blob: 9b9cfbaf9041835c1cc883fdd5b589a1fa55fca2 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "patchoat.h"
#include <openssl/sha.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string>
#include <vector>
#include "android-base/file.h"
#include "android-base/stringprintf.h"
#include "android-base/strings.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/dumpable.h"
#include "base/file_utils.h"
#include "base/leb128.h"
#include "base/logging.h" // For InitLogging.
#include "base/mutex.h"
#include "base/memory_tool.h"
#include "base/os.h"
#include "base/scoped_flock.h"
#include "base/stringpiece.h"
#include "base/unix_file/fd_file.h"
#include "base/unix_file/random_access_file_utils.h"
#include "base/utils.h"
#include "class_root.h"
#include "elf_file.h"
#include "elf_file_impl.h"
#include "elf_utils.h"
#include "gc/space/image_space.h"
#include "image-inl.h"
#include "intern_table.h"
#include "mirror/dex_cache.h"
#include "mirror/executable.h"
#include "mirror/method.h"
#include "mirror/object-inl.h"
#include "mirror/object-refvisitor-inl.h"
#include "mirror/reference.h"
#include "noop_compiler_callbacks.h"
#include "offsets.h"
#include "runtime.h"
#include "scoped_thread_state_change-inl.h"
#include "thread.h"
namespace art {
using android::base::StringPrintf;
namespace {
static const OatHeader* GetOatHeader(const ElfFile* elf_file) {
uint64_t off = 0;
if (!elf_file->GetSectionOffsetAndSize(".rodata", &off, nullptr)) {
return nullptr;
}
OatHeader* oat_header = reinterpret_cast<OatHeader*>(elf_file->Begin() + off);
return oat_header;
}
static File* CreateOrOpen(const char* name) {
if (OS::FileExists(name)) {
return OS::OpenFileReadWrite(name);
} else {
std::unique_ptr<File> f(OS::CreateEmptyFile(name));
if (f.get() != nullptr) {
if (fchmod(f->Fd(), 0644) != 0) {
PLOG(ERROR) << "Unable to make " << name << " world readable";
unlink(name);
return nullptr;
}
}
return f.release();
}
}
// Either try to close the file (close=true), or erase it.
static bool FinishFile(File* file, bool close) {
if (close) {
if (file->FlushCloseOrErase() != 0) {
PLOG(ERROR) << "Failed to flush and close file.";
return false;
}
return true;
} else {
file->Erase();
return false;
}
}
static bool SymlinkFile(const std::string& input_filename, const std::string& output_filename) {
if (input_filename == output_filename) {
// Input and output are the same, nothing to do.
return true;
}
// Unlink the original filename, since we are overwriting it.
unlink(output_filename.c_str());
// Create a symlink from the source file to the target path.
if (symlink(input_filename.c_str(), output_filename.c_str()) < 0) {
PLOG(ERROR) << "Failed to create symlink " << output_filename << " -> " << input_filename;
return false;
}
if (kIsDebugBuild) {
LOG(INFO) << "Created symlink " << output_filename << " -> " << input_filename;
}
return true;
}
// Holder class for runtime options and related objects.
class PatchoatRuntimeOptionsHolder {
public:
PatchoatRuntimeOptionsHolder(const std::string& image_location, InstructionSet isa) {
options_.push_back(std::make_pair("compilercallbacks", &callbacks_));
img_ = "-Ximage:" + image_location;
options_.push_back(std::make_pair(img_.c_str(), nullptr));
isa_name_ = GetInstructionSetString(isa);
options_.push_back(std::make_pair("imageinstructionset",
reinterpret_cast<const void*>(isa_name_.c_str())));
options_.push_back(std::make_pair("-Xno-sig-chain", nullptr));
// We do not want the runtime to attempt to patch the image.
options_.push_back(std::make_pair("-Xnorelocate", nullptr));
// Don't try to compile.
options_.push_back(std::make_pair("-Xnoimage-dex2oat", nullptr));
// Do not accept broken image.
options_.push_back(std::make_pair("-Xno-dex-file-fallback", nullptr));
}
const RuntimeOptions& GetRuntimeOptions() {
return options_;
}
private:
RuntimeOptions options_;
NoopCompilerCallbacks callbacks_;
std::string isa_name_;
std::string img_;
};
} // namespace
bool PatchOat::GeneratePatch(
const MemMap& original,
const MemMap& relocated,
std::vector<uint8_t>* output,
std::string* error_msg) {
// FORMAT of the patch (aka image relocation) file:
// * SHA-256 digest (32 bytes) of original/unrelocated file (e.g., the one from /system)
// * List of monotonically increasing offsets (max value defined by uint32_t) at which relocations
// occur.
// Each element is represented as the delta from the previous offset in the list (first element
// is a delta from 0). Each delta is encoded using unsigned LEB128: little-endian
// variable-length 7 bits per byte encoding, where all bytes have the highest bit (0x80) set
// except for the final byte which does not have that bit set. For example, 0x3f is offset 0x3f,
// whereas 0xbf 0x05 is offset (0x3f & 0x7f) | (0x5 << 7) which is 0x2bf. Most deltas end up
// being encoding using just one byte, achieving ~4x decrease in relocation file size compared
// to the encoding where offsets are stored verbatim, as uint32_t.
