| /* |
| * Copyright (C) 2012 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ |
| #define ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ |
| |
| #include "entrypoint_utils.h" |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "class_linker-inl.h" |
| #include "common_throws.h" |
| #include "dex/dex_file.h" |
| #include "dex/invoke_type.h" |
| #include "entrypoints/quick/callee_save_frame.h" |
| #include "handle_scope-inl.h" |
| #include "imt_conflict_table.h" |
| #include "imtable-inl.h" |
| #include "indirect_reference_table.h" |
| #include "jni/jni_internal.h" |
| #include "mirror/array-alloc-inl.h" |
| #include "mirror/class-alloc-inl.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/throwable.h" |
| #include "nth_caller_visitor.h" |
| #include "runtime.h" |
| #include "stack_map.h" |
| #include "thread.h" |
| #include "well_known_classes.h" |
| |
| namespace art { |
| |
| inline ArtMethod* GetResolvedMethod(ArtMethod* outer_method, |
| const CodeInfo& code_info, |
| const BitTableRange<InlineInfo>& inline_infos) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| DCHECK(!outer_method->IsObsolete()); |
| |
| // This method is being used by artQuickResolutionTrampoline, before it sets up |
| // the passed parameters in a GC friendly way. Therefore we must never be |
| // suspended while executing it. |
| ScopedAssertNoThreadSuspension sants(__FUNCTION__); |
| |
| { |
| InlineInfo inline_info = inline_infos.back(); |
| |
| if (inline_info.EncodesArtMethod()) { |
| return inline_info.GetArtMethod(); |
| } |
| |
| uint32_t method_index = code_info.GetMethodIndexOf(inline_info); |
| if (inline_info.GetDexPc() == static_cast<uint32_t>(-1)) { |
| // "charAt" special case. It is the only non-leaf method we inline across dex files. |
| ArtMethod* inlined_method = jni::DecodeArtMethod(WellKnownClasses::java_lang_String_charAt); |
| DCHECK_EQ(inlined_method->GetDexMethodIndex(), method_index); |
| return inlined_method; |
| } |
| } |
| |
| // Find which method did the call in the inlining hierarchy. |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ArtMethod* method = outer_method; |
| for (InlineInfo inline_info : inline_infos) { |
| DCHECK(!inline_info.EncodesArtMethod()); |
| DCHECK_NE(inline_info.GetDexPc(), static_cast<uint32_t>(-1)); |
| uint32_t method_index = code_info.GetMethodIndexOf(inline_info); |
| ArtMethod* inlined_method = class_linker->LookupResolvedMethod(method_index, |
| method->GetDexCache(), |
| method->GetClassLoader()); |
| if (UNLIKELY(inlined_method == nullptr)) { |
| LOG(FATAL) << "Could not find an inlined method from an .oat file: " |
| << method->GetDexFile()->PrettyMethod(method_index) << " . " |
| << "This must be due to duplicate classes or playing wrongly with class loaders"; |
| UNREACHABLE(); |
| } |
| DCHECK(!inlined_method->IsRuntimeMethod()); |
| if (UNLIKELY(inlined_method->GetDexFile() != method->GetDexFile())) { |
| // TODO: We could permit inlining within a multi-dex oat file and the boot image, |
| // even going back from boot image methods to the same oat file. However, this is |
| // not currently implemented in the compiler. Therefore crossing dex file boundary |
| // indicates that the inlined definition is not the same as the one used at runtime. |
| bool target_sdk_pre_p = Runtime::Current()->GetTargetSdkVersion() < 28; |
| LOG(target_sdk_pre_p ? WARNING : FATAL) |
| << "Inlined method resolution crossed dex file boundary: from " |
| << method->PrettyMethod() |
| << " in " << method->GetDexFile()->GetLocation() << "/" |
| << static_cast<const void*>(method->GetDexFile()) |
| << " to " << inlined_method->PrettyMethod() |
| << " in " << inlined_method->GetDexFile()->GetLocation() << "/" |
| << static_cast<const void*>(inlined_method->GetDexFile()) << ". " |
| << "This must be due to duplicate classes or playing wrongly with class loaders. " |
| << "The runtime is in an unsafe state."; |
| } |
| method = inlined_method; |
| } |
| |
| return method; |
| } |
| |
| ALWAYS_INLINE inline mirror::Class* CheckObjectAlloc(mirror::Class* klass, |
