| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "dex/compiler_internals.h" |
| #include "dex_file-inl.h" |
| #include "gc_map.h" |
| #include "mapping_table.h" |
| #include "mir_to_lir-inl.h" |
| #include "dex/quick/dex_file_method_inliner.h" |
| #include "dex/quick/dex_file_to_method_inliner_map.h" |
| #include "dex/verification_results.h" |
| #include "dex/verified_method.h" |
| #include "verifier/dex_gc_map.h" |
| #include "verifier/method_verifier.h" |
| |
| namespace art { |
| |
| namespace { |
| |
| /* Dump a mapping table */ |
| template <typename It> |
| void DumpMappingTable(const char* table_name, const char* descriptor, const char* name, |
| const Signature& signature, uint32_t size, It first) { |
| if (size != 0) { |
| std::string line(StringPrintf("\n %s %s%s_%s_table[%u] = {", table_name, |
| descriptor, name, signature.ToString().c_str(), size)); |
| std::replace(line.begin(), line.end(), ';', '_'); |
| LOG(INFO) << line; |
| for (uint32_t i = 0; i != size; ++i) { |
| line = StringPrintf(" {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc()); |
| ++first; |
| LOG(INFO) << line; |
| } |
| LOG(INFO) <<" };\n\n"; |
| } |
| } |
| |
| } // anonymous namespace |
| |
| bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) { |
| bool res = false; |
| if (rl_src.is_const) { |
| if (rl_src.wide) { |
| if (rl_src.fp) { |
| res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src)); |
| } else { |
| res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src)); |
| } |
| } else { |
| if (rl_src.fp) { |
| res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src)); |
| } else { |
| res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src)); |
| } |
| } |
| } |
| return res; |
| } |
| |
| void Mir2Lir::MarkSafepointPC(LIR* inst) { |
| DCHECK(!inst->flags.use_def_invalid); |
| inst->u.m.def_mask = ENCODE_ALL; |
| LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC); |
| DCHECK_EQ(safepoint_pc->u.m.def_mask, ENCODE_ALL); |
| } |
| |
| bool Mir2Lir::FastInstance(uint32_t field_idx, bool is_put, int* field_offset, bool* is_volatile) { |
| return cu_->compiler_driver->ComputeInstanceFieldInfo( |
| field_idx, mir_graph_->GetCurrentDexCompilationUnit(), is_put, field_offset, is_volatile); |
| } |
| |
| /* Remove a LIR from the list. */ |
| void Mir2Lir::UnlinkLIR(LIR* lir) { |
| if (UNLIKELY(lir == first_lir_insn_)) { |
| first_lir_insn_ = lir->next; |
| if (lir->next != NULL) { |
| lir->next->prev = NULL; |
| } else { |
| DCHECK(lir->next == NULL); |
| DCHECK(lir == last_lir_insn_); |
| last_lir_insn_ = NULL; |
| } |
| } else if (lir == last_lir_insn_) { |
| last_lir_insn_ = lir->prev; |
| lir->prev->next = NULL; |
| } else if ((lir->prev != NULL) && (lir->next != NULL)) { |
| lir->prev->next = lir->next; |
| lir->next->prev = lir->prev; |
| } |
| } |
| |
| /* Convert an instruction to a NOP */ |
| void Mir2Lir::NopLIR(LIR* lir) { |
| lir->flags.is_nop = true; |
| if (!cu_->verbose) { |
| UnlinkLIR(lir); |
| } |
| } |
| |
| void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) { |
| uint64_t *mask_ptr; |
| uint64_t mask = ENCODE_MEM; |
| DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE)); |
| DCHECK(!lir->flags.use_def_invalid); |
| if (is_load) { |
| mask_ptr = &lir->u.m.use_mask; |
| } else { |
| mask_ptr = &lir->u.m.def_mask; |
| } |
| /* Clear out the memref flags */ |
| *mask_ptr &= ~mask; |
| /* ..and then add back the one we need */ |
| switch (mem_type) { |
| case kLiteral: |
| DCHECK(is_load); |
| *mask_ptr |= ENCODE_LITERAL; |
| break; |
| case kDalvikReg: |
| *mask_ptr |= ENCODE_DALVIK_REG; |
| break; |
| case kHeapRef: |
| *mask_ptr |= ENCODE_HEAP_REF; |
| break; |
| case kMustNotAlias: |
| /* Currently only loads can be marked as kMustNotAlias */ |
| DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE)); |
| *mask_ptr |= ENCODE_MUST_NOT_ALIAS; |
| break; |
| default: |
| LOG(FATAL) << "Oat: invalid memref kind - " << mem_type; |
| } |
| } |
| |
| /* |
| * Mark load/store instructions that access Dalvik registers through the stack. |
| */ |
| void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, |
| bool is64bit) { |
| SetMemRefType(lir, is_load, kDalvikReg); |
| |
| /* |
| * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit |
| * access. |
| */ |
| lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit); |
| } |
| |
| /* |
| * Debugging macros |
| */ |
| #define DUMP_RESOURCE_MASK(X) |
| |
| /* Pretty-print a LIR instruction */ |
| void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) { |
| int offset = lir->offset; |
| int dest = lir->operands[0]; |
| const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops)); |
| |
| /* Handle pseudo-ops individually, and all regular insns as a group */ |
| switch (lir->opcode) { |
| case kPseudoMethodEntry: |
| LOG(INFO) << "-------- method entry " |
| << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| break; |
| case kPseudoMethodExit: |
| LOG(INFO) << "-------- Method_Exit"; |
| break; |
| case kPseudoBarrier: |
| LOG(INFO) << "-------- BARRIER"; |
| break; |
| case kPseudoEntryBlock: |
| LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoDalvikByteCodeBoundary: |
| if (lir->operands[0] == 0) { |
| // NOTE: only used for debug listings. |
| lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string")); |
| } |
| LOG(INFO) << "-------- dalvik offset: 0x" << std::hex |
| << lir->dalvik_offset << " @ " |
| << reinterpret_cast<char*>(UnwrapPointer(lir->operands[0])); |
| break; |
| case kPseudoExitBlock: |
| LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest; |
| break; |
| case kPseudoPseudoAlign4: |
| LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex |
| << offset << "): .align4"; |
| break; |
| case kPseudoEHBlockLabel: |
| LOG(INFO) << "Exception_Handling:"; |
| break; |
| case kPseudoTargetLabel: |
| case kPseudoNormalBlockLabel: |
| LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoThrowTarget: |
| LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoIntrinsicRetry: |
| LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoSuspendTarget: |
| LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":"; |
| break; |
| case kPseudoSafepointPC: |
| LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; |
| break; |
| case kPseudoExportedPC: |
| LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":"; |
| break; |
| case kPseudoCaseLabel: |
| LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x" |
| << std::hex << lir->operands[0] << "|" << std::dec << |
| lir->operands[0]; |
| break; |
| default: |
| if (lir->flags.is_nop && !dump_nop) { |
| break; |
| } else { |
| std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode), |
| lir, base_addr)); |
| std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode), |
| lir, base_addr)); |
| LOG(INFO) << StringPrintf("%5p: %-9s%s%s", |
| base_addr + offset, |
| op_name.c_str(), op_operands.c_str(), |
| lir->flags.is_nop ? "(nop)" : ""); |
| } |
| break; |
| } |
| |
| if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) { |
| DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->u.m.use_mask, "use")); |
| } |
| if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) { |
| DUMP_RESOURCE_MASK(DumpResourceMask(lir, lir->u.m.def_mask, "def")); |
| } |
| } |
| |
| void Mir2Lir::DumpPromotionMap() { |
| int num_regs = cu_->num_dalvik_registers + mir_graph_->GetNumUsedCompilerTemps(); |
| for (int i = 0; i < num_regs; i++) { |
| PromotionMap v_reg_map = promotion_map_[i]; |
| std::string buf; |
| if (v_reg_map.fp_location == kLocPhysReg) { |
| StringAppendF(&buf, " : s%d", v_reg_map.FpReg & FpRegMask()); |
| } |
| |
| std::string buf3; |
| if (i < cu_->num_dalvik_registers) { |
| StringAppendF(&buf3, "%02d", i); |
| } else if (i == mir_graph_->GetMethodSReg()) { |
| buf3 = "Method*"; |
| } else { |
| StringAppendF(&buf3, "ct%d", i - cu_->num_dalvik_registers); |
| } |
| |
| LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(), |
| v_reg_map.core_location == kLocPhysReg ? |
| "r" : "SP+", v_reg_map.core_location == kLocPhysReg ? |
| v_reg_map.core_reg : SRegOffset(i), |
| buf.c_str()); |
| } |
| } |
| |
| /* Dump instructions and constant pool contents */ |
| void Mir2Lir::CodegenDump() { |
| LOG(INFO) << "Dumping LIR insns for " |
| << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| LIR* lir_insn; |
| int insns_size = cu_->code_item->insns_size_in_code_units_; |
| |
| LOG(INFO) << "Regs (excluding ins) : " << cu_->num_regs; |
| LOG(INFO) << "Ins : " << cu_->num_ins; |
| LOG(INFO) << "Outs : " << cu_->num_outs; |
| LOG(INFO) << "CoreSpills : " << num_core_spills_; |
| LOG(INFO) << "FPSpills : " << num_fp_spills_; |
| LOG(INFO) << "CompilerTemps : " << mir_graph_->GetNumUsedCompilerTemps(); |
| LOG(INFO) << "Frame size : " << frame_size_; |
| LOG(INFO) << "code size is " << total_size_ << |
| " bytes, Dalvik size is " << insns_size * 2; |
| LOG(INFO) << "expansion factor: " |
| << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2); |
| DumpPromotionMap(); |
| for (lir_insn = first_lir_insn_; lir_insn != NULL; lir_insn = lir_insn->next) { |
| DumpLIRInsn(lir_insn, 0); |
| } |
| for (lir_insn = literal_list_; lir_insn != NULL; lir_insn = lir_insn->next) { |
| LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset, |
| lir_insn->operands[0]); |
| } |
| |
| const DexFile::MethodId& method_id = |
| cu_->dex_file->GetMethodId(cu_->method_idx); |
| const Signature signature = cu_->dex_file->GetMethodSignature(method_id); |
| const char* name = cu_->dex_file->GetMethodName(method_id); |
| const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id)); |
| |
| // Dump mapping tables |
| if (!encoded_mapping_table_.empty()) { |
| MappingTable table(&encoded_mapping_table_[0]); |
| DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature, |
| table.PcToDexSize(), table.PcToDexBegin()); |
| DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature, |
| table.DexToPcSize(), table.DexToPcBegin()); |
| } |
| } |
| |
| /* |
| * Search the existing constants in the literal pool for an exact or close match |
| * within specified delta (greater or equal to 0). |
| */ |
| LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) { |
| while (data_target) { |
| if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta) |
| return data_target; |
| data_target = data_target->next; |
| } |
| return NULL; |
| } |
| |
| /* Search the existing constants in the literal pool for an exact wide match */ |
| LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) { |
| bool lo_match = false; |
| LIR* lo_target = NULL; |
| while (data_target) { |
| if (lo_match && (data_target->operands[0] == val_hi)) { |
| // Record high word in case we need to expand this later. |
| lo_target->operands[1] = val_hi; |
| return lo_target; |
| } |
| lo_match = false; |
| if (data_target->operands[0] == val_lo) { |
| lo_match = true; |
| lo_target = data_target; |
| } |
| data_target = data_target->next; |
| } |
| return NULL; |
| } |
| |
| /* |
| * The following are building blocks to insert constants into the pool or |
| * instruction streams. |
| */ |
| |
| /* Add a 32-bit constant to the constant pool */ |
| LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) { |
| /* Add the constant to the literal pool */ |
| if (constant_list_p) { |
| LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), ArenaAllocator::kAllocData)); |
| new_value->operands[0] = value; |
| new_value->next = *constant_list_p; |
| *constant_list_p = new_value; |
| estimated_native_code_size_ += sizeof(value); |
| return new_value; |
| } |
| return NULL; |
| } |
| |
| /* Add a 64-bit constant to the constant pool or mixed with code */ |
| LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) { |
| AddWordData(constant_list_p, val_hi); |
| return AddWordData(constant_list_p, val_lo); |
| } |
| |
| static void PushWord(std::vector<uint8_t>&buf, int data) { |
| buf.push_back(data & 0xff); |
| buf.push_back((data >> 8) & 0xff); |
| buf.push_back((data >> 16) & 0xff); |
| buf.push_back((data >> 24) & 0xff); |
| } |
| |
| // Push 8 bytes on 64-bit systems; 4 on 32-bit systems. |
| static void PushPointer(std::vector<uint8_t>&buf, void const* pointer) { |
| uintptr_t data = reinterpret_cast<uintptr_t>(pointer); |
| if (sizeof(void*) == sizeof(uint64_t)) { |
| PushWord(buf, (data >> (sizeof(void*) * 4)) & 0xFFFFFFFF); |
| PushWord(buf, data & 0xFFFFFFFF); |
| } else { |
| PushWord(buf, data); |
| } |
| } |
| |
| static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) { |
| while (buf.size() < offset) { |
| buf.push_back(0); |
| } |
| } |
| |
| /* Write the literal pool to the output stream */ |
| void Mir2Lir::InstallLiteralPools() { |
| AlignBuffer(code_buffer_, data_offset_); |
| LIR* data_lir = literal_list_; |
| while (data_lir != NULL) { |
| PushWord(code_buffer_, data_lir->operands[0]); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| // Push code and method literals, record offsets for the compiler to patch. |
| data_lir = code_literal_list_; |
| while (data_lir != NULL) { |
| uint32_t target = data_lir->operands[0]; |
| cu_->compiler_driver->AddCodePatch(cu_->dex_file, |
| cu_->class_def_idx, |
| cu_->method_idx, |
| cu_->invoke_type, |
| target, |
| static_cast<InvokeType>(data_lir->operands[1]), |
| code_buffer_.size()); |
| const DexFile::MethodId& id = cu_->dex_file->GetMethodId(target); |
| // unique value based on target to ensure code deduplication works |
| PushPointer(code_buffer_, &id); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| data_lir = method_literal_list_; |
| while (data_lir != NULL) { |
| uint32_t target = data_lir->operands[0]; |
| cu_->compiler_driver->AddMethodPatch(cu_->dex_file, |
| cu_->class_def_idx, |
| cu_->method_idx, |
| cu_->invoke_type, |
| target, |
| static_cast<InvokeType>(data_lir->operands[1]), |
| code_buffer_.size()); |
| const DexFile::MethodId& id = cu_->dex_file->GetMethodId(target); |
| // unique value based on target to ensure code deduplication works |
| PushPointer(code_buffer_, &id); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| // Push class literals. |
| data_lir = class_literal_list_; |
| while (data_lir != NULL) { |
| uint32_t target = data_lir->operands[0]; |
| cu_->compiler_driver->AddClassPatch(cu_->dex_file, |
| cu_->class_def_idx, |
| cu_->method_idx, |
| target, |
| code_buffer_.size()); |
| const DexFile::TypeId& id = cu_->dex_file->GetTypeId(target); |
| // unique value based on target to ensure code deduplication works |
| PushPointer(code_buffer_, &id); |
| data_lir = NEXT_LIR(data_lir); |
| } |
| } |
| |
| /* Write the switch tables to the output stream */ |
| void Mir2Lir::InstallSwitchTables() { |
| GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); |
| while (true) { |
| Mir2Lir::SwitchTable* tab_rec = iterator.Next(); |
| if (tab_rec == NULL) break; |
| AlignBuffer(code_buffer_, tab_rec->offset); |
| /* |
| * For Arm, our reference point is the address of the bx |
| * instruction that does the launch, so we have to subtract |
| * the auto pc-advance. For other targets the reference point |
| * is a label, so we can use the offset as-is. |
| */ |
| int bx_offset = INVALID_OFFSET; |
| switch (cu_->instruction_set) { |
| case kThumb2: |
| DCHECK(tab_rec->anchor->flags.fixup != kFixupNone); |
| bx_offset = tab_rec->anchor->offset + 4; |
| break; |
| case kX86: |
| bx_offset = 0; |
| break; |
| case kMips: |
| bx_offset = tab_rec->anchor->offset; |
| break; |
| default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; |
| } |
| if (cu_->verbose) { |
| LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset; |
| } |
| if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| const int32_t* keys = reinterpret_cast<const int32_t*>(&(tab_rec->table[2])); |
