| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_LIBARTBASE_BASE_BIT_UTILS_H_ |
| #define ART_LIBARTBASE_BASE_BIT_UTILS_H_ |
| |
| #include <limits> |
| #include <type_traits> |
| |
| #include <android-base/logging.h> |
| |
| #include "globals.h" |
| #include "stl_util_identity.h" |
| |
| namespace art { |
| |
| // Like sizeof, but count how many bits a type takes. Pass type explicitly. |
| template <typename T> |
| constexpr size_t BitSizeOf() { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| static_assert(sizeof(T) == sizeof(unsigned_type), "Unexpected type size mismatch!"); |
| static_assert(std::numeric_limits<unsigned_type>::radix == 2, "Unexpected radix!"); |
| return std::numeric_limits<unsigned_type>::digits; |
| } |
| |
| // Like sizeof, but count how many bits a type takes. Infers type from parameter. |
| template <typename T> |
| constexpr size_t BitSizeOf(T /*x*/) { |
| return BitSizeOf<T>(); |
| } |
| |
| template<typename T> |
| constexpr int CLZ(T x) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| static_assert(std::is_unsigned<T>::value, "T must be unsigned"); |
| static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); |
| static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t), |
| "Unsupported sizeof(T)"); |
| DCHECK_NE(x, 0u); |
| constexpr bool is_64_bit = (sizeof(T) == sizeof(uint64_t)); |
| constexpr size_t adjustment = |
| is_64_bit ? 0u : std::numeric_limits<uint32_t>::digits - std::numeric_limits<T>::digits; |
| return is_64_bit ? __builtin_clzll(x) : __builtin_clz(x) - adjustment; |
| } |
| |
| // Similar to CLZ except that on zero input it returns bitwidth and supports signed integers. |
| template<typename T> |
| constexpr int JAVASTYLE_CLZ(T x) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| return (x == 0) ? BitSizeOf<T>() : CLZ(static_cast<unsigned_type>(x)); |
| } |
| |
| template<typename T> |
| constexpr int CTZ(T x) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| // It is not unreasonable to ask for trailing zeros in a negative number. As such, do not check |
| // that T is an unsigned type. |
| static_assert(sizeof(T) == sizeof(uint64_t) || sizeof(T) <= sizeof(uint32_t), |
| "Unsupported sizeof(T)"); |
| DCHECK_NE(x, static_cast<T>(0)); |
| return (sizeof(T) == sizeof(uint64_t)) ? __builtin_ctzll(x) : __builtin_ctz(x); |
| } |
| |
| // Similar to CTZ except that on zero input it returns bitwidth and supports signed integers. |
| template<typename T> |
| constexpr int JAVASTYLE_CTZ(T x) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| return (x == 0) ? BitSizeOf<T>() : CTZ(static_cast<unsigned_type>(x)); |
| } |
| |
| // Return the number of 1-bits in `x`. |
| template<typename T> |
| constexpr int POPCOUNT(T x) { |
| return (sizeof(T) == sizeof(uint32_t)) ? __builtin_popcount(x) : __builtin_popcountll(x); |
| } |
| |
| // Swap bytes. |
| template<typename T> |
| constexpr T BSWAP(T x) { |
| if (sizeof(T) == sizeof(uint16_t)) { |
| return __builtin_bswap16(x); |
| } else if (sizeof(T) == sizeof(uint32_t)) { |
| return __builtin_bswap32(x); |
| } else { |
| return __builtin_bswap64(x); |
| } |
| } |
| |
| // Find the bit position of the most significant bit (0-based), or -1 if there were no bits set. |
| template <typename T> |
| constexpr ssize_t MostSignificantBit(T value) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| static_assert(std::is_unsigned<T>::value, "T must be unsigned"); |
| static_assert(std::numeric_limits<T>::radix == 2, "Unexpected radix!"); |
| return (value == 0) ? -1 : std::numeric_limits<T>::digits - 1 - CLZ(value); |
| } |
| |
| // Find the bit position of the least significant bit (0-based), or -1 if there were no bits set. |
