blob: 66806d8afcd977756a4ee4d0890c3799facddf58 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "load_store_elimination.h"
#include "base/array_ref.h"
#include "base/scoped_arena_allocator.h"
#include "base/scoped_arena_containers.h"
#include "escape.h"
#include "load_store_analysis.h"
#include "side_effects_analysis.h"
#include <iostream>
namespace art {
// An unknown heap value. Loads with such a value in the heap location cannot be eliminated.
// A heap location can be set to kUnknownHeapValue when:
// - initially set a value.
// - killed due to aliasing, merging, invocation, or loop side effects.
static HInstruction* const kUnknownHeapValue =
reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-1));
// Default heap value after an allocation.
// A heap location can be set to that value right after an allocation.
static HInstruction* const kDefaultHeapValue =
reinterpret_cast<HInstruction*>(static_cast<uintptr_t>(-2));
// Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke().
class LSEVisitor : public HGraphDelegateVisitor {
public:
LSEVisitor(HGraph* graph,
const HeapLocationCollector& heap_locations_collector,
const SideEffectsAnalysis& side_effects,
OptimizingCompilerStats* stats)
: HGraphDelegateVisitor(graph, stats),
heap_location_collector_(heap_locations_collector),
side_effects_(side_effects),
allocator_(graph->GetArenaStack()),
heap_values_for_(graph->GetBlocks().size(),
ScopedArenaVector<HInstruction*>(heap_locations_collector.
GetNumberOfHeapLocations(),
kUnknownHeapValue,
allocator_.Adapter(kArenaAllocLSE)),
allocator_.Adapter(kArenaAllocLSE)),
removed_loads_(allocator_.Adapter(kArenaAllocLSE)),
substitute_instructions_for_loads_(allocator_.Adapter(kArenaAllocLSE)),
possibly_removed_stores_(allocator_.Adapter(kArenaAllocLSE)),
singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)),
singleton_new_arrays_(allocator_.Adapter(kArenaAllocLSE)) {
}
void VisitBasicBlock(HBasicBlock* block) OVERRIDE {
// Populate the heap_values array for this block.
// TODO: try to reuse the heap_values array from one predecessor if possible.
if (block->IsLoopHeader()) {
HandleLoopSideEffects(block);
} else {
MergePredecessorValues(block);
}
HGraphVisitor::VisitBasicBlock(block);
}
// Remove recorded instructions that should be eliminated.
void RemoveInstructions() {
size_t size = removed_loads_.size();
DCHECK_EQ(size, substitute_instructions_for_loads_.size());
for (size_t i = 0; i < size; i++) {
HInstruction* load = removed_loads_[i];
DCHECK(load != nullptr);
DCHECK(load->IsInstanceFieldGet() ||
load->IsStaticFieldGet() ||
load->IsArrayGet() ||
load->IsVecLoad());
HInstruction* substitute = substitute_instructions_for_loads_[i];
DCHECK(substitute != nullptr);
// Keep tracing substitute till one that's not removed.
HInstruction* sub_sub = FindSubstitute(substitute);
while (sub_sub != substitute) {
substitute = sub_sub;
sub_sub = FindSubstitute(substitute);
}
load->ReplaceWith(substitute);
load->GetBlock()->RemoveInstruction(load);
}
// At this point, stores in possibly_removed_stores_ can be safely removed.
for (HInstruction* store : possibly_removed_stores_) {
DCHECK(store->IsInstanceFieldSet() ||
store->IsStaticFieldSet() ||
store->IsArraySet() ||
store->IsVecStore());
store->GetBlock()->RemoveInstruction(store);
}
// Eliminate singleton-classified instructions:
// * - Constructor fences (they never escape this thread).
// * - Allocations (if they are unused).
for (HInstruction* new_instance : singleton_new_instances_) {
size_t removed = HConstructorFence::RemoveConstructorFences(new_instance);
MaybeRecordStat(stats_,
MethodCompilationStat::kConstructorFenceRemovedLSE,
removed);
if (!new_instance->HasNonEnvironmentUses()) {
new_instance->RemoveEnvironmentUsers();
new_instance->GetBlock()->RemoveInstruction(new_instance);
}
}
for (HInstruction* new_array : singleton_new_arrays_) {
size_t removed = HConstructorFence::RemoveConstructorFences(new_array);
MaybeRecordStat(stats_,
MethodCompilationStat::kConstructorFenceRemovedLSE,
removed);
if (!new_array->HasNonEnvironmentUses()) {
new_array->RemoveEnvironmentUsers();
new_array->GetBlock()->RemoveInstruction(new_array);
}
}
}
private:
// If heap_values[index] is an instance field store, need to keep the store.
