blob: dd99f03aa799f427af11572fee87af24d2c304a8 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_macro_assembler_x86.h"
#include "base/casts.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "thread.h"
#include "utils/assembler.h"
namespace art {
namespace x86 {
// Slowpath entered when Thread::Current()->_exception is non-null
class X86ExceptionSlowPath FINAL : public SlowPath {
public:
explicit X86ExceptionSlowPath(size_t stack_adjust) : stack_adjust_(stack_adjust) {}
virtual void Emit(Assembler *sp_asm) OVERRIDE;
private:
const size_t stack_adjust_;
};
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::X86Core(static_cast<int>(reg));
}
constexpr size_t kFramePointerSize = 4;
#define __ asm_.
void X86JNIMacroAssembler::BuildFrame(size_t frame_size,
ManagedRegister method_reg,
ArrayRef<const ManagedRegister> spill_regs,
const ManagedRegisterEntrySpills& entry_spills) {
DCHECK_EQ(CodeSize(), 0U); // Nothing emitted yet.
cfi().SetCurrentCFAOffset(4); // Return address on stack.
CHECK_ALIGNED(frame_size, kStackAlignment);
int gpr_count = 0;
for (int i = spill_regs.size() - 1; i >= 0; --i) {
Register spill = spill_regs[i].AsX86().AsCpuRegister();
__ pushl(spill);
gpr_count++;
cfi().AdjustCFAOffset(kFramePointerSize);
cfi().RelOffset(DWARFReg(spill), 0);
}
// return address then method on stack.
int32_t adjust = frame_size - gpr_count * kFramePointerSize -
kFramePointerSize /*method*/ -
kFramePointerSize /*return address*/;
__ addl(ESP, Immediate(-adjust));
cfi().AdjustCFAOffset(adjust);
__ pushl(method_reg.AsX86().AsCpuRegister());
cfi().AdjustCFAOffset(kFramePointerSize);
DCHECK_EQ(static_cast<size_t>(cfi().GetCurrentCFAOffset()), frame_size);
for (const ManagedRegisterSpill& spill : entry_spills) {
if (spill.AsX86().IsCpuRegister()) {
int offset = frame_size + spill.getSpillOffset();
__ movl(Address(ESP, offset), spill.AsX86().AsCpuRegister());
} else {
DCHECK(spill.AsX86().IsXmmRegister());
if (spill.getSize() == 8) {
__ movsd(Address(ESP, frame_size + spill.getSpillOffset()), spill.AsX86().AsXmmRegister());
} else {
CHECK_EQ(spill.getSize(), 4);
__ movss(Address(ESP, frame_size + spill.getSpillOffset()), spill.AsX86().AsXmmRegister());
}
}
}
}
void X86JNIMacroAssembler::RemoveFrame(size_t frame_size,
ArrayRef<const ManagedRegister> spill_regs,
bool may_suspend ATTRIBUTE_UNUSED) {
CHECK_ALIGNED(frame_size, kStackAlignment);
cfi().RememberState();
// -kFramePointerSize for ArtMethod*.
int adjust = frame_size - spill_regs.size() * kFramePointerSize - kFramePointerSize;
__ addl(ESP, Immediate(adjust));
cfi().AdjustCFAOffset(-adjust);
for (size_t i = 0; i < spill_regs.size(); ++i) {
Register spill = spill_regs[i].AsX86().AsCpuRegister();
__ popl(spill);
cfi().AdjustCFAOffset(-static_cast<int>(kFramePointerSize));
cfi().Restore(DWARFReg(spill));
}
__ ret();
// The CFI should be restored for any code that follows the exit block.
