blob: f5df926749d40a4bb7c1168e043cd0b60f0f32f9 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_COMPILER_UTILS_JNI_MACRO_ASSEMBLER_H_
#define ART_COMPILER_UTILS_JNI_MACRO_ASSEMBLER_H_
#include <vector>
#include <android-base/logging.h>
#include "arch/instruction_set.h"
#include "base/arena_allocator.h"
#include "base/arena_object.h"
#include "base/array_ref.h"
#include "base/enums.h"
#include "base/macros.h"
#include "managed_register.h"
#include "offsets.h"
namespace art {
class ArenaAllocator;
class DebugFrameOpCodeWriterForAssembler;
class InstructionSetFeatures;
class MemoryRegion;
class JNIMacroLabel;
enum class JNIMacroUnaryCondition {
kZero,
kNotZero
};
template <PointerSize kPointerSize>
class JNIMacroAssembler : public DeletableArenaObject<kArenaAllocAssembler> {
public:
static std::unique_ptr<JNIMacroAssembler<kPointerSize>> Create(
ArenaAllocator* allocator,
InstructionSet instruction_set,
const InstructionSetFeatures* instruction_set_features = nullptr);
// Finalize the code; emit slow paths, fixup branches, add literal pool, etc.
virtual void FinalizeCode() = 0;
// Size of generated code
virtual size_t CodeSize() const = 0;
// Copy instructions out of assembly buffer into the given region of memory
virtual void FinalizeInstructions(const MemoryRegion& region) = 0;
// Emit code that will create an activation on the stack
virtual void BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> callee_save_regs,
const ManagedRegisterEntrySpills& entry_spills) = 0;
// Emit code that will remove an activation from the stack
//
// Argument `may_suspend` must be `true` if the compiled method may be
// suspended during its execution (otherwise `false`, if it is impossible
// to suspend during its execution).
virtual void RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> callee_save_regs,
bool may_suspend) = 0;
virtual void IncreaseFrameSize(size_t adjust) = 0;
virtual void DecreaseFrameSize(size_t adjust) = 0;
// Store routines
virtual void Store(FrameOffset offs, ManagedRegister src, size_t size) = 0;
virtual void StoreRef(FrameOffset dest, ManagedRegister src) = 0;
virtual void StoreRawPtr(FrameOffset dest, ManagedRegister src) = 0;
virtual void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister scratch) = 0;
virtual void StoreStackOffsetToThread(ThreadOffset<kPointerSize> thr_offs,
FrameOffset fr_offs,
ManagedRegister scratch) = 0;
virtual void StoreStackPointerToThread(ThreadOffset<kPointerSize> thr_offs) = 0;
virtual void StoreSpanning(FrameOffset dest,
ManagedRegister src,
FrameOffset in_off,
ManagedRegister scratch) = 0;
// Load routines
virtual void Load(ManagedRegister dest, FrameOffset src, size_t size) = 0;
virtual void LoadFromThread(ManagedRegister dest,
ThreadOffset<kPointerSize> src,
size_t size) = 0;
virtual void LoadRef(ManagedRegister dest, FrameOffset src) = 0;
// If unpoison_reference is true and kPoisonReference is true, then we negate the read reference.
virtual void LoadRef(ManagedRegister dest,
ManagedRegister base,
MemberOffset offs,
bool unpoison_reference) = 0;
virtual void LoadRawPtr(ManagedRegister dest, ManagedRegister base, Offset offs) = 0;
virtual void LoadRawPtrFromThread(ManagedRegister dest, ThreadOffset<kPointerSize> offs) = 0;
// Copying routines
virtual void Move(ManagedRegister dest, ManagedRegister src, size_t size) = 0;
virtual void CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset<kPointerSize> thr_offs,
ManagedRegister scratch) = 0;
virtual void CopyRawPtrToThread(ThreadOffset<kPointerSize> thr_offs,
FrameOffset fr_offs,
ManagedRegister scratch) = 0;
virtual void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister scratch) = 0;
virtual void Copy(FrameOffset dest, FrameOffset src, ManagedRegister scratch, size_t size) = 0;
virtual void Copy(FrameOffset dest,
ManagedRegister src_base,
Offset src_offset,
ManagedRegister scratch,
size_t size) = 0;
virtual void Copy(ManagedRegister dest_base,
Offset dest_offset,
FrameOffset src,
ManagedRegister scratch,
size_t size) = 0;
virtual void Copy(FrameOffset dest,
FrameOffset src_base,
Offset src_offset,
ManagedRegister scratch,
size_t size) = 0;
virtual void Copy(ManagedRegister dest,
Offset dest_offset,
ManagedRegister src,
Offset src_offset,
ManagedRegister scratch,
size_t size) = 0;
virtual void Copy(FrameOffset dest,
Offset dest_offset,
FrameOffset src,
Offset src_offset,
ManagedRegister scratch,
size_t size) = 0;
virtual void MemoryBarrier(ManagedRegister scratch) = 0;
// Sign extension
virtual void SignExtend(ManagedRegister mreg, size_t size) = 0;
// Zero extension
virtual void ZeroExtend(ManagedRegister mreg, size_t size) = 0;
// Exploit fast access in managed code to Thread::Current()
virtual void GetCurrentThread(ManagedRegister tr) = 0;
virtual void GetCurrentThread(FrameOffset dest_offset, ManagedRegister scratch) = 0;
// Set up out_reg to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed. in_reg holds a possibly stale reference
// that can be used to avoid loading the handle scope entry to see if the value is
// null.