| template <typename T> |
| constexpr ssize_t LeastSignificantBit(T value) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| static_assert(std::is_unsigned<T>::value, "T must be unsigned"); |
| return (value == 0) ? -1 : CTZ(value); |
| } |
| |
| // How many bits (minimally) does it take to store the constant 'value'? i.e. 1 for 1, 3 for 5, etc. |
| template <typename T> |
| constexpr size_t MinimumBitsToStore(T value) { |
| return static_cast<size_t>(MostSignificantBit(value) + 1); |
| } |
| |
| template <typename T> |
| constexpr T RoundUpToPowerOfTwo(T x) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| static_assert(std::is_unsigned<T>::value, "T must be unsigned"); |
| // NOTE: Undefined if x > (1 << (std::numeric_limits<T>::digits - 1)). |
| return (x < 2u) ? x : static_cast<T>(1u) << (std::numeric_limits<T>::digits - CLZ(x - 1u)); |
| } |
| |
| // Return highest possible N - a power of two - such that val >= N. |
| template <typename T> |
| constexpr T TruncToPowerOfTwo(T val) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| static_assert(std::is_unsigned<T>::value, "T must be unsigned"); |
| return (val != 0) ? static_cast<T>(1u) << (BitSizeOf<T>() - CLZ(val) - 1u) : 0; |
| } |
| |
| template<typename T> |
| constexpr bool IsPowerOfTwo(T x) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| // TODO: assert unsigned. There is currently many uses with signed values. |
| return (x & (x - 1)) == 0; |
| } |
| |
| template<typename T> |
| constexpr int WhichPowerOf2(T x) { |
| static_assert(std::is_integral<T>::value, "T must be integral"); |
| // TODO: assert unsigned. There is currently many uses with signed values. |
| DCHECK((x != 0) && IsPowerOfTwo(x)); |
| return CTZ(x); |
| } |
| |
| // For rounding integers. |
| // Note: Omit the `n` from T type deduction, deduce only from the `x` argument. |
| template<typename T> |
| constexpr T RoundDown(T x, typename Identity<T>::type n) WARN_UNUSED; |
| |
| template<typename T> |
| constexpr T RoundDown(T x, typename Identity<T>::type n) { |
| DCHECK(IsPowerOfTwo(n)); |
| return (x & -n); |
| } |
| |
| template<typename T> |
| constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) WARN_UNUSED; |
| |
| template<typename T> |
| constexpr T RoundUp(T x, typename std::remove_reference<T>::type n) { |
| return RoundDown(x + n - 1, n); |
| } |
| |
| // For aligning pointers. |
| template<typename T> |
| inline T* AlignDown(T* x, uintptr_t n) WARN_UNUSED; |
| |
| template<typename T> |
| inline T* AlignDown(T* x, uintptr_t n) { |
| return reinterpret_cast<T*>(RoundDown(reinterpret_cast<uintptr_t>(x), n)); |
| } |
| |
| template<typename T> |
| inline T* AlignUp(T* x, uintptr_t n) WARN_UNUSED; |
| |
| template<typename T> |
| inline T* AlignUp(T* x, uintptr_t n) { |
| return reinterpret_cast<T*>(RoundUp(reinterpret_cast<uintptr_t>(x), n)); |
| } |
| |
| template<int n, typename T> |
| constexpr bool IsAligned(T x) { |
| static_assert((n & (n - 1)) == 0, "n is not a power of two"); |
| return (x & (n - 1)) == 0; |
| } |
| |
| template<int n, typename T> |
| inline bool IsAligned(T* x) { |
| return IsAligned<n>(reinterpret_cast<const uintptr_t>(x)); |
| } |
| |
| template<typename T> |
| inline bool IsAlignedParam(T x, int n) { |
| return (x & (n - 1)) == 0; |
| } |
| |
| template<typename T> |
| inline bool IsAlignedParam(T* x, int n) { |
| return IsAlignedParam(reinterpret_cast<const uintptr_t>(x), n); |
| } |
| |
| #define CHECK_ALIGNED(value, alignment) \ |
| CHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) |
| |
| #define DCHECK_ALIGNED(value, alignment) \ |