| for (int elems = 0; elems < tab_rec->table[1]; elems++) { |
| int disp = tab_rec->targets[elems]->offset - bx_offset; |
| if (cu_->verbose) { |
| LOG(INFO) << " Case[" << elems << "] key: 0x" |
| << std::hex << keys[elems] << ", disp: 0x" |
| << std::hex << disp; |
| } |
| PushWord(code_buffer_, keys[elems]); |
| PushWord(code_buffer_, |
| tab_rec->targets[elems]->offset - bx_offset); |
| } |
| } else { |
| DCHECK_EQ(static_cast<int>(tab_rec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| for (int elems = 0; elems < tab_rec->table[1]; elems++) { |
| int disp = tab_rec->targets[elems]->offset - bx_offset; |
| if (cu_->verbose) { |
| LOG(INFO) << " Case[" << elems << "] disp: 0x" |
| << std::hex << disp; |
| } |
| PushWord(code_buffer_, tab_rec->targets[elems]->offset - bx_offset); |
| } |
| } |
| } |
| } |
| |
| /* Write the fill array dta to the output stream */ |
| void Mir2Lir::InstallFillArrayData() { |
| GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_); |
| while (true) { |
| Mir2Lir::FillArrayData *tab_rec = iterator.Next(); |
| if (tab_rec == NULL) break; |
| AlignBuffer(code_buffer_, tab_rec->offset); |
| for (int i = 0; i < (tab_rec->size + 1) / 2; i++) { |
| code_buffer_.push_back(tab_rec->table[i] & 0xFF); |
| code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF); |
| } |
| } |
| } |
| |
| static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) { |
| for (; lir != NULL; lir = lir->next) { |
| lir->offset = offset; |
| offset += 4; |
| } |
| return offset; |
| } |
| |
| static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset) { |
| unsigned int element_size = sizeof(void*); |
| // Align to natural pointer size. |
| offset = (offset + (element_size - 1)) & ~(element_size - 1); |
| for (; lir != NULL; lir = lir->next) { |
| lir->offset = offset; |
| offset += element_size; |
| } |
| return offset; |
| } |
| |
| // Make sure we have a code address for every declared catch entry |
| bool Mir2Lir::VerifyCatchEntries() { |
| MappingTable table(&encoded_mapping_table_[0]); |
| std::vector<uint32_t> dex_pcs; |
| dex_pcs.reserve(table.DexToPcSize()); |
| for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) { |
| dex_pcs.push_back(it.DexPc()); |
| } |
| // Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_. |
| std::sort(dex_pcs.begin(), dex_pcs.end()); |
| |
| bool success = true; |
| auto it = dex_pcs.begin(), end = dex_pcs.end(); |
| for (uint32_t dex_pc : mir_graph_->catches_) { |
| while (it != end && *it < dex_pc) { |
| LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it; |
| ++it; |
| success = false; |
| } |
| if (it == end || *it > dex_pc) { |
| LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc; |
| success = false; |
| } else { |
| ++it; |
| } |
| } |
| if (!success) { |
| LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file); |
| LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: " |
| << table.DexToPcSize(); |
| } |
| return success; |
| } |
| |
| |
| void Mir2Lir::CreateMappingTables() { |
| uint32_t pc2dex_data_size = 0u; |
| uint32_t pc2dex_entries = 0u; |
| uint32_t pc2dex_offset = 0u; |
| uint32_t pc2dex_dalvik_offset = 0u; |
| uint32_t dex2pc_data_size = 0u; |
| uint32_t dex2pc_entries = 0u; |
| uint32_t dex2pc_offset = 0u; |
| uint32_t dex2pc_dalvik_offset = 0u; |
| for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { |
| pc2dex_entries += 1; |
| DCHECK(pc2dex_offset <= tgt_lir->offset); |
| pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset); |
| pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(pc2dex_dalvik_offset)); |
| pc2dex_offset = tgt_lir->offset; |
| pc2dex_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { |
| dex2pc_entries += 1; |
| DCHECK(dex2pc_offset <= tgt_lir->offset); |
| dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset); |
| dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(dex2pc_dalvik_offset)); |
| dex2pc_offset = tgt_lir->offset; |
| dex2pc_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| } |
| |
| uint32_t total_entries = pc2dex_entries + dex2pc_entries; |
| uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); |
| uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; |
| encoded_mapping_table_.resize(data_size); |
| uint8_t* write_pos = &encoded_mapping_table_[0]; |
| write_pos = EncodeUnsignedLeb128(write_pos, total_entries); |
| write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); |
| DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size); |
| uint8_t* write_pos2 = write_pos + pc2dex_data_size; |
| |
| pc2dex_offset = 0u; |
| pc2dex_dalvik_offset = 0u; |
| dex2pc_offset = 0u; |
| dex2pc_dalvik_offset = 0u; |
| for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { |
| DCHECK(pc2dex_offset <= tgt_lir->offset); |
| write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset); |
| write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(pc2dex_dalvik_offset)); |
| pc2dex_offset = tgt_lir->offset; |
| pc2dex_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { |
| DCHECK(dex2pc_offset <= tgt_lir->offset); |
| write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset); |
| write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) - |
