blob: 951792d45bc9c3bc3fc337fc3ad2736b76ea5c5b [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "assembler_arm32.h"
#include <functional>
#include <type_traits>
#include "base/macros.h"
#include "base/stl_util.h"
#include "utils/arm/assembler_arm_test.h"
namespace art {
using std::placeholders::_1;
using std::placeholders::_2;
using std::placeholders::_3;
using std::placeholders::_4;
using std::placeholders::_5;
// To speed up tests, don't use all register combinations.
static constexpr bool kUseSparseRegisterList = true;
// To speed up tests, don't use all condition codes.
static constexpr bool kUseSparseConditionList = true;
// To speed up tests, don't use all shift immediates.
static constexpr bool kUseSparseShiftImmediates = true;
class AssemblerArm32Test : public AssemblerArmTest<arm::Arm32Assembler,
arm::Register, arm::SRegister,
uint32_t, arm::ShifterOperand, arm::Condition> {
protected:
std::string GetArchitectureString() OVERRIDE {
return "arm";
}
std::string GetAssemblerParameters() OVERRIDE {
// Arm-v7a, cortex-a15 (means we have sdiv).
return " -march=armv7-a -mcpu=cortex-a15 -mfpu=neon";
}
const char* GetAssemblyHeader() OVERRIDE {
return kArm32AssemblyHeader;
}
std::string GetDisassembleParameters() OVERRIDE {
return " -D -bbinary -marm --no-show-raw-insn";
}
void SetUpHelpers() OVERRIDE {
if (registers_.size() == 0) {
if (kUseSparseRegisterList) {
registers_.insert(end(registers_),
{ // NOLINT(whitespace/braces)
new arm::Register(arm::R0),
new arm::Register(arm::R1),
new arm::Register(arm::R4),
new arm::Register(arm::R8),
new arm::Register(arm::R11),
new arm::Register(arm::R12),
new arm::Register(arm::R13),
new arm::Register(arm::R14),
new arm::Register(arm::R15)
});
} else {
registers_.insert(end(registers_),
{ // NOLINT(whitespace/braces)
new arm::Register(arm::R0),
new arm::Register(arm::R1),
new arm::Register(arm::R2),
new arm::Register(arm::R3),
new arm::Register(arm::R4),
new arm::Register(arm::R5),
new arm::Register(arm::R6),
new arm::Register(arm::R7),
new arm::Register(arm::R8),
new arm::Register(arm::R9),
new arm::Register(arm::R10),
new arm::Register(arm::R11),
new arm::Register(arm::R12),
new arm::Register(arm::R13),
new arm::Register(arm::R14),
new arm::Register(arm::R15)
});
}
}
if (!kUseSparseConditionList) {
conditions_.push_back(arm::Condition::EQ);
conditions_.push_back(arm::Condition::NE);
conditions_.push_back(arm::Condition::CS);
conditions_.push_back(arm::Condition::CC);
conditions_.push_back(arm::Condition::MI);
conditions_.push_back(arm::Condition::PL);
conditions_.push_back(arm::Condition::VS);
conditions_.push_back(arm::Condition::VC);
conditions_.push_back(arm::Condition::HI);
conditions_.push_back(arm::Condition::LS);
conditions_.push_back(arm::Condition::GE);
conditions_.push_back(arm::Condition::LT);
conditions_.push_back(arm::Condition::GT);
conditions_.push_back(arm::Condition::LE);
conditions_.push_back(arm::Condition::AL);
} else {
conditions_.push_back(arm::Condition::EQ);
conditions_.push_back(arm::Condition::NE);
conditions_.push_back(arm::Condition::CC);
conditions_.push_back(arm::Condition::VC);
conditions_.push_back(arm::Condition::HI);
conditions_.push_back(arm::Condition::LT);
conditions_.push_back(arm::Condition::AL);
}
shifter_operands_.push_back(arm::ShifterOperand(0));
shifter_operands_.push_back(arm::ShifterOperand(1));
shifter_operands_.push_back(arm::ShifterOperand(2));
shifter_operands_.push_back(arm::ShifterOperand(3));
shifter_operands_.push_back(arm::ShifterOperand(4));
shifter_operands_.push_back(arm::ShifterOperand(5));
shifter_operands_.push_back(arm::ShifterOperand(127));
shifter_operands_.push_back(arm::ShifterOperand(128));
shifter_operands_.push_back(arm::ShifterOperand(254));
shifter_operands_.push_back(arm::ShifterOperand(255));
if (!kUseSparseRegisterList) {
shifter_operands_.push_back(arm::ShifterOperand(arm::R0));