| DCHECK(::art::IsAligned<alignment>(value)) << reinterpret_cast<const void*>(value) |
| |
| #define CHECK_ALIGNED_PARAM(value, alignment) \ |
| CHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) |
| |
| #define DCHECK_ALIGNED_PARAM(value, alignment) \ |
| DCHECK(::art::IsAlignedParam(value, alignment)) << reinterpret_cast<const void*>(value) |
| |
| inline uint16_t Low16Bits(uint32_t value) { |
| return static_cast<uint16_t>(value); |
| } |
| |
| inline uint16_t High16Bits(uint32_t value) { |
| return static_cast<uint16_t>(value >> 16); |
| } |
| |
| inline uint32_t Low32Bits(uint64_t value) { |
| return static_cast<uint32_t>(value); |
| } |
| |
| inline uint32_t High32Bits(uint64_t value) { |
| return static_cast<uint32_t>(value >> 32); |
| } |
| |
| // Check whether an N-bit two's-complement representation can hold value. |
| template <typename T> |
| inline bool IsInt(size_t N, T value) { |
| if (N == BitSizeOf<T>()) { |
| return true; |
| } else { |
| CHECK_LT(0u, N); |
| CHECK_LT(N, BitSizeOf<T>()); |
| T limit = static_cast<T>(1) << (N - 1u); |
| return (-limit <= value) && (value < limit); |
| } |
| } |
| |
| template <typename T> |
| constexpr T GetIntLimit(size_t bits) { |
| DCHECK_NE(bits, 0u); |
| DCHECK_LT(bits, BitSizeOf<T>()); |
| return static_cast<T>(1) << (bits - 1); |
| } |
| |
| template <size_t kBits, typename T> |
| constexpr bool IsInt(T value) { |
| static_assert(kBits > 0, "kBits cannot be zero."); |
| static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); |
| static_assert(std::is_signed<T>::value, "Needs a signed type."); |
| // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is |
| // trivially true. |
| return (kBits == BitSizeOf<T>()) ? |
| true : |
| (-GetIntLimit<T>(kBits) <= value) && (value < GetIntLimit<T>(kBits)); |
| } |
| |
| template <size_t kBits, typename T> |
| constexpr bool IsUint(T value) { |
| static_assert(kBits > 0, "kBits cannot be zero."); |
| static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); |
| static_assert(std::is_integral<T>::value, "Needs an integral type."); |
| // Corner case for "use all bits." Can't use the limits, as they would overflow, but it is |
| // trivially true. |
| // NOTE: To avoid triggering assertion in GetIntLimit(kBits+1) if kBits+1==BitSizeOf<T>(), |
| // use GetIntLimit(kBits)*2u. The unsigned arithmetic works well for us if it overflows. |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| return (0 <= value) && |
| (kBits == BitSizeOf<T>() || |
| (static_cast<unsigned_type>(value) <= GetIntLimit<unsigned_type>(kBits) * 2u - 1u)); |
| } |
| |
| template <size_t kBits, typename T> |
| constexpr bool IsAbsoluteUint(T value) { |
| static_assert(kBits <= BitSizeOf<T>(), "kBits must be <= max."); |
| static_assert(std::is_integral<T>::value, "Needs an integral type."); |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| return (kBits == BitSizeOf<T>()) |
| ? true |
| : IsUint<kBits>(value < 0 |
| ? static_cast<unsigned_type>(-1 - value) + 1u // Avoid overflow. |
| : static_cast<unsigned_type>(value)); |
| } |
| |
| // Generate maximum/minimum values for signed/unsigned n-bit integers |
| template <typename T> |
| constexpr T MaxInt(size_t bits) { |
| DCHECK(std::is_unsigned<T>::value || bits > 0u) << "bits cannot be zero for signed."; |
| DCHECK_LE(bits, BitSizeOf<T>()); |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| return bits == BitSizeOf<T>() |
| ? std::numeric_limits<T>::max() |
| : std::is_signed<T>::value |
| ? ((bits == 1u) ? 0 : static_cast<T>(MaxInt<unsigned_type>(bits - 1))) |
| : static_cast<T>(UINT64_C(1) << bits) - static_cast<T>(1); |
| } |
| |
| template <typename T> |
| constexpr T MinInt(size_t bits) { |
