| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "image_space.h" |
| |
| #include <lz4.h> |
| #include <random> |
| #include <sys/statvfs.h> |
| #include <sys/types.h> |
| #include <unistd.h> |
| |
| #include "android-base/stringprintf.h" |
| #include "android-base/strings.h" |
| |
| #include "art_field-inl.h" |
| #include "art_method-inl.h" |
| #include "base/enums.h" |
| #include "base/macros.h" |
| #include "base/stl_util.h" |
| #include "base/scoped_flock.h" |
| #include "base/systrace.h" |
| #include "base/time_utils.h" |
| #include "exec_utils.h" |
| #include "gc/accounting/space_bitmap-inl.h" |
| #include "image-inl.h" |
| #include "image_space_fs.h" |
| #include "mirror/class-inl.h" |
| #include "mirror/object-inl.h" |
| #include "mirror/object-refvisitor-inl.h" |
| #include "oat_file.h" |
| #include "os.h" |
| #include "runtime.h" |
| #include "space-inl.h" |
| #include "utils.h" |
| |
| namespace art { |
| namespace gc { |
| namespace space { |
| |
| using android::base::StringAppendF; |
| using android::base::StringPrintf; |
| |
| Atomic<uint32_t> ImageSpace::bitmap_index_(0); |
| |
| ImageSpace::ImageSpace(const std::string& image_filename, |
| const char* image_location, |
| MemMap* mem_map, |
| accounting::ContinuousSpaceBitmap* live_bitmap, |
| uint8_t* end) |
| : MemMapSpace(image_filename, |
| mem_map, |
| mem_map->Begin(), |
| end, |
| end, |
| kGcRetentionPolicyNeverCollect), |
| oat_file_non_owned_(nullptr), |
| image_location_(image_location) { |
| DCHECK(live_bitmap != nullptr); |
| live_bitmap_.reset(live_bitmap); |
| } |
| |
| static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) { |
| CHECK_ALIGNED(min_delta, kPageSize); |
| CHECK_ALIGNED(max_delta, kPageSize); |
| CHECK_LT(min_delta, max_delta); |
| |
| int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta); |
| if (r % 2 == 0) { |
| r = RoundUp(r, kPageSize); |
| } else { |
| r = RoundDown(r, kPageSize); |
| } |
| CHECK_LE(min_delta, r); |
| CHECK_GE(max_delta, r); |
| CHECK_ALIGNED(r, kPageSize); |
| return r; |
| } |
| |
| static int32_t ChooseRelocationOffsetDelta() { |
| return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA); |
| } |
| |
| static bool GenerateImage(const std::string& image_filename, |
| InstructionSet image_isa, |
| std::string* error_msg) { |
| const std::string boot_class_path_string(Runtime::Current()->GetBootClassPathString()); |
| std::vector<std::string> boot_class_path; |
| Split(boot_class_path_string, ':', &boot_class_path); |
| if (boot_class_path.empty()) { |
| *error_msg = "Failed to generate image because no boot class path specified"; |
| return false; |
| } |
| // We should clean up so we are more likely to have room for the image. |
| if (Runtime::Current()->IsZygote()) { |
| LOG(INFO) << "Pruning dalvik-cache since we are generating an image and will need to recompile"; |
| PruneDalvikCache(image_isa); |
| } |
| |
| std::vector<std::string> arg_vector; |
| |
| std::string dex2oat(Runtime::Current()->GetCompilerExecutable()); |
| arg_vector.push_back(dex2oat); |
| |
| std::string image_option_string("--image="); |
| image_option_string += image_filename; |
| arg_vector.push_back(image_option_string); |
| |
| for (size_t i = 0; i < boot_class_path.size(); i++) { |
| arg_vector.push_back(std::string("--dex-file=") + boot_class_path[i]); |
| } |
| |
| std::string oat_file_option_string("--oat-file="); |
| oat_file_option_string += ImageHeader::GetOatLocationFromImageLocation(image_filename); |
| arg_vector.push_back(oat_file_option_string); |
| |
| // Note: we do not generate a fully debuggable boot image so we do not pass the |
| // compiler flag --debuggable here. |
| |
| Runtime::Current()->AddCurrentRuntimeFeaturesAsDex2OatArguments(&arg_vector); |
| CHECK_EQ(image_isa, kRuntimeISA) |
| << "We should always be generating an image for the current isa."; |
| |
| int32_t base_offset = ChooseRelocationOffsetDelta(); |
| LOG(INFO) << "Using an offset of 0x" << std::hex << base_offset << " from default " |
| << "art base address of 0x" << std::hex << ART_BASE_ADDRESS; |
| arg_vector.push_back(StringPrintf("--base=0x%x", ART_BASE_ADDRESS + base_offset)); |
| |
| if (!kIsTargetBuild) { |
| arg_vector.push_back("--host"); |
| } |
| |
| const std::vector<std::string>& compiler_options = Runtime::Current()->GetImageCompilerOptions(); |
| for (size_t i = 0; i < compiler_options.size(); ++i) { |
| arg_vector.push_back(compiler_options[i].c_str()); |
| } |
| |
| std::string command_line(android::base::Join(arg_vector, ' ')); |
| LOG(INFO) << "GenerateImage: " << command_line; |
| return Exec(arg_vector, error_msg); |
| } |
| |
| static bool FindImageFilenameImpl(const char* image_location, |
| const InstructionSet image_isa, |
| bool* has_system, |
| std::string* system_filename, |
| bool* dalvik_cache_exists, |
| std::string* dalvik_cache, |
| bool* is_global_cache, |
| bool* has_cache, |
| std::string* cache_filename) { |
| DCHECK(dalvik_cache != nullptr); |
| |
| *has_system = false; |
| *has_cache = false; |
| // image_location = /system/framework/boot.art |
| // system_image_location = /system/framework/<image_isa>/boot.art |
| std::string system_image_filename(GetSystemImageFilename(image_location, image_isa)); |
| if (OS::FileExists(system_image_filename.c_str())) { |
| *system_filename = system_image_filename; |
| *has_system = true; |
| } |
| |
| bool have_android_data = false; |
| *dalvik_cache_exists = false; |
| GetDalvikCache(GetInstructionSetString(image_isa), |
| true, |
| dalvik_cache, |
| &have_android_data, |
| dalvik_cache_exists, |
| is_global_cache); |
| |
| if (have_android_data && *dalvik_cache_exists) { |
| // Always set output location even if it does not exist, |
| // so that the caller knows where to create the image. |
| // |
| // image_location = /system/framework/boot.art |
| // *image_filename = /data/dalvik-cache/<image_isa>/boot.art |
| std::string error_msg; |
| if (!GetDalvikCacheFilename(image_location, |
| dalvik_cache->c_str(), |
| cache_filename, |
| &error_msg)) { |
| LOG(WARNING) << error_msg; |
| return *has_system; |
| } |
| *has_cache = OS::FileExists(cache_filename->c_str()); |
| } |
| return *has_system || *has_cache; |
| } |
| |
| bool ImageSpace::FindImageFilename(const char* image_location, |
| const InstructionSet image_isa, |
| std::string* system_filename, |
| bool* has_system, |
| std::string* cache_filename, |
| bool* dalvik_cache_exists, |
| bool* has_cache, |
| bool* is_global_cache) { |
| std::string dalvik_cache_unused; |
| return FindImageFilenameImpl(image_location, |
| image_isa, |
| has_system, |
| system_filename, |
| dalvik_cache_exists, |
| &dalvik_cache_unused, |
| is_global_cache, |
| has_cache, |
| cache_filename); |
| } |
| |
| static bool ReadSpecificImageHeader(const char* filename, ImageHeader* image_header) { |
| std::unique_ptr<File> image_file(OS::OpenFileForReading(filename)); |
| if (image_file.get() == nullptr) { |
| return false; |
| } |
| const bool success = image_file->ReadFully(image_header, sizeof(ImageHeader)); |
| if (!success || !image_header->IsValid()) { |
| return false; |
| } |
| return true; |
| } |
| |
| // Relocate the image at image_location to dest_filename and relocate it by a random amount. |
| static bool RelocateImage(const char* image_location, |
| const char* dest_filename, |
| InstructionSet isa, |
| std::string* error_msg) { |
| // We should clean up so we are more likely to have room for the image. |
| if (Runtime::Current()->IsZygote()) { |
| LOG(INFO) << "Pruning dalvik-cache since we are relocating an image and will need to recompile"; |
| PruneDalvikCache(isa); |
| } |
| |
| std::string patchoat(Runtime::Current()->GetPatchoatExecutable()); |
| |
| std::string input_image_location_arg("--input-image-location="); |
| input_image_location_arg += image_location; |
| |
| std::string output_image_filename_arg("--output-image-file="); |
| output_image_filename_arg += dest_filename; |
| |
| std::string instruction_set_arg("--instruction-set="); |
| instruction_set_arg += GetInstructionSetString(isa); |
| |
| std::string base_offset_arg("--base-offset-delta="); |
| StringAppendF(&base_offset_arg, "%d", ChooseRelocationOffsetDelta()); |
| |
| std::vector<std::string> argv; |
| argv.push_back(patchoat); |
| |
| argv.push_back(input_image_location_arg); |
| argv.push_back(output_image_filename_arg); |
| |
| argv.push_back(instruction_set_arg); |
| argv.push_back(base_offset_arg); |
| |