// This is necessary if a heap value is killed due to merging, or loop side
// effects (which is essentially merging also), since a load later from the
// location won't be eliminated.
void KeepIfIsStore(HInstruction* heap_value) {
if (heap_value == kDefaultHeapValue ||
heap_value == kUnknownHeapValue ||
!(heap_value->IsInstanceFieldSet() ||
heap_value->IsArraySet() ||
heap_value->IsVecStore())) {
return;
}
auto idx = std::find(possibly_removed_stores_.begin(),
possibly_removed_stores_.end(), heap_value);
if (idx != possibly_removed_stores_.end()) {
// Make sure the store is kept.
possibly_removed_stores_.erase(idx);
}
}
void HandleLoopSideEffects(HBasicBlock* block) {
DCHECK(block->IsLoopHeader());
int block_id = block->GetBlockId();
ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block_id];
// Don't eliminate loads in irreducible loops. This is safe for singletons, because
// they are always used by the non-eliminated loop-phi.
if (block->GetLoopInformation()->IsIrreducible()) {
if (kIsDebugBuild) {
for (size_t i = 0; i < heap_values.size(); i++) {
DCHECK_EQ(heap_values[i], kUnknownHeapValue);
}
}
return;
}
HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader();
ScopedArenaVector<HInstruction*>& pre_header_heap_values =
heap_values_for_[pre_header->GetBlockId()];
// Inherit the values from pre-header.
for (size_t i = 0; i < heap_values.size(); i++) {
heap_values[i] = pre_header_heap_values[i];
}
// We do a single pass in reverse post order. For loops, use the side effects as a hint
// to see if the heap values should be killed.
if (side_effects_.GetLoopEffects(block).DoesAnyWrite()) {
for (size_t i = 0; i < heap_values.size(); i++) {
HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
ReferenceInfo* ref_info = location->GetReferenceInfo();
if (ref_info->IsSingletonAndRemovable() &&
!location->IsValueKilledByLoopSideEffects()) {
// A removable singleton's field that's not stored into inside a loop is
// invariant throughout the loop. Nothing to do.
} else {
// heap value is killed by loop side effects (stored into directly, or
// due to aliasing). Or the heap value may be needed after method return
// or deoptimization.
KeepIfIsStore(pre_header_heap_values[i]);
heap_values[i] = kUnknownHeapValue;
}
}
}
}
void MergePredecessorValues(HBasicBlock* block) {
ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
if (predecessors.size() == 0) {
return;
}
ScopedArenaVector<HInstruction*>& heap_values = heap_values_for_[block->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
HInstruction* merged_value = nullptr;
// Whether merged_value is a result that's merged from all predecessors.
bool from_all_predecessors = true;
ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
HInstruction* singleton_ref = nullptr;
if (ref_info->IsSingleton()) {
// We do more analysis of liveness when merging heap values for such
// cases since stores into such references may potentially be eliminated.
singleton_ref = ref_info->GetReference();
}
for (HBasicBlock* predecessor : predecessors) {
HInstruction* pred_value = heap_values_for_[predecessor->GetBlockId()][i];
if ((singleton_ref != nullptr) &&
!singleton_ref->GetBlock()->Dominates(predecessor)) {
// singleton_ref is not live in this predecessor. Skip this predecessor since
// it does not really have the location.
DCHECK_EQ(pred_value, kUnknownHeapValue);
from_all_predecessors = false;
continue;
}
if (merged_value == nullptr) {
// First seen heap value.
merged_value = pred_value;
} else if (pred_value != merged_value) {
// There are conflicting values.
merged_value = kUnknownHeapValue;
break;
}
}
if (merged_value == kUnknownHeapValue || ref_info->IsSingletonAndNonRemovable()) {
// There are conflicting heap values from different predecessors,
// or the heap value may be needed after method return or deoptimization.
