| FPArithmKind arithm, |
| JType op_jty, |
| bool is_2addr) { |
| |
| DecodedInstruction dec_insn(insn); |
| |
| DCHECK(op_jty == kFloat || op_jty == kDouble) << op_jty; |
| |
| llvm::Value* src1_value; |
| llvm::Value* src2_value; |
| |
| if (is_2addr) { |
| src1_value = EmitLoadDalvikReg(dec_insn.vA, op_jty, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| } else { |
| src1_value = EmitLoadDalvikReg(dec_insn.vB, op_jty, kAccurate); |
| src2_value = EmitLoadDalvikReg(dec_insn.vC, op_jty, kAccurate); |
| } |
| |
| llvm::Value* result_value = |
| EmitFPArithmResultComputation(dex_pc, src1_value, src2_value, arithm); |
| |
| EmitStoreDalvikReg(dec_insn.vA, op_jty, kAccurate, result_value); |
| |
| irb_.CreateBr(GetNextBasicBlock(dex_pc)); |
| } |
| |
| |
| llvm::Value* |
| MethodCompiler::EmitFPArithmResultComputation(uint32_t dex_pc, |
| llvm::Value *lhs, |
| llvm::Value *rhs, |
| FPArithmKind arithm) { |
| switch (arithm) { |
| case kFPArithm_Add: |
| return irb_.CreateFAdd(lhs, rhs); |
| |
| case kFPArithm_Sub: |
| return irb_.CreateFSub(lhs, rhs); |
| |
| case kFPArithm_Mul: |
| return irb_.CreateFMul(lhs, rhs); |
| |
| case kFPArithm_Div: |
| return irb_.CreateFDiv(lhs, rhs); |
| |
| case kFPArithm_Rem: |
| return irb_.CreateFRem(lhs, rhs); |
| |
| default: |
| LOG(FATAL) << "Unknown floating-point arithmetic kind: " << arithm; |
| return NULL; |
| } |
| } |
| |
| |
| void MethodCompiler::EmitGuard_DivZeroException(uint32_t dex_pc, |
| llvm::Value* denominator, |
| JType op_jty) { |
| DCHECK(op_jty == kInt || op_jty == kLong) << op_jty; |
| |
| llvm::Constant* zero = irb_.getJZero(op_jty); |
| |
| llvm::Value* equal_zero = irb_.CreateICmpEQ(denominator, zero); |
| |
| llvm::BasicBlock* block_exception = CreateBasicBlockWithDexPC(dex_pc, "div0"); |
| |
| llvm::BasicBlock* block_continue = CreateBasicBlockWithDexPC(dex_pc, "cont"); |
| |
| irb_.CreateCondBr(equal_zero, block_exception, block_continue, kUnlikely); |
| |
| irb_.SetInsertPoint(block_exception); |
| EmitUpdateDexPC(dex_pc); |
| irb_.CreateCall(irb_.GetRuntime(ThrowDivZeroException)); |
| EmitBranchExceptionLandingPad(dex_pc); |
| |
| irb_.SetInsertPoint(block_continue); |
| } |
| |
| |
| void MethodCompiler::EmitGuard_NullPointerException(uint32_t dex_pc, |
| llvm::Value* object) { |
| llvm::Value* equal_null = irb_.CreateICmpEQ(object, irb_.getJNull()); |
| |
| llvm::BasicBlock* block_exception = |
| CreateBasicBlockWithDexPC(dex_pc, "nullp"); |
| |
| llvm::BasicBlock* block_continue = |
| CreateBasicBlockWithDexPC(dex_pc, "cont"); |
| |
| irb_.CreateCondBr(equal_null, block_exception, block_continue, kUnlikely); |
| |
| irb_.SetInsertPoint(block_exception); |
| EmitUpdateDexPC(dex_pc); |
| irb_.CreateCall(irb_.GetRuntime(ThrowNullPointerException), irb_.getInt32(dex_pc)); |
| EmitBranchExceptionLandingPad(dex_pc); |
| |
| irb_.SetInsertPoint(block_continue); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitLoadDexCacheAddr(MemberOffset offset) { |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| return irb_.LoadFromObjectOffset(method_object_addr, |
| offset.Int32Value(), |
| irb_.getJObjectTy(), |
| kTBAAConstJObject); |
| } |
| |
| |
| llvm::Value* MethodCompiler:: |
| EmitLoadDexCacheStaticStorageFieldAddr(uint32_t type_idx) { |
| llvm::Value* static_storage_dex_cache_addr = |
| EmitLoadDexCacheAddr(AbstractMethod::DexCacheInitializedStaticStorageOffset()); |
| |
| llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx); |
| |
| return EmitArrayGEP(static_storage_dex_cache_addr, type_idx_value, kObject); |
| } |
| |
| |
| llvm::Value* MethodCompiler:: |
| EmitLoadDexCacheResolvedTypeFieldAddr(uint32_t type_idx) { |
| llvm::Value* resolved_type_dex_cache_addr = |
| EmitLoadDexCacheAddr(AbstractMethod::DexCacheResolvedTypesOffset()); |
| |
| llvm::Value* type_idx_value = irb_.getPtrEquivInt(type_idx); |
| |
| return EmitArrayGEP(resolved_type_dex_cache_addr, type_idx_value, kObject); |
| } |
| |
| |
| llvm::Value* MethodCompiler:: |
| EmitLoadDexCacheResolvedMethodFieldAddr(uint32_t method_idx) { |
| llvm::Value* resolved_method_dex_cache_addr = |
| EmitLoadDexCacheAddr(AbstractMethod::DexCacheResolvedMethodsOffset()); |
| |
| llvm::Value* method_idx_value = irb_.getPtrEquivInt(method_idx); |
| |
| return EmitArrayGEP(resolved_method_dex_cache_addr, method_idx_value, kObject); |
| } |
| |
| |
| llvm::Value* MethodCompiler:: |
| EmitLoadDexCacheStringFieldAddr(uint32_t string_idx) { |
| llvm::Value* string_dex_cache_addr = |
| EmitLoadDexCacheAddr(AbstractMethod::DexCacheStringsOffset()); |
| |
| llvm::Value* string_idx_value = irb_.getPtrEquivInt(string_idx); |
| |
| return EmitArrayGEP(string_dex_cache_addr, string_idx_value, kObject); |
| } |
| |
| |
| CompiledMethod *MethodCompiler::Compile() { |
| // TODO: Use high-level IR to do this |
| // Compute method info |
| ComputeMethodInfo(); |
| |
| // Code generation |
| CreateFunction(); |
| |
| EmitPrologue(); |
| EmitInstructions(); |
| EmitPrologueLastBranch(); |
| |
| // Verify the generated bitcode |