| Thread* self, |
| bool* slow_path) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Roles::uninterruptible_) { |
| if (UNLIKELY(!klass->IsInstantiable())) { |
| self->ThrowNewException("Ljava/lang/InstantiationError;", klass->PrettyDescriptor().c_str()); |
| *slow_path = true; |
| return nullptr; // Failure |
| } |
| if (UNLIKELY(klass->IsClassClass())) { |
| ThrowIllegalAccessError(nullptr, "Class %s is inaccessible", |
| klass->PrettyDescriptor().c_str()); |
| *slow_path = true; |
| return nullptr; // Failure |
| } |
| if (UNLIKELY(!klass->IsInitialized())) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> h_klass(hs.NewHandle(klass)); |
| // EnsureInitialized (the class initializer) might cause a GC. |
| // may cause us to suspend meaning that another thread may try to |
| // change the allocator while we are stuck in the entrypoints of |
| // an old allocator. Also, the class initialization may fail. To |
| // handle these cases we mark the slow path boolean as true so |
| // that the caller knows to check the allocator type to see if it |
| // has changed and to null-check the return value in case the |
| // initialization fails. |
| *slow_path = true; |
| if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_klass, true, true)) { |
| DCHECK(self->IsExceptionPending()); |
| return nullptr; // Failure |
| } else { |
| DCHECK(!self->IsExceptionPending()); |
| } |
| return h_klass.Get(); |
| } |
| return klass; |
| } |
| |
| ALWAYS_INLINE |
| inline mirror::Class* CheckClassInitializedForObjectAlloc(mirror::Class* klass, |
| Thread* self, |
| bool* slow_path) |
| REQUIRES_SHARED(Locks::mutator_lock_) |
| REQUIRES(!Roles::uninterruptible_) { |
| if (UNLIKELY(!klass->IsInitialized())) { |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> h_class(hs.NewHandle(klass)); |
| // EnsureInitialized (the class initializer) might cause a GC. |
| // may cause us to suspend meaning that another thread may try to |
| // change the allocator while we are stuck in the entrypoints of |
| // an old allocator. Also, the class initialization may fail. To |
| // handle these cases we mark the slow path boolean as true so |
| // that the caller knows to check the allocator type to see if it |
| // has changed and to null-check the return value in case the |
| // initialization fails. |
| *slow_path = true; |
| if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) { |
| DCHECK(self->IsExceptionPending()); |
| return nullptr; // Failure |
| } |
| return h_class.Get(); |
| } |
| return klass; |
| } |
| |
| // Allocate an instance of klass. Throws InstantationError if klass is not instantiable, |
| // or IllegalAccessError if klass is j.l.Class. Performs a clinit check too. |
| template <bool kInstrumented> |
| ALWAYS_INLINE |
| inline mirror::Object* AllocObjectFromCode(mirror::Class* klass, |
| Thread* self, |
| gc::AllocatorType allocator_type) { |
| bool slow_path = false; |
| klass = CheckObjectAlloc(klass, self, &slow_path); |
| if (UNLIKELY(slow_path)) { |
| if (klass == nullptr) { |
| return nullptr; |
| } |
| // CheckObjectAlloc can cause thread suspension which means we may now be instrumented. |
| return klass->Alloc</*kInstrumented=*/true>( |
| self, |
| Runtime::Current()->GetHeap()->GetCurrentAllocator()).Ptr(); |
| } |
| DCHECK(klass != nullptr); |
| return klass->Alloc<kInstrumented>(self, allocator_type).Ptr(); |
| } |
| |
| // Given the context of a calling Method and a resolved class, create an instance. |
| template <bool kInstrumented> |
| ALWAYS_INLINE |
| inline mirror::Object* AllocObjectFromCodeResolved(mirror::Class* klass, |
| Thread* self, |
| gc::AllocatorType allocator_type) { |
| DCHECK(klass != nullptr); |
| bool slow_path = false; |
| klass = CheckClassInitializedForObjectAlloc(klass, self, &slow_path); |
| if (UNLIKELY(slow_path)) { |
| if (klass == nullptr) { |
| return nullptr; |
| } |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| // Pass in false since the object cannot be finalizable. |