size_t original_size = original.Size();
size_t relocated_size = relocated.Size();
if (original_size != relocated_size) {
*error_msg =
StringPrintf(
"Original and relocated image sizes differ: %zu vs %zu", original_size, relocated_size);
return false;
}
if ((original_size % 4) != 0) {
*error_msg = StringPrintf("Image size not multiple of 4: %zu", original_size);
return false;
}
if (original_size > UINT32_MAX) {
*error_msg = StringPrintf("Image too large: %zu" , original_size);
return false;
}
const ImageHeader& relocated_header =
*reinterpret_cast<const ImageHeader*>(relocated.Begin());
// Offsets are supposed to differ between original and relocated by this value
off_t expected_diff = relocated_header.GetPatchDelta();
if (expected_diff == 0) {
// Can't identify offsets which are supposed to differ due to relocation
*error_msg = "Relocation delta is 0";
return false;
}
// Output the SHA-256 digest of the original
output->resize(SHA256_DIGEST_LENGTH);
const uint8_t* original_bytes = original.Begin();
SHA256(original_bytes, original_size, output->data());
// Output the list of offsets at which the original and patched images differ
size_t last_diff_offset = 0;
size_t diff_offset_count = 0;
const uint8_t* relocated_bytes = relocated.Begin();
for (size_t offset = 0; offset < original_size; offset += 4) {
uint32_t original_value = *reinterpret_cast<const uint32_t*>(original_bytes + offset);
uint32_t relocated_value = *reinterpret_cast<const uint32_t*>(relocated_bytes + offset);
off_t diff = relocated_value - original_value;
if (diff == 0) {
continue;
} else if (diff != expected_diff) {
*error_msg =
StringPrintf(
"Unexpected diff at offset %zu. Expected: %jd, but was: %jd",
offset,
(intmax_t) expected_diff,
(intmax_t) diff);
return false;
}
uint32_t offset_diff = offset - last_diff_offset;
last_diff_offset = offset;
diff_offset_count++;
EncodeUnsignedLeb128(output, offset_diff);
}
if (diff_offset_count == 0) {
*error_msg = "Original and patched images are identical";
return false;
}
return true;
}
static bool WriteRelFile(
const MemMap& original,
const MemMap& relocated,
const std::string& rel_filename,
std::string* error_msg) {
std::vector<uint8_t> output;
if (!PatchOat::GeneratePatch(original, relocated, &output, error_msg)) {
return false;
}
std::unique_ptr<File> rel_file(OS::CreateEmptyFileWriteOnly(rel_filename.c_str()));
if (rel_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to create/open output file %s", rel_filename.c_str());
return false;
}
if (!rel_file->WriteFully(output.data(), output.size())) {
*error_msg = StringPrintf("Failed to write to %s", rel_filename.c_str());
return false;
}
if (rel_file->FlushCloseOrErase() != 0) {
*error_msg = StringPrintf("Failed to flush and close %s", rel_filename.c_str());
return false;
}
return true;
}
static bool CheckImageIdenticalToOriginalExceptForRelocation(
const std::string& relocated_filename,
const std::string& original_filename,
std::string* error_msg) {
*error_msg = "";
std::string rel_filename = original_filename + ".rel";
std::unique_ptr<File> rel_file(OS::OpenFileForReading(rel_filename.c_str()));
if (rel_file.get() == nullptr) {
*error_msg = StringPrintf("Failed to open image relocation file %s", rel_filename.c_str());
return false;
}
int64_t rel_size = rel_file->GetLength();
if (rel_size < 0) {
*error_msg = StringPrintf("Error while getting size of image relocation file %s",
rel_filename.c_str());
return false;
}
std::unique_ptr<uint8_t[]> rel(new uint8_t[rel_size]);
if (!rel_file->ReadFully(rel.get(), rel_size)) {
*error_msg = StringPrintf("Failed to read image relocation file %s", rel_filename.c_str());
return false;
}
std::unique_ptr<File> image_file(OS::OpenFileForReading(relocated_filename.c_str()));
if (image_file.get() == nullptr) {
*error_msg = StringPrintf("Unable to open relocated image file %s",
relocated_filename.c_str());
return false;
}
int64_t image_size = image_file->GetLength();
if (image_size < 0) {
*error_msg = StringPrintf("Error while getting size of relocated image file %s",
relocated_filename.c_str());
return false;
}
if ((image_size % 4) != 0) {
*error_msg =
StringPrintf(
"Relocated image file %s size not multiple of 4: %" PRId64,
relocated_filename.c_str(), image_size);
return false;
}
if (image_size > std::numeric_limits<uint32_t>::max()) {
*error_msg =
StringPrintf(
"Relocated image file %s too large: %" PRId64, relocated_filename.c_str(), image_size);
return false;
}
std::unique_ptr<uint8_t[]> image(new uint8_t[image_size]);
if (!image_file->ReadFully(image.get(), image_size)) {
*error_msg = StringPrintf("Failed to read relocated image file %s", relocated_filename.c_str());
return false;
}
const uint8_t* original_image_digest = rel.get();
if (rel_size < SHA256_DIGEST_LENGTH) {
*error_msg = StringPrintf("Malformed image relocation file %s: too short",
rel_filename.c_str());
return false;
}
const ImageHeader& image_header = *reinterpret_cast<const ImageHeader*>(image.get());
off_t expected_diff = image_header.GetPatchDelta();
if (expected_diff == 0) {
*error_msg = StringPrintf("Unsuported patch delta of zero in %s",
relocated_filename.c_str());
return false;
}
// Relocated image is expected to differ from the original due to relocation.
// Unrelocate the image in memory to compensate.
uint8_t* image_start = image.get();
const uint8_t* rel_end = &rel[rel_size];
const uint8_t* rel_ptr = &rel[SHA256_DIGEST_LENGTH];
// The remaining .rel file consists of offsets at which relocation should've occurred.
// For each offset, we "unrelocate" the image by subtracting the expected relocation
// diff value (as specified in the image header).