| VERIFY_LLVM_FUNCTION(*func_); |
| |
| cunit_->Materialize(); |
| |
| Compiler::MethodReference mref(dex_file_, method_idx_); |
| return new CompiledMethod(cunit_->GetInstructionSet(), |
| cunit_->GetCompiledCode(), |
| *verifier::MethodVerifier::GetDexGcMap(mref)); |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitLoadMethodObjectAddr() { |
| return func_->arg_begin(); |
| } |
| |
| |
| void MethodCompiler::EmitBranchExceptionLandingPad(uint32_t dex_pc) { |
| if (llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc)) { |
| irb_.CreateBr(lpad); |
| } else { |
| irb_.CreateBr(GetUnwindBasicBlock()); |
| } |
| } |
| |
| |
| void MethodCompiler::EmitGuard_ExceptionLandingPad(uint32_t dex_pc, bool can_skip_unwind) { |
| llvm::BasicBlock* lpad = GetLandingPadBasicBlock(dex_pc); |
| const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); |
| if (lpad == NULL && can_skip_unwind && |
| IsInstructionDirectToReturn(dex_pc + insn->SizeInCodeUnits())) { |
| return; |
| } |
| |
| llvm::Value* exception_pending = irb_.Runtime().EmitIsExceptionPending(); |
| |
| llvm::BasicBlock* block_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); |
| |
| if (lpad) { |
| irb_.CreateCondBr(exception_pending, lpad, block_cont, kUnlikely); |
| } else { |
| irb_.CreateCondBr(exception_pending, GetUnwindBasicBlock(), block_cont, kUnlikely); |
| } |
| |
| irb_.SetInsertPoint(block_cont); |
| } |
| |
| |
| void MethodCompiler::EmitGuard_GarbageCollectionSuspend(uint32_t dex_pc) { |
| llvm::Value* suspend_count = |
| irb_.Runtime().EmitLoadFromThreadOffset(Thread::ThreadFlagsOffset().Int32Value(), |
| irb_.getInt16Ty(), |
| kTBAARuntimeInfo); |
| llvm::Value* is_suspend = irb_.CreateICmpNE(suspend_count, irb_.getInt16(0)); |
| |
| llvm::BasicBlock* basic_block_suspend = CreateBasicBlockWithDexPC(dex_pc, "suspend"); |
| llvm::BasicBlock* basic_block_cont = CreateBasicBlockWithDexPC(dex_pc, "suspend_cont"); |
| |
| irb_.CreateCondBr(is_suspend, basic_block_suspend, basic_block_cont, kUnlikely); |
| |
| irb_.SetInsertPoint(basic_block_suspend); |
| if (dex_pc != DexFile::kDexNoIndex) { |
| EmitUpdateDexPC(dex_pc); |
| } |
| irb_.Runtime().EmitTestSuspend(); |
| irb_.CreateBr(basic_block_cont); |
| |
| irb_.SetInsertPoint(basic_block_cont); |
| } |
| |
| |
| llvm::BasicBlock* MethodCompiler:: |
| CreateBasicBlockWithDexPC(uint32_t dex_pc, const char* postfix) { |
| std::string name; |
| |
| #if !defined(NDEBUG) |
| if (postfix) { |
| StringAppendF(&name, "B%04x.%s", dex_pc, postfix); |
| } else { |
| StringAppendF(&name, "B%04x", dex_pc); |
| } |
| #endif |
| |
| return llvm::BasicBlock::Create(*context_, name, func_); |
| } |
| |
| |
| llvm::BasicBlock* MethodCompiler::GetBasicBlock(uint32_t dex_pc) { |
| DCHECK(dex_pc < code_item_->insns_size_in_code_units_); |
| |
| llvm::BasicBlock* basic_block = basic_blocks_[dex_pc]; |
| |
| if (!basic_block) { |
| basic_block = CreateBasicBlockWithDexPC(dex_pc); |
| basic_blocks_[dex_pc] = basic_block; |
| } |
| |
| return basic_block; |
| } |
| |
| |
| llvm::BasicBlock* |
| MethodCompiler::GetNextBasicBlock(uint32_t dex_pc) { |
| const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); |
| return GetBasicBlock(dex_pc + insn->SizeInCodeUnits()); |
| } |
| |
| |
| int32_t MethodCompiler::GetTryItemOffset(uint32_t dex_pc) { |
| // TODO: Since we are emitting the dex instructions in ascending order |
| // w.r.t. address, we can cache the lastest try item offset so that we |
| // don't have to do binary search for every query. |
| |
| int32_t min = 0; |
| int32_t max = code_item_->tries_size_ - 1; |
| |
| while (min <= max) { |
| int32_t mid = min + (max - min) / 2; |
| |
| const DexFile::TryItem* ti = DexFile::GetTryItems(*code_item_, mid); |
| uint32_t start = ti->start_addr_; |
| uint32_t end = start + ti->insn_count_; |
| |
| if (dex_pc < start) { |
| max = mid - 1; |
| } else if (dex_pc >= end) { |
| min = mid + 1; |
| } else { |
| return mid; // found |
| } |
| } |
| |
| return -1; // not found |
| } |
| |
| |
| llvm::BasicBlock* MethodCompiler::GetLandingPadBasicBlock(uint32_t dex_pc) { |
| // Find the try item for this address in this method |
| int32_t ti_offset = GetTryItemOffset(dex_pc); |
| |
| if (ti_offset == -1) { |
| return NULL; // No landing pad is available for this address. |
| } |
| |
| // Check for the existing landing pad basic block |
| DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset)); |
| llvm::BasicBlock* block_lpad = basic_block_landing_pads_[ti_offset]; |
| |
| if (block_lpad) { |
| // We have generated landing pad for this try item already. Return the |
| // same basic block. |
| return block_lpad; |
| } |
| |
| // Get try item from code item |
| const DexFile::TryItem* ti = DexFile::GetTryItems(*code_item_, ti_offset); |
| |
| std::string lpadname; |
| |
| #if !defined(NDEBUG) |
| StringAppendF(&lpadname, "lpad%d_%04x_to_%04x", ti_offset, ti->start_addr_, ti->handler_off_); |
| #endif |
| |
| // Create landing pad basic block |
| block_lpad = llvm::BasicBlock::Create(*context_, lpadname, func_); |