| static_cast<int32_t>(dex2pc_dalvik_offset)); |
| dex2pc_offset = tgt_lir->offset; |
| dex2pc_dalvik_offset = tgt_lir->dalvik_offset; |
| } |
| } |
| DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), |
| hdr_data_size + pc2dex_data_size); |
| DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size); |
| |
| if (kIsDebugBuild) { |
| CHECK(VerifyCatchEntries()); |
| |
| // Verify the encoded table holds the expected data. |
| MappingTable table(&encoded_mapping_table_[0]); |
| CHECK_EQ(table.TotalSize(), total_entries); |
| CHECK_EQ(table.PcToDexSize(), pc2dex_entries); |
| auto it = table.PcToDexBegin(); |
| auto it2 = table.DexToPcBegin(); |
| for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) { |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) { |
| CHECK_EQ(tgt_lir->offset, it.NativePcOffset()); |
| CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc()); |
| ++it; |
| } |
| if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) { |
| CHECK_EQ(tgt_lir->offset, it2.NativePcOffset()); |
| CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc()); |
| ++it2; |
| } |
| } |
| CHECK(it == table.PcToDexEnd()); |
| CHECK(it2 == table.DexToPcEnd()); |
| } |
| } |
| |
| class NativePcToReferenceMapBuilder { |
| public: |
| NativePcToReferenceMapBuilder(std::vector<uint8_t>* table, |
| size_t entries, uint32_t max_native_offset, |
| size_t references_width) : entries_(entries), |
| references_width_(references_width), in_use_(entries), |
| table_(table) { |
| // Compute width in bytes needed to hold max_native_offset. |
| native_offset_width_ = 0; |
| while (max_native_offset != 0) { |
| native_offset_width_++; |
| max_native_offset >>= 8; |
| } |
| // Resize table and set up header. |
| table->resize((EntryWidth() * entries) + sizeof(uint32_t)); |
| CHECK_LT(native_offset_width_, 1U << 3); |
| (*table)[0] = native_offset_width_ & 7; |
| CHECK_LT(references_width_, 1U << 13); |
| (*table)[0] |= (references_width_ << 3) & 0xFF; |
| (*table)[1] = (references_width_ >> 5) & 0xFF; |
| CHECK_LT(entries, 1U << 16); |
| (*table)[2] = entries & 0xFF; |
| (*table)[3] = (entries >> 8) & 0xFF; |
| } |
| |
| void AddEntry(uint32_t native_offset, const uint8_t* references) { |
| size_t table_index = TableIndex(native_offset); |
| while (in_use_[table_index]) { |
| table_index = (table_index + 1) % entries_; |
| } |
| in_use_[table_index] = true; |
| SetCodeOffset(table_index, native_offset); |
| DCHECK_EQ(native_offset, GetCodeOffset(table_index)); |
| SetReferences(table_index, references); |
| } |
| |
| private: |
| size_t TableIndex(uint32_t native_offset) { |
| return NativePcOffsetToReferenceMap::Hash(native_offset) % entries_; |
| } |
| |
| uint32_t GetCodeOffset(size_t table_index) { |
| uint32_t native_offset = 0; |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| for (size_t i = 0; i < native_offset_width_; i++) { |
| native_offset |= (*table_)[table_offset + i] << (i * 8); |
| } |
| return native_offset; |
| } |
| |
| void SetCodeOffset(size_t table_index, uint32_t native_offset) { |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| for (size_t i = 0; i < native_offset_width_; i++) { |
| (*table_)[table_offset + i] = (native_offset >> (i * 8)) & 0xFF; |
| } |
| } |
| |
| void SetReferences(size_t table_index, const uint8_t* references) { |
| size_t table_offset = (table_index * EntryWidth()) + sizeof(uint32_t); |
| memcpy(&(*table_)[table_offset + native_offset_width_], references, references_width_); |
| } |
| |
| size_t EntryWidth() const { |
| return native_offset_width_ + references_width_; |
| } |
| |
| // Number of entries in the table. |
| const size_t entries_; |
| // Number of bytes used to encode the reference bitmap. |
| const size_t references_width_; |
| // Number of bytes used to encode a native offset. |
| size_t native_offset_width_; |
| // Entries that are in use. |
| std::vector<bool> in_use_; |
| // The table we're building. |
| std::vector<uint8_t>* const table_; |
| }; |
| |
| void Mir2Lir::CreateNativeGcMap() { |
| DCHECK(!encoded_mapping_table_.empty()); |
| MappingTable mapping_table(&encoded_mapping_table_[0]); |
| uint32_t max_native_offset = 0; |
| for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) { |
| uint32_t native_offset = it.NativePcOffset(); |
| if (native_offset > max_native_offset) { |
| max_native_offset = native_offset; |
| } |
| } |
| MethodReference method_ref(cu_->dex_file, cu_->method_idx); |
| const std::vector<uint8_t>& gc_map_raw = |
| mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap(); |
| verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); |
| DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize()); |
| // Compute native offset to references size. |
| NativePcToReferenceMapBuilder native_gc_map_builder(&native_gc_map_, |
| mapping_table.PcToDexSize(), |
| max_native_offset, dex_gc_map.RegWidth()); |
| |
| for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) { |
| uint32_t native_offset = it.NativePcOffset(); |
| uint32_t dex_pc = it.DexPc(); |
| const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); |
| CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc; |
| native_gc_map_builder.AddEntry(native_offset, references); |