//
// Each offset is encoded as a delta/diff relative to the previous offset. With the
// very first offset being encoded relative to offset 0.
// Deltas are encoded using little-endian 7 bits per byte encoding, with all bytes except
// the last one having the highest bit set.
uint32_t offset = 0;
while (rel_ptr != rel_end) {
uint32_t offset_delta = 0;
if (DecodeUnsignedLeb128Checked(&rel_ptr, rel_end, &offset_delta)) {
offset += offset_delta;
if (static_cast<int64_t>(offset) + static_cast<int64_t>(sizeof(uint32_t)) > image_size) {
*error_msg = StringPrintf("Relocation out of bounds in %s", relocated_filename.c_str());
return false;
}
uint32_t *image_value = reinterpret_cast<uint32_t*>(image_start + offset);
*image_value -= expected_diff;
} else {
*error_msg =
StringPrintf(
"Malformed image relocation file %s: "
"last byte has it's most significant bit set",
rel_filename.c_str());
return false;
}
}
// Image in memory is now supposed to be identical to the original. We
// confirm this by comparing the digest of the in-memory image to the expected
// digest from relocation file.
uint8_t image_digest[SHA256_DIGEST_LENGTH];
SHA256(image.get(), image_size, image_digest);
if (memcmp(image_digest, original_image_digest, SHA256_DIGEST_LENGTH) != 0) {
*error_msg =
StringPrintf(
"Relocated image %s does not match the original %s after unrelocation",
relocated_filename.c_str(),
original_filename.c_str());
return false;
}
// Relocated image is identical to the original, once relocations are taken into account
return true;
}
static bool VerifySymlink(const std::string& intended_target, const std::string& link_name) {
std::string actual_target;
if (!android::base::Readlink(link_name, &actual_target)) {
PLOG(ERROR) << "Readlink on " << link_name << " failed.";
return false;
}
return actual_target == intended_target;
}
static bool VerifyVdexAndOatSymlinks(const std::string& input_image_filename,
const std::string& output_image_filename) {
return VerifySymlink(ImageHeader::GetVdexLocationFromImageLocation(input_image_filename),
ImageHeader::GetVdexLocationFromImageLocation(output_image_filename))
&& VerifySymlink(ImageHeader::GetOatLocationFromImageLocation(input_image_filename),
ImageHeader::GetOatLocationFromImageLocation(output_image_filename));
}
bool PatchOat::CreateVdexAndOatSymlinks(const std::string& input_image_filename,
const std::string& output_image_filename) {
std::string input_vdex_filename =
ImageHeader::GetVdexLocationFromImageLocation(input_image_filename);
std::string input_oat_filename =
ImageHeader::GetOatLocationFromImageLocation(input_image_filename);
std::unique_ptr<File> input_oat_file(OS::OpenFileForReading(input_oat_filename.c_str()));
if (input_oat_file.get() == nullptr) {
LOG(ERROR) << "Unable to open input oat file at " << input_oat_filename;
return false;
}
std::string error_msg;
std::unique_ptr<ElfFile> elf(ElfFile::Open(input_oat_file.get(),
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
&error_msg));
if (elf.get() == nullptr) {
LOG(ERROR) << "Unable to open oat file " << input_oat_filename << " : " << error_msg;
return false;
}
MaybePic is_oat_pic = IsOatPic(elf.get());
if (is_oat_pic >= ERROR_FIRST) {
// Error logged by IsOatPic
return false;
} else if (is_oat_pic == NOT_PIC) {
LOG(ERROR) << "patchoat cannot be used on non-PIC oat file: " << input_oat_filename;
return false;
}
CHECK(is_oat_pic == PIC);
std::string output_vdex_filename =
ImageHeader::GetVdexLocationFromImageLocation(output_image_filename);
std::string output_oat_filename =
ImageHeader::GetOatLocationFromImageLocation(output_image_filename);
return SymlinkFile(input_oat_filename, output_oat_filename) &&
SymlinkFile(input_vdex_filename, output_vdex_filename);
}
bool PatchOat::Patch(const std::string& image_location,
off_t delta,
const std::string& output_image_directory,
const std::string& output_image_relocation_directory,
InstructionSet isa,
TimingLogger* timings) {
bool output_image = !output_image_directory.empty();
bool output_image_relocation = !output_image_relocation_directory.empty();
if ((!output_image) && (!output_image_relocation)) {
// Nothing to do
return true;
}
if ((output_image_relocation) && (delta == 0)) {
LOG(ERROR) << "Cannot output image relocation information when requested relocation delta is 0";
return false;
}
CHECK(Runtime::Current() == nullptr);
CHECK(!image_location.empty()) << "image file must have a filename.";
TimingLogger::ScopedTiming t("Runtime Setup", timings);
CHECK_NE(isa, InstructionSet::kNone);
// Set up the runtime
PatchoatRuntimeOptionsHolder options_holder(image_location, isa);
if (!Runtime::Create(options_holder.GetRuntimeOptions(), false)) {
LOG(ERROR) << "Unable to initialize runtime";
return false;
}
std::unique_ptr<Runtime> runtime(Runtime::Current());
// Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start,
// give it away now and then switch to a more manageable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
ScopedObjectAccess soa(Thread::Current());
std::vector<gc::space::ImageSpace*> spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces();
std::map<gc::space::ImageSpace*, std::unique_ptr<MemMap>> space_to_memmap_map;
for (size_t i = 0; i < spaces.size(); ++i) {
t.NewTiming("Image Patching setup");
gc::space::ImageSpace* space = spaces[i];
std::string input_image_filename = space->GetImageFilename();
std::unique_ptr<File> input_image(OS::OpenFileForReading(input_image_filename.c_str()));
if (input_image.get() == nullptr) {
LOG(ERROR) << "Unable to open input image file at " << input_image_filename;
return false;
}
int64_t image_len = input_image->GetLength();
if (image_len < 0) {
LOG(ERROR) << "Error while getting image length";
return false;
}
ImageHeader image_header;
if (sizeof(image_header) != input_image->Read(reinterpret_cast<char*>(&image_header),
sizeof(image_header), 0)) {
LOG(ERROR) << "Unable to read image header from image file " << input_image->GetPath();
}
/*bool is_image_pic = */IsImagePic(image_header, input_image->GetPath());
// Nothing special to do right now since the image always needs to get patched.