| |
| // Change IRBuilder insert point |
| llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); |
| irb_.SetInsertPoint(block_lpad); |
| |
| // Find catch block with matching type |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| llvm::Value* ti_offset_value = irb_.getInt32(ti_offset); |
| |
| llvm::Value* catch_handler_index_value = |
| irb_.CreateCall2(irb_.GetRuntime(FindCatchBlock), |
| method_object_addr, ti_offset_value); |
| |
| // Switch instruction (Go to unwind basic block by default) |
| llvm::SwitchInst* sw = |
| irb_.CreateSwitch(catch_handler_index_value, GetUnwindBasicBlock()); |
| |
| // Cases with matched catch block |
| CatchHandlerIterator iter(*code_item_, ti->start_addr_); |
| |
| for (uint32_t c = 0; iter.HasNext(); iter.Next(), ++c) { |
| sw->addCase(irb_.getInt32(c), GetBasicBlock(iter.GetHandlerAddress())); |
| } |
| |
| // Restore the orignal insert point for IRBuilder |
| irb_.restoreIP(irb_ip_original); |
| |
| // Cache this landing pad |
| DCHECK_GT(basic_block_landing_pads_.size(), static_cast<size_t>(ti_offset)); |
| basic_block_landing_pads_[ti_offset] = block_lpad; |
| |
| return block_lpad; |
| } |
| |
| |
| llvm::BasicBlock* MethodCompiler::GetUnwindBasicBlock() { |
| // Check the existing unwinding baisc block block |
| if (basic_block_unwind_ != NULL) { |
| return basic_block_unwind_; |
| } |
| |
| // Create new basic block for unwinding |
| basic_block_unwind_ = |
| llvm::BasicBlock::Create(*context_, "exception_unwind", func_); |
| |
| // Change IRBuilder insert point |
| llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); |
| irb_.SetInsertPoint(basic_block_unwind_); |
| |
| // Pop the shadow frame |
| EmitPopShadowFrame(); |
| |
| // Emit the code to return default value (zero) for the given return type. |
| char ret_shorty = oat_compilation_unit_->GetShorty()[0]; |
| if (ret_shorty == 'V') { |
| irb_.CreateRetVoid(); |
| } else { |
| irb_.CreateRet(irb_.getJZero(ret_shorty)); |
| } |
| |
| // Restore the orignal insert point for IRBuilder |
| irb_.restoreIP(irb_ip_original); |
| |
| return basic_block_unwind_; |
| } |
| |
| |
| llvm::Value* MethodCompiler::AllocDalvikReg(RegCategory cat, const std::string& name) { |
| // Get reg_type and reg_name from DalvikReg |
| llvm::Type* reg_type = DalvikReg::GetRegCategoryEquivSizeTy(irb_, cat); |
| std::string reg_name; |
| |
| #if !defined(NDEBUG) |
| StringAppendF(®_name, "%c%s", DalvikReg::GetRegCategoryNamePrefix(cat), name.c_str()); |
| #endif |
| |
| // Save current IR builder insert point |
| llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); |
| irb_.SetInsertPoint(basic_block_alloca_); |
| |
| // Alloca |
| llvm::Value* reg_addr = irb_.CreateAlloca(reg_type, 0, reg_name); |
| |
| // Restore IRBuilder insert point |
| irb_.restoreIP(irb_ip_original); |
| |
| DCHECK_NE(reg_addr, static_cast<llvm::Value*>(NULL)); |
| return reg_addr; |
| } |
| |
| |
| llvm::Value* MethodCompiler::GetVRegEntry(uint32_t reg_idx) { |
| if (!method_info_.need_shadow_frame_entry) { |
| return NULL; |
| } |
| |
| std::string reg_name; |
| |
| #if !defined(NDEBUG) |
| StringAppendF(®_name, "v%u", reg_idx); |
| #endif |
| |
| // Save current IR builder insert point |
| llvm::IRBuilderBase::InsertPoint irb_ip_original = irb_.saveIP(); |
| |
| irb_.SetInsertPoint(basic_block_shadow_frame_); |
| |
| llvm::Value* gep_index[] = { |
| irb_.getInt32(0), // No pointer displacement |
| irb_.getInt32(1), // VRegs |
| irb_.getInt32(reg_idx) // Pointer field |
| }; |
| |
| llvm::Value* reg_addr = irb_.CreateGEP(shadow_frame_, gep_index, reg_name); |
| |
| // Restore IRBuilder insert point |
| irb_.restoreIP(irb_ip_original); |
| |
| DCHECK_NE(reg_addr, static_cast<llvm::Value*>(NULL)); |
| return reg_addr; |
| } |
| |
| |
| void MethodCompiler::EmitPushShadowFrame(bool is_inline) { |
| if (!method_info_.need_shadow_frame) { |
| return; |
| } |
| DCHECK(shadow_frame_ != NULL); |
| DCHECK(old_shadow_frame_ != NULL); |
| |
| // Get method object |
| llvm::Value* method_object_addr = EmitLoadMethodObjectAddr(); |
| |
| // Push the shadow frame |
| llvm::Value* shadow_frame_upcast = |
| irb_.CreateConstGEP2_32(shadow_frame_, 0, 0); |
| |
| llvm::Value* result; |
| if (is_inline) { |
| result = irb_.Runtime().EmitPushShadowFrame(shadow_frame_upcast, method_object_addr, |
| code_item_->registers_size_); |
| } else { |
| result = irb_.Runtime().EmitPushShadowFrameNoInline(shadow_frame_upcast, method_object_addr, |
| code_item_->registers_size_); |
| } |
| irb_.CreateStore(result, old_shadow_frame_, kTBAARegister); |
| } |
| |
| |
| void MethodCompiler::EmitPopShadowFrame() { |
| if (!method_info_.need_shadow_frame) { |
| return; |
| } |
| DCHECK(old_shadow_frame_ != NULL); |
| |
| if (method_info_.lazy_push_shadow_frame) { |
| llvm::BasicBlock* bb_pop = llvm::BasicBlock::Create(*context_, "pop", func_); |
| llvm::BasicBlock* bb_cont = llvm::BasicBlock::Create(*context_, "cont", func_); |
| |