| } |
| } |
| |
| /* Determine the offset of each literal field */ |
| int Mir2Lir::AssignLiteralOffset(CodeOffset offset) { |
| offset = AssignLiteralOffsetCommon(literal_list_, offset); |
| offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset); |
| offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset); |
| offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset); |
| return offset; |
| } |
| |
| int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) { |
| GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); |
| while (true) { |
| Mir2Lir::SwitchTable* tab_rec = iterator.Next(); |
| if (tab_rec == NULL) break; |
| tab_rec->offset = offset; |
| if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| offset += tab_rec->table[1] * (sizeof(int) * 2); |
| } else { |
| DCHECK_EQ(static_cast<int>(tab_rec->table[0]), |
| static_cast<int>(Instruction::kPackedSwitchSignature)); |
| offset += tab_rec->table[1] * sizeof(int); |
| } |
| } |
| return offset; |
| } |
| |
| int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) { |
| GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_); |
| while (true) { |
| Mir2Lir::FillArrayData *tab_rec = iterator.Next(); |
| if (tab_rec == NULL) break; |
| tab_rec->offset = offset; |
| offset += tab_rec->size; |
| // word align |
| offset = (offset + 3) & ~3; |
| } |
| return offset; |
| } |
| |
| /* |
| * Insert a kPseudoCaseLabel at the beginning of the Dalvik |
| * offset vaddr if pretty-printing, otherise use the standard block |
| * label. The selected label will be used to fix up the case |
| * branch table during the assembly phase. All resource flags |
| * are set to prevent code motion. KeyVal is just there for debugging. |
| */ |
| LIR* Mir2Lir::InsertCaseLabel(DexOffset vaddr, int keyVal) { |
| LIR* boundary_lir = &block_label_list_[mir_graph_->FindBlock(vaddr)->id]; |
| LIR* res = boundary_lir; |
| if (cu_->verbose) { |
| // Only pay the expense if we're pretty-printing. |
| LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), ArenaAllocator::kAllocLIR)); |
| new_label->dalvik_offset = vaddr; |
| new_label->opcode = kPseudoCaseLabel; |
| new_label->operands[0] = keyVal; |
| new_label->flags.fixup = kFixupLabel; |
| DCHECK(!new_label->flags.use_def_invalid); |
| new_label->u.m.def_mask = ENCODE_ALL; |
| InsertLIRAfter(boundary_lir, new_label); |
| res = new_label; |
| } |
| return res; |
| } |
| |
| void Mir2Lir::MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec) { |
| const uint16_t* table = tab_rec->table; |
| DexOffset base_vaddr = tab_rec->vaddr; |
| const int32_t *targets = reinterpret_cast<const int32_t*>(&table[4]); |
| int entries = table[1]; |
| int low_key = s4FromSwitchData(&table[2]); |
| for (int i = 0; i < entries; i++) { |
| tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], i + low_key); |
| } |
| } |
| |
| void Mir2Lir::MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec) { |
| const uint16_t* table = tab_rec->table; |
| DexOffset base_vaddr = tab_rec->vaddr; |
| int entries = table[1]; |
| const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]); |
| const int32_t* targets = &keys[entries]; |
| for (int i = 0; i < entries; i++) { |
| tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], keys[i]); |
| } |
| } |
| |
| void Mir2Lir::ProcessSwitchTables() { |
| GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_); |
| while (true) { |
| Mir2Lir::SwitchTable *tab_rec = iterator.Next(); |
| if (tab_rec == NULL) break; |
| if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) { |
| MarkPackedCaseLabels(tab_rec); |
| } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) { |
| MarkSparseCaseLabels(tab_rec); |
| } else { |
| LOG(FATAL) << "Invalid switch table"; |
| } |
| } |
| } |
| |
| void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) { |
| /* |
| * Sparse switch data format: |
| * ushort ident = 0x0200 magic value |
| * ushort size number of entries in the table; > 0 |
| * int keys[size] keys, sorted low-to-high; 32-bit aligned |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (2+size*4) 16-bit code units. |
| */ |
| uint16_t ident = table[0]; |
| int entries = table[1]; |
| const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]); |
| const int32_t* targets = &keys[entries]; |
| LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i]; |
| } |
| } |
| |
| void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) { |
| /* |
| * Packed switch data format: |
| * ushort ident = 0x0100 magic value |
| * ushort size number of entries in the table |
| * int first_key first (and lowest) switch case value |
| * int targets[size] branch targets, relative to switch opcode |
| * |
| * Total size is (4+size*2) 16-bit code units. |
| */ |
| uint16_t ident = table[0]; |
| const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]); |
| int entries = table[1]; |
| int low_key = s4FromSwitchData(&table[2]); |
| LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident |
| << ", entries: " << std::dec << entries << ", low_key: " << low_key; |
| for (int i = 0; i < entries; i++) { |
| LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex |
| << targets[i]; |
| } |
| } |
| |
| /* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */ |
| void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) { |
| // NOTE: only used for debug listings. |
| NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str))); |
| } |
| |
| bool Mir2Lir::EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) { |
| bool is_taken; |
| switch (opcode) { |
| case Instruction::IF_EQ: is_taken = (src1 == src2); break; |
| case Instruction::IF_NE: is_taken = (src1 != src2); break; |
| case Instruction::IF_LT: is_taken = (src1 < src2); break; |
| case Instruction::IF_GE: is_taken = (src1 >= src2); break; |
| case Instruction::IF_GT: is_taken = (src1 > src2); break; |
| case Instruction::IF_LE: is_taken = (src1 <= src2); break; |
| case Instruction::IF_EQZ: is_taken = (src1 == 0); break; |
| case Instruction::IF_NEZ: is_taken = (src1 != 0); break; |
| case Instruction::IF_LTZ: is_taken = (src1 < 0); break; |
| case Instruction::IF_GEZ: is_taken = (src1 >= 0); break; |
| case Instruction::IF_GTZ: is_taken = (src1 > 0); break; |
| case Instruction::IF_LEZ: is_taken = (src1 <= 0); break; |
| default: |
| LOG(FATAL) << "Unexpected opcode " << opcode; |
| is_taken = false; |
| } |
| return is_taken; |
| } |
| |
| // Convert relation of src1/src2 to src2/src1 |
| ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) { |
| ConditionCode res; |
| switch (before) { |
| case kCondEq: res = kCondEq; break; |
| case kCondNe: res = kCondNe; break; |
| case kCondLt: res = kCondGt; break; |
| case kCondGt: res = kCondLt; break; |
| case kCondLe: res = kCondGe; break; |
| case kCondGe: res = kCondLe; break; |
| default: |
| res = static_cast<ConditionCode>(0); |
| LOG(FATAL) << "Unexpected ccode " << before; |
| } |
| return res; |
| } |
| |
| // TODO: move to mir_to_lir.cc |
| Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena) |
| : Backend(arena), |
| literal_list_(NULL), |
| method_literal_list_(NULL), |
| class_literal_list_(NULL), |
| code_literal_list_(NULL), |
| first_fixup_(NULL), |
| cu_(cu), |
| mir_graph_(mir_graph), |
| switch_tables_(arena, 4, kGrowableArraySwitchTables), |
| fill_array_data_(arena, 4, kGrowableArrayFillArrayData), |
| throw_launchpads_(arena, 2048, kGrowableArrayThrowLaunchPads), |
| suspend_launchpads_(arena, 4, kGrowableArraySuspendLaunchPads), |
| intrinsic_launchpads_(arena, 2048, kGrowableArrayMisc), |
| tempreg_info_(arena, 20, kGrowableArrayMisc), |
| reginfo_map_(arena, 64, kGrowableArrayMisc), |
| pointer_storage_(arena, 128, kGrowableArrayMisc), |
| data_offset_(0), |
| total_size_(0), |
| block_label_list_(NULL), |
| promotion_map_(NULL), |
| current_dalvik_offset_(0), |
| estimated_native_code_size_(0), |
| reg_pool_(NULL), |
| live_sreg_(0), |
| num_core_spills_(0), |
| num_fp_spills_(0), |
| frame_size_(0), |
| core_spill_mask_(0), |
| fp_spill_mask_(0), |
| first_lir_insn_(NULL), |
| last_lir_insn_(NULL), |
| slow_paths_(arena, 32, kGrowableArraySlowPaths) { |
| // Reserve pointer id 0 for NULL. |
| size_t null_idx = WrapPointer(NULL); |
| DCHECK_EQ(null_idx, 0U); |
| } |
| |
| void Mir2Lir::Materialize() { |
| cu_->NewTimingSplit("RegisterAllocation"); |
| CompilerInitializeRegAlloc(); // Needs to happen after SSA naming |
| |
| /* Allocate Registers using simple local allocation scheme */ |
| SimpleRegAlloc(); |
| |
| /* |
| * Custom codegen for special cases. If for any reason the |
| * special codegen doesn't succeed, first_lir_insn_ will be |
| * set to NULL; |
| */ |
| // TODO: Clean up GenSpecial() and return true only if special implementation is emitted. |
| // Currently, GenSpecial() returns IsSpecial() but doesn't check after SpecialMIR2LIR(). |
| DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr); |
| cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file) |
| ->GenSpecial(this, cu_->method_idx); |
| |
| /* Convert MIR to LIR, etc. */ |
| if (first_lir_insn_ == NULL) { |
| MethodMIR2LIR(); |
| } |
| |
| /* Method is not empty */ |
| if (first_lir_insn_) { |
| // mark the targets of switch statement case labels |
| ProcessSwitchTables(); |
| |
| /* Convert LIR into machine code. */ |
| AssembleLIR(); |
| |
| if (cu_->verbose) { |
| CodegenDump(); |
| } |
| } |
| } |
| |
| CompiledMethod* Mir2Lir::GetCompiledMethod() { |
| // Combine vmap tables - core regs, then fp regs - into vmap_table |
| std::vector<uint16_t> raw_vmap_table; |
| // Core regs may have been inserted out of order - sort first |
| std::sort(core_vmap_table_.begin(), core_vmap_table_.end()); |
| for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) { |
| // Copy, stripping out the phys register sort key |
| raw_vmap_table.push_back(~(-1 << VREG_NUM_WIDTH) & core_vmap_table_[i]); |
| } |
| // If we have a frame, push a marker to take place of lr |
| if (frame_size_ > 0) { |
| raw_vmap_table.push_back(INVALID_VREG); |
| } else { |
| DCHECK_EQ(__builtin_popcount(core_spill_mask_), 0); |
| DCHECK_EQ(__builtin_popcount(fp_spill_mask_), 0); |
| } |
| // Combine vmap tables - core regs, then fp regs. fp regs already sorted |
| for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) { |
| raw_vmap_table.push_back(fp_vmap_table_[i]); |
| } |
| Leb128EncodingVector vmap_encoder; |
| // Prefix the encoded data with its size. |
| vmap_encoder.PushBackUnsigned(raw_vmap_table.size()); |