virtual void CreateHandleScopeEntry(ManagedRegister out_reg,
FrameOffset handlescope_offset,
ManagedRegister in_reg,
bool null_allowed) = 0;
// Set up out_off to hold a Object** into the handle scope, or to be null if the
// value is null and null_allowed.
virtual void CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handlescope_offset,
ManagedRegister scratch,
bool null_allowed) = 0;
// src holds a handle scope entry (Object**) load this into dst
virtual void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) = 0;
// Heap::VerifyObject on src. In some cases (such as a reference to this) we
// know that src may not be null.
virtual void VerifyObject(ManagedRegister src, bool could_be_null) = 0;
virtual void VerifyObject(FrameOffset src, bool could_be_null) = 0;
// Call to address held at [base+offset]
virtual void Call(ManagedRegister base, Offset offset, ManagedRegister scratch) = 0;
virtual void Call(FrameOffset base, Offset offset, ManagedRegister scratch) = 0;
virtual void CallFromThread(ThreadOffset<kPointerSize> offset, ManagedRegister scratch) = 0;
// Generate code to check if Thread::Current()->exception_ is non-null
// and branch to a ExceptionSlowPath if it is.
virtual void ExceptionPoll(ManagedRegister scratch, size_t stack_adjust) = 0;
// Create a new label that can be used with Jump/Bind calls.
virtual std::unique_ptr<JNIMacroLabel> CreateLabel() = 0;
// Emit an unconditional jump to the label.
virtual void Jump(JNIMacroLabel* label) = 0;
// Emit a conditional jump to the label by applying a unary condition test to the register.
virtual void Jump(JNIMacroLabel* label, JNIMacroUnaryCondition cond, ManagedRegister test) = 0;
// Code at this offset will serve as the target for the Jump call.
virtual void Bind(JNIMacroLabel* label) = 0;
virtual ~JNIMacroAssembler() {}
/**
* @brief Buffer of DWARF's Call Frame Information opcodes.
* @details It is used by debuggers and other tools to unwind the call stack.
*/
virtual DebugFrameOpCodeWriterForAssembler& cfi() = 0;
void SetEmitRunTimeChecksInDebugMode(bool value) {
emit_run_time_checks_in_debug_mode_ = value;
}
protected:
JNIMacroAssembler() {}
// Should run-time checks be emitted in debug mode?
bool emit_run_time_checks_in_debug_mode_ = false;
};
// A "Label" class used with the JNIMacroAssembler
// allowing one to use branches (jumping from one place to another).
//
// This is just an interface, so every platform must provide
// its own implementation of it.
//
// It is only safe to use a label created
// via JNIMacroAssembler::CreateLabel with that same macro assembler.
class JNIMacroLabel {
public:
virtual ~JNIMacroLabel() = 0;
const InstructionSet isa_;
protected:
explicit JNIMacroLabel(InstructionSet isa) : isa_(isa) {}
};
inline JNIMacroLabel::~JNIMacroLabel() {
// Compulsory definition for a pure virtual destructor
// to avoid linking errors.
}
template <typename T, PointerSize kPointerSize>
class JNIMacroAssemblerFwd : public JNIMacroAssembler<kPointerSize> {
public:
void FinalizeCode() OVERRIDE {
asm_.FinalizeCode();
}
size_t CodeSize() const OVERRIDE {
return asm_.CodeSize();
}
void FinalizeInstructions(const MemoryRegion& region) OVERRIDE {
asm_.FinalizeInstructions(region);
}
DebugFrameOpCodeWriterForAssembler& cfi() OVERRIDE {
return asm_.cfi();
}
protected:
explicit JNIMacroAssemblerFwd(ArenaAllocator* allocator) : asm_(allocator) {}
T asm_;
};
template <typename Self, typename PlatformLabel, InstructionSet kIsa>
class JNIMacroLabelCommon : public JNIMacroLabel {
public:
static Self* Cast(JNIMacroLabel* label) {
CHECK(label != nullptr);
CHECK_EQ(kIsa, label->isa_);
return reinterpret_cast<Self*>(label);
}
protected:
PlatformLabel* AsPlatformLabel() {
return &label_;
}
JNIMacroLabelCommon() : JNIMacroLabel(kIsa) {
}
virtual ~JNIMacroLabelCommon() OVERRIDE {}
private:
PlatformLabel label_;
};
} // namespace art
#endif // ART_COMPILER_UTILS_JNI_MACRO_ASSEMBLER_H_