// Keep the last store in each predecessor since future loads cannot be eliminated.
for (HBasicBlock* predecessor : predecessors) {
ScopedArenaVector<HInstruction*>& pred_values =
heap_values_for_[predecessor->GetBlockId()];
KeepIfIsStore(pred_values[i]);
}
}
if ((merged_value == nullptr) || !from_all_predecessors) {
DCHECK(singleton_ref != nullptr);
DCHECK((singleton_ref->GetBlock() == block) ||
!singleton_ref->GetBlock()->Dominates(block));
// singleton_ref is not defined before block or defined only in some of its
// predecessors, so block doesn't really have the location at its entry.
heap_values[i] = kUnknownHeapValue;
} else {
heap_values[i] = merged_value;
}
}
}
// `instruction` is being removed. Try to see if the null check on it
// can be removed. This can happen if the same value is set in two branches
// but not in dominators. Such as:
// int[] a = foo();
// if () {
// a[0] = 2;
// } else {
// a[0] = 2;
// }
// // a[0] can now be replaced with constant 2, and the null check on it can be removed.
void TryRemovingNullCheck(HInstruction* instruction) {
HInstruction* prev = instruction->GetPrevious();
if ((prev != nullptr) && prev->IsNullCheck() && (prev == instruction->InputAt(0))) {
// Previous instruction is a null check for this instruction. Remove the null check.
prev->ReplaceWith(prev->InputAt(0));
prev->GetBlock()->RemoveInstruction(prev);
}
}
HInstruction* GetDefaultValue(DataType::Type type) {
switch (type) {
case DataType::Type::kReference:
return GetGraph()->GetNullConstant();
case DataType::Type::kBool:
case DataType::Type::kUint8:
case DataType::Type::kInt8:
case DataType::Type::kUint16:
case DataType::Type::kInt16:
case DataType::Type::kInt32:
return GetGraph()->GetIntConstant(0);
case DataType::Type::kInt64:
return GetGraph()->GetLongConstant(0);
case DataType::Type::kFloat32:
return GetGraph()->GetFloatConstant(0);
case DataType::Type::kFloat64:
return GetGraph()->GetDoubleConstant(0);
default:
UNREACHABLE();
}
}
void VisitGetLocation(HInstruction* instruction,
HInstruction* ref,
size_t offset,
HInstruction* index,
size_t vector_length,
int16_t declaring_class_def_index) {
HInstruction* original_ref = heap_location_collector_.HuntForOriginalReference(ref);
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
size_t idx = heap_location_collector_.FindHeapLocationIndex(
ref_info, offset, index, vector_length, declaring_class_def_index);
DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
ScopedArenaVector<HInstruction*>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
HInstruction* heap_value = heap_values[idx];
if (heap_value == kDefaultHeapValue) {
HInstruction* constant = GetDefaultValue(instruction->GetType());
removed_loads_.push_back(instruction);
substitute_instructions_for_loads_.push_back(constant);
heap_values[idx] = constant;
return;
}
if (heap_value != kUnknownHeapValue) {
if (heap_value->IsInstanceFieldSet() ||
heap_value->IsArraySet() ||
heap_value->IsVecStore()) {
HInstruction* store = heap_value;
// This load must be from a singleton since it's from the same
// field/element that a "removed" store puts the value. That store
// must be to a singleton's field/element.
DCHECK(ref_info->IsSingleton());
// Get the real heap value of the store.
heap_value = heap_value->IsInstanceFieldSet() ? store->InputAt(1) : store->InputAt(2);
}
}
if (heap_value == kUnknownHeapValue) {
// Load isn't eliminated. Put the load as the value into the HeapLocation.
// This acts like GVN but with better aliasing analysis.
heap_values[idx] = instruction;
} else {
if (DataType::Kind(heap_value->GetType()) != DataType::Kind(instruction->GetType())) {
// The only situation where the same heap location has different type is when
// we do an array get on an instruction that originates from the null constant
// (the null could be behind a field access, an array access, a null check or
// a bound type).