// Perhaps in some far-off future we may have images with relative addresses that are true-PIC.
// Create the map where we will write the image patches to.
std::string error_msg;
std::unique_ptr<MemMap> image(MemMap::MapFile(image_len,
PROT_READ | PROT_WRITE,
MAP_PRIVATE,
input_image->Fd(),
0,
/*low_4gb*/false,
input_image->GetPath().c_str(),
&error_msg));
if (image.get() == nullptr) {
LOG(ERROR) << "Unable to map image file " << input_image->GetPath() << " : " << error_msg;
return false;
}
space_to_memmap_map.emplace(space, std::move(image));
PatchOat p = PatchOat(isa,
space_to_memmap_map[space].get(),
space->GetLiveBitmap(),
space->GetMemMap(),
delta,
&space_to_memmap_map,
timings);
t.NewTiming("Patching image");
if (!p.PatchImage(i == 0)) {
LOG(ERROR) << "Failed to patch image file " << input_image_filename;
return false;
}
// Write the patched image spaces.
if (output_image) {
std::string output_image_filename;
if (!GetDalvikCacheFilename(space->GetImageLocation().c_str(),
output_image_directory.c_str(),
&output_image_filename,
&error_msg)) {
LOG(ERROR) << "Failed to find relocated image file name: " << error_msg;
return false;
}
if (!CreateVdexAndOatSymlinks(input_image_filename, output_image_filename))
return false;
t.NewTiming("Writing image");
std::unique_ptr<File> output_image_file(CreateOrOpen(output_image_filename.c_str()));
if (output_image_file.get() == nullptr) {
LOG(ERROR) << "Failed to open output image file at " << output_image_filename;
return false;
}
bool success = p.WriteImage(output_image_file.get());
success = FinishFile(output_image_file.get(), success);
if (!success) {
return false;
}
}
if (output_image_relocation) {
t.NewTiming("Writing image relocation");
std::string original_image_filename(space->GetImageLocation() + ".rel");
std::string image_relocation_filename =
output_image_relocation_directory
+ (android::base::StartsWith(original_image_filename, "/") ? "" : "/")
+ original_image_filename.substr(original_image_filename.find_last_of("/"));
int64_t input_image_size = input_image->GetLength();
if (input_image_size < 0) {
LOG(ERROR) << "Error while getting input image size";
return false;
}
std::unique_ptr<MemMap> original(MemMap::MapFile(input_image_size,
PROT_READ,
MAP_PRIVATE,
input_image->Fd(),
0,
/*low_4gb*/false,
input_image->GetPath().c_str(),
&error_msg));
if (original.get() == nullptr) {
LOG(ERROR) << "Unable to map image file " << input_image->GetPath() << " : " << error_msg;
return false;
}
const MemMap* relocated = p.image_;
if (!WriteRelFile(*original, *relocated, image_relocation_filename, &error_msg)) {
LOG(ERROR) << "Failed to create image relocation file " << image_relocation_filename
<< ": " << error_msg;
return false;
}
}
}
if (!kIsDebugBuild && !(kRunningOnMemoryTool && kMemoryToolDetectsLeaks)) {
// We want to just exit on non-debug builds, not bringing the runtime down
// in an orderly fashion. So release the following fields.
runtime.release();
}
return true;
}
bool PatchOat::Verify(const std::string& image_location,
const std::string& output_image_directory,
InstructionSet isa,
TimingLogger* timings) {
if (image_location.empty()) {
LOG(ERROR) << "Original image file not provided";
return false;
}
if (output_image_directory.empty()) {
LOG(ERROR) << "Relocated image directory not provided";
return false;
}
TimingLogger::ScopedTiming t("Runtime Setup", timings);
CHECK_NE(isa, InstructionSet::kNone);
// Set up the runtime
PatchoatRuntimeOptionsHolder options_holder(image_location, isa);
if (!Runtime::Create(options_holder.GetRuntimeOptions(), false)) {
LOG(ERROR) << "Unable to initialize runtime";
return false;
}
std::unique_ptr<Runtime> runtime(Runtime::Current());
// Runtime::Create acquired the mutator_lock_ that is normally given away when we Runtime::Start,
// give it away now and then switch to a more manageable ScopedObjectAccess.