| std::string command_line(android::base::Join(argv, ' ')); |
| LOG(INFO) << "RelocateImage: " << command_line; |
| return Exec(argv, error_msg); |
| } |
| |
| static ImageHeader* ReadSpecificImageHeader(const char* filename, std::string* error_msg) { |
| std::unique_ptr<ImageHeader> hdr(new ImageHeader); |
| if (!ReadSpecificImageHeader(filename, hdr.get())) { |
| *error_msg = StringPrintf("Unable to read image header for %s", filename); |
| return nullptr; |
| } |
| return hdr.release(); |
| } |
| |
| ImageHeader* ImageSpace::ReadImageHeader(const char* image_location, |
| const InstructionSet image_isa, |
| std::string* error_msg) { |
| std::string system_filename; |
| bool has_system = false; |
| std::string cache_filename; |
| bool has_cache = false; |
| bool dalvik_cache_exists = false; |
| bool is_global_cache = false; |
| if (FindImageFilename(image_location, image_isa, &system_filename, &has_system, |
| &cache_filename, &dalvik_cache_exists, &has_cache, &is_global_cache)) { |
| if (Runtime::Current()->ShouldRelocate()) { |
| if (has_system && has_cache) { |
| std::unique_ptr<ImageHeader> sys_hdr(new ImageHeader); |
| std::unique_ptr<ImageHeader> cache_hdr(new ImageHeader); |
| if (!ReadSpecificImageHeader(system_filename.c_str(), sys_hdr.get())) { |
| *error_msg = StringPrintf("Unable to read image header for %s at %s", |
| image_location, system_filename.c_str()); |
| return nullptr; |
| } |
| if (!ReadSpecificImageHeader(cache_filename.c_str(), cache_hdr.get())) { |
| *error_msg = StringPrintf("Unable to read image header for %s at %s", |
| image_location, cache_filename.c_str()); |
| return nullptr; |
| } |
| if (sys_hdr->GetOatChecksum() != cache_hdr->GetOatChecksum()) { |
| *error_msg = StringPrintf("Unable to find a relocated version of image file %s", |
| image_location); |
| return nullptr; |
| } |
| return cache_hdr.release(); |
| } else if (!has_cache) { |
| *error_msg = StringPrintf("Unable to find a relocated version of image file %s", |
| image_location); |
| return nullptr; |
| } else if (!has_system && has_cache) { |
| // This can probably just use the cache one. |
| return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); |
| } |
| } else { |
| // We don't want to relocate, Just pick the appropriate one if we have it and return. |
| if (has_system && has_cache) { |
| // We want the cache if the checksum matches, otherwise the system. |
| std::unique_ptr<ImageHeader> system(ReadSpecificImageHeader(system_filename.c_str(), |
| error_msg)); |
| std::unique_ptr<ImageHeader> cache(ReadSpecificImageHeader(cache_filename.c_str(), |
| error_msg)); |
| if (system.get() == nullptr || |
| (cache.get() != nullptr && cache->GetOatChecksum() == system->GetOatChecksum())) { |
| return cache.release(); |
| } else { |
| return system.release(); |
| } |
| } else if (has_system) { |
| return ReadSpecificImageHeader(system_filename.c_str(), error_msg); |
| } else if (has_cache) { |
| return ReadSpecificImageHeader(cache_filename.c_str(), error_msg); |
| } |
| } |
| } |
| |
| *error_msg = StringPrintf("Unable to find image file for %s", image_location); |
| return nullptr; |
| } |
| |
| static bool ChecksumsMatch(const char* image_a, const char* image_b, std::string* error_msg) { |
| DCHECK(error_msg != nullptr); |
| |
| ImageHeader hdr_a; |
| ImageHeader hdr_b; |
| |
| if (!ReadSpecificImageHeader(image_a, &hdr_a)) { |
| *error_msg = StringPrintf("Cannot read header of %s", image_a); |
| return false; |
| } |
| if (!ReadSpecificImageHeader(image_b, &hdr_b)) { |
| *error_msg = StringPrintf("Cannot read header of %s", image_b); |
| return false; |
| } |
| |
| if (hdr_a.GetOatChecksum() != hdr_b.GetOatChecksum()) { |
| *error_msg = StringPrintf("Checksum mismatch: %u(%s) vs %u(%s)", |
| hdr_a.GetOatChecksum(), |
| image_a, |
| hdr_b.GetOatChecksum(), |
| image_b); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool CanWriteToDalvikCache(const InstructionSet isa) { |
| const std::string dalvik_cache = GetDalvikCache(GetInstructionSetString(isa)); |
| if (access(dalvik_cache.c_str(), O_RDWR) == 0) { |
| return true; |
| } else if (errno != EACCES) { |
| PLOG(WARNING) << "CanWriteToDalvikCache returned error other than EACCES"; |
| } |
| return false; |
| } |
| |
| static bool ImageCreationAllowed(bool is_global_cache, |
| const InstructionSet isa, |
| std::string* error_msg) { |
| // Anyone can write into a "local" cache. |
| if (!is_global_cache) { |
| return true; |
| } |
| |
| // Only the zygote running as root is allowed to create the global boot image. |
| // If the zygote is running as non-root (and cannot write to the dalvik-cache), |
| // then image creation is not allowed.. |
| if (Runtime::Current()->IsZygote()) { |
| return CanWriteToDalvikCache(isa); |
| } |
| |
| *error_msg = "Only the zygote can create the global boot image."; |
| return false; |
| } |
| |
| void ImageSpace::VerifyImageAllocations() { |
| uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment); |
| while (current < End()) { |
| CHECK_ALIGNED(current, kObjectAlignment); |
| auto* obj = reinterpret_cast<mirror::Object*>(current); |
| CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class"; |
| CHECK(live_bitmap_->Test(obj)) << obj->PrettyTypeOf(); |
| if (kUseBakerReadBarrier) { |
| obj->AssertReadBarrierState(); |
| } |
| current += RoundUp(obj->SizeOf(), kObjectAlignment); |
| } |
| } |
| |
| // Helper class for relocating from one range of memory to another. |
| class RelocationRange { |
| public: |
| RelocationRange() = default; |
| RelocationRange(const RelocationRange&) = default; |
| RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length) |
| : source_(source), |
| dest_(dest), |
| length_(length) {} |
| |
| bool InSource(uintptr_t address) const { |
| return address - source_ < length_; |
| } |
| |
| bool InDest(uintptr_t address) const { |
| return address - dest_ < length_; |
| } |
| |
| // Translate a source address to the destination space. |
| uintptr_t ToDest(uintptr_t address) const { |
| DCHECK(InSource(address)); |
| return address + Delta(); |
| } |
| |
| // Returns the delta between the dest from the source. |
| uintptr_t Delta() const { |
| return dest_ - source_; |
| } |
| |
| uintptr_t Source() const { |
| return source_; |
| } |
| |
| uintptr_t Dest() const { |
| return dest_; |
| } |
| |
| uintptr_t Length() const { |
| return length_; |
| } |
| |
| private: |
| const uintptr_t source_; |
| const uintptr_t dest_; |
| const uintptr_t length_; |
| }; |
| |
| std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) { |
| return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-" |
| << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->(" |
| << reinterpret_cast<const void*>(reloc.Dest()) << "-" |
| << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")"; |
| } |
| |
| // Helper class encapsulating loading, so we can access private ImageSpace members (this is a |
| // friend class), but not declare functions in the header. |
| class ImageSpaceLoader { |
| public: |
| static std::unique_ptr<ImageSpace> Load(const char* image_location, |
| const std::string& image_filename, |
| bool is_zygote, |
| bool is_global_cache, |
| bool validate_oat_file, |
| std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| // Note that we must not use the file descriptor associated with |
| // ScopedFlock::GetFile to Init the image file. We want the file |
| // descriptor (and the associated exclusive lock) to be released when |
| // we leave Create. |
| ScopedFlock image_lock; |
| // Should this be a RDWR lock? This is only a defensive measure, as at |
| // this point the image should exist. |
| // However, only the zygote can write into the global dalvik-cache, so |
| // restrict to zygote processes, or any process that isn't using |
| // /data/dalvik-cache (which we assume to be allowed to write there). |
| const bool rw_lock = is_zygote || !is_global_cache; |
| image_lock.Init(image_filename.c_str(), |
| rw_lock ? (O_CREAT | O_RDWR) : O_RDONLY /* flags */, |
| true /* block */, |
| error_msg); |
| VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location " |
| << image_location; |
| // If we are in /system we can assume the image is good. We can also |
| // assume this if we are using a relocated image (i.e. image checksum |
| // matches) since this is only different by the offset. We need this to |
| // make sure that host tests continue to work. |
| // Since we are the boot image, pass null since we load the oat file from the boot image oat |