| DCHECK(std::is_unsigned<T>::value || bits > 0) << "bits cannot be zero for signed."; |
| DCHECK_LE(bits, BitSizeOf<T>()); |
| return bits == BitSizeOf<T>() |
| ? std::numeric_limits<T>::min() |
| : std::is_signed<T>::value |
| ? ((bits == 1u) ? -1 : static_cast<T>(-1) - MaxInt<T>(bits)) |
| : static_cast<T>(0); |
| } |
| |
| // Returns value with bit set in lowest one-bit position or 0 if 0. (java.lang.X.lowestOneBit). |
| template <typename kind> |
| inline static kind LowestOneBitValue(kind opnd) { |
| // Hacker's Delight, Section 2-1 |
| return opnd & -opnd; |
| } |
| |
| // Returns value with bit set in hightest one-bit position or 0 if 0. (java.lang.X.highestOneBit). |
| template <typename T> |
| inline static T HighestOneBitValue(T opnd) { |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| T res; |
| if (opnd == 0) { |
| res = 0; |
| } else { |
| int bit_position = BitSizeOf<T>() - (CLZ(static_cast<unsigned_type>(opnd)) + 1); |
| res = static_cast<T>(UINT64_C(1) << bit_position); |
| } |
| return res; |
| } |
| |
| // Rotate bits. |
| template <typename T, bool left> |
| inline static T Rot(T opnd, int distance) { |
| int mask = BitSizeOf<T>() - 1; |
| int unsigned_right_shift = left ? (-distance & mask) : (distance & mask); |
| int signed_left_shift = left ? (distance & mask) : (-distance & mask); |
| using unsigned_type = typename std::make_unsigned<T>::type; |
| return (static_cast<unsigned_type>(opnd) >> unsigned_right_shift) | (opnd << signed_left_shift); |
| } |
| |
| // TUNING: use rbit for arm/arm64 |
| inline static uint32_t ReverseBits32(uint32_t opnd) { |
| // Hacker's Delight 7-1 |
| opnd = ((opnd >> 1) & 0x55555555) | ((opnd & 0x55555555) << 1); |
| opnd = ((opnd >> 2) & 0x33333333) | ((opnd & 0x33333333) << 2); |
| opnd = ((opnd >> 4) & 0x0F0F0F0F) | ((opnd & 0x0F0F0F0F) << 4); |
| opnd = ((opnd >> 8) & 0x00FF00FF) | ((opnd & 0x00FF00FF) << 8); |
| opnd = ((opnd >> 16)) | ((opnd) << 16); |
| return opnd; |
| } |
| |
| // TUNING: use rbit for arm/arm64 |
| inline static uint64_t ReverseBits64(uint64_t opnd) { |
| // Hacker's Delight 7-1 |
| opnd = (opnd & 0x5555555555555555L) << 1 | ((opnd >> 1) & 0x5555555555555555L); |
| opnd = (opnd & 0x3333333333333333L) << 2 | ((opnd >> 2) & 0x3333333333333333L); |
| opnd = (opnd & 0x0f0f0f0f0f0f0f0fL) << 4 | ((opnd >> 4) & 0x0f0f0f0f0f0f0f0fL); |
| opnd = (opnd & 0x00ff00ff00ff00ffL) << 8 | ((opnd >> 8) & 0x00ff00ff00ff00ffL); |
| opnd = (opnd << 48) | ((opnd & 0xffff0000L) << 16) | ((opnd >> 16) & 0xffff0000L) | (opnd >> 48); |
| return opnd; |
| } |
| |
| // Create a mask for the least significant "bits" |
| // The returned value is always unsigned to prevent undefined behavior for bitwise ops. |
| // |
| // Given 'bits', |
| // Returns: |
| // <--- bits ---> |
| // +-----------------+------------+ |
| // | 0 ............0 | 1.....1 | |
| // +-----------------+------------+ |
| // msb lsb |
| template <typename T = size_t> |
| inline static constexpr std::make_unsigned_t<T> MaskLeastSignificant(size_t bits) { |
| DCHECK_GE(BitSizeOf<T>(), bits) << "Bits out of range for type T"; |
| using unsigned_T = std::make_unsigned_t<T>; |
| if (bits >= BitSizeOf<T>()) { |
| return std::numeric_limits<unsigned_T>::max(); |
| } else { |
| auto kOne = static_cast<unsigned_T>(1); // Do not truncate for T>size_t. |
| return static_cast<unsigned_T>((kOne << bits) - kOne); |
| } |
| } |
| |
| // Clears the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'. |
| // (Equivalent of ARM BFC instruction). |
| // |
| // Given: |
| // <-- width --> |
| // +--------+------------+--------+ |
| // | ABC... | bitfield | XYZ... + |
| // +--------+------------+--------+ |