| llvm::Value* need_pop = irb_.CreateLoad(already_pushed_shadow_frame_, kTBAARegister); |
| irb_.CreateCondBr(need_pop, bb_pop, bb_cont, kUnlikely); |
| |
| irb_.SetInsertPoint(bb_pop); |
| irb_.Runtime().EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister)); |
| irb_.CreateBr(bb_cont); |
| |
| irb_.SetInsertPoint(bb_cont); |
| } else { |
| irb_.Runtime().EmitPopShadowFrame(irb_.CreateLoad(old_shadow_frame_, kTBAARegister)); |
| } |
| } |
| |
| |
| void MethodCompiler::EmitUpdateDexPC(uint32_t dex_pc) { |
| if (!method_info_.need_shadow_frame) { |
| return; |
| } |
| irb_.StoreToObjectOffset(shadow_frame_, |
| ShadowFrame::DexPCOffset(), |
| irb_.getInt32(dex_pc), |
| kTBAAShadowFrame); |
| // Lazy pushing shadow frame |
| if (method_info_.lazy_push_shadow_frame) { |
| llvm::BasicBlock* bb_push = CreateBasicBlockWithDexPC(dex_pc, "push"); |
| llvm::BasicBlock* bb_cont = CreateBasicBlockWithDexPC(dex_pc, "cont"); |
| |
| llvm::Value* no_need_push = irb_.CreateLoad(already_pushed_shadow_frame_, kTBAARegister); |
| irb_.CreateCondBr(no_need_push, bb_cont, bb_push, kLikely); |
| |
| irb_.SetInsertPoint(bb_push); |
| EmitPushShadowFrame(false); |
| irb_.CreateStore(irb_.getTrue(), already_pushed_shadow_frame_, kTBAARegister); |
| irb_.CreateBr(bb_cont); |
| |
| irb_.SetInsertPoint(bb_cont); |
| } |
| } |
| |
| |
| llvm::Value* MethodCompiler::EmitLoadDalvikReg(uint32_t reg_idx, JType jty, |
| JTypeSpace space) { |
| return regs_[reg_idx]->GetValue(jty, space); |
| } |
| |
| llvm::Value* MethodCompiler::EmitLoadDalvikReg(uint32_t reg_idx, char shorty, |
| JTypeSpace space) { |
| return EmitLoadDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space); |
| } |
| |
| void MethodCompiler::EmitStoreDalvikReg(uint32_t reg_idx, JType jty, |
| JTypeSpace space, llvm::Value* new_value) { |
| regs_[reg_idx]->SetValue(jty, space, new_value); |
| } |
| |
| void MethodCompiler::EmitStoreDalvikReg(uint32_t reg_idx, char shorty, |
| JTypeSpace space, llvm::Value* new_value) { |
| EmitStoreDalvikReg(reg_idx, GetJTypeFromShorty(shorty), space, new_value); |
| } |
| |
| llvm::Value* MethodCompiler::EmitLoadDalvikRetValReg(JType jty, JTypeSpace space) { |
| return retval_reg_->GetValue(jty, space); |
| } |
| |
| llvm::Value* MethodCompiler::EmitLoadDalvikRetValReg(char shorty, JTypeSpace space) { |
| return EmitLoadDalvikRetValReg(GetJTypeFromShorty(shorty), space); |
| } |
| |
| void MethodCompiler::EmitStoreDalvikRetValReg(JType jty, JTypeSpace space, |
| llvm::Value* new_value) { |
| retval_reg_->SetValue(jty, space, new_value); |
| } |
| |
| void MethodCompiler::EmitStoreDalvikRetValReg(char shorty, JTypeSpace space, |
| llvm::Value* new_value) { |
| EmitStoreDalvikRetValReg(GetJTypeFromShorty(shorty), space, new_value); |
| } |
| |
| |
| // TODO: Use high-level IR to do this |
| bool MethodCompiler::EmitInlineJavaIntrinsic(const std::string& callee_method_name, |
| const std::vector<llvm::Value*>& args, |
| llvm::BasicBlock* after_invoke) { |
| if (callee_method_name == "char java.lang.String.charAt(int)") { |
| return EmitInlinedStringCharAt(args, after_invoke); |
| } |
| if (callee_method_name == "int java.lang.String.length()") { |
| return EmitInlinedStringLength(args, after_invoke); |
| } |
| if (callee_method_name == "int java.lang.String.indexOf(int, int)") { |
| return EmitInlinedStringIndexOf(args, after_invoke, false /* base 0 */); |
| } |
| if (callee_method_name == "int java.lang.String.indexOf(int)") { |
| return EmitInlinedStringIndexOf(args, after_invoke, true /* base 0 */); |
| } |
| if (callee_method_name == "int java.lang.String.compareTo(java.lang.String)") { |
| return EmitInlinedStringCompareTo(args, after_invoke); |
| } |
| return true; |
| } |
| |
| bool MethodCompiler::EmitInlinedStringCharAt(const std::vector<llvm::Value*>& args, |
| llvm::BasicBlock* after_invoke) { |
| DCHECK_EQ(args.size(), 3U) << |
| "char java.lang.String.charAt(int) has 3 args: method, this, char_index"; |
| llvm::Value* this_object = args[1]; |
| llvm::Value* char_index = args[2]; |
| llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "CharAtRetry", func_); |
| llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "CharAtCont", func_); |
| |
| llvm::Value* string_count = irb_.LoadFromObjectOffset(this_object, |
| String::CountOffset().Int32Value(), |
| irb_.getJIntTy(), |
| kTBAAConstJObject); |
| // Two's complement, so we can use only one "less than" to check "in bounds" |
| llvm::Value* in_bounds = irb_.CreateICmpULT(char_index, string_count); |
| irb_.CreateCondBr(in_bounds, block_cont, block_retry, kLikely); |
| |
| irb_.SetInsertPoint(block_cont); |
| llvm::Value* string_offset = irb_.LoadFromObjectOffset(this_object, |
| String::OffsetOffset().Int32Value(), |
| irb_.getJIntTy(), |
| kTBAAConstJObject); |
| llvm::Value* string_value = irb_.LoadFromObjectOffset(this_object, |
| String::ValueOffset().Int32Value(), |
| irb_.getJObjectTy(), |
| kTBAAConstJObject); |
| |
| // index_value = string.offset + char_index |
| llvm::Value* index_value = irb_.CreateAdd(string_offset, char_index); |