cfi().RestoreState();
cfi().DefCFAOffset(frame_size);
}
void X86JNIMacroAssembler::IncreaseFrameSize(size_t adjust) {
CHECK_ALIGNED(adjust, kStackAlignment);
__ addl(ESP, Immediate(-adjust));
cfi().AdjustCFAOffset(adjust);
}
static void DecreaseFrameSizeImpl(X86Assembler* assembler, size_t adjust) {
CHECK_ALIGNED(adjust, kStackAlignment);
assembler->addl(ESP, Immediate(adjust));
assembler->cfi().AdjustCFAOffset(-adjust);
}
void X86JNIMacroAssembler::DecreaseFrameSize(size_t adjust) {
DecreaseFrameSizeImpl(&asm_, adjust);
}
void X86JNIMacroAssembler::Store(FrameOffset offs, ManagedRegister msrc, size_t size) {
X86ManagedRegister src = msrc.AsX86();
if (src.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (src.IsCpuRegister()) {
CHECK_EQ(4u, size);
__ movl(Address(ESP, offs), src.AsCpuRegister());
} else if (src.IsRegisterPair()) {
CHECK_EQ(8u, size);
__ movl(Address(ESP, offs), src.AsRegisterPairLow());
__ movl(Address(ESP, FrameOffset(offs.Int32Value()+4)), src.AsRegisterPairHigh());
} else if (src.IsX87Register()) {
if (size == 4) {
__ fstps(Address(ESP, offs));
} else {
__ fstpl(Address(ESP, offs));
}
} else {
CHECK(src.IsXmmRegister());
if (size == 4) {
__ movss(Address(ESP, offs), src.AsXmmRegister());
} else {
__ movsd(Address(ESP, offs), src.AsXmmRegister());
}
}
}
void X86JNIMacroAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) {
X86ManagedRegister src = msrc.AsX86();
CHECK(src.IsCpuRegister());
__ movl(Address(ESP, dest), src.AsCpuRegister());
}
void X86JNIMacroAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) {
X86ManagedRegister src = msrc.AsX86();
CHECK(src.IsCpuRegister());
__ movl(Address(ESP, dest), src.AsCpuRegister());
}
void X86JNIMacroAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister) {
__ movl(Address(ESP, dest), Immediate(imm));
}
void X86JNIMacroAssembler::StoreStackOffsetToThread(ThreadOffset32 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
__ leal(scratch.AsCpuRegister(), Address(ESP, fr_offs));
__ fs()->movl(Address::Absolute(thr_offs), scratch.AsCpuRegister());
}
void X86JNIMacroAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs) {
__ fs()->movl(Address::Absolute(thr_offs), ESP);
}
void X86JNIMacroAssembler::StoreSpanning(FrameOffset /*dst*/,
ManagedRegister /*src*/,
FrameOffset /*in_off*/,
ManagedRegister /*scratch*/) {
UNIMPLEMENTED(FATAL); // this case only currently exists for ARM
}
void X86JNIMacroAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) {
X86ManagedRegister dest = mdest.AsX86();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
CHECK_EQ(4u, size);
__ movl(dest.AsCpuRegister(), Address(ESP, src));
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
__ movl(dest.AsRegisterPairLow(), Address(ESP, src));
__ movl(dest.AsRegisterPairHigh(), Address(ESP, FrameOffset(src.Int32Value()+4)));
} else if (dest.IsX87Register()) {
if (size == 4) {
__ flds(Address(ESP, src));
} else {
__ fldl(Address(ESP, src));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
__ movss(dest.AsXmmRegister(), Address(ESP, src));
} else {
__ movsd(dest.AsXmmRegister(), Address(ESP, src));
}
}
}
void X86JNIMacroAssembler::LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) {
X86ManagedRegister dest = mdest.AsX86();
if (dest.IsNoRegister()) {
CHECK_EQ(0u, size);
} else if (dest.IsCpuRegister()) {
if (size == 1u) {
__ fs()->movzxb(dest.AsCpuRegister(), Address::Absolute(src));
} else {
CHECK_EQ(4u, size);
__ fs()->movl(dest.AsCpuRegister(), Address::Absolute(src));
}