| for (uint16_t cur : raw_vmap_table) { |
| vmap_encoder.PushBackUnsigned(cur); |
| } |
| CompiledMethod* result = |
| new CompiledMethod(*cu_->compiler_driver, cu_->instruction_set, code_buffer_, frame_size_, |
| core_spill_mask_, fp_spill_mask_, encoded_mapping_table_, |
| vmap_encoder.GetData(), native_gc_map_); |
| return result; |
| } |
| |
| size_t Mir2Lir::GetMaxPossibleCompilerTemps() const { |
| // Chose a reasonably small value in order to contain stack growth. |
| // Backends that are smarter about spill region can return larger values. |
| const size_t max_compiler_temps = 10; |
| return max_compiler_temps; |
| } |
| |
| size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() { |
| // By default assume that the Mir2Lir will need one slot for each temporary. |
| // If the backend can better determine temps that have non-overlapping ranges and |
| // temps that do not need spilled, it can actually provide a small region. |
| return (mir_graph_->GetNumUsedCompilerTemps() * sizeof(uint32_t)); |
| } |
| |
| int Mir2Lir::ComputeFrameSize() { |
| /* Figure out the frame size */ |
| static const uint32_t kAlignMask = kStackAlignment - 1; |
| uint32_t size = ((num_core_spills_ + num_fp_spills_ + |
| 1 /* filler word */ + cu_->num_regs + cu_->num_outs) |
| * sizeof(uint32_t)) + |
| GetNumBytesForCompilerTempSpillRegion(); |
| /* Align and set */ |
| return (size + kAlignMask) & ~(kAlignMask); |
| } |
| |
| /* |
| * Append an LIR instruction to the LIR list maintained by a compilation |
| * unit |
| */ |
| void Mir2Lir::AppendLIR(LIR* lir) { |
| if (first_lir_insn_ == NULL) { |
| DCHECK(last_lir_insn_ == NULL); |
| last_lir_insn_ = first_lir_insn_ = lir; |
| lir->prev = lir->next = NULL; |
| } else { |
| last_lir_insn_->next = lir; |
| lir->prev = last_lir_insn_; |
| lir->next = NULL; |
| last_lir_insn_ = lir; |
| } |
| } |
| |
| /* |
| * Insert an LIR instruction before the current instruction, which cannot be the |
| * first instruction. |
| * |
| * prev_lir <-> new_lir <-> current_lir |
| */ |
| void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) { |
| DCHECK(current_lir->prev != NULL); |
| LIR *prev_lir = current_lir->prev; |
| |
| prev_lir->next = new_lir; |
| new_lir->prev = prev_lir; |
| new_lir->next = current_lir; |
| current_lir->prev = new_lir; |
| } |
| |
| /* |
| * Insert an LIR instruction after the current instruction, which cannot be the |
| * first instruction. |
| * |
| * current_lir -> new_lir -> old_next |
| */ |
| void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) { |
| new_lir->prev = current_lir; |
| new_lir->next = current_lir->next; |
| current_lir->next = new_lir; |
| new_lir->next->prev = new_lir; |
| } |
| |
| bool Mir2Lir::IsPowerOfTwo(uint64_t x) { |
| return (x & (x - 1)) == 0; |
| } |
| |
| // Returns the index of the lowest set bit in 'x'. |
| int32_t Mir2Lir::LowestSetBit(uint64_t x) { |
| int bit_posn = 0; |
| while ((x & 0xf) == 0) { |
| bit_posn += 4; |
| x >>= 4; |
| } |
| while ((x & 1) == 0) { |
| bit_posn++; |
| x >>= 1; |
| } |
| return bit_posn; |
| } |
| |
| bool Mir2Lir::BadOverlap(RegLocation rl_src, RegLocation rl_dest) { |
| DCHECK(rl_src.wide); |
| DCHECK(rl_dest.wide); |
| return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1); |
| } |
| |
| LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, int temp_reg, int base_reg, |
| int offset, int check_value, LIR* target) { |
| // Handle this for architectures that can't compare to memory. |
| LoadWordDisp(base_reg, offset, temp_reg); |
| LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target); |
| return branch; |
| } |
| |
| void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) { |
| slow_paths_.Insert(slowpath); |
| } |
| |
| void Mir2Lir::LoadCodeAddress(int dex_method_index, InvokeType type, SpecialTargetRegister symbolic_reg) { |
| LIR* data_target = ScanLiteralPool(code_literal_list_, dex_method_index, 0); |
| if (data_target == NULL) { |
| data_target = AddWordData(&code_literal_list_, dex_method_index); |
| data_target->operands[1] = type; |
| } |
| LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg), data_target); |
| AppendLIR(load_pc_rel); |
| DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target); |
| } |
| |
| void Mir2Lir::LoadMethodAddress(int dex_method_index, InvokeType type, SpecialTargetRegister symbolic_reg) { |
| LIR* data_target = ScanLiteralPool(method_literal_list_, dex_method_index, 0); |
| if (data_target == NULL) { |
| data_target = AddWordData(&method_literal_list_, dex_method_index); |
| data_target->operands[1] = type; |
| } |
| LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg), data_target); |
| AppendLIR(load_pc_rel); |
| DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target); |
| } |
| |
| void Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) { |
| // Use the literal pool and a PC-relative load from a data word. |
| LIR* data_target = ScanLiteralPool(class_literal_list_, type_idx, 0); |
| if (data_target == nullptr) { |
| data_target = AddWordData(&class_literal_list_, type_idx); |
| } |
| LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg), data_target); |
| AppendLIR(load_pc_rel); |
| } |
| |
| } // namespace art |