| |
| // array_elem_value = string.value[index_value] |
| llvm::Value* array_elem_addr = EmitArrayGEP(string_value, index_value, kChar); |
| llvm::Value* array_elem_value = irb_.CreateLoad(array_elem_addr, kTBAAHeapArray, kChar); |
| |
| EmitStoreDalvikRetValReg(kChar, kArray, array_elem_value); |
| irb_.CreateBr(after_invoke); |
| |
| irb_.SetInsertPoint(block_retry); |
| return true; |
| } |
| |
| bool MethodCompiler::EmitInlinedStringLength(const std::vector<llvm::Value*>& args, |
| llvm::BasicBlock* after_invoke) { |
| DCHECK_EQ(args.size(), 2U) << |
| "int java.lang.String.length() has 2 args: method, this"; |
| llvm::Value* this_object = args[1]; |
| llvm::Value* string_count = irb_.LoadFromObjectOffset(this_object, |
| String::CountOffset().Int32Value(), |
| irb_.getJIntTy(), |
| kTBAAConstJObject); |
| EmitStoreDalvikRetValReg(kInt, kAccurate, string_count); |
| irb_.CreateBr(after_invoke); |
| return false; |
| } |
| |
| bool MethodCompiler::EmitInlinedStringIndexOf(const std::vector<llvm::Value*>& args, |
| llvm::BasicBlock* after_invoke, |
| bool zero_based) { |
| // TODO: Don't generate target specific bitcode, using intrinsic to delay to codegen. |
| if (compiler_->GetInstructionSet() == kArm || compiler_->GetInstructionSet() == kThumb2) { |
| DCHECK_EQ(args.size(), (zero_based ? 3U : 4U)) << |
| "int java.lang.String.indexOf(int, int = 0) has 3~4 args: method, this, char, start"; |
| llvm::Value* this_object = args[1]; |
| llvm::Value* char_target = args[2]; |
| llvm::Value* start_index = (zero_based ? irb_.getJInt(0) : args[3]); |
| llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "IndexOfRetry", func_); |
| llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "IndexOfCont", func_); |
| |
| llvm::Value* slowpath = irb_.CreateICmpSGT(char_target, irb_.getJInt(0xFFFF)); |
| irb_.CreateCondBr(slowpath, block_retry, block_cont, kUnlikely); |
| |
| irb_.SetInsertPoint(block_cont); |
| |
| llvm::Type* args_type[] = { irb_.getJObjectTy(), irb_.getJIntTy(), irb_.getJIntTy() }; |
| llvm::FunctionType* func_ty = llvm::FunctionType::get(irb_.getJIntTy(), args_type, false); |
| llvm::Value* func = |
| irb_.Runtime().EmitLoadFromThreadOffset(ENTRYPOINT_OFFSET(pIndexOf), |
| func_ty->getPointerTo(), |
| kTBAAConstJObject); |
| llvm::Value* result = irb_.CreateCall3(func, this_object, char_target, start_index); |
| EmitStoreDalvikRetValReg(kInt, kAccurate, result); |
| irb_.CreateBr(after_invoke); |
| |
| irb_.SetInsertPoint(block_retry); |
| } |
| return true; |
| } |
| |
| bool MethodCompiler::EmitInlinedStringCompareTo(const std::vector<llvm::Value*>& args, |
| llvm::BasicBlock* after_invoke) { |
| // TODO: Don't generate target specific bitcode, using intrinsic to delay to codegen. |
| if (compiler_->GetInstructionSet() == kArm || compiler_->GetInstructionSet() == kThumb2) { |
| DCHECK_EQ(args.size(), 3U) << |
| "int java.lang.String.compareTo(java.lang.String) has 3 args: method, this, cmpto"; |
| llvm::Value* this_object = args[1]; |
| llvm::Value* cmp_object = args[2]; |
| llvm::BasicBlock* block_retry = llvm::BasicBlock::Create(*context_, "CompareToRetry", func_); |
| llvm::BasicBlock* block_cont = llvm::BasicBlock::Create(*context_, "CompareToCont", func_); |
| |
| llvm::Value* is_null = irb_.CreateICmpEQ(cmp_object, irb_.getJNull()); |
| irb_.CreateCondBr(is_null, block_retry, block_cont, kUnlikely); |
| |
| irb_.SetInsertPoint(block_cont); |
| |
| llvm::Type* args_type[] = { irb_.getJObjectTy(), irb_.getJObjectTy() }; |
| llvm::FunctionType* func_ty = llvm::FunctionType::get(irb_.getJIntTy(), args_type, false); |
| llvm::Value* func = |
| irb_.Runtime().EmitLoadFromThreadOffset(ENTRYPOINT_OFFSET(pStringCompareTo), |
| func_ty->getPointerTo(), |
| kTBAAConstJObject); |
| llvm::Value* result = irb_.CreateCall2(func, this_object, cmp_object); |
| EmitStoreDalvikRetValReg(kInt, kAccurate, result); |
| irb_.CreateBr(after_invoke); |
| |
| irb_.SetInsertPoint(block_retry); |
| } |
| return true; |
| } |
| |
| |
| bool MethodCompiler::IsInstructionDirectToReturn(uint32_t dex_pc) { |
| for (int i = 0; i < 8; ++i) { // Trace at most 8 instructions. |
| if (dex_pc >= code_item_->insns_size_in_code_units_) { |
| return false; |
| } |
| |
| const Instruction* insn = Instruction::At(code_item_->insns_ + dex_pc); |
| |
| if (insn->IsReturn()) { |
| return true; |
| } |
| |
| // Is throw, switch, invoke or conditional branch. |
| if (insn->IsThrow() || insn->IsSwitch() || insn->IsInvoke() || |
| (insn->IsBranch() && !insn->IsUnconditional())) { |
| return false; |
| } |
| |
| switch (insn->Opcode()) { |
| default: |
| dex_pc += insn->SizeInCodeUnits(); |
| break; |
| |
| // This instruction will remove the exception. Consider as a side effect. |
| case Instruction::MOVE_EXCEPTION: |
| return false; |
| break; |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| { |
| DecodedInstruction dec_insn(insn); |
| int32_t branch_offset = dec_insn.vA; |
| dex_pc += branch_offset; |
| } |
| break; |
| } |
| } |
| return false; |