} else if (dest.IsRegisterPair()) {
CHECK_EQ(8u, size);
__ fs()->movl(dest.AsRegisterPairLow(), Address::Absolute(src));
__ fs()->movl(dest.AsRegisterPairHigh(), Address::Absolute(ThreadOffset32(src.Int32Value()+4)));
} else if (dest.IsX87Register()) {
if (size == 4) {
__ fs()->flds(Address::Absolute(src));
} else {
__ fs()->fldl(Address::Absolute(src));
}
} else {
CHECK(dest.IsXmmRegister());
if (size == 4) {
__ fs()->movss(dest.AsXmmRegister(), Address::Absolute(src));
} else {
__ fs()->movsd(dest.AsXmmRegister(), Address::Absolute(src));
}
}
}
void X86JNIMacroAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister());
__ movl(dest.AsCpuRegister(), Address(ESP, src));
}
void X86JNIMacroAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs,
bool unpoison_reference) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister() && dest.IsCpuRegister());
__ movl(dest.AsCpuRegister(), Address(base.AsX86().AsCpuRegister(), offs));
if (unpoison_reference) {
__ MaybeUnpoisonHeapReference(dest.AsCpuRegister());
}
}
void X86JNIMacroAssembler::LoadRawPtr(ManagedRegister mdest,
ManagedRegister base,
Offset offs) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister() && dest.IsCpuRegister());
__ movl(dest.AsCpuRegister(), Address(base.AsX86().AsCpuRegister(), offs));
}
void X86JNIMacroAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) {
X86ManagedRegister dest = mdest.AsX86();
CHECK(dest.IsCpuRegister());
__ fs()->movl(dest.AsCpuRegister(), Address::Absolute(offs));
}
void X86JNIMacroAssembler::SignExtend(ManagedRegister mreg, size_t size) {
X86ManagedRegister reg = mreg.AsX86();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movsxb(reg.AsCpuRegister(), reg.AsByteRegister());
} else {
__ movsxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86JNIMacroAssembler::ZeroExtend(ManagedRegister mreg, size_t size) {
X86ManagedRegister reg = mreg.AsX86();
CHECK(size == 1 || size == 2) << size;
CHECK(reg.IsCpuRegister()) << reg;
if (size == 1) {
__ movzxb(reg.AsCpuRegister(), reg.AsByteRegister());
} else {
__ movzxw(reg.AsCpuRegister(), reg.AsCpuRegister());
}
}
void X86JNIMacroAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) {
X86ManagedRegister dest = mdest.AsX86();
X86ManagedRegister src = msrc.AsX86();
if (!dest.Equals(src)) {
if (dest.IsCpuRegister() && src.IsCpuRegister()) {
__ movl(dest.AsCpuRegister(), src.AsCpuRegister());
} else if (src.IsX87Register() && dest.IsXmmRegister()) {
// Pass via stack and pop X87 register
__ subl(ESP, Immediate(16));
if (size == 4) {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstps(Address(ESP, 0));
__ movss(dest.AsXmmRegister(), Address(ESP, 0));
} else {
CHECK_EQ(src.AsX87Register(), ST0);
__ fstpl(Address(ESP, 0));
__ movsd(dest.AsXmmRegister(), Address(ESP, 0));
}
__ addl(ESP, Immediate(16));
} else {
// TODO: x87, SSE
UNIMPLEMENTED(FATAL) << ": Move " << dest << ", " << src;
}
}
}
void X86JNIMacroAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
__ movl(scratch.AsCpuRegister(), Address(ESP, src));
__ movl(Address(ESP, dest), scratch.AsCpuRegister());
}
void X86JNIMacroAssembler::CopyRawPtrFromThread(FrameOffset fr_offs,
ThreadOffset32 thr_offs,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
__ fs()->movl(scratch.AsCpuRegister(), Address::Absolute(thr_offs));
Store(fr_offs, scratch, 4);
}
void X86JNIMacroAssembler::CopyRawPtrToThread(ThreadOffset32 thr_offs,
FrameOffset fr_offs,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
Load(scratch, fr_offs, 4);
