blob: ecf34f57ef48d7c75029f239e56d767a99281dd4 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "offline_profiling_info.h"
#include <fstream>
#include <vector>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include "art_method-inl.h"
#include "base/mutex.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/unix_file/fd_file.h"
#include "jit/profiling_info.h"
#include "os.h"
#include "safe_map.h"
namespace art {
// Transform the actual dex location into relative paths.
// Note: this is OK because we don't store profiles of different apps into the same file.
// Apps with split apks don't cause trouble because each split has a different name and will not
// collide with other entries.
std::string ProfileCompilationInfo::GetProfileDexFileKey(const std::string& dex_location) {
DCHECK(!dex_location.empty());
size_t last_sep_index = dex_location.find_last_of('/');
if (last_sep_index == std::string::npos) {
return dex_location;
} else {
DCHECK(last_sep_index < dex_location.size());
return dex_location.substr(last_sep_index + 1);
}
}
bool ProfileCompilationInfo::SaveProfilingInfo(
const std::string& filename,
const std::vector<ArtMethod*>& methods,
const std::set<DexCacheResolvedClasses>& resolved_classes) {
if (methods.empty() && resolved_classes.empty()) {
VLOG(profiler) << "No info to save to " << filename;
return true;
}
ScopedTrace trace(__PRETTY_FUNCTION__);
ScopedFlock flock;
std::string error;
if (!flock.Init(filename.c_str(), O_RDWR | O_NOFOLLOW | O_CLOEXEC, /* block */ false, &error)) {
LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
return false;
}
int fd = flock.GetFile()->Fd();
ProfileCompilationInfo info;
if (!info.Load(fd)) {
LOG(WARNING) << "Could not load previous profile data from file " << filename;
return false;
}
{
ScopedObjectAccess soa(Thread::Current());
for (ArtMethod* method : methods) {
const DexFile* dex_file = method->GetDexFile();
if (!info.AddMethodIndex(GetProfileDexFileKey(dex_file->GetLocation()),
dex_file->GetLocationChecksum(),
method->GetDexMethodIndex())) {
return false;
}
}
for (const DexCacheResolvedClasses& dex_cache : resolved_classes) {
info.AddResolvedClasses(dex_cache);
}
}
if (!flock.GetFile()->ClearContent()) {
PLOG(WARNING) << "Could not clear profile file: " << filename;
return false;
}
// This doesn't need locking because we are trying to lock the file for exclusive
// access and fail immediately if we can't.
bool result = info.Save(fd);
if (result) {
VLOG(profiler) << "Successfully saved profile info to " << filename
<< " Size: " << GetFileSizeBytes(filename);
} else {
VLOG(profiler) << "Failed to save profile info to " << filename;
}
return result;
}
static bool WriteToFile(int fd, const std::ostringstream& os) {
std::string data(os.str());
const char *p = data.c_str();
size_t length = data.length();
do {
int n = TEMP_FAILURE_RETRY(write(fd, p, length));
if (n < 0) {
PLOG(WARNING) << "Failed to write to descriptor: " << fd;
return false;
}
p += n;
length -= n;
} while (length > 0);
return true;
}
static constexpr const char kFieldSeparator = ',';
static constexpr const char kLineSeparator = '\n';
static constexpr const char* kClassesMarker = "classes";
/**
* Serialization format:
* dex_location1,dex_location_checksum1,method_id11,method_id12...,classes,class_id1,class_id2...
* dex_location2,dex_location_checksum2,method_id21,method_id22...,classes,class_id1,class_id2...
* e.g.
* app.apk,131232145,11,23,454,54,classes,1,2,4,1234
* app.apk:classes5.dex,218490184,39,13,49,1
**/
bool ProfileCompilationInfo::Save(int fd) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
// TODO(calin): Profile this and see how much memory it takes. If too much,
// write to file directly.