| // CheckClassInitializedForObjectAlloc can cause thread suspension which means we may now be |
| // instrumented. |
| return klass->Alloc</*kInstrumented=*/true, false>(self, heap->GetCurrentAllocator()).Ptr(); |
| } |
| // Pass in false since the object cannot be finalizable. |
| return klass->Alloc<kInstrumented, false>(self, allocator_type).Ptr(); |
| } |
| |
| // Given the context of a calling Method and an initialized class, create an instance. |
| template <bool kInstrumented> |
| ALWAYS_INLINE |
| inline mirror::Object* AllocObjectFromCodeInitialized(mirror::Class* klass, |
| Thread* self, |
| gc::AllocatorType allocator_type) { |
| DCHECK(klass != nullptr); |
| // Pass in false since the object cannot be finalizable. |
| return klass->Alloc<kInstrumented, false>(self, allocator_type).Ptr(); |
| } |
| |
| |
| template <bool kAccessCheck> |
| ALWAYS_INLINE |
| inline mirror::Class* CheckArrayAlloc(dex::TypeIndex type_idx, |
| int32_t component_count, |
| ArtMethod* method, |
| bool* slow_path) { |
| if (UNLIKELY(component_count < 0)) { |
| ThrowNegativeArraySizeException(component_count); |
| *slow_path = true; |
| return nullptr; // Failure |
| } |
| ObjPtr<mirror::Class> klass = method->GetDexCache()->GetResolvedType(type_idx); |
| if (UNLIKELY(klass == nullptr)) { // Not in dex cache so try to resolve |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| klass = class_linker->ResolveType(type_idx, method); |
| *slow_path = true; |
| if (klass == nullptr) { // Error |
| DCHECK(Thread::Current()->IsExceptionPending()); |
| return nullptr; // Failure |
| } |
| CHECK(klass->IsArrayClass()) << klass->PrettyClass(); |
| } |
| if (kAccessCheck) { |
| ObjPtr<mirror::Class> referrer = method->GetDeclaringClass(); |
| if (UNLIKELY(!referrer->CanAccess(klass))) { |
| ThrowIllegalAccessErrorClass(referrer, klass); |
| *slow_path = true; |
| return nullptr; // Failure |
| } |
| } |
| return klass.Ptr(); |
| } |
| |
| // Given the context of a calling Method, use its DexCache to resolve a type to an array Class. If |
| // it cannot be resolved, throw an error. If it can, use it to create an array. |
| // When verification/compiler hasn't been able to verify access, optionally perform an access |
| // check. |
| template <bool kAccessCheck, bool kInstrumented> |
| ALWAYS_INLINE |
| inline ObjPtr<mirror::Array> AllocArrayFromCode(dex::TypeIndex type_idx, |
| int32_t component_count, |
| ArtMethod* method, |
| Thread* self, |
| gc::AllocatorType allocator_type) { |
| bool slow_path = false; |
| ObjPtr<mirror::Class> klass = |
| CheckArrayAlloc<kAccessCheck>(type_idx, component_count, method, &slow_path); |
| if (UNLIKELY(slow_path)) { |
| if (klass == nullptr) { |
| return nullptr; |
| } |
| gc::Heap* heap = Runtime::Current()->GetHeap(); |
| // CheckArrayAlloc can cause thread suspension which means we may now be instrumented. |
| return mirror::Array::Alloc</*kInstrumented=*/true>(self, |
| klass, |
| component_count, |
| klass->GetComponentSizeShift(), |
| heap->GetCurrentAllocator()); |
| } |
| return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, |
| klass->GetComponentSizeShift(), allocator_type); |
| } |
| |
| template <bool kInstrumented> |
| ALWAYS_INLINE |
| inline mirror::Array* AllocArrayFromCodeResolved(mirror::Class* klass, |
| int32_t component_count, |
| Thread* self, |
| gc::AllocatorType allocator_type) { |
| DCHECK(klass != nullptr); |
| if (UNLIKELY(component_count < 0)) { |
| ThrowNegativeArraySizeException(component_count); |
| return nullptr; // Failure |
| } |
| // No need to retry a slow-path allocation as the above code won't cause a GC or thread |
| // suspension. |
| return mirror::Array::Alloc<kInstrumented>(self, klass, component_count, |
| klass->GetComponentSizeShift(), allocator_type).Ptr(); |
| } |
| |
| template<FindFieldType type, bool access_check> |
| inline ArtField* FindFieldFromCode(uint32_t field_idx, |
| ArtMethod* referrer, |
| Thread* self, |
| size_t expected_size) { |
| constexpr bool is_primitive = (type & FindFieldFlags::PrimitiveBit) != 0; |