__ fs()->movl(Address::Absolute(thr_offs), scratch.AsCpuRegister());
}
void X86JNIMacroAssembler::Copy(FrameOffset dest, FrameOffset src,
ManagedRegister mscratch,
size_t size) {
X86ManagedRegister scratch = mscratch.AsX86();
if (scratch.IsCpuRegister() && size == 8) {
Load(scratch, src, 4);
Store(dest, scratch, 4);
Load(scratch, FrameOffset(src.Int32Value() + 4), 4);
Store(FrameOffset(dest.Int32Value() + 4), scratch, 4);
} else {
Load(scratch, src, size);
Store(dest, scratch, size);
}
}
void X86JNIMacroAssembler::Copy(FrameOffset /*dst*/,
ManagedRegister /*src_base*/,
Offset /*src_offset*/,
ManagedRegister /*scratch*/,
size_t /*size*/) {
UNIMPLEMENTED(FATAL);
}
void X86JNIMacroAssembler::Copy(ManagedRegister dest_base,
Offset dest_offset,
FrameOffset src,
ManagedRegister scratch,
size_t size) {
CHECK(scratch.IsNoRegister());
CHECK_EQ(size, 4u);
__ pushl(Address(ESP, src));
__ popl(Address(dest_base.AsX86().AsCpuRegister(), dest_offset));
}
void X86JNIMacroAssembler::Copy(FrameOffset dest,
FrameOffset src_base,
Offset src_offset,
ManagedRegister mscratch,
size_t size) {
Register scratch = mscratch.AsX86().AsCpuRegister();
CHECK_EQ(size, 4u);
__ movl(scratch, Address(ESP, src_base));
__ movl(scratch, Address(scratch, src_offset));
__ movl(Address(ESP, dest), scratch);
}
void X86JNIMacroAssembler::Copy(ManagedRegister dest,
Offset dest_offset,
ManagedRegister src,
Offset src_offset,
ManagedRegister scratch,
size_t size) {
CHECK_EQ(size, 4u);
CHECK(scratch.IsNoRegister());
__ pushl(Address(src.AsX86().AsCpuRegister(), src_offset));
__ popl(Address(dest.AsX86().AsCpuRegister(), dest_offset));
}
void X86JNIMacroAssembler::Copy(FrameOffset dest,
Offset dest_offset,
FrameOffset src,
Offset src_offset,
ManagedRegister mscratch,
size_t size) {
Register scratch = mscratch.AsX86().AsCpuRegister();
CHECK_EQ(size, 4u);
CHECK_EQ(dest.Int32Value(), src.Int32Value());
__ movl(scratch, Address(ESP, src));
__ pushl(Address(scratch, src_offset));
__ popl(Address(scratch, dest_offset));
}
void X86JNIMacroAssembler::MemoryBarrier(ManagedRegister) {
__ mfence();
}
void X86JNIMacroAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg,
FrameOffset handle_scope_offset,
ManagedRegister min_reg,
bool null_allowed) {
X86ManagedRegister out_reg = mout_reg.AsX86();
X86ManagedRegister in_reg = min_reg.AsX86();
CHECK(in_reg.IsCpuRegister());
CHECK(out_reg.IsCpuRegister());
VerifyObject(in_reg, null_allowed);
if (null_allowed) {
Label null_arg;
if (!out_reg.Equals(in_reg)) {
__ xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
__ testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
__ j(kZero, &null_arg);
__ leal(out_reg.AsCpuRegister(), Address(ESP, handle_scope_offset));
__ Bind(&null_arg);
} else {
__ leal(out_reg.AsCpuRegister(), Address(ESP, handle_scope_offset));
}
}
void X86JNIMacroAssembler::CreateHandleScopeEntry(FrameOffset out_off,
FrameOffset handle_scope_offset,
ManagedRegister mscratch,
bool null_allowed) {
X86ManagedRegister scratch = mscratch.AsX86();
CHECK(scratch.IsCpuRegister());
if (null_allowed) {
Label null_arg;
__ movl(scratch.AsCpuRegister(), Address(ESP, handle_scope_offset));
__ testl(scratch.AsCpuRegister(), scratch.AsCpuRegister());
__ j(kZero, &null_arg);
__ leal(scratch.AsCpuRegister(), Address(ESP, handle_scope_offset));
__ Bind(&null_arg);
} else {
__ leal(scratch.AsCpuRegister(), Address(ESP, handle_scope_offset));
}
Store(out_off, scratch, 4);
}
// Given a handle scope entry, load the associated reference.