| } |
| |
| |
| // TODO: Use high-level IR to do this |
| void MethodCompiler::ComputeMethodInfo() { |
| // If this method is static, we set the "this" register index to -1. So we don't worry about this |
| // method is static or not in the following comparison. |
| int64_t this_reg_idx = (oat_compilation_unit_->IsStatic()) ? |
| (-1) : |
| (code_item_->registers_size_ - code_item_->ins_size_); |
| bool has_invoke = false; |
| bool may_have_loop = false; |
| bool may_throw_exception = false; |
| bool assume_this_non_null = false; |
| std::vector<bool>& set_to_another_object = method_info_.set_to_another_object; |
| set_to_another_object.resize(code_item_->registers_size_, false); |
| |
| const Instruction* insn; |
| for (uint32_t dex_pc = 0; |
| dex_pc < code_item_->insns_size_in_code_units_; |
| dex_pc += insn->SizeInCodeUnits()) { |
| insn = Instruction::At(code_item_->insns_ + dex_pc); |
| DecodedInstruction dec_insn(insn); |
| |
| switch (insn->Opcode()) { |
| case Instruction::NOP: |
| break; |
| |
| case Instruction::MOVE: |
| case Instruction::MOVE_FROM16: |
| case Instruction::MOVE_16: |
| case Instruction::MOVE_WIDE: |
| case Instruction::MOVE_WIDE_FROM16: |
| case Instruction::MOVE_WIDE_16: |
| case Instruction::MOVE_RESULT: |
| case Instruction::MOVE_RESULT_WIDE: |
| break; |
| |
| case Instruction::MOVE_OBJECT: |
| case Instruction::MOVE_OBJECT_FROM16: |
| case Instruction::MOVE_OBJECT_16: |
| case Instruction::MOVE_RESULT_OBJECT: |
| case Instruction::MOVE_EXCEPTION: |
| set_to_another_object[dec_insn.vA] = true; |
| break; |
| |
| case Instruction::RETURN_VOID: |
| case Instruction::RETURN: |
| case Instruction::RETURN_WIDE: |
| case Instruction::RETURN_OBJECT: |
| break; |
| |
| case Instruction::CONST_4: |
| case Instruction::CONST_16: |
| case Instruction::CONST: |
| case Instruction::CONST_HIGH16: |
| set_to_another_object[dec_insn.vA] = true; |
| break; |
| |
| case Instruction::CONST_WIDE_16: |
| case Instruction::CONST_WIDE_32: |
| case Instruction::CONST_WIDE: |
| case Instruction::CONST_WIDE_HIGH16: |
| break; |
| |
| case Instruction::CONST_STRING: |
| case Instruction::CONST_STRING_JUMBO: |
| // TODO: Will the ResolveString throw exception? |
| if (!compiler_->CanAssumeStringIsPresentInDexCache(*dex_file_, dec_insn.vB)) { |
| may_throw_exception = true; |
| } |
| set_to_another_object[dec_insn.vA] = true; |
| break; |
| |
| case Instruction::CONST_CLASS: |
| may_throw_exception = true; |
| set_to_another_object[dec_insn.vA] = true; |
| break; |
| |
| case Instruction::MONITOR_ENTER: |
| case Instruction::MONITOR_EXIT: |
| case Instruction::CHECK_CAST: |
| may_throw_exception = true; |
| break; |
| |
| case Instruction::ARRAY_LENGTH: |
| may_throw_exception = true; |
| break; |
| |
| case Instruction::INSTANCE_OF: |
| case Instruction::NEW_INSTANCE: |
| case Instruction::NEW_ARRAY: |
| may_throw_exception = true; |
| set_to_another_object[dec_insn.vA] = true; |
| break; |
| |
| case Instruction::FILLED_NEW_ARRAY: |
| case Instruction::FILLED_NEW_ARRAY_RANGE: |
| case Instruction::FILL_ARRAY_DATA: |
| case Instruction::THROW: |
| may_throw_exception = true; |
| break; |
| |
| case Instruction::GOTO: |
| case Instruction::GOTO_16: |
| case Instruction::GOTO_32: |
| { |
| int32_t branch_offset = dec_insn.vA; |
| if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { |
| may_have_loop = true; |
| } |
| } |
| break; |
| |
| case Instruction::PACKED_SWITCH: |
| case Instruction::SPARSE_SWITCH: |
| case Instruction::CMPL_FLOAT: |
| case Instruction::CMPG_FLOAT: |
| case Instruction::CMPL_DOUBLE: |
| case Instruction::CMPG_DOUBLE: |
| case Instruction::CMP_LONG: |
| break; |
| |
| case Instruction::IF_EQ: |
| case Instruction::IF_NE: |
| case Instruction::IF_LT: |
| case Instruction::IF_GE: |
| case Instruction::IF_GT: |
| case Instruction::IF_LE: |
| { |
| int32_t branch_offset = dec_insn.vC; |
| if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { |
| may_have_loop = true; |
| } |
| } |
| break; |
| |
| case Instruction::IF_EQZ: |
| case Instruction::IF_NEZ: |
| case Instruction::IF_LTZ: |
| case Instruction::IF_GEZ: |
| case Instruction::IF_GTZ: |
| case Instruction::IF_LEZ: |
| { |
| int32_t branch_offset = dec_insn.vB; |
| if (branch_offset <= 0 && !IsInstructionDirectToReturn(dex_pc + branch_offset)) { |
| may_have_loop = true; |
| } |
| } |
| break; |
| |
| case Instruction::AGET: |
| case Instruction::AGET_WIDE: |
| case Instruction::AGET_OBJECT: |
| case Instruction::AGET_BOOLEAN: |
| case Instruction::AGET_BYTE: |
| case Instruction::AGET_CHAR: |
| case Instruction::AGET_SHORT: |
| may_throw_exception = true; |
| if (insn->Opcode() == Instruction::AGET_OBJECT) { |
| set_to_another_object[dec_insn.vA] = true; |
| } |
| break; |
| |
| case Instruction::APUT: |
| case Instruction::APUT_WIDE: |
| case Instruction::APUT_OBJECT: |
| case Instruction::APUT_BOOLEAN: |
| case Instruction::APUT_BYTE: |
| case Instruction::APUT_CHAR: |
| case Instruction::APUT_SHORT: |
| may_throw_exception = true; |