shifter_operands_.push_back(arm::ShifterOperand(arm::R1));
shifter_operands_.push_back(arm::ShifterOperand(arm::R2));
shifter_operands_.push_back(arm::ShifterOperand(arm::R3));
shifter_operands_.push_back(arm::ShifterOperand(arm::R4));
shifter_operands_.push_back(arm::ShifterOperand(arm::R5));
shifter_operands_.push_back(arm::ShifterOperand(arm::R6));
shifter_operands_.push_back(arm::ShifterOperand(arm::R7));
shifter_operands_.push_back(arm::ShifterOperand(arm::R8));
shifter_operands_.push_back(arm::ShifterOperand(arm::R9));
shifter_operands_.push_back(arm::ShifterOperand(arm::R10));
shifter_operands_.push_back(arm::ShifterOperand(arm::R11));
shifter_operands_.push_back(arm::ShifterOperand(arm::R12));
shifter_operands_.push_back(arm::ShifterOperand(arm::R13));
} else {
shifter_operands_.push_back(arm::ShifterOperand(arm::R0));
shifter_operands_.push_back(arm::ShifterOperand(arm::R1));
shifter_operands_.push_back(arm::ShifterOperand(arm::R4));
shifter_operands_.push_back(arm::ShifterOperand(arm::R8));
shifter_operands_.push_back(arm::ShifterOperand(arm::R11));
shifter_operands_.push_back(arm::ShifterOperand(arm::R12));
shifter_operands_.push_back(arm::ShifterOperand(arm::R13));
}
std::vector<arm::Shift> shifts {
arm::Shift::LSL, arm::Shift::LSR, arm::Shift::ASR, arm::Shift::ROR, arm::Shift::RRX
};
// ShifterOperands of form "reg shift-type imm."
for (arm::Shift shift : shifts) {
for (arm::Register* reg : registers_) { // Note: this will pick up the sparse set.
if (*reg == arm::R15) { // Skip PC.
continue;
}
if (shift != arm::Shift::RRX) {
if (!kUseSparseShiftImmediates) {
for (uint32_t imm = 1; imm < 32; ++imm) {
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, imm));
}
} else {
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 1));
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 2));
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 3));
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 7));
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 15));
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 16));
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 30));
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 31));
}
} else {
// RRX doesn't have an immediate.
shifter_operands_.push_back(arm::ShifterOperand(*reg, shift, 0));
}
}
}
}
std::vector<arm::ShifterOperand> CreateRegisterShifts(std::vector<arm::Register*>& base_regs,
int32_t shift_min, int32_t shift_max) {
std::vector<arm::ShifterOperand> res;
static constexpr arm::Shift kShifts[] = { arm::Shift::LSL, arm::Shift::LSR, arm::Shift::ASR,
arm::Shift::ROR };
for (arm::Shift shift : kShifts) {
for (arm::Register* reg : base_regs) {
// Take the min, the max, and three values in between.
res.push_back(arm::ShifterOperand(*reg, shift, shift_min));
if (shift_min != shift_max) {
res.push_back(arm::ShifterOperand(*reg, shift, shift_max));
int32_t middle = (shift_min + shift_max) / 2;
res.push_back(arm::ShifterOperand(*reg, shift, middle));
res.push_back(arm::ShifterOperand(*reg, shift, middle - 1));
res.push_back(arm::ShifterOperand(*reg, shift, middle + 1));
}
}
}
return res;
}
void TearDown() OVERRIDE {
AssemblerArmTest::TearDown();
STLDeleteElements(&registers_);
}
std::vector<arm::Register*> GetRegisters() OVERRIDE {
return registers_;
}
uint32_t CreateImmediate(int64_t imm_value) OVERRIDE {
return imm_value;
}
std::vector<arm::Condition>& GetConditions() OVERRIDE {
return conditions_;
}
std::string GetConditionString(arm::Condition c) OVERRIDE {
std::ostringstream oss;
oss << c;
return oss.str();
}
arm::Register GetPCRegister() OVERRIDE {
return arm::R15;
}
std::vector<arm::ShifterOperand>& GetShiftOperands() OVERRIDE {
return shifter_operands_;
}
std::string GetShiftString(arm::ShifterOperand sop) OVERRIDE {
std::ostringstream oss;
if (sop.IsShift()) {
// Not a rotate...