| constexpr bool is_set = (type & FindFieldFlags::WriteBit) != 0; |
| constexpr bool is_static = (type & FindFieldFlags::StaticBit) != 0; |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| |
| ArtField* resolved_field; |
| if (access_check) { |
| // Slow path: According to JLS 13.4.8, a linkage error may occur if a compile-time |
| // qualifying type of a field and the resolved run-time qualifying type of a field differed |
| // in their static-ness. |
| // |
| // In particular, don't assume the dex instruction already correctly knows if the |
| // real field is static or not. The resolution must not be aware of this. |
| ArtMethod* method = referrer->GetInterfaceMethodIfProxy(kRuntimePointerSize); |
| |
| StackHandleScope<2> hs(self); |
| Handle<mirror::DexCache> h_dex_cache(hs.NewHandle(method->GetDexCache())); |
| Handle<mirror::ClassLoader> h_class_loader(hs.NewHandle(method->GetClassLoader())); |
| |
| resolved_field = class_linker->ResolveFieldJLS(field_idx, |
| h_dex_cache, |
| h_class_loader); |
| } else { |
| // Fast path: Verifier already would've called ResolveFieldJLS and we wouldn't |
| // be executing here if there was a static/non-static mismatch. |
| resolved_field = class_linker->ResolveField(field_idx, referrer, is_static); |
| } |
| |
| if (UNLIKELY(resolved_field == nullptr)) { |
| DCHECK(self->IsExceptionPending()); // Throw exception and unwind. |
| return nullptr; // Failure. |
| } |
| ObjPtr<mirror::Class> fields_class = resolved_field->GetDeclaringClass(); |
| if (access_check) { |
| if (UNLIKELY(resolved_field->IsStatic() != is_static)) { |
| ThrowIncompatibleClassChangeErrorField(resolved_field, is_static, referrer); |
| return nullptr; |
| } |
| ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass(); |
| if (UNLIKELY(!referring_class->CheckResolvedFieldAccess(fields_class, |
| resolved_field, |
| referrer->GetDexCache(), |
| field_idx))) { |
| DCHECK(self->IsExceptionPending()); // Throw exception and unwind. |
| return nullptr; // Failure. |
| } |
| if (UNLIKELY(is_set && resolved_field->IsFinal() && (fields_class != referring_class))) { |
| ThrowIllegalAccessErrorFinalField(referrer, resolved_field); |
| return nullptr; // Failure. |
| } else { |
| if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive || |
| resolved_field->FieldSize() != expected_size)) { |
| self->ThrowNewExceptionF("Ljava/lang/NoSuchFieldError;", |
| "Attempted read of %zd-bit %s on field '%s'", |
| expected_size * (32 / sizeof(int32_t)), |
| is_primitive ? "primitive" : "non-primitive", |
| resolved_field->PrettyField(true).c_str()); |
| return nullptr; // Failure. |
| } |
| } |
| } |
| if (!is_static) { |
| // instance fields must be being accessed on an initialized class |
| return resolved_field; |
| } else { |
| // If the class is initialized we're done. |
| if (LIKELY(fields_class->IsInitialized())) { |
| return resolved_field; |
| } else { |
| StackHandleScope<1> hs(self); |
| if (LIKELY(class_linker->EnsureInitialized(self, hs.NewHandle(fields_class), true, true))) { |
| // Otherwise let's ensure the class is initialized before resolving the field. |
| return resolved_field; |
| } |
| DCHECK(self->IsExceptionPending()); // Throw exception and unwind |
| return nullptr; // Failure. |
| } |
| } |
| } |
| |
| // Explicit template declarations of FindFieldFromCode for all field access types. |
| #define EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \ |
| template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \ |
| ArtField* FindFieldFromCode<_type, _access_check>(uint32_t field_idx, \ |
| ArtMethod* referrer, \ |
| Thread* self, size_t expected_size) \ |
| |
| #define EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \ |
| EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, false); \ |
| EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL(_type, true) |