| // file name. |
| return Init(image_filename.c_str(), |
| image_location, |
| validate_oat_file, |
| /* oat_file */nullptr, |
| error_msg); |
| } |
| |
| static std::unique_ptr<ImageSpace> Init(const char* image_filename, |
| const char* image_location, |
| bool validate_oat_file, |
| const OatFile* oat_file, |
| std::string* error_msg) |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| CHECK(image_filename != nullptr); |
| CHECK(image_location != nullptr); |
| |
| TimingLogger logger(__PRETTY_FUNCTION__, true, VLOG_IS_ON(image)); |
| VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename; |
| |
| std::unique_ptr<File> file; |
| { |
| TimingLogger::ScopedTiming timing("OpenImageFile", &logger); |
| file.reset(OS::OpenFileForReading(image_filename)); |
| if (file == nullptr) { |
| *error_msg = StringPrintf("Failed to open '%s'", image_filename); |
| return nullptr; |
| } |
| } |
| ImageHeader temp_image_header; |
| ImageHeader* image_header = &temp_image_header; |
| { |
| TimingLogger::ScopedTiming timing("ReadImageHeader", &logger); |
| bool success = file->ReadFully(image_header, sizeof(*image_header)); |
| if (!success || !image_header->IsValid()) { |
| *error_msg = StringPrintf("Invalid image header in '%s'", image_filename); |
| return nullptr; |
| } |
| } |
| // Check that the file is larger or equal to the header size + data size. |
| const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength()); |
| if (image_file_size < sizeof(ImageHeader) + image_header->GetDataSize()) { |
| *error_msg = StringPrintf("Image file truncated: %" PRIu64 " vs. %" PRIu64 ".", |
| image_file_size, |
| sizeof(ImageHeader) + image_header->GetDataSize()); |
| return nullptr; |
| } |
| |
| if (oat_file != nullptr) { |
| // If we have an oat file, check the oat file checksum. The oat file is only non-null for the |
| // app image case. Otherwise, we open the oat file after the image and check the checksum there. |
| const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); |
| const uint32_t image_oat_checksum = image_header->GetOatChecksum(); |
| if (oat_checksum != image_oat_checksum) { |
| *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s", |
| oat_checksum, |
| image_oat_checksum, |
| image_filename); |
| return nullptr; |
| } |
| } |
| |
| if (VLOG_IS_ON(startup)) { |
| LOG(INFO) << "Dumping image sections"; |
| for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { |
| const auto section_idx = static_cast<ImageHeader::ImageSections>(i); |
| auto& section = image_header->GetImageSection(section_idx); |
| LOG(INFO) << section_idx << " start=" |
| << reinterpret_cast<void*>(image_header->GetImageBegin() + section.Offset()) << " " |
| << section; |
| } |
| } |
| |
| const auto& bitmap_section = image_header->GetImageSection(ImageHeader::kSectionImageBitmap); |
| // The location we want to map from is the first aligned page after the end of the stored |
| // (possibly compressed) data. |
| const size_t image_bitmap_offset = RoundUp(sizeof(ImageHeader) + image_header->GetDataSize(), |
| kPageSize); |
| const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size(); |
| if (end_of_bitmap != image_file_size) { |
| *error_msg = StringPrintf( |
| "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.", image_file_size, |
| end_of_bitmap); |
| return nullptr; |
| } |
| |
| std::unique_ptr<MemMap> map; |
| |
| // GetImageBegin is the preferred address to map the image. If we manage to map the |
| // image at the image begin, the amount of fixup work required is minimized. |
| // If it is pic we will retry with error_msg for the failure case. Pass a null error_msg to |
| // avoid reading proc maps for a mapping failure and slowing everything down. |
| map.reset(LoadImageFile(image_filename, |
| image_location, |
| *image_header, |
| image_header->GetImageBegin(), |
| file->Fd(), |
| logger, |
| image_header->IsPic() ? nullptr : error_msg)); |
| // If the header specifies PIC mode, we can also map at a random low_4gb address since we can |
| // relocate in-place. |
| if (map == nullptr && image_header->IsPic()) { |
| map.reset(LoadImageFile(image_filename, |
| image_location, |
| *image_header, |
| /* address */ nullptr, |
| file->Fd(), |
| logger, |
| error_msg)); |
| } |
| // Were we able to load something and continue? |
| if (map == nullptr) { |
| DCHECK(!error_msg->empty()); |
| return nullptr; |
| } |
| DCHECK_EQ(0, memcmp(image_header, map->Begin(), sizeof(ImageHeader))); |
| |
| std::unique_ptr<MemMap> image_bitmap_map(MemMap::MapFileAtAddress(nullptr, |
| bitmap_section.Size(), |
| PROT_READ, MAP_PRIVATE, |
| file->Fd(), |
| image_bitmap_offset, |
| /*low_4gb*/false, |
| /*reuse*/false, |
| image_filename, |
| error_msg)); |
| if (image_bitmap_map == nullptr) { |
| *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str()); |
| return nullptr; |
| } |
| // Loaded the map, use the image header from the file now in case we patch it with |
| // RelocateInPlace. |
| image_header = reinterpret_cast<ImageHeader*>(map->Begin()); |
| const uint32_t bitmap_index = ImageSpace::bitmap_index_.FetchAndAddSequentiallyConsistent(1); |
| std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u", |
| image_filename, |
| bitmap_index)); |
| // Bitmap only needs to cover until the end of the mirror objects section. |
| const ImageSection& image_objects = image_header->GetImageSection(ImageHeader::kSectionObjects); |
| // We only want the mirror object, not the ArtFields and ArtMethods. |
| uint8_t* const image_end = map->Begin() + image_objects.End(); |
| std::unique_ptr<accounting::ContinuousSpaceBitmap> bitmap; |
| { |
| TimingLogger::ScopedTiming timing("CreateImageBitmap", &logger); |
| bitmap.reset( |
| accounting::ContinuousSpaceBitmap::CreateFromMemMap( |
| bitmap_name, |
| image_bitmap_map.release(), |
| reinterpret_cast<uint8_t*>(map->Begin()), |
| // Make sure the bitmap is aligned to card size instead of just bitmap word size. |
| RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize))); |
| if (bitmap == nullptr) { |
| *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str()); |
| return nullptr; |
| } |
| } |
| { |
| TimingLogger::ScopedTiming timing("RelocateImage", &logger); |
| if (!RelocateInPlace(*image_header, |
| map->Begin(), |
| bitmap.get(), |
| oat_file, |
| error_msg)) { |
| return nullptr; |
| } |
| } |
| // We only want the mirror object, not the ArtFields and ArtMethods. |
| std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename, |
| image_location, |
| map.release(), |
| bitmap.release(), |
| image_end)); |
| |
| // VerifyImageAllocations() will be called later in Runtime::Init() |
| // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_ |
| // and ArtField::java_lang_reflect_ArtField_, which are used from |
| // Object::SizeOf() which VerifyImageAllocations() calls, are not |
| // set yet at this point. |
| if (oat_file == nullptr) { |
| TimingLogger::ScopedTiming timing("OpenOatFile", &logger); |
| space->oat_file_ = OpenOatFile(*space, image_filename, error_msg); |
| if (space->oat_file_ == nullptr) { |
| DCHECK(!error_msg->empty()); |
| return nullptr; |
| } |
| space->oat_file_non_owned_ = space->oat_file_.get(); |
| } else { |
| space->oat_file_non_owned_ = oat_file; |
| } |
| |
| if (validate_oat_file) { |
| TimingLogger::ScopedTiming timing("ValidateOatFile", &logger); |
| CHECK(space->oat_file_ != nullptr); |
| if (!ImageSpace::ValidateOatFile(*space->oat_file_, error_msg)) { |
| DCHECK(!error_msg->empty()); |
| return nullptr; |
| } |
| } |
| |
| Runtime* runtime = Runtime::Current(); |
| |
| // If oat_file is null, then it is the boot image space. Use oat_file_non_owned_ from the space |
| // to set the runtime methods. |
| CHECK_EQ(oat_file != nullptr, image_header->IsAppImage()); |
| if (image_header->IsAppImage()) { |
| CHECK_EQ(runtime->GetResolutionMethod(), |
| image_header->GetImageMethod(ImageHeader::kResolutionMethod)); |
| CHECK_EQ(runtime->GetImtConflictMethod(), |
| image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); |
| CHECK_EQ(runtime->GetImtUnimplementedMethod(), |
| image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveAllCalleeSaves), |
| image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsOnly), |
| image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveRefsAndArgs), |
| image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod)); |
| CHECK_EQ(runtime->GetCalleeSaveMethod(Runtime::kSaveEverything), |