Thread::Current()->TransitionFromRunnableToSuspended(kNative);
ScopedObjectAccess soa(Thread::Current());
t.NewTiming("Image Verification setup");
std::vector<gc::space::ImageSpace*> spaces = Runtime::Current()->GetHeap()->GetBootImageSpaces();
// TODO: Check that no other .rel files exist in the original dir
bool success = true;
std::string image_location_dir = android::base::Dirname(image_location);
for (size_t i = 0; i < spaces.size(); ++i) {
gc::space::ImageSpace* space = spaces[i];
std::string relocated_image_filename;
std::string error_msg;
if (!GetDalvikCacheFilename(space->GetImageLocation().c_str(),
output_image_directory.c_str(), &relocated_image_filename, &error_msg)) {
LOG(ERROR) << "Failed to find relocated image file name: " << error_msg;
success = false;
break;
}
// location: /system/framework/boot.art
// isa: arm64
// basename: boot.art
// original: /system/framework/arm64/boot.art
// relocation: /system/framework/arm64/boot.art.rel
std::string original_image_filename =
GetSystemImageFilename(space->GetImageLocation().c_str(), isa);
if (!CheckImageIdenticalToOriginalExceptForRelocation(
relocated_image_filename, original_image_filename, &error_msg)) {
LOG(ERROR) << error_msg;
success = false;
break;
}
if (!VerifyVdexAndOatSymlinks(original_image_filename, relocated_image_filename)) {
LOG(ERROR) << "Verification of vdex and oat symlinks for "
<< space->GetImageLocation() << " failed.";
success = false;
break;
}
}
if (!kIsDebugBuild && !(kRunningOnMemoryTool && kMemoryToolDetectsLeaks)) {
// We want to just exit on non-debug builds, not bringing the runtime down
// in an orderly fashion. So release the following fields.
runtime.release();
}
return success;
}
bool PatchOat::WriteImage(File* out) {
CHECK(out != nullptr);
TimingLogger::ScopedTiming t("Writing image File", timings_);
std::string error_msg;
// No error checking here, this is best effort. The locking may or may not
// succeed and we don't really care either way.
ScopedFlock img_flock = LockedFile::DupOf(out->Fd(), out->GetPath(),
true /* read_only_mode */, &error_msg);
CHECK(image_ != nullptr);
size_t expect = image_->Size();
if (out->WriteFully(reinterpret_cast<char*>(image_->Begin()), expect) &&
out->SetLength(expect) == 0) {
return true;
} else {
LOG(ERROR) << "Writing to image file " << out->GetPath() << " failed.";
return false;
}
}
bool PatchOat::IsImagePic(const ImageHeader& image_header, const std::string& image_path) {
if (!image_header.CompilePic()) {
if (kIsDebugBuild) {
LOG(INFO) << "image at location " << image_path << " was *not* compiled pic";
}
return false;
}
if (kIsDebugBuild) {
LOG(INFO) << "image at location " << image_path << " was compiled PIC";
}
return true;
}
PatchOat::MaybePic PatchOat::IsOatPic(const ElfFile* oat_in) {
if (oat_in == nullptr) {
LOG(ERROR) << "No ELF input oat fie available";
return ERROR_OAT_FILE;
}
const std::string& file_path = oat_in->GetFilePath();
const OatHeader* oat_header = GetOatHeader(oat_in);
if (oat_header == nullptr) {
LOG(ERROR) << "Failed to find oat header in oat file " << file_path;
return ERROR_OAT_FILE;
}
if (!oat_header->IsValid()) {
LOG(ERROR) << "Elf file " << file_path << " has an invalid oat header";
return ERROR_OAT_FILE;
}
bool is_pic = oat_header->IsPic();
if (kIsDebugBuild) {
LOG(INFO) << "Oat file at " << file_path << " is " << (is_pic ? "PIC" : "not pic");
}
return is_pic ? PIC : NOT_PIC;
}
class PatchOat::PatchOatArtFieldVisitor : public ArtFieldVisitor {
public:
explicit PatchOatArtFieldVisitor(PatchOat* patch_oat) : patch_oat_(patch_oat) {}
void Visit(ArtField* field) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
ArtField* const dest = patch_oat_->RelocatedCopyOf(field);
dest->SetDeclaringClass(
patch_oat_->RelocatedAddressOfPointer(field->GetDeclaringClass().Ptr()));
}
private:
PatchOat* const patch_oat_;
};
void PatchOat::PatchArtFields(const ImageHeader* image_header) {
PatchOatArtFieldVisitor visitor(this);
image_header->VisitPackedArtFields(&visitor, heap_->Begin());
}
class PatchOat::PatchOatArtMethodVisitor : public ArtMethodVisitor {
public:
explicit PatchOatArtMethodVisitor(PatchOat* patch_oat) : patch_oat_(patch_oat) {}
void Visit(ArtMethod* method) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* const dest = patch_oat_->RelocatedCopyOf(method);
patch_oat_->FixupMethod(method, dest);
}
private:
PatchOat* const patch_oat_;
};
void PatchOat::PatchArtMethods(const ImageHeader* image_header) {
const PointerSize pointer_size = InstructionSetPointerSize(isa_);
PatchOatArtMethodVisitor visitor(this);
image_header->VisitPackedArtMethods(&visitor, heap_->Begin(), pointer_size);
}
void PatchOat::PatchImTables(const ImageHeader* image_header) {
const PointerSize pointer_size = InstructionSetPointerSize(isa_);
// We can safely walk target image since the conflict tables are independent.
image_header->VisitPackedImTables(
[this](ArtMethod* method) {
return RelocatedAddressOfPointer(method);
},
image_->Begin(),
pointer_size);
}
void PatchOat::PatchImtConflictTables(const ImageHeader* image_header) {
const PointerSize pointer_size = InstructionSetPointerSize(isa_);
// We can safely walk target image since the conflict tables are independent.
image_header->VisitPackedImtConflictTables(
[this](ArtMethod* method) {
return RelocatedAddressOfPointer(method);
},
image_->Begin(),
pointer_size);
}
class PatchOat::FixupRootVisitor : public RootVisitor {
public:
explicit FixupRootVisitor(const PatchOat* patch_oat) : patch_oat_(patch_oat) {
}
void VisitRoots(mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
for (size_t i = 0; i < count; ++i) {
*roots[i] = patch_oat_->RelocatedAddressOfPointer(*roots[i]);
}
}
void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
const RootInfo& info ATTRIBUTE_UNUSED)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
for (size_t i = 0; i < count; ++i) {
roots[i]->Assign(patch_oat_->RelocatedAddressOfPointer(roots[i]->AsMirrorPtr()));
}
}
private:
const PatchOat* const patch_oat_;
};
void PatchOat::PatchInternedStrings(const ImageHeader* image_header) {
const auto& section = image_header->GetInternedStringsSection();
if (section.Size() == 0) {
return;
}
InternTable temp_table;
// Note that we require that ReadFromMemory does not make an internal copy of the elements.
