| |
| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "thread_pool.h" |
| |
| #include <sys/mman.h> |
| #include <sys/resource.h> |
| #include <sys/time.h> |
| |
| #include <pthread.h> |
| |
| #include <android-base/logging.h> |
| #include <android-base/stringprintf.h> |
| |
| #include "base/bit_utils.h" |
| #include "base/casts.h" |
| #include "base/stl_util.h" |
| #include "base/time_utils.h" |
| #include "base/utils.h" |
| #include "runtime.h" |
| #include "thread-current-inl.h" |
| |
| namespace art { |
| |
| using android::base::StringPrintf; |
| |
| static constexpr bool kMeasureWaitTime = false; |
| |
| #if defined(__BIONIC__) |
| static constexpr bool kUseCustomThreadPoolStack = false; |
| #else |
| static constexpr bool kUseCustomThreadPoolStack = true; |
| #endif |
| |
| ThreadPoolWorker::ThreadPoolWorker(AbstractThreadPool* thread_pool, |
| const std::string& name, |
| size_t stack_size) |
| : thread_pool_(thread_pool), |
| name_(name) { |
| std::string error_msg; |
| // On Bionic, we know pthreads will give us a big-enough stack with |
| // a guard page, so don't do anything special on Bionic libc. |
| if (kUseCustomThreadPoolStack) { |
| // Add an inaccessible page to catch stack overflow. |
| stack_size += gPageSize; |
| stack_ = MemMap::MapAnonymous(name.c_str(), |
| stack_size, |
| PROT_READ | PROT_WRITE, |
| /*low_4gb=*/ false, |
| &error_msg); |
| CHECK(stack_.IsValid()) << error_msg; |
| CHECK_ALIGNED_PARAM(stack_.Begin(), gPageSize); |
| CheckedCall(mprotect, |
| "mprotect bottom page of thread pool worker stack", |
| stack_.Begin(), |
| gPageSize, |
| PROT_NONE); |
| } |
| const char* reason = "new thread pool worker thread"; |
| pthread_attr_t attr; |
| CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), reason); |
| if (kUseCustomThreadPoolStack) { |
| CHECK_PTHREAD_CALL(pthread_attr_setstack, (&attr, stack_.Begin(), stack_.Size()), reason); |
| } else { |
| CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), reason); |
| } |
| CHECK_PTHREAD_CALL(pthread_create, (&pthread_, &attr, &Callback, this), reason); |
| CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), reason); |
| } |
| |
| ThreadPoolWorker::~ThreadPoolWorker() { |
| CHECK_PTHREAD_CALL(pthread_join, (pthread_, nullptr), "thread pool worker shutdown"); |
| } |
| |
| void ThreadPoolWorker::SetPthreadPriority(int priority) { |
| CHECK_GE(priority, PRIO_MIN); |
| CHECK_LE(priority, PRIO_MAX); |
| #if defined(ART_TARGET_ANDROID) |
| int result = setpriority(PRIO_PROCESS, pthread_gettid_np(pthread_), priority); |
| if (result != 0) { |
| PLOG(ERROR) << "Failed to setpriority to :" << priority; |
| } |
| #else |
| UNUSED(priority); |
| #endif |
| } |
| |
| int ThreadPoolWorker::GetPthreadPriority() { |
| #if defined(ART_TARGET_ANDROID) |
| return getpriority(PRIO_PROCESS, pthread_gettid_np(pthread_)); |
| #else |
| return 0; |
| #endif |
| } |
| |
| void ThreadPoolWorker::Run() { |
| Thread* self = Thread::Current(); |
| Task* task = nullptr; |
| thread_pool_->creation_barier_.Pass(self); |
| while ((task = thread_pool_->GetTask(self)) != nullptr) { |
| task->Run(self); |
| task->Finalize(); |
| } |
| } |
| |
| void* ThreadPoolWorker::Callback(void* arg) { |
| ThreadPoolWorker* worker = reinterpret_cast<ThreadPoolWorker*>(arg); |
| Runtime* runtime = Runtime::Current(); |
| // Don't run callbacks for ThreadPoolWorkers. These are created for JITThreadPool and |
| // HeapThreadPool and are purely internal threads of the runtime and we don't need to run |
| // callbacks for the thread attach / detach listeners. |
| // (b/251163712) Calling callbacks for heap thread pool workers causes deadlocks in some libjdwp |
| // tests. Deadlocks happen when a GC thread is attached while libjdwp holds the event handler |