if (sop.GetShift() == arm::Shift::RRX) {
oss << sop.GetRegister() << ", " << sop.GetShift();
} else {
oss << sop.GetRegister() << ", " << sop.GetShift() << " #" << sop.GetImmediate();
}
} else if (sop.IsRegister()) {
oss << sop.GetRegister();
} else {
CHECK(sop.IsImmediate());
oss << "#" << sop.GetImmediate();
}
return oss.str();
}
static const char* GetRegTokenFromDepth(int depth) {
switch (depth) {
case 0:
return Base::REG1_TOKEN;
case 1:
return Base::REG2_TOKEN;
case 2:
return REG3_TOKEN;
case 3:
return REG4_TOKEN;
default:
LOG(FATAL) << "Depth problem.";
UNREACHABLE();
}
}
void ExecuteAndPrint(std::function<void()> f, std::string fmt, std::ostringstream& oss) {
if (first_) {
first_ = false;
} else {
oss << "\n";
}
oss << fmt;
f();
}
void TemplateHelper(std::function<void(arm::Register)> f, int depth ATTRIBUTE_UNUSED,
bool without_pc,
std::string fmt, std::ostringstream& oss) {
std::vector<arm::Register*> registers = without_pc ? GetRegistersWithoutPC() : GetRegisters();
for (auto reg : registers) {
std::string after_reg = fmt;
std::string reg_string = GetRegName<RegisterView::kUsePrimaryName>(*reg);
size_t reg_index;
const char* reg_token = GetRegTokenFromDepth(depth);
while ((reg_index = after_reg.find(reg_token)) != std::string::npos) {
after_reg.replace(reg_index, strlen(reg_token), reg_string);
}
ExecuteAndPrint([&] () { f(*reg); }, after_reg, oss);
}
}
void TemplateHelper(std::function<void(const arm::ShifterOperand&)> f, int depth ATTRIBUTE_UNUSED,
bool without_pc ATTRIBUTE_UNUSED, std::string fmt, std::ostringstream& oss) {
for (const arm::ShifterOperand& shift : GetShiftOperands()) {
std::string after_shift = fmt;
std::string shift_string = GetShiftString(shift);
size_t shift_index;
while ((shift_index = after_shift.find(SHIFT_TOKEN)) != std::string::npos) {
after_shift.replace(shift_index, ConstexprStrLen(SHIFT_TOKEN), shift_string);
}
ExecuteAndPrint([&] () { f(shift); }, after_shift, oss);
}
}
void TemplateHelper(std::function<void(arm::Condition)> f, int depth ATTRIBUTE_UNUSED,
bool without_pc ATTRIBUTE_UNUSED, std::string fmt, std::ostringstream& oss) {
for (arm::Condition c : GetConditions()) {
std::string after_cond = fmt;
size_t cond_index = after_cond.find(COND_TOKEN);
if (cond_index != std::string::npos) {
after_cond.replace(cond_index, ConstexprStrLen(IMM1_TOKEN), GetConditionString(c));
}
ExecuteAndPrint([&] () { f(c); }, after_cond, oss);
}
}
template <typename... Args>
void TemplateHelper(std::function<void(arm::Register, Args...)> f, int depth, bool without_pc,
std::string fmt, std::ostringstream& oss) {
std::vector<arm::Register*> registers = without_pc ? GetRegistersWithoutPC() : GetRegisters();
for (auto reg : registers) {
std::string after_reg = fmt;
std::string reg_string = GetRegName<RegisterView::kUsePrimaryName>(*reg);
size_t reg_index;
const char* reg_token = GetRegTokenFromDepth(depth);
while ((reg_index = after_reg.find(reg_token)) != std::string::npos) {
after_reg.replace(reg_index, strlen(reg_token), reg_string);
}
auto lambda = [&] (Args... args) { f(*reg, args...); }; // NOLINT [readability/braces] [4]
TemplateHelper(std::function<void(Args...)>(lambda), depth + 1, without_pc,
after_reg, oss);
}
}
template <typename... Args>
void TemplateHelper(std::function<void(const arm::ShifterOperand&, Args...)> f, int depth,
bool without_pc, std::string fmt, std::ostringstream& oss) {
for (const arm::ShifterOperand& shift : GetShiftOperands()) {
std::string after_shift = fmt;
std::string shift_string = GetShiftString(shift);
size_t shift_index;
while ((shift_index = after_shift.find(SHIFT_TOKEN)) != std::string::npos) {