| image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod)); |
| } else if (!runtime->HasResolutionMethod()) { |
| runtime->SetInstructionSet(space->oat_file_non_owned_->GetOatHeader().GetInstructionSet()); |
| runtime->SetResolutionMethod(image_header->GetImageMethod(ImageHeader::kResolutionMethod)); |
| runtime->SetImtConflictMethod(image_header->GetImageMethod(ImageHeader::kImtConflictMethod)); |
| runtime->SetImtUnimplementedMethod( |
| image_header->GetImageMethod(ImageHeader::kImtUnimplementedMethod)); |
| runtime->SetCalleeSaveMethod( |
| image_header->GetImageMethod(ImageHeader::kSaveAllCalleeSavesMethod), |
| Runtime::kSaveAllCalleeSaves); |
| runtime->SetCalleeSaveMethod( |
| image_header->GetImageMethod(ImageHeader::kSaveRefsOnlyMethod), Runtime::kSaveRefsOnly); |
| runtime->SetCalleeSaveMethod( |
| image_header->GetImageMethod(ImageHeader::kSaveRefsAndArgsMethod), |
| Runtime::kSaveRefsAndArgs); |
| runtime->SetCalleeSaveMethod( |
| image_header->GetImageMethod(ImageHeader::kSaveEverythingMethod), Runtime::kSaveEverything); |
| } |
| |
| VLOG(image) << "ImageSpace::Init exiting " << *space.get(); |
| if (VLOG_IS_ON(image)) { |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return space; |
| } |
| |
| private: |
| static MemMap* LoadImageFile(const char* image_filename, |
| const char* image_location, |
| const ImageHeader& image_header, |
| uint8_t* address, |
| int fd, |
| TimingLogger& logger, |
| std::string* error_msg) { |
| TimingLogger::ScopedTiming timing("MapImageFile", &logger); |
| const ImageHeader::StorageMode storage_mode = image_header.GetStorageMode(); |
| if (storage_mode == ImageHeader::kStorageModeUncompressed) { |
| return MemMap::MapFileAtAddress(address, |
| image_header.GetImageSize(), |
| PROT_READ | PROT_WRITE, |
| MAP_PRIVATE, |
| fd, |
| 0, |
| /*low_4gb*/true, |
| /*reuse*/false, |
| image_filename, |
| error_msg); |
| } |
| |
| if (storage_mode != ImageHeader::kStorageModeLZ4 && |
| storage_mode != ImageHeader::kStorageModeLZ4HC) { |
| if (error_msg != nullptr) { |
| *error_msg = StringPrintf("Invalid storage mode in image header %d", |
| static_cast<int>(storage_mode)); |
| } |
| return nullptr; |
| } |
| |
| // Reserve output and decompress into it. |
| std::unique_ptr<MemMap> map(MemMap::MapAnonymous(image_location, |
| address, |
| image_header.GetImageSize(), |
| PROT_READ | PROT_WRITE, |
| /*low_4gb*/true, |
| /*reuse*/false, |
| error_msg)); |
| if (map != nullptr) { |
| const size_t stored_size = image_header.GetDataSize(); |
| const size_t decompress_offset = sizeof(ImageHeader); // Skip the header. |
| std::unique_ptr<MemMap> temp_map(MemMap::MapFile(sizeof(ImageHeader) + stored_size, |
| PROT_READ, |
| MAP_PRIVATE, |
| fd, |
| /*offset*/0, |
| /*low_4gb*/false, |
| image_filename, |
| error_msg)); |
| if (temp_map == nullptr) { |
| DCHECK(error_msg == nullptr || !error_msg->empty()); |
| return nullptr; |
| } |
| memcpy(map->Begin(), &image_header, sizeof(ImageHeader)); |
| const uint64_t start = NanoTime(); |
| // LZ4HC and LZ4 have same internal format, both use LZ4_decompress. |
| TimingLogger::ScopedTiming timing2("LZ4 decompress image", &logger); |
| const size_t decompressed_size = LZ4_decompress_safe( |
| reinterpret_cast<char*>(temp_map->Begin()) + sizeof(ImageHeader), |
| reinterpret_cast<char*>(map->Begin()) + decompress_offset, |
| stored_size, |
| map->Size() - decompress_offset); |
| const uint64_t time = NanoTime() - start; |
| // Add one 1 ns to prevent possible divide by 0. |
| VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " (" |
| << PrettySize(static_cast<uint64_t>(map->Size()) * MsToNs(1000) / (time + 1)) |
| << "/s)"; |
| if (decompressed_size + sizeof(ImageHeader) != image_header.GetImageSize()) { |
| if (error_msg != nullptr) { |
| *error_msg = StringPrintf( |
| "Decompressed size does not match expected image size %zu vs %zu", |
| decompressed_size + sizeof(ImageHeader), |
| image_header.GetImageSize()); |
| } |
| return nullptr; |
| } |
| } |
| |
| return map.release(); |
| } |
| |
| class FixupVisitor : public ValueObject { |
| public: |
| FixupVisitor(const RelocationRange& boot_image, |
| const RelocationRange& boot_oat, |
| const RelocationRange& app_image, |
| const RelocationRange& app_oat) |
| : boot_image_(boot_image), |
| boot_oat_(boot_oat), |
| app_image_(app_image), |
| app_oat_(app_oat) {} |
| |
| // Return the relocated address of a heap object. |
| template <typename T> |
| ALWAYS_INLINE T* ForwardObject(T* src) const { |
| const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); |
| if (boot_image_.InSource(uint_src)) { |
| return reinterpret_cast<T*>(boot_image_.ToDest(uint_src)); |
| } |
| if (app_image_.InSource(uint_src)) { |
| return reinterpret_cast<T*>(app_image_.ToDest(uint_src)); |
| } |
| // Since we are fixing up the app image, there should only be pointers to the app image and |
| // boot image. |
| DCHECK(src == nullptr) << reinterpret_cast<const void*>(src); |
| return src; |
| } |
| |
| // Return the relocated address of a code pointer (contained by an oat file). |
| ALWAYS_INLINE const void* ForwardCode(const void* src) const { |
| const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src); |
| if (boot_oat_.InSource(uint_src)) { |
| return reinterpret_cast<const void*>(boot_oat_.ToDest(uint_src)); |
| } |
| if (app_oat_.InSource(uint_src)) { |
| return reinterpret_cast<const void*>(app_oat_.ToDest(uint_src)); |
| } |
| DCHECK(src == nullptr) << src; |
| return src; |
| } |
| |
| // Must be called on pointers that already have been relocated to the destination relocation. |
| ALWAYS_INLINE bool IsInAppImage(mirror::Object* object) const { |
| return app_image_.InDest(reinterpret_cast<uintptr_t>(object)); |
| } |
| |
| protected: |
| // Source section. |
| const RelocationRange boot_image_; |
| const RelocationRange boot_oat_; |
| const RelocationRange app_image_; |
| const RelocationRange app_oat_; |
| }; |
| |
| // Adapt for mirror::Class::FixupNativePointers. |
| class FixupObjectAdapter : public FixupVisitor { |
| public: |
| template<typename... Args> |
| explicit FixupObjectAdapter(Args... args) : FixupVisitor(args...) {} |
| |
| template <typename T> |
| T* operator()(T* obj, void** dest_addr ATTRIBUTE_UNUSED = nullptr) const { |
| return ForwardObject(obj); |
| } |
| }; |
| |
| class FixupRootVisitor : public FixupVisitor { |
| public: |
| template<typename... Args> |
| explicit FixupRootVisitor(Args... args) : FixupVisitor(args...) {} |
| |
| ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| if (!root->IsNull()) { |
| VisitRoot(root); |
| } |
| } |
| |
| ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const |
| REQUIRES_SHARED(Locks::mutator_lock_) { |
| mirror::Object* ref = root->AsMirrorPtr(); |
| mirror::Object* new_ref = ForwardObject(ref); |
| if (ref != new_ref) { |
| root->Assign(new_ref); |
| } |
| } |
| }; |
| |
| class FixupObjectVisitor : public FixupVisitor { |
| public: |
| template<typename... Args> |
| explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited, |
| const PointerSize pointer_size, |
| Args... args) |
| : FixupVisitor(args...), |
| pointer_size_(pointer_size), |
| visited_(visited) {} |
| |
| // Fix up separately since we also need to fix up method entrypoints. |
| ALWAYS_INLINE void VisitRootIfNonNull( |
| mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {} |
| |
| ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) |
| const {} |
| |
| ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj, |
| MemberOffset offset, |
| bool is_static ATTRIBUTE_UNUSED) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| // There could be overlap between ranges, we must avoid visiting the same reference twice. |
| // Avoid the class field since we already fixed it up in FixupClassVisitor. |
| if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) { |
| // Space is not yet added to the heap, don't do a read barrier. |
| mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>( |
| offset); |
| // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the |
| // image. |
| obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, ForwardObject(ref)); |
| } |
| } |
| |
| // Visit a pointer array and forward corresponding native data. Ignores pointer arrays in the |
| // boot image. Uses the bitmap to ensure the same array is not visited multiple times. |
| template <typename Visitor> |