// In order to stay properly typed on primitive types, we do not eliminate
// the array gets.
if (kIsDebugBuild) {
DCHECK(heap_value->IsArrayGet()) << heap_value->DebugName();
DCHECK(instruction->IsArrayGet()) << instruction->DebugName();
}
return;
}
removed_loads_.push_back(instruction);
substitute_instructions_for_loads_.push_back(heap_value);
TryRemovingNullCheck(instruction);
}
}
bool Equal(HInstruction* heap_value, HInstruction* value) {
if (heap_value == value) {
return true;
}
if (heap_value == kDefaultHeapValue && GetDefaultValue(value->GetType()) == value) {
return true;
}
return false;
}
void VisitSetLocation(HInstruction* instruction,
HInstruction* ref,
size_t offset,
HInstruction* index,
size_t vector_length,
int16_t declaring_class_def_index,
HInstruction* value) {
HInstruction* original_ref = heap_location_collector_.HuntForOriginalReference(ref);
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(original_ref);
size_t idx = heap_location_collector_.FindHeapLocationIndex(
ref_info, offset, index, vector_length, declaring_class_def_index);
DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
ScopedArenaVector<HInstruction*>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
HInstruction* heap_value = heap_values[idx];
bool same_value = false;
bool possibly_redundant = false;
if (Equal(heap_value, value)) {
// Store into the heap location with the same value.
same_value = true;
} else if (index != nullptr && ref_info->HasIndexAliasing()) {
// For array element, don't eliminate stores if the index can be aliased.
} else if (ref_info->IsSingleton()) {
// Store into a field/element of a singleton. The value cannot be killed due to
// aliasing/invocation. It can be redundant since future loads can
// directly get the value set by this instruction. The value can still be killed due to
// merging or loop side effects. Stores whose values are killed due to merging/loop side
// effects later will be removed from possibly_removed_stores_ when that is detected.
// Stores whose values may be needed after method return or deoptimization
// are also removed from possibly_removed_stores_ when that is detected.
possibly_redundant = true;
HLoopInformation* loop_info = instruction->GetBlock()->GetLoopInformation();
if (loop_info != nullptr) {
// instruction is a store in the loop so the loop must does write.
DCHECK(side_effects_.GetLoopEffects(loop_info->GetHeader()).DoesAnyWrite());
if (loop_info->IsDefinedOutOfTheLoop(original_ref)) {
DCHECK(original_ref->GetBlock()->Dominates(loop_info->GetPreHeader()));
// Keep the store since its value may be needed at the loop header.
possibly_redundant = false;
} else {
// The singleton is created inside the loop. Value stored to it isn't needed at
// the loop header. This is true for outer loops also.
}
}
}
if (same_value || possibly_redundant) {
possibly_removed_stores_.push_back(instruction);
}
if (!same_value) {
if (possibly_redundant) {
DCHECK(instruction->IsInstanceFieldSet() ||
instruction->IsArraySet() ||
instruction->IsVecStore());
// Put the store as the heap value. If the value is loaded from heap
// by a load later, this store isn't really redundant.
heap_values[idx] = instruction;
} else {
heap_values[idx] = value;
}
}
// This store may kill values in other heap locations due to aliasing.
for (size_t i = 0; i < heap_values.size(); i++) {
if (i == idx) {
continue;
}
if (heap_values[i] == value && !instruction->IsVecOperation()) {
// For field/array, same value should be kept even if aliasing happens.
//
// For vector values , this is NOT safe. For example:
// packed_data = [0xA, 0xB, 0xC, 0xD]; <-- Different values in each lane.
// VecStore array[i ,i+1,i+2,i+3] = packed_data;
// VecStore array[i+1,i+2,i+3,i+4] = packed_data; <-- We are here (partial overlap).
// VecLoad vx = array[i,i+1,i+2,i+3]; <-- Cannot be eliminated.
//
// TODO: to allow such 'same value' optimization on vector data,
// LSA needs to report more fine-grain MAY alias information:
// (1) May alias due to two vector data partial overlap.
// e.g. a[i..i+3] and a[i+1,..,i+4].
// (2) May alias due to two vector data may complete overlap each other.
// e.g. a[i..i+3] and b[i..i+3].
// (3) May alias but the exact relationship between two locations is unknown.
// e.g. a[i..i+3] and b[j..j+3], where values of a,b,i,j are all unknown.