std::ostringstream os;
for (const auto& it : info_) {
const std::string& dex_location = it.first;
const DexFileData& dex_data = it.second;
if (dex_data.method_set.empty() && dex_data.class_set.empty()) {
continue;
}
os << dex_location << kFieldSeparator << dex_data.checksum;
for (auto method_it : dex_data.method_set) {
os << kFieldSeparator << method_it;
}
if (!dex_data.class_set.empty()) {
os << kFieldSeparator << kClassesMarker;
for (auto class_id : dex_data.class_set) {
os << kFieldSeparator << class_id;
}
}
os << kLineSeparator;
}
return WriteToFile(fd, os);
}
// TODO(calin): This a duplicate of Utils::Split fixing the case where the first character
// is the separator. Merge the fix into Utils::Split once verified that it doesn't break its users.
static void SplitString(const std::string& s, char separator, std::vector<std::string>* result) {
const char* p = s.data();
const char* end = p + s.size();
// Check if the first character is the separator.
if (p != end && *p ==separator) {
result->push_back("");
++p;
}
// Process the rest of the characters.
while (p != end) {
if (*p == separator) {
++p;
} else {
const char* start = p;
while (++p != end && *p != separator) {
// Skip to the next occurrence of the separator.
}
result->push_back(std::string(start, p - start));
}
}
}
ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
const std::string& dex_location,
uint32_t checksum) {
auto info_it = info_.find(dex_location);
if (info_it == info_.end()) {
info_it = info_.Put(dex_location, DexFileData(checksum));
}
if (info_it->second.checksum != checksum) {
LOG(WARNING) << "Checksum mismatch for dex " << dex_location;
return nullptr;
}
return &info_it->second;
}
bool ProfileCompilationInfo::AddResolvedClasses(const DexCacheResolvedClasses& classes) {
const std::string dex_location = GetProfileDexFileKey(classes.GetDexLocation());
const uint32_t checksum = classes.GetLocationChecksum();
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->class_set.insert(classes.GetClasses().begin(), classes.GetClasses().end());
return true;
}
bool ProfileCompilationInfo::AddMethodIndex(const std::string& dex_location,
uint32_t checksum,
uint16_t method_idx) {
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->method_set.insert(method_idx);
return true;
}
bool ProfileCompilationInfo::AddClassIndex(const std::string& dex_location,
uint32_t checksum,
uint16_t class_idx) {
DexFileData* const data = GetOrAddDexFileData(dex_location, checksum);
if (data == nullptr) {
return false;
}
data->class_set.insert(class_idx);
return true;
}
bool ProfileCompilationInfo::ProcessLine(const std::string& line) {
std::vector<std::string> parts;
SplitString(line, kFieldSeparator, &parts);
if (parts.size() < 3) {
LOG(WARNING) << "Invalid line: " << line;
return false;
}
const std::string& dex_location = parts[0];
uint32_t checksum;
if (!ParseInt(parts[1].c_str(), &checksum)) {
return false;
}
for (size_t i = 2; i < parts.size(); i++) {
if (parts[i] == kClassesMarker) {
++i;
// All of the remaining idx are class def indexes.
for (++i; i < parts.size(); ++i) {
uint32_t class_def_idx;
if (!ParseInt(parts[i].c_str(), &class_def_idx)) {
LOG(WARNING) << "Cannot parse class_def_idx " << parts[i];
return false;
} else if (class_def_idx >= std::numeric_limits<uint16_t>::max()) {
LOG(WARNING) << "Class def idx " << class_def_idx << " is larger than uint16_t max";
return false;
}
if (!AddClassIndex(dex_location, checksum, class_def_idx)) {
return false;
}
}
break;
}
uint32_t method_idx;
if (!ParseInt(parts[i].c_str(), &method_idx)) {
LOG(WARNING) << "Cannot parse method_idx " << parts[i];
return false;
}
if (!AddMethodIndex(dex_location, checksum, method_idx)) {
return false;
}
}
return true;
}
// Parses the buffer (of length n) starting from start_from and identify new lines
// based on kLineSeparator marker.
// Returns the first position after kLineSeparator in the buffer (starting from start_from),
// or -1 if the marker doesn't appear.