| |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectRead); |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstanceObjectWrite); |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveRead); |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(InstancePrimitiveWrite); |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectRead); |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticObjectWrite); |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveRead); |
| EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL(StaticPrimitiveWrite); |
| |
| #undef EXPLICIT_FIND_FIELD_FROM_CODE_TYPED_TEMPLATE_DECL |
| #undef EXPLICIT_FIND_FIELD_FROM_CODE_TEMPLATE_DECL |
| |
| // Follow virtual/interface indirections if applicable. |
| // Will throw null-pointer exception the if the object is null. |
| template<InvokeType type, bool access_check> |
| ALWAYS_INLINE ArtMethod* FindMethodToCall(uint32_t method_idx, |
| ArtMethod* resolved_method, |
| ObjPtr<mirror::Object>* this_object, |
| ArtMethod* referrer, |
| Thread* self) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| // Null pointer check. |
| if (UNLIKELY(*this_object == nullptr && type != kStatic)) { |
| if (UNLIKELY(resolved_method->GetDeclaringClass()->IsStringClass() && |
| resolved_method->IsConstructor())) { |
| // Hack for String init: |
| // |
| // We assume that the input of String.<init> in verified code is always |
| // an unitialized reference. If it is a null constant, it must have been |
| // optimized out by the compiler. Do not throw NullPointerException. |
| } else { |
| // Maintain interpreter-like semantics where NullPointerException is thrown |
| // after potential NoSuchMethodError from class linker. |
| ThrowNullPointerExceptionForMethodAccess(method_idx, type); |
| return nullptr; // Failure. |
| } |
| } |
| switch (type) { |
| case kStatic: |
| case kDirect: |
| return resolved_method; |
| case kVirtual: { |
| ObjPtr<mirror::Class> klass = (*this_object)->GetClass(); |
| uint16_t vtable_index = resolved_method->GetMethodIndex(); |
| if (access_check && |
| (!klass->HasVTable() || |
| vtable_index >= static_cast<uint32_t>(klass->GetVTableLength()))) { |
| // Behavior to agree with that of the verifier. |
| ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), |
| resolved_method->GetName(), resolved_method->GetSignature()); |
| return nullptr; // Failure. |
| } |
| DCHECK(klass->HasVTable()) << klass->PrettyClass(); |
| return klass->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize()); |
| } |
| case kSuper: { |
| // TODO This lookup is quite slow. |
| // NB This is actually quite tricky to do any other way. We cannot use GetDeclaringClass since |
| // that will actually not be what we want in some cases where there are miranda methods or |
| // defaults. What we actually need is a GetContainingClass that says which classes virtuals |
| // this method is coming from. |
| StackHandleScope<2> hs2(self); |
| HandleWrapperObjPtr<mirror::Object> h_this(hs2.NewHandleWrapper(this_object)); |
| Handle<mirror::Class> h_referring_class(hs2.NewHandle(referrer->GetDeclaringClass())); |
| const dex::TypeIndex method_type_idx = |
| referrer->GetDexFile()->GetMethodId(method_idx).class_idx_; |
| ObjPtr<mirror::Class> method_reference_class = |
| class_linker->ResolveType(method_type_idx, referrer); |
| if (UNLIKELY(method_reference_class == nullptr)) { |
| // Bad type idx. |
| CHECK(self->IsExceptionPending()); |
| return nullptr; |
| } else if (!method_reference_class->IsInterface()) { |
| // It is not an interface. If the referring class is in the class hierarchy of the |
| // referenced class in the bytecode, we use its super class. Otherwise, we throw |
| // a NoSuchMethodError. |
| ObjPtr<mirror::Class> super_class = nullptr; |
| if (method_reference_class->IsAssignableFrom(h_referring_class.Get())) { |
| super_class = h_referring_class->GetSuperClass(); |
| } |
| uint16_t vtable_index = resolved_method->GetMethodIndex(); |
| if (access_check) { |
| // Check existence of super class. |
| if (super_class == nullptr || |
| !super_class->HasVTable() || |
| vtable_index >= static_cast<uint32_t>(super_class->GetVTableLength())) { |
| // Behavior to agree with that of the verifier. |
| ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), |
| resolved_method->GetName(), resolved_method->GetSignature()); |
| return nullptr; // Failure. |
| } |
| } |
| DCHECK(super_class != nullptr); |
| DCHECK(super_class->HasVTable()); |
| return super_class->GetVTableEntry(vtable_index, class_linker->GetImagePointerSize()); |
| } else { |
| // It is an interface. |
| if (access_check) { |
| if (!method_reference_class->IsAssignableFrom(h_this->GetClass())) { |
| ThrowIncompatibleClassChangeErrorClassForInterfaceSuper(resolved_method, |
| method_reference_class, |
| h_this.Get(), |
| referrer); |
| return nullptr; // Failure. |
| } |
| } |
| // TODO We can do better than this for a (compiled) fastpath. |
| ArtMethod* result = method_reference_class->FindVirtualMethodForInterfaceSuper( |
| resolved_method, class_linker->GetImagePointerSize()); |
| // Throw an NSME if nullptr; |
| if (result == nullptr) { |
| ThrowNoSuchMethodError(type, resolved_method->GetDeclaringClass(), |
| resolved_method->GetName(), resolved_method->GetSignature()); |
| } |
| return result; |
| } |
| UNREACHABLE(); |
| } |
| case kInterface: { |
| size_t imt_index; |
| InterpreterCache* tls_cache = self->GetInterpreterCache(); |
| if (UNLIKELY(!tls_cache->Get(resolved_method, &imt_index))) { |
| imt_index = ImTable::GetImtIndex(resolved_method); |
| tls_cache->Set(resolved_method, imt_index); |
| } |
| DCHECK_EQ(imt_index, ImTable::GetImtIndex(resolved_method)); |
| PointerSize pointer_size = class_linker->GetImagePointerSize(); |
| ObjPtr<mirror::Class> klass = (*this_object)->GetClass(); |
| ArtMethod* imt_method = klass->GetImt(pointer_size)->Get(imt_index, pointer_size); |
| if (!imt_method->IsRuntimeMethod()) { |
| if (kIsDebugBuild) { |
| ArtMethod* method = klass->FindVirtualMethodForInterface( |
| resolved_method, class_linker->GetImagePointerSize()); |
| CHECK_EQ(imt_method, method) << ArtMethod::PrettyMethod(resolved_method) << " / " |
| << imt_method->PrettyMethod() << " / " |
| << ArtMethod::PrettyMethod(method) << " / " |
| << klass->PrettyClass(); |
| } |
| return imt_method; |
| } else { |
| ArtMethod* interface_method = klass->FindVirtualMethodForInterface( |
| resolved_method, class_linker->GetImagePointerSize()); |
| if (UNLIKELY(interface_method == nullptr)) { |
| ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(resolved_method, |
| *this_object, referrer); |
| return nullptr; // Failure. |
| } |
| return interface_method; |
| } |
| } |
| default: |
| LOG(FATAL) << "Unknown invoke type " << type; |
| return nullptr; // Failure. |
| } |
| } |
| |
| template<InvokeType type, bool access_check> |
| inline ArtMethod* FindMethodFromCode(uint32_t method_idx, |
| ObjPtr<mirror::Object>* this_object, |
| ArtMethod* referrer, |
| Thread* self) { |
| ClassLinker* const class_linker = Runtime::Current()->GetClassLinker(); |
| constexpr ClassLinker::ResolveMode resolve_mode = |
| access_check ? ClassLinker::ResolveMode::kCheckICCEAndIAE |
| : ClassLinker::ResolveMode::kNoChecks; |
| ArtMethod* resolved_method; |
| if (type == kStatic) { |
| resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, referrer, type); |
| } else { |
| StackHandleScope<1> hs(self); |
| HandleWrapperObjPtr<mirror::Object> h_this(hs.NewHandleWrapper(this_object)); |
| resolved_method = class_linker->ResolveMethod<resolve_mode>(self, method_idx, referrer, type); |
| } |
| if (UNLIKELY(resolved_method == nullptr)) { |
| DCHECK(self->IsExceptionPending()); // Throw exception and unwind. |
| return nullptr; // Failure. |
| } |
| return FindMethodToCall<type, access_check>( |
| method_idx, resolved_method, this_object, referrer, self); |
| } |
| |
| // Explicit template declarations of FindMethodFromCode for all invoke types. |
| #define EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, _access_check) \ |
| template REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE \ |
| ArtMethod* FindMethodFromCode<_type, _access_check>(uint32_t method_idx, \ |
| ObjPtr<mirror::Object>* this_object, \ |
| ArtMethod* referrer, \ |