// This 'same value' optimization can apply only on case (2).
continue;
}
if (heap_values[i] == kUnknownHeapValue) {
// Value is already unknown, no need for aliasing check.
continue;
}
if (heap_location_collector_.MayAlias(i, idx)) {
// Kill heap locations that may alias.
heap_values[i] = kUnknownHeapValue;
}
}
}
void VisitInstanceFieldGet(HInstanceFieldGet* instruction) OVERRIDE {
HInstruction* obj = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
VisitGetLocation(instruction,
obj,
offset,
nullptr,
HeapLocation::kScalar,
declaring_class_def_index);
}
void VisitInstanceFieldSet(HInstanceFieldSet* instruction) OVERRIDE {
HInstruction* obj = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
HInstruction* value = instruction->InputAt(1);
VisitSetLocation(instruction,
obj,
offset,
nullptr,
HeapLocation::kScalar,
declaring_class_def_index,
value);
}
void VisitStaticFieldGet(HStaticFieldGet* instruction) OVERRIDE {
HInstruction* cls = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
VisitGetLocation(instruction,
cls,
offset,
nullptr,
HeapLocation::kScalar,
declaring_class_def_index);
}
void VisitStaticFieldSet(HStaticFieldSet* instruction) OVERRIDE {
HInstruction* cls = instruction->InputAt(0);
size_t offset = instruction->GetFieldInfo().GetFieldOffset().SizeValue();
int16_t declaring_class_def_index = instruction->GetFieldInfo().GetDeclaringClassDefIndex();
HInstruction* value = instruction->InputAt(1);
VisitSetLocation(instruction,
cls,
offset,
nullptr,
HeapLocation::kScalar,
declaring_class_def_index,
value);
}
void VisitArrayGet(HArrayGet* instruction) OVERRIDE {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
VisitGetLocation(instruction,
array,
HeapLocation::kInvalidFieldOffset,
index,
HeapLocation::kScalar,
HeapLocation::kDeclaringClassDefIndexForArrays);
}
void VisitArraySet(HArraySet* instruction) OVERRIDE {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
HInstruction* value = instruction->InputAt(2);
VisitSetLocation(instruction,
array,
HeapLocation::kInvalidFieldOffset,
index,
HeapLocation::kScalar,
HeapLocation::kDeclaringClassDefIndexForArrays,
value);
}
void VisitVecLoad(HVecLoad* instruction) OVERRIDE {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
size_t vector_length = instruction->GetVectorLength();
VisitGetLocation(instruction,
array,
HeapLocation::kInvalidFieldOffset,
index,
vector_length,
HeapLocation::kDeclaringClassDefIndexForArrays);
}
void VisitVecStore(HVecStore* instruction) OVERRIDE {
HInstruction* array = instruction->InputAt(0);
HInstruction* index = instruction->InputAt(1);
HInstruction* value = instruction->InputAt(2);
size_t vector_length = instruction->GetVectorLength();
VisitSetLocation(instruction,
array,
HeapLocation::kInvalidFieldOffset,
index,
vector_length,
HeapLocation::kDeclaringClassDefIndexForArrays,
value);
}
void VisitDeoptimize(HDeoptimize* instruction) {
const ScopedArenaVector<HInstruction*>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
for (HInstruction* heap_value : heap_values) {
// Filter out fake instructions before checking instruction kind below.
if (heap_value == kUnknownHeapValue || heap_value == kDefaultHeapValue) {
continue;
}
// A store is kept as the heap value for possibly removed stores.
if (heap_value->IsInstanceFieldSet() ||
heap_value->IsArraySet() ||
heap_value->IsVecStore()) {
// Check whether the reference for a store is used by an environment local of
// HDeoptimize.
HInstruction* reference = heap_value->InputAt(0);
DCHECK(heap_location_collector_.FindReferenceInfoOf(reference)->IsSingleton());
for (const HUseListNode<HEnvironment*>& use : reference->GetEnvUses()) {
HEnvironment* user = use.GetUser();
if (user->GetHolder() == instruction) {
// The singleton for the store is visible at this deoptimization
// point. Need to keep the store so that the heap value is
// seen by the interpreter.