after_shift.replace(shift_index, ConstexprStrLen(SHIFT_TOKEN), shift_string);
}
auto lambda = [&] (Args... args) { f(shift, args...); }; // NOLINT [readability/braces] [4]
TemplateHelper(std::function<void(Args...)>(lambda), depth, without_pc,
after_shift, oss);
}
}
template <typename... Args>
void TemplateHelper(std::function<void(arm::Condition, Args...)> f, int depth, bool without_pc,
std::string fmt, std::ostringstream& oss) {
for (arm::Condition c : GetConditions()) {
std::string after_cond = fmt;
size_t cond_index = after_cond.find(COND_TOKEN);
if (cond_index != std::string::npos) {
after_cond.replace(cond_index, ConstexprStrLen(IMM1_TOKEN), GetConditionString(c));
}
auto lambda = [&] (Args... args) { f(c, args...); }; // NOLINT [readability/braces] [4]
TemplateHelper(std::function<void(Args...)>(lambda), depth, without_pc,
after_cond, oss);
}
}
template <typename T1, typename T2>
std::function<void(T1, T2)> GetBoundFunction2(void (arm::Arm32Assembler::*f)(T1, T2)) {
return std::bind(f, GetAssembler(), _1, _2);
}
template <typename T1, typename T2, typename T3>
std::function<void(T1, T2, T3)> GetBoundFunction3(void (arm::Arm32Assembler::*f)(T1, T2, T3)) {
return std::bind(f, GetAssembler(), _1, _2, _3);
}
template <typename T1, typename T2, typename T3, typename T4>
std::function<void(T1, T2, T3, T4)> GetBoundFunction4(
void (arm::Arm32Assembler::*f)(T1, T2, T3, T4)) {
return std::bind(f, GetAssembler(), _1, _2, _3, _4);
}
template <typename T1, typename T2, typename T3, typename T4, typename T5>
std::function<void(T1, T2, T3, T4, T5)> GetBoundFunction5(
void (arm::Arm32Assembler::*f)(T1, T2, T3, T4, T5)) {
return std::bind(f, GetAssembler(), _1, _2, _3, _4, _5);
}
template <typename... Args>
void GenericTemplateHelper(std::function<void(Args...)> f, bool without_pc,
std::string fmt, std::string test_name) {
first_ = false;
WarnOnCombinations(CountHelper<Args...>(without_pc));
std::ostringstream oss;
TemplateHelper(f, 0, without_pc, fmt, oss);
oss << "\n"; // Trailing newline.
DriverStr(oss.str(), test_name);
}
template <typename... Args>
void T2Helper(void (arm::Arm32Assembler::*f)(Args...), bool without_pc, std::string fmt,
std::string test_name) {
GenericTemplateHelper(GetBoundFunction2(f), without_pc, fmt, test_name);
}
template <typename... Args>
void T3Helper(void (arm::Arm32Assembler::*f)(Args...), bool without_pc, std::string fmt,
std::string test_name) {
GenericTemplateHelper(GetBoundFunction3(f), without_pc, fmt, test_name);
}
template <typename... Args>
void T4Helper(void (arm::Arm32Assembler::*f)(Args...), bool without_pc, std::string fmt,
std::string test_name) {
GenericTemplateHelper(GetBoundFunction4(f), without_pc, fmt, test_name);
}
template <typename... Args>
void T5Helper(void (arm::Arm32Assembler::*f)(Args...), bool without_pc, std::string fmt,
std::string test_name) {
GenericTemplateHelper(GetBoundFunction5(f), without_pc, fmt, test_name);
}
private:
template <typename T>
size_t CountHelper(bool without_pc) {
size_t tmp;
if (std::is_same<T, arm::Register>::value) {
tmp = GetRegisters().size();
if (without_pc) {
tmp--;; // Approximation...
}
return tmp;
} else if (std::is_same<T, const arm::ShifterOperand&>::value) {
return GetShiftOperands().size();
} else if (std::is_same<T, arm::Condition>::value) {
return GetConditions().size();
} else {
LOG(WARNING) << "Unknown type while counting.";
return 1;
}
}
template <typename T1, typename T2, typename... Args>
size_t CountHelper(bool without_pc) {
size_t tmp;
if (std::is_same<T1, arm::Register>::value) {
tmp = GetRegisters().size();
if (without_pc) {
tmp--;; // Approximation...