| Thread* self) |
| #define EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(_type) \ |
| EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, false); \ |
| EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL(_type, true) |
| |
| EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kStatic); |
| EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kDirect); |
| EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kVirtual); |
| EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kSuper); |
| EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL(kInterface); |
| |
| #undef EXPLICIT_FIND_METHOD_FROM_CODE_TYPED_TEMPLATE_DECL |
| #undef EXPLICIT_FIND_METHOD_FROM_CODE_TEMPLATE_DECL |
| |
| // Fast path field resolution that can't initialize classes or throw exceptions. |
| inline ArtField* FindFieldFast(uint32_t field_idx, ArtMethod* referrer, FindFieldType type, |
| size_t expected_size) { |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__); |
| ArtField* resolved_field = |
| referrer->GetDexCache()->GetResolvedField(field_idx, kRuntimePointerSize); |
| if (UNLIKELY(resolved_field == nullptr)) { |
| return nullptr; |
| } |
| // Check for incompatible class change. |
| const bool is_primitive = (type & FindFieldFlags::PrimitiveBit) != 0; |
| const bool is_set = (type & FindFieldFlags::WriteBit) != 0; |
| const bool is_static = (type & FindFieldFlags::StaticBit) != 0; |
| if (UNLIKELY(resolved_field->IsStatic() != is_static)) { |
| // Incompatible class change. |
| return nullptr; |
| } |
| ObjPtr<mirror::Class> fields_class = resolved_field->GetDeclaringClass(); |
| if (is_static) { |
| // Check class is initialized else fail so that we can contend to initialize the class with |
| // other threads that may be racing to do this. |
| if (UNLIKELY(!fields_class->IsInitialized())) { |
| return nullptr; |
| } |
| } |
| ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass(); |
| if (UNLIKELY(!referring_class->CanAccess(fields_class) || |
| !referring_class->CanAccessMember(fields_class, resolved_field->GetAccessFlags()) || |
| (is_set && resolved_field->IsFinal() && (fields_class != referring_class)))) { |
| // Illegal access. |
| return nullptr; |
| } |
| if (UNLIKELY(resolved_field->IsPrimitiveType() != is_primitive || |
| resolved_field->FieldSize() != expected_size)) { |
| return nullptr; |
| } |
| return resolved_field; |
| } |
| |
| // Fast path method resolution that can't throw exceptions. |
| template <InvokeType type, bool access_check> |
| inline ArtMethod* FindMethodFast(uint32_t method_idx, |
| ObjPtr<mirror::Object> this_object, |
| ArtMethod* referrer) { |
| ScopedAssertNoThreadSuspension ants(__FUNCTION__); |
| if (UNLIKELY(this_object == nullptr && type != kStatic)) { |
| return nullptr; |
| } |
| ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass(); |
| ObjPtr<mirror::DexCache> dex_cache = referrer->GetDexCache(); |
| constexpr ClassLinker::ResolveMode resolve_mode = access_check |
| ? ClassLinker::ResolveMode::kCheckICCEAndIAE |
| : ClassLinker::ResolveMode::kNoChecks; |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| ArtMethod* resolved_method = linker->GetResolvedMethod<type, resolve_mode>(method_idx, referrer); |
| if (UNLIKELY(resolved_method == nullptr)) { |
| return nullptr; |
| } |
| if (type == kInterface) { // Most common form of slow path dispatch. |
| return this_object->GetClass()->FindVirtualMethodForInterface(resolved_method, |
| kRuntimePointerSize); |
| } else if (type == kStatic || type == kDirect) { |
| return resolved_method; |
| } else if (type == kSuper) { |
| // TODO This lookup is rather slow. |
| dex::TypeIndex method_type_idx = dex_cache->GetDexFile()->GetMethodId(method_idx).class_idx_; |
| ObjPtr<mirror::Class> method_reference_class = linker->LookupResolvedType( |
| method_type_idx, dex_cache, referrer->GetClassLoader()); |
| if (method_reference_class == nullptr) { |
| // Need to do full type resolution... |
| return nullptr; |
| } else if (!method_reference_class->IsInterface()) { |