// The processed characters are appended to the given line.
static int GetLineFromBuffer(char* buffer, int n, int start_from, std::string& line) {
if (start_from >= n) {
return -1;
}
int new_line_pos = -1;
for (int i = start_from; i < n; i++) {
if (buffer[i] == kLineSeparator) {
new_line_pos = i;
break;
}
}
int append_limit = new_line_pos == -1 ? n : new_line_pos;
line.append(buffer + start_from, append_limit - start_from);
// Jump over kLineSeparator and return the position of the next character.
return new_line_pos == -1 ? new_line_pos : new_line_pos + 1;
}
bool ProfileCompilationInfo::Load(int fd) {
ScopedTrace trace(__PRETTY_FUNCTION__);
DCHECK_GE(fd, 0);
std::string current_line;
const int kBufferSize = 1024;
char buffer[kBufferSize];
while (true) {
int n = TEMP_FAILURE_RETRY(read(fd, buffer, kBufferSize));
if (n < 0) {
PLOG(WARNING) << "Error when reading profile file";
return false;
} else if (n == 0) {
break;
}
// Detect the new lines from the buffer. If we manage to complete a line,
// process it. Otherwise append to the current line.
int current_start_pos = 0;
while (current_start_pos < n) {
current_start_pos = GetLineFromBuffer(buffer, n, current_start_pos, current_line);
if (current_start_pos == -1) {
break;
}
if (!ProcessLine(current_line)) {
return false;
}
// Reset the current line (we just processed it).
current_line.clear();
}
}
return true;
}
bool ProfileCompilationInfo::Load(const ProfileCompilationInfo& other) {
for (const auto& other_it : other.info_) {
const std::string& other_dex_location = other_it.first;
const DexFileData& other_dex_data = other_it.second;
auto info_it = info_.find(other_dex_location);
if (info_it == info_.end()) {
info_it = info_.Put(other_dex_location, DexFileData(other_dex_data.checksum));
}
if (info_it->second.checksum != other_dex_data.checksum) {
LOG(WARNING) << "Checksum mismatch for dex " << other_dex_location;
return false;
}
info_it->second.method_set.insert(other_dex_data.method_set.begin(),
other_dex_data.method_set.end());
info_it->second.class_set.insert(other_dex_data.class_set.begin(),
other_dex_data.class_set.end());
}
return true;
}
bool ProfileCompilationInfo::ContainsMethod(const MethodReference& method_ref) const {
auto info_it = info_.find(GetProfileDexFileKey(method_ref.dex_file->GetLocation()));
if (info_it != info_.end()) {
if (method_ref.dex_file->GetLocationChecksum() != info_it->second.checksum) {
return false;
}
const std::set<uint16_t>& methods = info_it->second.method_set;
return methods.find(method_ref.dex_method_index) != methods.end();
}
return false;
}
uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
uint32_t total = 0;
for (const auto& it : info_) {
total += it.second.method_set.size();
}
return total;
}
std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>* dex_files,
bool print_full_dex_location) const {
std::ostringstream os;
if (info_.empty()) {
return "ProfileInfo: empty";
}
os << "ProfileInfo:";
const std::string kFirstDexFileKeySubstitute = ":classes.dex";
for (const auto& it : info_) {
os << "\n";
const std::string& location = it.first;
const DexFileData& dex_data = it.second;
if (print_full_dex_location) {
os << location;
} else {
// Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
std::string multidex_suffix = DexFile::GetMultiDexSuffix(location);
os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
}
for (const auto method_it : dex_data.method_set) {
if (dex_files != nullptr) {
const DexFile* dex_file = nullptr;
for (size_t i = 0; i < dex_files->size(); i++) {
if (location == (*dex_files)[i]->GetLocation()) {
dex_file = (*dex_files)[i];
}
}
if (dex_file != nullptr) {
os << "\n " << PrettyMethod(method_it, *dex_file, true);
}
}
os << "\n " << method_it;
}
}
return os.str();
}
bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
return info_.Equals(other.info_);
}
std::set<DexCacheResolvedClasses> ProfileCompilationInfo::GetResolvedClasses() const {
std::set<DexCacheResolvedClasses> ret;
for (auto&& pair : info_) {
const std::string& profile_key = pair.first;
const DexFileData& data = pair.second;
DexCacheResolvedClasses classes(profile_key, data.checksum);
classes.AddClasses(data.class_set.begin(), data.class_set.end());
ret.insert(classes);
}
return ret;
}
} // namespace art