| break; |
| |
| case Instruction::IGET: |
| case Instruction::IGET_WIDE: |
| case Instruction::IGET_OBJECT: |
| case Instruction::IGET_BOOLEAN: |
| case Instruction::IGET_BYTE: |
| case Instruction::IGET_CHAR: |
| case Instruction::IGET_SHORT: |
| { |
| if (insn->Opcode() == Instruction::IGET_OBJECT) { |
| set_to_another_object[dec_insn.vA] = true; |
| } |
| uint32_t reg_idx = dec_insn.vB; |
| uint32_t field_idx = dec_insn.vC; |
| int field_offset; |
| bool is_volatile; |
| bool is_fast_path = compiler_->ComputeInstanceFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, is_volatile, false); |
| if (!is_fast_path) { |
| may_throw_exception = true; |
| } else { |
| // Fast-path, may throw NullPointerException |
| if (reg_idx == this_reg_idx) { |
| // We assume "this" will not be null at first. |
| assume_this_non_null = true; |
| } else { |
| may_throw_exception = true; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::IPUT: |
| case Instruction::IPUT_WIDE: |
| case Instruction::IPUT_OBJECT: |
| case Instruction::IPUT_BOOLEAN: |
| case Instruction::IPUT_BYTE: |
| case Instruction::IPUT_CHAR: |
| case Instruction::IPUT_SHORT: |
| { |
| uint32_t reg_idx = dec_insn.vB; |
| uint32_t field_idx = dec_insn.vC; |
| int field_offset; |
| bool is_volatile; |
| bool is_fast_path = compiler_->ComputeInstanceFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, is_volatile, true); |
| if (!is_fast_path) { |
| may_throw_exception = true; |
| } else { |
| // Fast-path, may throw NullPointerException |
| if (reg_idx == this_reg_idx) { |
| // We assume "this" will not be null at first. |
| assume_this_non_null = true; |
| } else { |
| may_throw_exception = true; |
| } |
| } |
| } |
| break; |
| |
| case Instruction::SGET: |
| case Instruction::SGET_WIDE: |
| case Instruction::SGET_OBJECT: |
| case Instruction::SGET_BOOLEAN: |
| case Instruction::SGET_BYTE: |
| case Instruction::SGET_CHAR: |
| case Instruction::SGET_SHORT: |
| { |
| if (insn->Opcode() == Instruction::SGET_OBJECT) { |
| set_to_another_object[dec_insn.vA] = true; |
| } |
| uint32_t field_idx = dec_insn.vB; |
| |
| int field_offset; |
| int ssb_index; |
| bool is_referrers_class; |
| bool is_volatile; |
| |
| bool is_fast_path = compiler_->ComputeStaticFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, ssb_index, |
| is_referrers_class, is_volatile, false); |
| if (!is_fast_path || !is_referrers_class) { |
| may_throw_exception = true; |
| } |
| } |
| break; |
| |
| case Instruction::SPUT: |
| case Instruction::SPUT_WIDE: |
| case Instruction::SPUT_OBJECT: |
| case Instruction::SPUT_BOOLEAN: |
| case Instruction::SPUT_BYTE: |
| case Instruction::SPUT_CHAR: |
| case Instruction::SPUT_SHORT: |
| { |
| uint32_t field_idx = dec_insn.vB; |
| |
| int field_offset; |
| int ssb_index; |
| bool is_referrers_class; |
| bool is_volatile; |
| |
| bool is_fast_path = compiler_->ComputeStaticFieldInfo( |
| field_idx, oat_compilation_unit_, field_offset, ssb_index, |
| is_referrers_class, is_volatile, true); |
| if (!is_fast_path || !is_referrers_class) { |
| may_throw_exception = true; |
| } |
| } |
| break; |
| |
| |
| case Instruction::INVOKE_VIRTUAL: |
| case Instruction::INVOKE_SUPER: |
| case Instruction::INVOKE_DIRECT: |
| case Instruction::INVOKE_STATIC: |
| case Instruction::INVOKE_INTERFACE: |
| case Instruction::INVOKE_VIRTUAL_RANGE: |
| case Instruction::INVOKE_SUPER_RANGE: |
| case Instruction::INVOKE_DIRECT_RANGE: |
| case Instruction::INVOKE_STATIC_RANGE: |
| case Instruction::INVOKE_INTERFACE_RANGE: |
| has_invoke = true; |
| may_throw_exception = true; |
| break; |
| |
| case Instruction::NEG_INT: |
| case Instruction::NOT_INT: |
| case Instruction::NEG_LONG: |
| case Instruction::NOT_LONG: |
| case Instruction::NEG_FLOAT: |
| case Instruction::NEG_DOUBLE: |
| case Instruction::INT_TO_LONG: |
| case Instruction::INT_TO_FLOAT: |
| case Instruction::INT_TO_DOUBLE: |
| case Instruction::LONG_TO_INT: |
| case Instruction::LONG_TO_FLOAT: |
| case Instruction::LONG_TO_DOUBLE: |
| case Instruction::FLOAT_TO_INT: |
| case Instruction::FLOAT_TO_LONG: |
| case Instruction::FLOAT_TO_DOUBLE: |
| case Instruction::DOUBLE_TO_INT: |
| case Instruction::DOUBLE_TO_LONG: |
| case Instruction::DOUBLE_TO_FLOAT: |
| case Instruction::INT_TO_BYTE: |
| case Instruction::INT_TO_CHAR: |
| case Instruction::INT_TO_SHORT: |
| case Instruction::ADD_INT: |
| case Instruction::SUB_INT: |
| case Instruction::MUL_INT: |
| case Instruction::AND_INT: |
| case Instruction::OR_INT: |
| case Instruction::XOR_INT: |
| case Instruction::SHL_INT: |
| case Instruction::SHR_INT: |
| case Instruction::USHR_INT: |
| case Instruction::ADD_LONG: |
| case Instruction::SUB_LONG: |
| case Instruction::MUL_LONG: |
| case Instruction::AND_LONG: |
| case Instruction::OR_LONG: |
| case Instruction::XOR_LONG: |
| case Instruction::SHL_LONG: |
| case Instruction::SHR_LONG: |
| case Instruction::USHR_LONG: |
| case Instruction::ADD_INT_2ADDR: |
| case Instruction::SUB_INT_2ADDR: |
| case Instruction::MUL_INT_2ADDR: |