| // It is not an interface. If the referring class is in the class hierarchy of the |
| // referenced class in the bytecode, we use its super class. Otherwise, we cannot |
| // resolve the method. |
| if (!method_reference_class->IsAssignableFrom(referring_class)) { |
| return nullptr; |
| } |
| ObjPtr<mirror::Class> super_class = referring_class->GetSuperClass(); |
| if (resolved_method->GetMethodIndex() >= super_class->GetVTableLength()) { |
| // The super class does not have the method. |
| return nullptr; |
| } |
| return super_class->GetVTableEntry(resolved_method->GetMethodIndex(), kRuntimePointerSize); |
| } else { |
| return method_reference_class->FindVirtualMethodForInterfaceSuper( |
| resolved_method, kRuntimePointerSize); |
| } |
| } else { |
| DCHECK(type == kVirtual); |
| return this_object->GetClass()->GetVTableEntry( |
| resolved_method->GetMethodIndex(), kRuntimePointerSize); |
| } |
| } |
| |
| inline ObjPtr<mirror::Class> ResolveVerifyAndClinit(dex::TypeIndex type_idx, |
| ArtMethod* referrer, |
| Thread* self, |
| bool can_run_clinit, |
| bool verify_access) { |
| ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); |
| ObjPtr<mirror::Class> klass = class_linker->ResolveType(type_idx, referrer); |
| if (UNLIKELY(klass == nullptr)) { |
| CHECK(self->IsExceptionPending()); |
| return nullptr; // Failure - Indicate to caller to deliver exception |
| } |
| // Perform access check if necessary. |
| ObjPtr<mirror::Class> referring_class = referrer->GetDeclaringClass(); |
| if (verify_access && UNLIKELY(!referring_class->CanAccess(klass))) { |
| ThrowIllegalAccessErrorClass(referring_class, klass); |
| return nullptr; // Failure - Indicate to caller to deliver exception |
| } |
| // If we're just implementing const-class, we shouldn't call <clinit>. |
| if (!can_run_clinit) { |
| return klass; |
| } |
| // If we are the <clinit> of this class, just return our storage. |
| // |
| // Do not set the DexCache InitializedStaticStorage, since that implies <clinit> has finished |
| // running. |
| if (klass == referring_class && referrer->IsConstructor() && referrer->IsStatic()) { |
| return klass; |
| } |
| StackHandleScope<1> hs(self); |
| Handle<mirror::Class> h_class(hs.NewHandle(klass)); |
| if (!class_linker->EnsureInitialized(self, h_class, true, true)) { |
| CHECK(self->IsExceptionPending()); |
| return nullptr; // Failure - Indicate to caller to deliver exception |
| } |
| return h_class.Get(); |
| } |
| |
| inline void UnlockJniSynchronizedMethod(jobject locked, Thread* self) { |
| // Save any pending exception over monitor exit call. |
| mirror::Throwable* saved_exception = nullptr; |
| if (UNLIKELY(self->IsExceptionPending())) { |
| saved_exception = self->GetException(); |
| self->ClearException(); |
| } |
| // Decode locked object and unlock, before popping local references. |
| self->DecodeJObject(locked)->MonitorExit(self); |
| if (UNLIKELY(self->IsExceptionPending())) { |
| LOG(FATAL) << "Synchronized JNI code returning with an exception:\n" |
| << saved_exception->Dump() |
| << "\nEncountered second exception during implicit MonitorExit:\n" |
| << self->GetException()->Dump(); |
| } |
| // Restore pending exception. |
| if (saved_exception != nullptr) { |
| self->SetException(saved_exception); |
| } |
| } |
| |
| template <typename INT_TYPE, typename FLOAT_TYPE> |
| inline INT_TYPE art_float_to_integral(FLOAT_TYPE f) { |
| const INT_TYPE kMaxInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::max()); |
| const INT_TYPE kMinInt = static_cast<INT_TYPE>(std::numeric_limits<INT_TYPE>::min()); |
| const FLOAT_TYPE kMaxIntAsFloat = static_cast<FLOAT_TYPE>(kMaxInt); |
| const FLOAT_TYPE kMinIntAsFloat = static_cast<FLOAT_TYPE>(kMinInt); |
| if (LIKELY(f > kMinIntAsFloat)) { |
| if (LIKELY(f < kMaxIntAsFloat)) { |
| return static_cast<INT_TYPE>(f); |
| } else { |
| return kMaxInt; |
| } |
| } else { |
| return (f != f) ? 0 : kMinInt; // f != f implies NaN |
| } |
| } |
| |
| } // namespace art |
| |
| #endif // ART_RUNTIME_ENTRYPOINTS_ENTRYPOINT_UTILS_INL_H_ |