}
} else if (std::is_same<T1, const arm::ShifterOperand&>::value) {
tmp = GetShiftOperands().size();
} else if (std::is_same<T1, arm::Condition>::value) {
tmp = GetConditions().size();
} else {
LOG(WARNING) << "Unknown type while counting.";
tmp = 1;
}
size_t rec = CountHelper<T2, Args...>(without_pc);
return rec * tmp;
}
bool first_;
static constexpr const char* kArm32AssemblyHeader = ".arm\n";
std::vector<arm::Register*> registers_;
std::vector<arm::Condition> conditions_;
std::vector<arm::ShifterOperand> shifter_operands_;
};
TEST_F(AssemblerArm32Test, Toolchain) {
EXPECT_TRUE(CheckTools());
}
TEST_F(AssemblerArm32Test, Sbfx) {
std::vector<std::pair<uint32_t, uint32_t>> immediates;
immediates.push_back({0, 1});
immediates.push_back({0, 8});
immediates.push_back({0, 15});
immediates.push_back({0, 16});
immediates.push_back({0, 31});
immediates.push_back({0, 32});
immediates.push_back({1, 1});
immediates.push_back({1, 15});
immediates.push_back({1, 31});
immediates.push_back({8, 1});
immediates.push_back({8, 15});
immediates.push_back({8, 16});
immediates.push_back({8, 24});
immediates.push_back({31, 1});
DriverStr(RepeatRRiiC(&arm::Arm32Assembler::sbfx, immediates,
"sbfx{cond} {reg1}, {reg2}, #{imm1}, #{imm2}"), "sbfx");
}
TEST_F(AssemblerArm32Test, Ubfx) {
std::vector<std::pair<uint32_t, uint32_t>> immediates;
immediates.push_back({0, 1});
immediates.push_back({0, 8});
immediates.push_back({0, 15});
immediates.push_back({0, 16});
immediates.push_back({0, 31});
immediates.push_back({0, 32});
immediates.push_back({1, 1});
immediates.push_back({1, 15});
immediates.push_back({1, 31});
immediates.push_back({8, 1});
immediates.push_back({8, 15});
immediates.push_back({8, 16});
immediates.push_back({8, 24});
immediates.push_back({31, 1});
DriverStr(RepeatRRiiC(&arm::Arm32Assembler::ubfx, immediates,
"ubfx{cond} {reg1}, {reg2}, #{imm1}, #{imm2}"), "ubfx");
}
TEST_F(AssemblerArm32Test, Mul) {
T4Helper(&arm::Arm32Assembler::mul, true, "mul{cond} {reg1}, {reg2}, {reg3}", "mul");
}
TEST_F(AssemblerArm32Test, Mla) {
T5Helper(&arm::Arm32Assembler::mla, true, "mla{cond} {reg1}, {reg2}, {reg3}, {reg4}", "mul");
}
/* TODO: Needs support to filter out register combinations, as rdhi must not be equal to rdlo.
TEST_F(AssemblerArm32Test, Umull) {
T5Helper(&arm::Arm32Assembler::umull, true, "umull{cond} {reg1}, {reg2}, {reg3}, {reg4}",
"umull");
}
*/
TEST_F(AssemblerArm32Test, Sdiv) {
T4Helper(&arm::Arm32Assembler::sdiv, true, "sdiv{cond} {reg1}, {reg2}, {reg3}", "sdiv");
}
TEST_F(AssemblerArm32Test, Udiv) {
T4Helper(&arm::Arm32Assembler::udiv, true, "udiv{cond} {reg1}, {reg2}, {reg3}", "udiv");
}
TEST_F(AssemblerArm32Test, And) {
T4Helper(&arm::Arm32Assembler::and_, true, "and{cond} {reg1}, {reg2}, {shift}", "and");
}
TEST_F(AssemblerArm32Test, Eor) {
T4Helper(&arm::Arm32Assembler::eor, true, "eor{cond} {reg1}, {reg2}, {shift}", "eor");
}
TEST_F(AssemblerArm32Test, Orr) {
T4Helper(&arm::Arm32Assembler::orr, true, "orr{cond} {reg1}, {reg2}, {shift}", "orr");
}