void X86JNIMacroAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg,
ManagedRegister min_reg) {
X86ManagedRegister out_reg = mout_reg.AsX86();
X86ManagedRegister in_reg = min_reg.AsX86();
CHECK(out_reg.IsCpuRegister());
CHECK(in_reg.IsCpuRegister());
Label null_arg;
if (!out_reg.Equals(in_reg)) {
__ xorl(out_reg.AsCpuRegister(), out_reg.AsCpuRegister());
}
__ testl(in_reg.AsCpuRegister(), in_reg.AsCpuRegister());
__ j(kZero, &null_arg);
__ movl(out_reg.AsCpuRegister(), Address(in_reg.AsCpuRegister(), 0));
__ Bind(&null_arg);
}
void X86JNIMacroAssembler::VerifyObject(ManagedRegister /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86JNIMacroAssembler::VerifyObject(FrameOffset /*src*/, bool /*could_be_null*/) {
// TODO: not validating references
}
void X86JNIMacroAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister) {
X86ManagedRegister base = mbase.AsX86();
CHECK(base.IsCpuRegister());
__ call(Address(base.AsCpuRegister(), offset.Int32Value()));
// TODO: place reference map on call
}
void X86JNIMacroAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) {
Register scratch = mscratch.AsX86().AsCpuRegister();
__ movl(scratch, Address(ESP, base));
__ call(Address(scratch, offset));
}
void X86JNIMacroAssembler::CallFromThread(ThreadOffset32 offset, ManagedRegister /*mscratch*/) {
__ fs()->call(Address::Absolute(offset));
}
void X86JNIMacroAssembler::GetCurrentThread(ManagedRegister tr) {
__ fs()->movl(tr.AsX86().AsCpuRegister(),
Address::Absolute(Thread::SelfOffset<kX86PointerSize>()));
}
void X86JNIMacroAssembler::GetCurrentThread(FrameOffset offset,
ManagedRegister mscratch) {
X86ManagedRegister scratch = mscratch.AsX86();
__ fs()->movl(scratch.AsCpuRegister(), Address::Absolute(Thread::SelfOffset<kX86PointerSize>()));
__ movl(Address(ESP, offset), scratch.AsCpuRegister());
}
void X86JNIMacroAssembler::ExceptionPoll(ManagedRegister /*scratch*/, size_t stack_adjust) {
X86ExceptionSlowPath* slow = new (__ GetAllocator()) X86ExceptionSlowPath(stack_adjust);
__ GetBuffer()->EnqueueSlowPath(slow);
__ fs()->cmpl(Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>()), Immediate(0));
__ j(kNotEqual, slow->Entry());
}
std::unique_ptr<JNIMacroLabel> X86JNIMacroAssembler::CreateLabel() {
return std::unique_ptr<JNIMacroLabel>(new X86JNIMacroLabel());
}
void X86JNIMacroAssembler::Jump(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ jmp(X86JNIMacroLabel::Cast(label)->AsX86());
}
void X86JNIMacroAssembler::Jump(JNIMacroLabel* label,
JNIMacroUnaryCondition condition,
ManagedRegister test) {
CHECK(label != nullptr);
art::x86::Condition x86_cond;
switch (condition) {
case JNIMacroUnaryCondition::kZero:
x86_cond = art::x86::kZero;
break;
case JNIMacroUnaryCondition::kNotZero:
x86_cond = art::x86::kNotZero;
break;
default:
LOG(FATAL) << "Not implemented condition: " << static_cast<int>(condition);
UNREACHABLE();
}
// TEST reg, reg
// Jcc <Offset>
__ testl(test.AsX86().AsCpuRegister(), test.AsX86().AsCpuRegister());
__ j(x86_cond, X86JNIMacroLabel::Cast(label)->AsX86());
// X86 also has JCZX, JECZX, however it's not worth it to implement
// because we aren't likely to codegen with ECX+kZero check.
}
void X86JNIMacroAssembler::Bind(JNIMacroLabel* label) {
CHECK(label != nullptr);
__ Bind(X86JNIMacroLabel::Cast(label)->AsX86());
}
#undef __
void X86ExceptionSlowPath::Emit(Assembler *sasm) {
X86Assembler* sp_asm = down_cast<X86Assembler*>(sasm);
#define __ sp_asm->
__ Bind(&entry_);
// Note: the return value is dead
if (stack_adjust_ != 0) { // Fix up the frame.
DecreaseFrameSizeImpl(sp_asm, stack_adjust_);
}
// Pass exception as argument in EAX
__ fs()->movl(EAX, Address::Absolute(Thread::ExceptionOffset<kX86PointerSize>()));
__ fs()->call(Address::Absolute(QUICK_ENTRYPOINT_OFFSET(kX86PointerSize, pDeliverException)));
// this call should never return
__ int3();
#undef __
}
} // namespace x86
} // namespace art