| void UpdatePointerArrayContents(mirror::PointerArray* array, const Visitor& visitor) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| DCHECK(array != nullptr); |
| DCHECK(visitor.IsInAppImage(array)); |
| // The bit for the array contents is different than the bit for the array. Since we may have |
| // already visited the array as a long / int array from walking the bitmap without knowing it |
| // was a pointer array. |
| static_assert(kObjectAlignment == 8u, "array bit may be in another object"); |
| mirror::Object* const contents_bit = reinterpret_cast<mirror::Object*>( |
| reinterpret_cast<uintptr_t>(array) + kObjectAlignment); |
| // If the bit is not set then the contents have not yet been updated. |
| if (!visited_->Test(contents_bit)) { |
| array->Fixup<kVerifyNone, kWithoutReadBarrier>(array, pointer_size_, visitor); |
| visited_->Set(contents_bit); |
| } |
| } |
| |
| // java.lang.ref.Reference visitor. |
| void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED, |
| ObjPtr<mirror::Reference> ref) const |
| REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) { |
| mirror::Object* obj = ref->GetReferent<kWithoutReadBarrier>(); |
| ref->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>( |
| mirror::Reference::ReferentOffset(), |
| ForwardObject(obj)); |
| } |
| |
| void operator()(mirror::Object* obj) const |
| NO_THREAD_SAFETY_ANALYSIS { |
| if (visited_->Test(obj)) { |
| // Already visited. |
| return; |
| } |
| visited_->Set(obj); |
| |
| // Handle class specially first since we need it to be updated to properly visit the rest of |
| // the instance fields. |
| { |
| mirror::Class* klass = obj->GetClass<kVerifyNone, kWithoutReadBarrier>(); |
| DCHECK(klass != nullptr) << "Null class in image"; |
| // No AsClass since our fields aren't quite fixed up yet. |
| mirror::Class* new_klass = down_cast<mirror::Class*>(ForwardObject(klass)); |
| if (klass != new_klass) { |
| obj->SetClass<kVerifyNone>(new_klass); |
| } |
| if (new_klass != klass && IsInAppImage(new_klass)) { |
| // Make sure the klass contents are fixed up since we depend on it to walk the fields. |
| operator()(new_klass); |
| } |
| } |
| |
| obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>( |
| *this, |
| *this); |
| // Note that this code relies on no circular dependencies. |
| // We want to use our own class loader and not the one in the image. |
| if (obj->IsClass<kVerifyNone, kWithoutReadBarrier>()) { |
| mirror::Class* as_klass = obj->AsClass<kVerifyNone, kWithoutReadBarrier>(); |
| FixupObjectAdapter visitor(boot_image_, boot_oat_, app_image_, app_oat_); |
| as_klass->FixupNativePointers<kVerifyNone, kWithoutReadBarrier>(as_klass, |
| pointer_size_, |
| visitor); |
| // Deal with the pointer arrays. Use the helper function since multiple classes can reference |
| // the same arrays. |
| mirror::PointerArray* const vtable = as_klass->GetVTable<kVerifyNone, kWithoutReadBarrier>(); |
| if (vtable != nullptr && IsInAppImage(vtable)) { |
| operator()(vtable); |
| UpdatePointerArrayContents(vtable, visitor); |
| } |
| mirror::IfTable* iftable = as_klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>(); |
| // Ensure iftable arrays are fixed up since we need GetMethodArray to return the valid |
| // contents. |
| if (IsInAppImage(iftable)) { |
| operator()(iftable); |
| for (int32_t i = 0, count = iftable->Count(); i < count; ++i) { |
| if (iftable->GetMethodArrayCount<kVerifyNone, kWithoutReadBarrier>(i) > 0) { |
| mirror::PointerArray* methods = |
| iftable->GetMethodArray<kVerifyNone, kWithoutReadBarrier>(i); |
| if (visitor.IsInAppImage(methods)) { |
| operator()(methods); |
| DCHECK(methods != nullptr); |
| UpdatePointerArrayContents(methods, visitor); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| private: |
| const PointerSize pointer_size_; |
| gc::accounting::ContinuousSpaceBitmap* const visited_; |
| }; |
| |
| class ForwardObjectAdapter { |
| public: |
| ALWAYS_INLINE explicit ForwardObjectAdapter(const FixupVisitor* visitor) : visitor_(visitor) {} |
| |
| template <typename T> |
| ALWAYS_INLINE T* operator()(T* src) const { |
| return visitor_->ForwardObject(src); |
| } |
| |
| private: |
| const FixupVisitor* const visitor_; |
| }; |
| |
| class ForwardCodeAdapter { |
| public: |
| ALWAYS_INLINE explicit ForwardCodeAdapter(const FixupVisitor* visitor) |
| : visitor_(visitor) {} |
| |
| template <typename T> |
| ALWAYS_INLINE T* operator()(T* src) const { |
| return visitor_->ForwardCode(src); |
| } |
| |
| private: |
| const FixupVisitor* const visitor_; |
| }; |
| |
| class FixupArtMethodVisitor : public FixupVisitor, public ArtMethodVisitor { |
| public: |
| template<typename... Args> |
| explicit FixupArtMethodVisitor(bool fixup_heap_objects, PointerSize pointer_size, Args... args) |
| : FixupVisitor(args...), |
| fixup_heap_objects_(fixup_heap_objects), |
| pointer_size_(pointer_size) {} |
| |
| virtual void Visit(ArtMethod* method) NO_THREAD_SAFETY_ANALYSIS { |
| // TODO: Separate visitor for runtime vs normal methods. |
| if (UNLIKELY(method->IsRuntimeMethod())) { |
| ImtConflictTable* table = method->GetImtConflictTable(pointer_size_); |
| if (table != nullptr) { |
| ImtConflictTable* new_table = ForwardObject(table); |
| if (table != new_table) { |
| method->SetImtConflictTable(new_table, pointer_size_); |
| } |
| } |
| const void* old_code = method->GetEntryPointFromQuickCompiledCodePtrSize(pointer_size_); |
| const void* new_code = ForwardCode(old_code); |
| if (old_code != new_code) { |
| method->SetEntryPointFromQuickCompiledCodePtrSize(new_code, pointer_size_); |
| } |
| } else { |
| if (fixup_heap_objects_) { |
| method->UpdateObjectsForImageRelocation(ForwardObjectAdapter(this), pointer_size_); |
| } |
| method->UpdateEntrypoints<kWithoutReadBarrier>(ForwardCodeAdapter(this), pointer_size_); |
| } |
| } |
| |
| private: |
| const bool fixup_heap_objects_; |
| const PointerSize pointer_size_; |
| }; |
| |
| class FixupArtFieldVisitor : public FixupVisitor, public ArtFieldVisitor { |
| public: |
| template<typename... Args> |
| explicit FixupArtFieldVisitor(Args... args) : FixupVisitor(args...) {} |
| |
| virtual void Visit(ArtField* field) NO_THREAD_SAFETY_ANALYSIS { |
| field->UpdateObjects(ForwardObjectAdapter(this)); |
| } |
| }; |
| |
| // Relocate an image space mapped at target_base which possibly used to be at a different base |
| // address. Only needs a single image space, not one for both source and destination. |
| // In place means modifying a single ImageSpace in place rather than relocating from one ImageSpace |
| // to another. |
| static bool RelocateInPlace(ImageHeader& image_header, |
| uint8_t* target_base, |
| accounting::ContinuousSpaceBitmap* bitmap, |
| const OatFile* app_oat_file, |
| std::string* error_msg) { |
| DCHECK(error_msg != nullptr); |
| if (!image_header.IsPic()) { |
| if (image_header.GetImageBegin() == target_base) { |
| return true; |
| } |
| *error_msg = StringPrintf("Cannot relocate non-pic image for oat file %s", |
| (app_oat_file != nullptr) ? app_oat_file->GetLocation().c_str() : ""); |
| return false; |
| } |
| // Set up sections. |
| uint32_t boot_image_begin = 0; |
| uint32_t boot_image_end = 0; |
| uint32_t boot_oat_begin = 0; |
| uint32_t boot_oat_end = 0; |
| const PointerSize pointer_size = image_header.GetPointerSize(); |
| gc::Heap* const heap = Runtime::Current()->GetHeap(); |
| heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end); |
| if (boot_image_begin == boot_image_end) { |
| *error_msg = "Can not relocate app image without boot image space"; |
| return false; |
| } |
| if (boot_oat_begin == boot_oat_end) { |
| *error_msg = "Can not relocate app image without boot oat file"; |
| return false; |
| } |
| const uint32_t boot_image_size = boot_image_end - boot_image_begin; |
| const uint32_t boot_oat_size = boot_oat_end - boot_oat_begin; |
| const uint32_t image_header_boot_image_size = image_header.GetBootImageSize(); |
| const uint32_t image_header_boot_oat_size = image_header.GetBootOatSize(); |
| if (boot_image_size != image_header_boot_image_size) { |
| *error_msg = StringPrintf("Boot image size %" PRIu64 " does not match expected size %" |
| PRIu64, |
| static_cast<uint64_t>(boot_image_size), |
| static_cast<uint64_t>(image_header_boot_image_size)); |
| return false; |
| } |
| if (boot_oat_size != image_header_boot_oat_size) { |
| *error_msg = StringPrintf("Boot oat size %" PRIu64 " does not match expected size %" |
| PRIu64, |