// This also relies on visit roots not doing any verification which could fail after we update
// the roots to be the image addresses.
temp_table.AddTableFromMemory(image_->Begin() + section.Offset());
FixupRootVisitor visitor(this);
temp_table.VisitRoots(&visitor, kVisitRootFlagAllRoots);
}
void PatchOat::PatchClassTable(const ImageHeader* image_header) {
const auto& section = image_header->GetClassTableSection();
if (section.Size() == 0) {
return;
}
// Note that we require that ReadFromMemory does not make an internal copy of the elements.
// This also relies on visit roots not doing any verification which could fail after we update
// the roots to be the image addresses.
WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
ClassTable temp_table;
temp_table.ReadFromMemory(image_->Begin() + section.Offset());
FixupRootVisitor visitor(this);
temp_table.VisitRoots(UnbufferedRootVisitor(&visitor, RootInfo(kRootUnknown)));
}
class PatchOat::RelocatedPointerVisitor {
public:
explicit RelocatedPointerVisitor(PatchOat* patch_oat) : patch_oat_(patch_oat) {}
template <typename T>
T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED = 0) const {
return patch_oat_->RelocatedAddressOfPointer(ptr);
}
private:
PatchOat* const patch_oat_;
};
void PatchOat::PatchDexFileArrays(mirror::ObjectArray<mirror::Object>* img_roots) {
auto* dex_caches = down_cast<mirror::ObjectArray<mirror::DexCache>*>(
img_roots->Get(ImageHeader::kDexCaches));
const PointerSize pointer_size = InstructionSetPointerSize(isa_);
for (size_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
auto* orig_dex_cache = dex_caches->GetWithoutChecks(i);
auto* copy_dex_cache = RelocatedCopyOf(orig_dex_cache);
// Though the DexCache array fields are usually treated as native pointers, we set the full
// 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
// done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
// static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
mirror::StringDexCacheType* orig_strings = orig_dex_cache->GetStrings();
mirror::StringDexCacheType* relocated_strings = RelocatedAddressOfPointer(orig_strings);
copy_dex_cache->SetField64<false>(
mirror::DexCache::StringsOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_strings)));
if (orig_strings != nullptr) {
orig_dex_cache->FixupStrings(RelocatedCopyOf(orig_strings), RelocatedPointerVisitor(this));
}
mirror::TypeDexCacheType* orig_types = orig_dex_cache->GetResolvedTypes();
mirror::TypeDexCacheType* relocated_types = RelocatedAddressOfPointer(orig_types);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedTypesOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_types)));
if (orig_types != nullptr) {
orig_dex_cache->FixupResolvedTypes(RelocatedCopyOf(orig_types),
RelocatedPointerVisitor(this));
}
mirror::MethodDexCacheType* orig_methods = orig_dex_cache->GetResolvedMethods();
mirror::MethodDexCacheType* relocated_methods = RelocatedAddressOfPointer(orig_methods);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedMethodsOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_methods)));
if (orig_methods != nullptr) {
mirror::MethodDexCacheType* copy_methods = RelocatedCopyOf(orig_methods);
for (size_t j = 0, num = orig_dex_cache->NumResolvedMethods(); j != num; ++j) {
mirror::MethodDexCachePair orig =
mirror::DexCache::GetNativePairPtrSize(orig_methods, j, pointer_size);
mirror::MethodDexCachePair copy(RelocatedAddressOfPointer(orig.object), orig.index);
mirror::DexCache::SetNativePairPtrSize(copy_methods, j, copy, pointer_size);
}
}
mirror::FieldDexCacheType* orig_fields = orig_dex_cache->GetResolvedFields();
mirror::FieldDexCacheType* relocated_fields = RelocatedAddressOfPointer(orig_fields);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedFieldsOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_fields)));
if (orig_fields != nullptr) {
mirror::FieldDexCacheType* copy_fields = RelocatedCopyOf(orig_fields);
for (size_t j = 0, num = orig_dex_cache->NumResolvedFields(); j != num; ++j) {
mirror::FieldDexCachePair orig =
mirror::DexCache::GetNativePairPtrSize(orig_fields, j, pointer_size);
mirror::FieldDexCachePair copy(RelocatedAddressOfPointer(orig.object), orig.index);
mirror::DexCache::SetNativePairPtrSize(copy_fields, j, copy, pointer_size);
}
}
mirror::MethodTypeDexCacheType* orig_method_types = orig_dex_cache->GetResolvedMethodTypes();
mirror::MethodTypeDexCacheType* relocated_method_types =
RelocatedAddressOfPointer(orig_method_types);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedMethodTypesOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_method_types)));
if (orig_method_types != nullptr) {
orig_dex_cache->FixupResolvedMethodTypes(RelocatedCopyOf(orig_method_types),
RelocatedPointerVisitor(this));
}
GcRoot<mirror::CallSite>* orig_call_sites = orig_dex_cache->GetResolvedCallSites();
GcRoot<mirror::CallSite>* relocated_call_sites = RelocatedAddressOfPointer(orig_call_sites);
copy_dex_cache->SetField64<false>(
mirror::DexCache::ResolvedCallSitesOffset(),
static_cast<int64_t>(reinterpret_cast<uintptr_t>(relocated_call_sites)));
if (orig_call_sites != nullptr) {
orig_dex_cache->FixupResolvedCallSites(RelocatedCopyOf(orig_call_sites),
RelocatedPointerVisitor(this));
}
}
}
bool PatchOat::PatchImage(bool primary_image) {
ImageHeader* image_header = reinterpret_cast<ImageHeader*>(image_->Begin());
CHECK_GT(image_->Size(), sizeof(ImageHeader));
// These are the roots from the original file.