| case Instruction::AND_INT_2ADDR: |
| case Instruction::OR_INT_2ADDR: |
| case Instruction::XOR_INT_2ADDR: |
| case Instruction::SHL_INT_2ADDR: |
| case Instruction::SHR_INT_2ADDR: |
| case Instruction::USHR_INT_2ADDR: |
| case Instruction::ADD_LONG_2ADDR: |
| case Instruction::SUB_LONG_2ADDR: |
| case Instruction::MUL_LONG_2ADDR: |
| case Instruction::AND_LONG_2ADDR: |
| case Instruction::OR_LONG_2ADDR: |
| case Instruction::XOR_LONG_2ADDR: |
| case Instruction::SHL_LONG_2ADDR: |
| case Instruction::SHR_LONG_2ADDR: |
| case Instruction::USHR_LONG_2ADDR: |
| break; |
| |
| case Instruction::DIV_INT: |
| case Instruction::REM_INT: |
| case Instruction::DIV_LONG: |
| case Instruction::REM_LONG: |
| case Instruction::DIV_INT_2ADDR: |
| case Instruction::REM_INT_2ADDR: |
| case Instruction::DIV_LONG_2ADDR: |
| case Instruction::REM_LONG_2ADDR: |
| may_throw_exception = true; |
| break; |
| |
| case Instruction::ADD_FLOAT: |
| case Instruction::SUB_FLOAT: |
| case Instruction::MUL_FLOAT: |
| case Instruction::DIV_FLOAT: |
| case Instruction::REM_FLOAT: |
| case Instruction::ADD_DOUBLE: |
| case Instruction::SUB_DOUBLE: |
| case Instruction::MUL_DOUBLE: |
| case Instruction::DIV_DOUBLE: |
| case Instruction::REM_DOUBLE: |
| case Instruction::ADD_FLOAT_2ADDR: |
| case Instruction::SUB_FLOAT_2ADDR: |
| case Instruction::MUL_FLOAT_2ADDR: |
| case Instruction::DIV_FLOAT_2ADDR: |
| case Instruction::REM_FLOAT_2ADDR: |
| case Instruction::ADD_DOUBLE_2ADDR: |
| case Instruction::SUB_DOUBLE_2ADDR: |
| case Instruction::MUL_DOUBLE_2ADDR: |
| case Instruction::DIV_DOUBLE_2ADDR: |
| case Instruction::REM_DOUBLE_2ADDR: |
| break; |
| |
| case Instruction::ADD_INT_LIT16: |
| case Instruction::ADD_INT_LIT8: |
| case Instruction::RSUB_INT: |
| case Instruction::RSUB_INT_LIT8: |
| case Instruction::MUL_INT_LIT16: |
| case Instruction::MUL_INT_LIT8: |
| case Instruction::AND_INT_LIT16: |
| case Instruction::AND_INT_LIT8: |
| case Instruction::OR_INT_LIT16: |
| case Instruction::OR_INT_LIT8: |
| case Instruction::XOR_INT_LIT16: |
| case Instruction::XOR_INT_LIT8: |
| case Instruction::SHL_INT_LIT8: |
| case Instruction::SHR_INT_LIT8: |
| case Instruction::USHR_INT_LIT8: |
| break; |
| |
| case Instruction::DIV_INT_LIT16: |
| case Instruction::DIV_INT_LIT8: |
| case Instruction::REM_INT_LIT16: |
| case Instruction::REM_INT_LIT8: |
| if (dec_insn.vC == 0) { |
| may_throw_exception = true; |
| } |
| break; |
| |
| case Instruction::UNUSED_3E: |
| case Instruction::UNUSED_3F: |
| case Instruction::UNUSED_40: |
| case Instruction::UNUSED_41: |
| case Instruction::UNUSED_42: |
| case Instruction::UNUSED_43: |
| case Instruction::UNUSED_73: |
| case Instruction::UNUSED_79: |
| case Instruction::UNUSED_7A: |
| case Instruction::UNUSED_E3: |
| case Instruction::UNUSED_E4: |
| case Instruction::UNUSED_E5: |
| case Instruction::UNUSED_E6: |
| case Instruction::UNUSED_E7: |
| case Instruction::UNUSED_E8: |
| case Instruction::UNUSED_E9: |
| case Instruction::UNUSED_EA: |
| case Instruction::UNUSED_EB: |
| case Instruction::UNUSED_EC: |
| case Instruction::UNUSED_ED: |
| case Instruction::UNUSED_EE: |
| case Instruction::UNUSED_EF: |
| case Instruction::UNUSED_F0: |
| case Instruction::UNUSED_F1: |
| case Instruction::UNUSED_F2: |
| case Instruction::UNUSED_F3: |
| case Instruction::UNUSED_F4: |
| case Instruction::UNUSED_F5: |
| case Instruction::UNUSED_F6: |
| case Instruction::UNUSED_F7: |
| case Instruction::UNUSED_F8: |
| case Instruction::UNUSED_F9: |
| case Instruction::UNUSED_FA: |
| case Instruction::UNUSED_FB: |
| case Instruction::UNUSED_FC: |
| case Instruction::UNUSED_FD: |
| case Instruction::UNUSED_FE: |
| case Instruction::UNUSED_FF: |
| LOG(FATAL) << "Dex file contains UNUSED bytecode: " << insn->Opcode(); |
| break; |
| } |
| } |
| |
| method_info_.this_reg_idx = this_reg_idx; |
| // According to the statistics, there are few methods that modify the "this" pointer. So this is a |
| // simple way to avoid data flow analysis. After we have a high-level IR before IRBuilder, we |
| // should remove this trick. |
| method_info_.this_will_not_be_null = |
| (oat_compilation_unit_->IsStatic()) ? (true) : (!set_to_another_object[this_reg_idx]); |
| method_info_.has_invoke = has_invoke; |
| // If this method has loop or invoke instruction, it may suspend. Thus we need a shadow frame entry |
| // for GC. |
| method_info_.need_shadow_frame_entry = has_invoke || may_have_loop; |
| // If this method may throw an exception, we need a shadow frame for stack trace (dexpc). |
| method_info_.need_shadow_frame = method_info_.need_shadow_frame_entry || may_throw_exception || |
| (assume_this_non_null && !method_info_.this_will_not_be_null); |
| // If can only throw exception, but can't suspend check (no loop, no invoke), |
| // then there is no shadow frame entry. Only Shadow frame is needed. |
| method_info_.lazy_push_shadow_frame = |
| method_info_.need_shadow_frame && !method_info_.need_shadow_frame_entry; |
| } |
| |
| |
| |
| } // namespace compiler_llvm |
| } // namespace art |