| static_cast<uint64_t>(boot_oat_size), |
| static_cast<uint64_t>(image_header_boot_oat_size)); |
| return false; |
| } |
| TimingLogger logger(__FUNCTION__, true, false); |
| RelocationRange boot_image(image_header.GetBootImageBegin(), |
| boot_image_begin, |
| boot_image_size); |
| RelocationRange boot_oat(image_header.GetBootOatBegin(), |
| boot_oat_begin, |
| boot_oat_size); |
| RelocationRange app_image(reinterpret_cast<uintptr_t>(image_header.GetImageBegin()), |
| reinterpret_cast<uintptr_t>(target_base), |
| image_header.GetImageSize()); |
| // Use the oat data section since this is where the OatFile::Begin is. |
| RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header.GetOatDataBegin()), |
| // Not necessarily in low 4GB. |
| reinterpret_cast<uintptr_t>(app_oat_file->Begin()), |
| image_header.GetOatDataEnd() - image_header.GetOatDataBegin()); |
| VLOG(image) << "App image " << app_image; |
| VLOG(image) << "App oat " << app_oat; |
| VLOG(image) << "Boot image " << boot_image; |
| VLOG(image) << "Boot oat " << boot_oat; |
| // True if we need to fixup any heap pointers, otherwise only code pointers. |
| const bool fixup_image = boot_image.Delta() != 0 || app_image.Delta() != 0; |
| const bool fixup_code = boot_oat.Delta() != 0 || app_oat.Delta() != 0; |
| if (!fixup_image && !fixup_code) { |
| // Nothing to fix up. |
| return true; |
| } |
| ScopedDebugDisallowReadBarriers sddrb(Thread::Current()); |
| // Need to update the image to be at the target base. |
| const ImageSection& objects_section = image_header.GetImageSection(ImageHeader::kSectionObjects); |
| uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset()); |
| uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End()); |
| FixupObjectAdapter fixup_adapter(boot_image, boot_oat, app_image, app_oat); |
| if (fixup_image) { |
| // Two pass approach, fix up all classes first, then fix up non class-objects. |
| // The visited bitmap is used to ensure that pointer arrays are not forwarded twice. |
| std::unique_ptr<gc::accounting::ContinuousSpaceBitmap> visited_bitmap( |
| gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap", |
| target_base, |
| image_header.GetImageSize())); |
| FixupObjectVisitor fixup_object_visitor(visited_bitmap.get(), |
| pointer_size, |
| boot_image, |
| boot_oat, |
| app_image, |
| app_oat); |
| TimingLogger::ScopedTiming timing("Fixup classes", &logger); |
| // Fixup objects may read fields in the boot image, use the mutator lock here for sanity. Though |
| // its probably not required. |
| ScopedObjectAccess soa(Thread::Current()); |
| timing.NewTiming("Fixup objects"); |
| bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor); |
| // Fixup image roots. |
| CHECK(app_image.InSource(reinterpret_cast<uintptr_t>( |
| image_header.GetImageRoots<kWithoutReadBarrier>()))); |
| image_header.RelocateImageObjects(app_image.Delta()); |
| CHECK_EQ(image_header.GetImageBegin(), target_base); |
| // Fix up dex cache DexFile pointers. |
| auto* dex_caches = image_header.GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)-> |
| AsObjectArray<mirror::DexCache, kVerifyNone, kWithoutReadBarrier>(); |
| for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) { |
| mirror::DexCache* dex_cache = dex_caches->Get<kVerifyNone, kWithoutReadBarrier>(i); |
| // Fix up dex cache pointers. |
| mirror::StringDexCacheType* strings = dex_cache->GetStrings(); |
| if (strings != nullptr) { |
| mirror::StringDexCacheType* new_strings = fixup_adapter.ForwardObject(strings); |
| if (strings != new_strings) { |
| dex_cache->SetStrings(new_strings); |
| } |
| dex_cache->FixupStrings<kWithoutReadBarrier>(new_strings, fixup_adapter); |
| } |
| mirror::TypeDexCacheType* types = dex_cache->GetResolvedTypes(); |
| if (types != nullptr) { |
| mirror::TypeDexCacheType* new_types = fixup_adapter.ForwardObject(types); |
| if (types != new_types) { |
| dex_cache->SetResolvedTypes(new_types); |
| } |
| dex_cache->FixupResolvedTypes<kWithoutReadBarrier>(new_types, fixup_adapter); |
| } |
| ArtMethod** methods = dex_cache->GetResolvedMethods(); |
| if (methods != nullptr) { |
| ArtMethod** new_methods = fixup_adapter.ForwardObject(methods); |
| if (methods != new_methods) { |
| dex_cache->SetResolvedMethods(new_methods); |
| } |
| for (size_t j = 0, num = dex_cache->NumResolvedMethods(); j != num; ++j) { |
| ArtMethod* orig = mirror::DexCache::GetElementPtrSize(new_methods, j, pointer_size); |
| ArtMethod* copy = fixup_adapter.ForwardObject(orig); |
| if (orig != copy) { |
| mirror::DexCache::SetElementPtrSize(new_methods, j, copy, pointer_size); |
| } |
| } |
| } |
| mirror::FieldDexCacheType* fields = dex_cache->GetResolvedFields(); |
| if (fields != nullptr) { |
| mirror::FieldDexCacheType* new_fields = fixup_adapter.ForwardObject(fields); |
| if (fields != new_fields) { |
| dex_cache->SetResolvedFields(new_fields); |
| } |
| for (size_t j = 0, num = dex_cache->NumResolvedFields(); j != num; ++j) { |
| mirror::FieldDexCachePair orig = |
| mirror::DexCache::GetNativePairPtrSize(new_fields, j, pointer_size); |
| mirror::FieldDexCachePair copy(fixup_adapter.ForwardObject(orig.object), orig.index); |
| if (orig.object != copy.object) { |
| mirror::DexCache::SetNativePairPtrSize(new_fields, j, copy, pointer_size); |
| } |
| } |
| } |
| |
| mirror::MethodTypeDexCacheType* method_types = dex_cache->GetResolvedMethodTypes(); |
| if (method_types != nullptr) { |
| mirror::MethodTypeDexCacheType* new_method_types = |
| fixup_adapter.ForwardObject(method_types); |
| if (method_types != new_method_types) { |
| dex_cache->SetResolvedMethodTypes(new_method_types); |
| } |
| dex_cache->FixupResolvedMethodTypes<kWithoutReadBarrier>(new_method_types, fixup_adapter); |
| } |
| GcRoot<mirror::CallSite>* call_sites = dex_cache->GetResolvedCallSites(); |
| if (call_sites != nullptr) { |
| GcRoot<mirror::CallSite>* new_call_sites = fixup_adapter.ForwardObject(call_sites); |
| if (call_sites != new_call_sites) { |
| dex_cache->SetResolvedCallSites(new_call_sites); |
| } |
| dex_cache->FixupResolvedCallSites<kWithoutReadBarrier>(new_call_sites, fixup_adapter); |
| } |
| } |
| } |
| { |
| // Only touches objects in the app image, no need for mutator lock. |
| TimingLogger::ScopedTiming timing("Fixup methods", &logger); |
| FixupArtMethodVisitor method_visitor(fixup_image, |
| pointer_size, |
| boot_image, |
| boot_oat, |
| app_image, |
| app_oat); |
| image_header.VisitPackedArtMethods(&method_visitor, target_base, pointer_size); |
| } |
| if (fixup_image) { |
| { |
| // Only touches objects in the app image, no need for mutator lock. |
| TimingLogger::ScopedTiming timing("Fixup fields", &logger); |
| FixupArtFieldVisitor field_visitor(boot_image, boot_oat, app_image, app_oat); |
| image_header.VisitPackedArtFields(&field_visitor, target_base); |
| } |
| { |
| TimingLogger::ScopedTiming timing("Fixup imt", &logger); |
| image_header.VisitPackedImTables(fixup_adapter, target_base, pointer_size); |
| } |
| { |
| TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger); |
| image_header.VisitPackedImtConflictTables(fixup_adapter, target_base, pointer_size); |
| } |
| // In the app image case, the image methods are actually in the boot image. |
| image_header.RelocateImageMethods(boot_image.Delta()); |
| const auto& class_table_section = image_header.GetImageSection(ImageHeader::kSectionClassTable); |
| if (class_table_section.Size() > 0u) { |
| // Note that we require that ReadFromMemory does not make an internal copy of the elements. |
| // This also relies on visit roots not doing any verification which could fail after we update |
| // the roots to be the image addresses. |
| ScopedObjectAccess soa(Thread::Current()); |
| WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_); |
| ClassTable temp_table; |
| temp_table.ReadFromMemory(target_base + class_table_section.Offset()); |
| FixupRootVisitor root_visitor(boot_image, boot_oat, app_image, app_oat); |
| temp_table.VisitRoots(root_visitor); |
| } |
| } |
| if (VLOG_IS_ON(image)) { |
| logger.Dump(LOG_STREAM(INFO)); |
| } |
| return true; |
| } |
| |
| static std::unique_ptr<OatFile> OpenOatFile(const ImageSpace& image, |
| const char* image_path, |
| std::string* error_msg) { |
| const ImageHeader& image_header = image.GetImageHeader(); |
| std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(image_path); |
| |
| CHECK(image_header.GetOatDataBegin() != nullptr); |
| |
| std::unique_ptr<OatFile> oat_file(OatFile::Open(oat_filename, |