| // lsb 0 |
| // Returns: |
| // <-- width --> |
| // +--------+------------+--------+ |
| // | ABC... | 0........0 | XYZ... + |
| // +--------+------------+--------+ |
| // lsb 0 |
| template <typename T> |
| inline static constexpr T BitFieldClear(T value, size_t lsb, size_t width) { |
| DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; |
| const auto val = static_cast<std::make_unsigned_t<T>>(value); |
| const auto mask = MaskLeastSignificant<T>(width); |
| |
| return static_cast<T>(val & ~(mask << lsb)); |
| } |
| |
| // Inserts the contents of 'data' into bitfield of 'value' starting |
| // at the least significant bit "lsb" with a bitwidth of 'width'. |
| // Note: data must be within range of [MinInt(width), MaxInt(width)]. |
| // (Equivalent of ARM BFI instruction). |
| // |
| // Given (data): |
| // <-- width --> |
| // +--------+------------+--------+ |
| // | ABC... | bitfield | XYZ... + |
| // +--------+------------+--------+ |
| // lsb 0 |
| // Returns: |
| // <-- width --> |
| // +--------+------------+--------+ |
| // | ABC... | 0...data | XYZ... + |
| // +--------+------------+--------+ |
| // lsb 0 |
| |
| template <typename T, typename T2> |
| inline static constexpr T BitFieldInsert(T value, T2 data, size_t lsb, size_t width) { |
| DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; |
| if (width != 0u) { |
| DCHECK_GE(MaxInt<T2>(width), data) << "Data out of range [too large] for bitwidth"; |
| DCHECK_LE(MinInt<T2>(width), data) << "Data out of range [too small] for bitwidth"; |
| } else { |
| DCHECK_EQ(static_cast<T2>(0), data) << "Data out of range [nonzero] for bitwidth 0"; |
| } |
| const auto data_mask = MaskLeastSignificant<T2>(width); |
| const auto value_cleared = BitFieldClear(value, lsb, width); |
| |
| return static_cast<T>(value_cleared | ((data & data_mask) << lsb)); |
| } |
| |
| // Extracts the bitfield starting at the least significant bit "lsb" with a bitwidth of 'width'. |
| // Signed types are sign-extended during extraction. (Equivalent of ARM UBFX/SBFX instruction). |
| // |
| // Given: |
| // <-- width --> |
| // +--------+-------------+-------+ |
| // | | bitfield | + |
| // +--------+-------------+-------+ |
| // lsb 0 |
| // (Unsigned) Returns: |
| // <-- width --> |
| // +----------------+-------------+ |
| // | 0... 0 | bitfield | |
| // +----------------+-------------+ |
| // 0 |
| // (Signed) Returns: |
| // <-- width --> |
| // +----------------+-------------+ |
| // | S... S | bitfield | |
| // +----------------+-------------+ |
| // 0 |
| // where S is the highest bit in 'bitfield'. |
| template <typename T> |
| inline static constexpr T BitFieldExtract(T value, size_t lsb, size_t width) { |
| DCHECK_GE(BitSizeOf(value), lsb + width) << "Bit field out of range for value"; |
| const auto val = static_cast<std::make_unsigned_t<T>>(value); |
| |
| const T bitfield_unsigned = |
| static_cast<T>((val >> lsb) & MaskLeastSignificant<T>(width)); |
| if (std::is_signed<T>::value) { |
| // Perform sign extension |
| if (width == 0) { // Avoid underflow. |
| return static_cast<T>(0); |
| } else if (bitfield_unsigned & (1 << (width - 1))) { // Detect if sign bit was set. |
| // MSB <width> LSB |
| // 0b11111...100...000000 |
| const auto ones_negmask = ~MaskLeastSignificant<T>(width); |
| return static_cast<T>(bitfield_unsigned | ones_negmask); |
| } |
| } |
| // Skip sign extension. |
| return bitfield_unsigned; |
| } |
| |
| inline static constexpr size_t BitsToBytesRoundUp(size_t num_bits) { |
| return RoundUp(num_bits, kBitsPerByte) / kBitsPerByte; |
| } |
| |
| } // namespace art |
| |
| #endif // ART_LIBARTBASE_BASE_BIT_UTILS_H_ |