| // lock for an event that triggers an entrypoint update from deopt manager. |
| CHECK(runtime->AttachCurrentThread( |
| worker->name_.c_str(), |
| true, |
| // Thread-groups are only tracked by the peer j.l.Thread objects. If we aren't creating peers |
| // we don't need to specify the thread group. We want to place these threads in the System |
| // thread group because that thread group is where important threads that debuggers and |
| // similar tools should not mess with are placed. As this is an internal-thread-pool we might |
| // rely on being able to (for example) wait for all threads to finish some task. If debuggers |
| // are suspending these threads that might not be possible. |
| worker->thread_pool_->create_peers_ ? runtime->GetSystemThreadGroup() : nullptr, |
| worker->thread_pool_->create_peers_, |
| /* should_run_callbacks= */ false)); |
| worker->thread_ = Thread::Current(); |
| // Mark thread pool workers as runtime-threads. |
| worker->thread_->SetIsRuntimeThread(true); |
| // Do work until its time to shut down. |
| worker->Run(); |
| runtime->DetachCurrentThread(/* should_run_callbacks= */ false); |
| return nullptr; |
| } |
| |
| void ThreadPool::AddTask(Thread* self, Task* task) { |
| MutexLock mu(self, task_queue_lock_); |
| tasks_.push_back(task); |
| // If we have any waiters, signal one. |
| if (started_ && waiting_count_ != 0) { |
| task_queue_condition_.Signal(self); |
| } |
| } |
| |
| void ThreadPool::RemoveAllTasks(Thread* self) { |
| // The ThreadPool is responsible for calling Finalize (which usually delete |
| // the task memory) on all the tasks. |
| Task* task = nullptr; |
| do { |
| { |
| MutexLock mu(self, task_queue_lock_); |
| if (tasks_.empty()) { |
| return; |
| } |
| task = tasks_.front(); |
| tasks_.pop_front(); |
| } |
| task->Finalize(); |
| } while (true); |
| } |
| |
| ThreadPool::~ThreadPool() { |
| DeleteThreads(); |
| RemoveAllTasks(Thread::Current()); |
| } |
| |
| AbstractThreadPool::AbstractThreadPool(const char* name, |
| size_t num_threads, |
| bool create_peers, |
| size_t worker_stack_size) |
| : name_(name), |
| task_queue_lock_("task queue lock", kGenericBottomLock), |
| task_queue_condition_("task queue condition", task_queue_lock_), |
| completion_condition_("task completion condition", task_queue_lock_), |
| started_(false), |
| shutting_down_(false), |
| waiting_count_(0), |
| start_time_(0), |
| total_wait_time_(0), |
| creation_barier_(0), |
| max_active_workers_(num_threads), |
| create_peers_(create_peers), |
| worker_stack_size_(worker_stack_size) {} |
| |
| void AbstractThreadPool::CreateThreads() { |
| CHECK(threads_.empty()); |
| Thread* self = Thread::Current(); |
| { |
| MutexLock mu(self, task_queue_lock_); |
| shutting_down_ = false; |
| // Add one since the caller of constructor waits on the barrier too. |
| creation_barier_.Init(self, max_active_workers_); |
| while (GetThreadCount() < max_active_workers_) { |
| const std::string worker_name = StringPrintf("%s worker thread %zu", name_.c_str(), |
| GetThreadCount()); |
| threads_.push_back( |
| new ThreadPoolWorker(this, worker_name, worker_stack_size_)); |
| } |
| } |
| } |
| |
| void AbstractThreadPool::WaitForWorkersToBeCreated() { |
| creation_barier_.Increment(Thread::Current(), 0); |
| } |
| |
| const std::vector<ThreadPoolWorker*>& AbstractThreadPool::GetWorkers() { |
| // Wait for all the workers to be created before returning them. |
| WaitForWorkersToBeCreated(); |
| return threads_; |
| } |
| |
| void AbstractThreadPool::DeleteThreads() { |
| { |
| Thread* self = Thread::Current(); |
| MutexLock mu(self, task_queue_lock_); |
| // Tell any remaining workers to shut down. |
| shutting_down_ = true; |