| oat_filename, |
| image_header.GetOatDataBegin(), |
| image_header.GetOatFileBegin(), |
| !Runtime::Current()->IsAotCompiler(), |
| /*low_4gb*/false, |
| nullptr, |
| error_msg)); |
| if (oat_file == nullptr) { |
| *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s", |
| oat_filename.c_str(), |
| image.GetName(), |
| error_msg->c_str()); |
| return nullptr; |
| } |
| uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum(); |
| uint32_t image_oat_checksum = image_header.GetOatChecksum(); |
| if (oat_checksum != image_oat_checksum) { |
| *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum 0x%x" |
| " in image %s", |
| oat_checksum, |
| image_oat_checksum, |
| image.GetName()); |
| return nullptr; |
| } |
| int32_t image_patch_delta = image_header.GetPatchDelta(); |
| int32_t oat_patch_delta = oat_file->GetOatHeader().GetImagePatchDelta(); |
| if (oat_patch_delta != image_patch_delta && !image_header.CompilePic()) { |
| // We should have already relocated by this point. Bail out. |
| *error_msg = StringPrintf("Failed to match oat file patch delta %d to expected patch delta %d " |
| "in image %s", |
| oat_patch_delta, |
| image_patch_delta, |
| image.GetName()); |
| return nullptr; |
| } |
| |
| return oat_file; |
| } |
| }; |
| |
| static constexpr uint64_t kLowSpaceValue = 50 * MB; |
| static constexpr uint64_t kTmpFsSentinelValue = 384 * MB; |
| |
| // Read the free space of the cache partition and make a decision whether to keep the generated |
| // image. This is to try to mitigate situations where the system might run out of space later. |
| static bool CheckSpace(const std::string& cache_filename, std::string* error_msg) { |
| // Using statvfs vs statvfs64 because of b/18207376, and it is enough for all practical purposes. |
| struct statvfs buf; |
| |
| int res = TEMP_FAILURE_RETRY(statvfs(cache_filename.c_str(), &buf)); |
| if (res != 0) { |
| // Could not stat. Conservatively tell the system to delete the image. |
| *error_msg = "Could not stat the filesystem, assuming low-memory situation."; |
| return false; |
| } |
| |
| uint64_t fs_overall_size = buf.f_bsize * static_cast<uint64_t>(buf.f_blocks); |
| // Zygote is privileged, but other things are not. Use bavail. |
| uint64_t fs_free_size = buf.f_bsize * static_cast<uint64_t>(buf.f_bavail); |
| |
| // Take the overall size as an indicator for a tmpfs, which is being used for the decryption |
| // environment. We do not want to fail quickening the boot image there, as it is beneficial |
| // for time-to-UI. |
| if (fs_overall_size > kTmpFsSentinelValue) { |
| if (fs_free_size < kLowSpaceValue) { |
| *error_msg = StringPrintf("Low-memory situation: only %4.2f megabytes available, need at " |
| "least %" PRIu64 ".", |
| static_cast<double>(fs_free_size) / MB, |
| kLowSpaceValue / MB); |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| std::unique_ptr<ImageSpace> ImageSpace::CreateBootImage(const char* image_location, |
| const InstructionSet image_isa, |
| bool secondary_image, |
| std::string* error_msg) { |
| ScopedTrace trace(__FUNCTION__); |
| |
| // Step 0: Extra zygote work. |
| |
| // Step 0.a: If we're the zygote, mark boot. |
| const bool is_zygote = Runtime::Current()->IsZygote(); |
| if (is_zygote && !secondary_image && CanWriteToDalvikCache(image_isa)) { |
| MarkZygoteStart(image_isa, Runtime::Current()->GetZygoteMaxFailedBoots()); |
| } |
| |
| // Step 0.b: If we're the zygote, check for free space, and prune the cache preemptively, |
| // if necessary. While the runtime may be fine (it is pretty tolerant to |
| // out-of-disk-space situations), other parts of the platform are not. |
| // |
| // The advantage of doing this proactively is that the later steps are simplified, |
| // i.e., we do not need to code retries. |
| std::string system_filename; |
| bool has_system = false; |
| std::string cache_filename; |
| bool has_cache = false; |
| bool dalvik_cache_exists = false; |
| bool is_global_cache = true; |
| std::string dalvik_cache; |
| bool found_image = FindImageFilenameImpl(image_location, |
| image_isa, |
| &has_system, |
| &system_filename, |
| &dalvik_cache_exists, |
| &dalvik_cache, |
| &is_global_cache, |
| &has_cache, |
| &cache_filename); |
| |
| if (is_zygote && dalvik_cache_exists) { |
| DCHECK(!dalvik_cache.empty()); |
| std::string local_error_msg; |
| if (!CheckSpace(dalvik_cache, &local_error_msg)) { |
| LOG(WARNING) << local_error_msg << " Preemptively pruning the dalvik cache."; |
| PruneDalvikCache(image_isa); |
| |
| // Re-evaluate the image. |
| found_image = FindImageFilenameImpl(image_location, |
| image_isa, |
| &has_system, |
| &system_filename, |
| &dalvik_cache_exists, |
| &dalvik_cache, |
| &is_global_cache, |
| &has_cache, |
| &cache_filename); |
| } |
| } |
| |
| // Collect all the errors. |
| std::vector<std::string> error_msgs; |
| |
| // Step 1: Check if we have an existing and relocated image. |
| |
| // Step 1.a: Have files in system and cache. Then they need to match. |
| if (found_image && has_system && has_cache) { |
| std::string local_error_msg; |
| // Check that the files are matching. |
| if (ChecksumsMatch(system_filename.c_str(), cache_filename.c_str(), &local_error_msg)) { |
| std::unique_ptr<ImageSpace> relocated_space = |
| ImageSpaceLoader::Load(image_location, |
| cache_filename, |
| is_zygote, |
| is_global_cache, |
| /* validate_oat_file */ false, |
| &local_error_msg); |
| if (relocated_space != nullptr) { |
| return relocated_space; |
| } |
| } |
| error_msgs.push_back(local_error_msg); |
| } |
| |
| // Step 1.b: Only have a cache file. |
| if (found_image && !has_system && has_cache) { |
| std::string local_error_msg; |
| std::unique_ptr<ImageSpace> cache_space = |
| ImageSpaceLoader::Load(image_location, |
| cache_filename, |
| is_zygote, |
| is_global_cache, |
| /* validate_oat_file */ true, |
| &local_error_msg); |
| if (cache_space != nullptr) { |
| return cache_space; |
| } |
| error_msgs.push_back(local_error_msg); |
| } |
| |
| // Step 2: We have an existing image in /system. |
| |
| // Step 2.a: We are not required to relocate it. Then we can use it directly. |
| bool relocate = Runtime::Current()->ShouldRelocate(); |
| |
| if (found_image && has_system && !relocate) { |
| std::string local_error_msg; |
| std::unique_ptr<ImageSpace> system_space = |
| ImageSpaceLoader::Load(image_location, |
| system_filename, |
| is_zygote, |
| is_global_cache, |
| /* validate_oat_file */ false, |
| &local_error_msg); |
| if (system_space != nullptr) { |
| return system_space; |
| } |
| error_msgs.push_back(local_error_msg); |
| } |
| |
| // Step 2.b: We require a relocated image. Then we must patch it. This step fails if this is a |
| // secondary image. |
| if (found_image && has_system && relocate) { |
| std::string local_error_msg; |
| if (!Runtime::Current()->IsImageDex2OatEnabled()) { |
| local_error_msg = "Patching disabled."; |
| } else if (secondary_image) { |
| local_error_msg = "Cannot patch a secondary image."; |
| } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { |
| bool patch_success = |
| RelocateImage(image_location, cache_filename.c_str(), image_isa, &local_error_msg); |
| if (patch_success) { |
| std::unique_ptr<ImageSpace> patched_space = |
| ImageSpaceLoader::Load(image_location, |
| cache_filename, |
| is_zygote, |
| is_global_cache, |
| /* validate_oat_file */ false, |
| &local_error_msg); |
| if (patched_space != nullptr) { |
| return patched_space; |
| } |
| } |
| } |
| error_msgs.push_back(StringPrintf("Cannot relocate image %s to %s: %s", |
| image_location, |
| cache_filename.c_str(), |
| local_error_msg.c_str())); |
| } |
| |
| // Step 3: We do not have an existing image in /system, so generate an image into the dalvik |
| // cache. This step fails if this is a secondary image. |
| if (!has_system) { |
| std::string local_error_msg; |
| if (!Runtime::Current()->IsImageDex2OatEnabled()) { |
| local_error_msg = "Image compilation disabled."; |
| } else if (secondary_image) { |
| local_error_msg = "Cannot compile a secondary image."; |
| } else if (ImageCreationAllowed(is_global_cache, image_isa, &local_error_msg)) { |
| bool compilation_success = GenerateImage(cache_filename, image_isa, &local_error_msg); |
| if (compilation_success) { |
| std::unique_ptr<ImageSpace> compiled_space = |
| ImageSpaceLoader::Load(image_location, |
| cache_filename, |
| is_zygote, |
| is_global_cache, |
| /* validate_oat_file */ false, |
| &local_error_msg); |