mirror::ObjectArray<mirror::Object>* img_roots = image_header->GetImageRoots().Ptr();
image_header->RelocateImage(delta_);
PatchArtFields(image_header);
PatchArtMethods(image_header);
PatchImTables(image_header);
PatchImtConflictTables(image_header);
PatchInternedStrings(image_header);
PatchClassTable(image_header);
// Patch dex file int/long arrays which point to ArtFields.
PatchDexFileArrays(img_roots);
if (primary_image) {
VisitObject(img_roots);
}
if (!image_header->IsValid()) {
LOG(ERROR) << "relocation renders image header invalid";
return false;
}
{
TimingLogger::ScopedTiming t("Walk Bitmap", timings_);
// Walk the bitmap.
WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
auto visitor = [&](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
VisitObject(obj);
};
bitmap_->Walk(visitor);
}
return true;
}
void PatchOat::PatchVisitor::operator() (ObjPtr<mirror::Object> obj,
MemberOffset off,
bool is_static_unused ATTRIBUTE_UNUSED) const {
mirror::Object* referent = obj->GetFieldObject<mirror::Object, kVerifyNone>(off);
mirror::Object* moved_object = patcher_->RelocatedAddressOfPointer(referent);
copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(off, moved_object);
}
void PatchOat::PatchVisitor::operator() (ObjPtr<mirror::Class> cls ATTRIBUTE_UNUSED,
ObjPtr<mirror::Reference> ref) const {
MemberOffset off = mirror::Reference::ReferentOffset();
mirror::Object* referent = ref->GetReferent();
DCHECK(referent == nullptr ||
Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(referent)) << referent;
mirror::Object* moved_object = patcher_->RelocatedAddressOfPointer(referent);
copy_->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(off, moved_object);
}
// Called by PatchImage.
void PatchOat::VisitObject(mirror::Object* object) {
mirror::Object* copy = RelocatedCopyOf(object);
CHECK(copy != nullptr);
if (kUseBakerReadBarrier) {
object->AssertReadBarrierState();
}
PatchOat::PatchVisitor visitor(this, copy);
object->VisitReferences<kVerifyNone>(visitor, visitor);
if (object->IsClass<kVerifyNone>()) {
const PointerSize pointer_size = InstructionSetPointerSize(isa_);
mirror::Class* klass = object->AsClass();
mirror::Class* copy_klass = down_cast<mirror::Class*>(copy);
RelocatedPointerVisitor native_visitor(this);
klass->FixupNativePointers(copy_klass, pointer_size, native_visitor);
auto* vtable = klass->GetVTable();
if (vtable != nullptr) {
vtable->Fixup(RelocatedCopyOfFollowImages(vtable), pointer_size, native_visitor);
}
mirror::IfTable* iftable = klass->GetIfTable();
for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
if (iftable->GetMethodArrayCount(i) > 0) {
auto* method_array = iftable->GetMethodArray(i);
CHECK(method_array != nullptr);
method_array->Fixup(RelocatedCopyOfFollowImages(method_array),
pointer_size,
native_visitor);
}
}
} else if (object->GetClass() == GetClassRoot<mirror::Method>() ||
object->GetClass() == GetClassRoot<mirror::Constructor>()) {
// Need to go update the ArtMethod.
auto* dest = down_cast<mirror::Executable*>(copy);
auto* src = down_cast<mirror::Executable*>(object);
dest->SetArtMethod(RelocatedAddressOfPointer(src->GetArtMethod()));
}
}
void PatchOat::FixupMethod(ArtMethod* object, ArtMethod* copy) {
const PointerSize pointer_size = InstructionSetPointerSize(isa_);
copy->CopyFrom(object, pointer_size);
// Just update the entry points if it looks like we should.
// TODO: sanity check all the pointers' values
copy->SetDeclaringClass(RelocatedAddressOfPointer(object->GetDeclaringClass().Ptr()));
copy->SetEntryPointFromQuickCompiledCodePtrSize(RelocatedAddressOfPointer(
object->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size)), pointer_size);
// No special handling for IMT conflict table since all pointers are moved by the same offset.