| // Broadcast to everyone waiting. |
| task_queue_condition_.Broadcast(self); |
| completion_condition_.Broadcast(self); |
| } |
| // Wait for the threads to finish. We expect the user of the pool |
| // not to run multi-threaded calls to `CreateThreads` and `DeleteThreads`, |
| // so we don't guard the field here. |
| STLDeleteElements(&threads_); |
| } |
| |
| void AbstractThreadPool::SetMaxActiveWorkers(size_t max_workers) { |
| MutexLock mu(Thread::Current(), task_queue_lock_); |
| CHECK_LE(max_workers, GetThreadCount()); |
| max_active_workers_ = max_workers; |
| } |
| |
| void AbstractThreadPool::StartWorkers(Thread* self) { |
| MutexLock mu(self, task_queue_lock_); |
| started_ = true; |
| task_queue_condition_.Broadcast(self); |
| start_time_ = NanoTime(); |
| total_wait_time_ = 0; |
| } |
| |
| void AbstractThreadPool::StopWorkers(Thread* self) { |
| MutexLock mu(self, task_queue_lock_); |
| started_ = false; |
| } |
| |
| bool AbstractThreadPool::HasStarted(Thread* self) { |
| MutexLock mu(self, task_queue_lock_); |
| return started_; |
| } |
| |
| Task* AbstractThreadPool::GetTask(Thread* self) { |
| MutexLock mu(self, task_queue_lock_); |
| while (!IsShuttingDown()) { |
| const size_t thread_count = GetThreadCount(); |
| // Ensure that we don't use more threads than the maximum active workers. |
| const size_t active_threads = thread_count - waiting_count_; |
| // <= since self is considered an active worker. |
| if (active_threads <= max_active_workers_) { |
| Task* task = TryGetTaskLocked(); |
| if (task != nullptr) { |
| return task; |
| } |
| } |
| |
| ++waiting_count_; |
| if (waiting_count_ == GetThreadCount() && !HasOutstandingTasks()) { |
| // We may be done, lets broadcast to the completion condition. |
| completion_condition_.Broadcast(self); |
| } |
| const uint64_t wait_start = kMeasureWaitTime ? NanoTime() : 0; |
| task_queue_condition_.Wait(self); |
| if (kMeasureWaitTime) { |
| const uint64_t wait_end = NanoTime(); |
| total_wait_time_ += wait_end - std::max(wait_start, start_time_); |
| } |
| --waiting_count_; |
| } |
| |
| // We are shutting down, return null to tell the worker thread to stop looping. |
| return nullptr; |
| } |
| |
| Task* AbstractThreadPool::TryGetTask(Thread* self) { |
| MutexLock mu(self, task_queue_lock_); |
| return TryGetTaskLocked(); |
| } |
| |
| Task* ThreadPool::TryGetTaskLocked() { |
| if (HasOutstandingTasks()) { |
| Task* task = tasks_.front(); |
| tasks_.pop_front(); |
| return task; |
| } |
| return nullptr; |
| } |
| |
| void AbstractThreadPool::Wait(Thread* self, bool do_work, bool may_hold_locks) { |
| if (do_work) { |
| CHECK(!create_peers_); |
| Task* task = nullptr; |
| while ((task = TryGetTask(self)) != nullptr) { |
| task->Run(self); |
| task->Finalize(); |
| } |
| } |
| // Wait until each thread is waiting and the task list is empty. |
| MutexLock mu(self, task_queue_lock_); |
| while (!shutting_down_ && (waiting_count_ != GetThreadCount() || HasOutstandingTasks())) { |
| if (!may_hold_locks) { |
| completion_condition_.Wait(self); |
| } else { |
| completion_condition_.WaitHoldingLocks(self); |
| } |
| } |
| } |
| |
| size_t ThreadPool::GetTaskCount(Thread* self) { |
| MutexLock mu(self, task_queue_lock_); |
| return tasks_.size(); |
| } |
| |
| void AbstractThreadPool::SetPthreadPriority(int priority) { |
| for (ThreadPoolWorker* worker : threads_) { |
| worker->SetPthreadPriority(priority); |
| } |
| } |
| |
| void AbstractThreadPool::CheckPthreadPriority(int priority) { |
| #if defined(ART_TARGET_ANDROID) |
| for (ThreadPoolWorker* worker : threads_) { |
| CHECK_EQ(worker->GetPthreadPriority(), priority); |
| } |
| #else |
| UNUSED(priority); |
| #endif |
| } |
| |
| } // namespace art |