TEST_F(AssemblerArm32Test, Orrs) {
T4Helper(&arm::Arm32Assembler::orrs, true, "orr{cond}s {reg1}, {reg2}, {shift}", "orrs");
}
TEST_F(AssemblerArm32Test, Bic) {
T4Helper(&arm::Arm32Assembler::bic, true, "bic{cond} {reg1}, {reg2}, {shift}", "bic");
}
TEST_F(AssemblerArm32Test, Mov) {
T3Helper(&arm::Arm32Assembler::mov, true, "mov{cond} {reg1}, {shift}", "mov");
}
TEST_F(AssemblerArm32Test, Movs) {
T3Helper(&arm::Arm32Assembler::movs, true, "mov{cond}s {reg1}, {shift}", "movs");
}
TEST_F(AssemblerArm32Test, Mvn) {
T3Helper(&arm::Arm32Assembler::mvn, true, "mvn{cond} {reg1}, {shift}", "mvn");
}
TEST_F(AssemblerArm32Test, Mvns) {
T3Helper(&arm::Arm32Assembler::mvns, true, "mvn{cond}s {reg1}, {shift}", "mvns");
}
TEST_F(AssemblerArm32Test, Add) {
T4Helper(&arm::Arm32Assembler::add, false, "add{cond} {reg1}, {reg2}, {shift}", "add");
}
TEST_F(AssemblerArm32Test, Adds) {
T4Helper(&arm::Arm32Assembler::adds, false, "add{cond}s {reg1}, {reg2}, {shift}", "adds");
}
TEST_F(AssemblerArm32Test, Adc) {
T4Helper(&arm::Arm32Assembler::adc, false, "adc{cond} {reg1}, {reg2}, {shift}", "adc");
}
TEST_F(AssemblerArm32Test, Sub) {
T4Helper(&arm::Arm32Assembler::sub, false, "sub{cond} {reg1}, {reg2}, {shift}", "sub");
}
TEST_F(AssemblerArm32Test, Subs) {
T4Helper(&arm::Arm32Assembler::subs, false, "sub{cond}s {reg1}, {reg2}, {shift}", "subs");
}
TEST_F(AssemblerArm32Test, Sbc) {
T4Helper(&arm::Arm32Assembler::sbc, false, "sbc{cond} {reg1}, {reg2}, {shift}", "sbc");
}
TEST_F(AssemblerArm32Test, Rsb) {
T4Helper(&arm::Arm32Assembler::rsb, true, "rsb{cond} {reg1}, {reg2}, {shift}", "rsb");
}
TEST_F(AssemblerArm32Test, Rsbs) {
T4Helper(&arm::Arm32Assembler::rsbs, true, "rsb{cond}s {reg1}, {reg2}, {shift}", "rsbs");
}
TEST_F(AssemblerArm32Test, Rsc) {
T4Helper(&arm::Arm32Assembler::rsc, true, "rsc{cond} {reg1}, {reg2}, {shift}", "rsc");
}
/* TODO: Needs support to filter out register combinations, as reg1 must not be equal to reg3.
TEST_F(AssemblerArm32Test, Strex) {
RRRCWithoutPCHelper(&arm::Arm32Assembler::strex, "strex{cond} {reg1}, {reg2}, [{reg3}]", "strex");
}
*/
TEST_F(AssemblerArm32Test, Clz) {
T3Helper(&arm::Arm32Assembler::clz, true, "clz{cond} {reg1}, {reg2}", "clz");
}
TEST_F(AssemblerArm32Test, Tst) {
T3Helper(&arm::Arm32Assembler::tst, true, "tst{cond} {reg1}, {shift}", "tst");
}
TEST_F(AssemblerArm32Test, Teq) {
T3Helper(&arm::Arm32Assembler::teq, true, "teq{cond} {reg1}, {shift}", "teq");
}
TEST_F(AssemblerArm32Test, Cmp) {
T3Helper(&arm::Arm32Assembler::cmp, true, "cmp{cond} {reg1}, {shift}", "cmp");
}
TEST_F(AssemblerArm32Test, Cmn) {
T3Helper(&arm::Arm32Assembler::cmn, true, "cmn{cond} {reg1}, {shift}", "cmn");
}
TEST_F(AssemblerArm32Test, Blx) {
T2Helper(&arm::Arm32Assembler::blx, true, "blx{cond} {reg1}", "blx");
}
TEST_F(AssemblerArm32Test, Bx) {
T2Helper(&arm::Arm32Assembler::bx, true, "bx{cond} {reg1}", "bx");
}
TEST_F(AssemblerArm32Test, Vmstat) {
GetAssembler()->vmstat();
const char* expected = "vmrs APSR_nzcv, FPSCR\n";
DriverStr(expected, "vmrs");
}
} // namespace art