KeepIfIsStore(heap_value);
}
}
}
}
}
void HandleInvoke(HInstruction* instruction) {
SideEffects side_effects = instruction->GetSideEffects();
ScopedArenaVector<HInstruction*>& heap_values =
heap_values_for_[instruction->GetBlock()->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
if (ref_info->IsSingleton()) {
// Singleton references cannot be seen by the callee.
} else {
if (side_effects.DoesAnyRead()) {
KeepIfIsStore(heap_values[i]);
}
if (side_effects.DoesAnyWrite()) {
heap_values[i] = kUnknownHeapValue;
}
}
}
}
void VisitInvoke(HInvoke* invoke) OVERRIDE {
HandleInvoke(invoke);
}
void VisitClinitCheck(HClinitCheck* clinit) OVERRIDE {
HandleInvoke(clinit);
}
void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) OVERRIDE {
// Conservatively treat it as an invocation.
HandleInvoke(instruction);
}
void VisitNewInstance(HNewInstance* new_instance) OVERRIDE {
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance);
if (ref_info == nullptr) {
// new_instance isn't used for field accesses. No need to process it.
return;
}
if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) {
DCHECK(!new_instance->IsFinalizable());
singleton_new_instances_.push_back(new_instance);
}
ScopedArenaVector<HInstruction*>& heap_values =
heap_values_for_[new_instance->GetBlock()->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
HInstruction* ref =
heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->GetReference();
size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset();
if (ref == new_instance && offset >= mirror::kObjectHeaderSize) {
// Instance fields except the header fields are set to default heap values.
heap_values[i] = kDefaultHeapValue;
}
}
}
void VisitNewArray(HNewArray* new_array) OVERRIDE {
ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array);
if (ref_info == nullptr) {
// new_array isn't used for array accesses. No need to process it.
return;
}
if (ref_info->IsSingletonAndRemovable()) {
singleton_new_arrays_.push_back(new_array);
}
ScopedArenaVector<HInstruction*>& heap_values =
heap_values_for_[new_array->GetBlock()->GetBlockId()];
for (size_t i = 0; i < heap_values.size(); i++) {
HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
HInstruction* ref = location->GetReferenceInfo()->GetReference();
if (ref == new_array && location->GetIndex() != nullptr) {
// Array elements are set to default heap values.
heap_values[i] = kDefaultHeapValue;
}
}
}
// Find an instruction's substitute if it should be removed.
// Return the same instruction if it should not be removed.
HInstruction* FindSubstitute(HInstruction* instruction) {
size_t size = removed_loads_.size();
for (size_t i = 0; i < size; i++) {
if (removed_loads_[i] == instruction) {
return substitute_instructions_for_loads_[i];
}
}
return instruction;
}
const HeapLocationCollector& heap_location_collector_;
const SideEffectsAnalysis& side_effects_;
// Use local allocator for allocating memory.
ScopedArenaAllocator allocator_;
// One array of heap values for each block.
ScopedArenaVector<ScopedArenaVector<HInstruction*>> heap_values_for_;
// We record the instructions that should be eliminated but may be
// used by heap locations. They'll be removed in the end.
ScopedArenaVector<HInstruction*> removed_loads_;
ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_;
// Stores in this list may be removed from the list later when it's
// found that the store cannot be eliminated.
ScopedArenaVector<HInstruction*> possibly_removed_stores_;
ScopedArenaVector<HInstruction*> singleton_new_instances_;
ScopedArenaVector<HInstruction*> singleton_new_arrays_;
DISALLOW_COPY_AND_ASSIGN(LSEVisitor);
};
void LoadStoreElimination::Run() {
if (graph_->IsDebuggable() || graph_->HasTryCatch()) {
// Debugger may set heap values or trigger deoptimization of callers.
// Try/catch support not implemented yet.
// Skip this optimization.
return;
}
const HeapLocationCollector& heap_location_collector = lsa_.GetHeapLocationCollector();
if (heap_location_collector.GetNumberOfHeapLocations() == 0) {
// No HeapLocation information from LSA, skip this optimization.
return;
}
LSEVisitor lse_visitor(graph_, heap_location_collector, side_effects_, stats_);
for (HBasicBlock* block : graph_->GetReversePostOrder()) {
lse_visitor.VisitBasicBlock(block);
}
lse_visitor.RemoveInstructions();
}
} // namespace art