copy->SetDataPtrSize(RelocatedAddressOfPointer(
object->GetDataPtrSize(pointer_size)), pointer_size);
}
static int orig_argc;
static char** orig_argv;
static std::string CommandLine() {
std::vector<std::string> command;
for (int i = 0; i < orig_argc; ++i) {
command.push_back(orig_argv[i]);
}
return android::base::Join(command, ' ');
}
static void UsageErrorV(const char* fmt, va_list ap) {
std::string error;
android::base::StringAppendV(&error, fmt, ap);
LOG(ERROR) << error;
}
static void UsageError(const char* fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
}
NO_RETURN static void Usage(const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
UsageErrorV(fmt, ap);
va_end(ap);
UsageError("Command: %s", CommandLine().c_str());
UsageError("Usage: patchoat [options]...");
UsageError("");
UsageError(" --instruction-set=<isa>: Specifies the instruction set the patched code is");
UsageError(" compiled for (required).");
UsageError("");
UsageError(" --input-image-location=<file.art>: Specifies the 'location' of the image file to");
UsageError(" be patched.");
UsageError("");
UsageError(" --output-image-directory=<dir>: Specifies the directory to write the patched");
UsageError(" image file(s) to.");
UsageError("");
UsageError(" --output-image-relocation-directory=<dir>: Specifies the directory to write");
UsageError(" the image relocation information to.");
UsageError("");
UsageError(" --base-offset-delta=<delta>: Specify the amount to change the old base-offset by.");
UsageError(" This value may be negative.");
UsageError("");
UsageError(" --verify: Verify an existing patched file instead of creating one.");
UsageError("");
UsageError(" --dump-timings: dump out patch timing information");
UsageError("");
UsageError(" --no-dump-timings: do not dump out patch timing information");
UsageError("");
exit(EXIT_FAILURE);
}
static int patchoat_patch_image(TimingLogger& timings,
InstructionSet isa,
const std::string& input_image_location,
const std::string& output_image_directory,
const std::string& output_image_relocation_directory,
off_t base_delta,
bool base_delta_set,
bool debug) {
CHECK(!input_image_location.empty());
if ((output_image_directory.empty()) && (output_image_relocation_directory.empty())) {
Usage("Image patching requires --output-image-directory or --output-image-relocation-directory");
}
if (!base_delta_set) {
Usage("Must supply a desired new offset or delta.");
}
if (!IsAligned<kPageSize>(base_delta)) {
Usage("Base offset/delta must be aligned to a pagesize (0x%08x) boundary.", kPageSize);
}
if (debug) {
LOG(INFO) << "moving offset by " << base_delta
<< " (0x" << std::hex << base_delta << ") bytes or "
<< std::dec << (base_delta/kPageSize) << " pages.";
}
TimingLogger::ScopedTiming pt("patch image and oat", &timings);
bool ret =
PatchOat::Patch(
input_image_location,
base_delta,
output_image_directory,
output_image_relocation_directory,
isa,
&timings);
if (kIsDebugBuild) {
LOG(INFO) << "Exiting with return ... " << ret;
}
return ret ? EXIT_SUCCESS : EXIT_FAILURE;
}
static int patchoat_verify_image(TimingLogger& timings,
InstructionSet isa,
const std::string& input_image_location,
const std::string& output_image_directory) {
CHECK(!input_image_location.empty());
TimingLogger::ScopedTiming pt("verify image and oat", &timings);
bool ret =
PatchOat::Verify(
input_image_location,
output_image_directory,
isa,
&timings);
if (kIsDebugBuild) {
LOG(INFO) << "Exiting with return ... " << ret;
}
return ret ? EXIT_SUCCESS : EXIT_FAILURE;
}
static int patchoat(int argc, char **argv) {
Locks::Init();
InitLogging(argv, Runtime::Abort);
MemMap::Init();
const bool debug = kIsDebugBuild;
orig_argc = argc;
orig_argv = argv;
TimingLogger timings("patcher", false, false);
// Skip over the command name.
argv++;
argc--;
if (argc == 0) {
Usage("No arguments specified");
}
timings.StartTiming("Patchoat");
// cmd line args
bool isa_set = false;
InstructionSet isa = InstructionSet::kNone;
std::string input_image_location;
std::string output_image_directory;
std::string output_image_relocation_directory;
off_t base_delta = 0;
bool base_delta_set = false;
bool dump_timings = kIsDebugBuild;
bool verify = false;
for (int i = 0; i < argc; ++i) {
const StringPiece option(argv[i]);
const bool log_options = false;
if (log_options) {
LOG(INFO) << "patchoat: option[" << i << "]=" << argv[i];
}
if (option.starts_with("--instruction-set=")) {
isa_set = true;
const char* isa_str = option.substr(strlen("--instruction-set=")).data();
isa = GetInstructionSetFromString(isa_str);
if (isa == InstructionSet::kNone) {
Usage("Unknown or invalid instruction set %s", isa_str);
}
} else if (option.starts_with("--input-image-location=")) {
input_image_location = option.substr(strlen("--input-image-location=")).data();
} else if (option.starts_with("--output-image-directory=")) {
output_image_directory = option.substr(strlen("--output-image-directory=")).data();
} else if (option.starts_with("--output-image-relocation-directory=")) {
output_image_relocation_directory =
option.substr(strlen("--output-image-relocation-directory=")).data();
} else if (option.starts_with("--base-offset-delta=")) {
const char* base_delta_str = option.substr(strlen("--base-offset-delta=")).data();
base_delta_set = true;
if (!ParseInt(base_delta_str, &base_delta)) {
Usage("Failed to parse --base-offset-delta argument '%s' as an off_t", base_delta_str);
}
} else if (option == "--dump-timings") {
dump_timings = true;
} else if (option == "--no-dump-timings") {
dump_timings = false;
} else if (option == "--verify") {
verify = true;
} else {
Usage("Unknown argument %s", option.data());
}
}
// The instruction set is mandatory. This simplifies things...
if (!isa_set) {
Usage("Instruction set must be set.");
}
int ret;
if (verify) {
ret = patchoat_verify_image(timings,
isa,
input_image_location,
output_image_directory);
} else {
ret = patchoat_patch_image(timings,
isa,
input_image_location,
output_image_directory,
output_image_relocation_directory,
base_delta,
base_delta_set,
debug);
}
timings.EndTiming();
if (dump_timings) {
LOG(INFO) << Dumpable<TimingLogger>(timings);
}
return ret;
}
} // namespace art
int main(int argc, char **argv) {
return art::patchoat(argc, argv);
}