| if (compiled_space != nullptr) { |
| return compiled_space; |
| } |
| } |
| } |
| error_msgs.push_back(StringPrintf("Cannot compile image to %s: %s", |
| cache_filename.c_str(), |
| local_error_msg.c_str())); |
| } |
| |
| // We failed. Prune the cache the free up space, create a compound error message and return no |
| // image. |
| PruneDalvikCache(image_isa); |
| |
| std::ostringstream oss; |
| bool first = true; |
| for (const auto& msg : error_msgs) { |
| if (!first) { |
| oss << "\n "; |
| } |
| oss << msg; |
| } |
| *error_msg = oss.str(); |
| |
| return nullptr; |
| } |
| |
| bool ImageSpace::LoadBootImage(const std::string& image_file_name, |
| const InstructionSet image_instruction_set, |
| std::vector<space::ImageSpace*>* boot_image_spaces, |
| uint8_t** oat_file_end) { |
| DCHECK(boot_image_spaces != nullptr); |
| DCHECK(boot_image_spaces->empty()); |
| DCHECK(oat_file_end != nullptr); |
| DCHECK_NE(image_instruction_set, InstructionSet::kNone); |
| |
| if (image_file_name.empty()) { |
| return false; |
| } |
| |
| // For code reuse, handle this like a work queue. |
| std::vector<std::string> image_file_names; |
| image_file_names.push_back(image_file_name); |
| |
| bool error = false; |
| uint8_t* oat_file_end_tmp = *oat_file_end; |
| |
| for (size_t index = 0; index < image_file_names.size(); ++index) { |
| std::string& image_name = image_file_names[index]; |
| std::string error_msg; |
| std::unique_ptr<space::ImageSpace> boot_image_space_uptr = CreateBootImage( |
| image_name.c_str(), |
| image_instruction_set, |
| index > 0, |
| &error_msg); |
| if (boot_image_space_uptr != nullptr) { |
| space::ImageSpace* boot_image_space = boot_image_space_uptr.release(); |
| boot_image_spaces->push_back(boot_image_space); |
| // Oat files referenced by image files immediately follow them in memory, ensure alloc space |
| // isn't going to get in the middle |
| uint8_t* oat_file_end_addr = boot_image_space->GetImageHeader().GetOatFileEnd(); |
| CHECK_GT(oat_file_end_addr, boot_image_space->End()); |
| oat_file_end_tmp = AlignUp(oat_file_end_addr, kPageSize); |
| |
| if (index == 0) { |
| // If this was the first space, check whether there are more images to load. |
| const OatFile* boot_oat_file = boot_image_space->GetOatFile(); |
| if (boot_oat_file == nullptr) { |
| continue; |
| } |
| |
| const OatHeader& boot_oat_header = boot_oat_file->GetOatHeader(); |
| const char* boot_classpath = |
| boot_oat_header.GetStoreValueByKey(OatHeader::kBootClassPathKey); |
| if (boot_classpath == nullptr) { |
| continue; |
| } |
| |
| ExtractMultiImageLocations(image_file_name, boot_classpath, &image_file_names); |
| } |
| } else { |
| error = true; |
| LOG(ERROR) << "Could not create image space with image file '" << image_file_name << "'. " |
| << "Attempting to fall back to imageless running. Error was: " << error_msg |
| << "\nAttempted image: " << image_name; |
| break; |
| } |
| } |
| |
| if (error) { |
| // Remove already loaded spaces. |
| for (space::Space* loaded_space : *boot_image_spaces) { |
| delete loaded_space; |
| } |
| boot_image_spaces->clear(); |
| return false; |
| } |
| |
| *oat_file_end = oat_file_end_tmp; |
| return true; |
| } |
| |
| ImageSpace::~ImageSpace() { |
| Runtime* runtime = Runtime::Current(); |
| if (runtime == nullptr) { |
| return; |
| } |
| |
| if (GetImageHeader().IsAppImage()) { |
| // This image space did not modify resolution method then in Init. |
| return; |
| } |
| |
| if (!runtime->HasResolutionMethod()) { |
| // Another image space has already unloaded the below methods. |
| return; |
| } |
| |
| runtime->ClearInstructionSet(); |
| runtime->ClearResolutionMethod(); |
| runtime->ClearImtConflictMethod(); |
| runtime->ClearImtUnimplementedMethod(); |
| runtime->ClearCalleeSaveMethods(); |
| } |
| |
| std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image, |
| const OatFile* oat_file, |
| std::string* error_msg) { |
| return ImageSpaceLoader::Init(image, |
| image, |
| /*validate_oat_file*/false, |
| oat_file, |
| /*out*/error_msg); |
| } |
| |
| const OatFile* ImageSpace::GetOatFile() const { |
| return oat_file_non_owned_; |
| } |
| |
| std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() { |
| CHECK(oat_file_ != nullptr); |
| return std::move(oat_file_); |
| } |
| |
| void ImageSpace::Dump(std::ostream& os) const { |
| os << GetType() |
| << " begin=" << reinterpret_cast<void*>(Begin()) |
| << ",end=" << reinterpret_cast<void*>(End()) |
| << ",size=" << PrettySize(Size()) |
| << ",name=\"" << GetName() << "\"]"; |
| } |
| |
| std::string ImageSpace::GetMultiImageBootClassPath( |
| const std::vector<const char*>& dex_locations, |
| const std::vector<const char*>& oat_filenames, |
| const std::vector<const char*>& image_filenames) { |
| DCHECK_GT(oat_filenames.size(), 1u); |
| // If the image filename was adapted (e.g., for our tests), we need to change this here, |
| // too, but need to strip all path components (they will be re-established when loading). |
| std::ostringstream bootcp_oss; |
| bool first_bootcp = true; |
| for (size_t i = 0; i < dex_locations.size(); ++i) { |
| if (!first_bootcp) { |
| bootcp_oss << ":"; |
| } |
| |
| std::string dex_loc = dex_locations[i]; |
| std::string image_filename = image_filenames[i]; |
| |
| // Use the dex_loc path, but the image_filename name (without path elements). |
| size_t dex_last_slash = dex_loc.rfind('/'); |
| |
| // npos is max(size_t). That makes this a bit ugly. |
| size_t image_last_slash = image_filename.rfind('/'); |
| size_t image_last_at = image_filename.rfind('@'); |
| size_t image_last_sep = (image_last_slash == std::string::npos) |
| ? image_last_at |
| : (image_last_at == std::string::npos) |
| ? std::string::npos |
| : std::max(image_last_slash, image_last_at); |
| // Note: whenever image_last_sep == npos, +1 overflow means using the full string. |
| |
| if (dex_last_slash == std::string::npos) { |
| dex_loc = image_filename.substr(image_last_sep + 1); |
| } else { |
| dex_loc = dex_loc.substr(0, dex_last_slash + 1) + |
| image_filename.substr(image_last_sep + 1); |
| } |
| |
| // Image filenames already end with .art, no need to replace. |
| |
| bootcp_oss << dex_loc; |
| first_bootcp = false; |
| } |
| return bootcp_oss.str(); |
| } |
| |
| bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) { |
| for (const OatFile::OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) { |
| const std::string& dex_file_location = oat_dex_file->GetDexFileLocation(); |
| |
| // Skip multidex locations - These will be checked when we visit their |
| // corresponding primary non-multidex location. |
| if (DexFile::IsMultiDexLocation(dex_file_location.c_str())) { |
| continue; |
| } |
| |
| std::vector<uint32_t> checksums; |
| if (!DexFile::GetMultiDexChecksums(dex_file_location.c_str(), &checksums, error_msg)) { |
| *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' " |
| "referenced by oat file %s: %s", |
| dex_file_location.c_str(), |
| oat_file.GetLocation().c_str(), |
| error_msg->c_str()); |
| return false; |
| } |
| CHECK(!checksums.empty()); |
| if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) { |
| *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " |
| "'%s' and dex file '%s' (0x%x != 0x%x)", |
| oat_file.GetLocation().c_str(), |
| dex_file_location.c_str(), |
| oat_dex_file->GetDexFileLocationChecksum(), |
| checksums[0]); |
| return false; |
| } |
| |
| // Verify checksums for any related multidex entries. |
| for (size_t i = 1; i < checksums.size(); i++) { |
| std::string multi_dex_location = DexFile::GetMultiDexLocation(i, dex_file_location.c_str()); |
| const OatFile::OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(), |
| nullptr, |
| error_msg); |
| if (multi_dex == nullptr) { |
| *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'", |
| oat_file.GetLocation().c_str(), |
| multi_dex_location.c_str()); |
| return false; |
| } |
| |
| if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) { |
| *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file " |
| "'%s' and dex file '%s' (0x%x != 0x%x)", |
| oat_file.GetLocation().c_str(), |
| multi_dex_location.c_str(), |
| multi_dex->GetDexFileLocationChecksum(), |
| checksums[i]); |
| return false; |
| } |
| } |
| } |
| return true; |
| } |
| |
| void ImageSpace::ExtractMultiImageLocations(const std::string& input_image_file_name, |
| const std::string& boot_classpath, |
| std::vector<std::string>* image_file_names) { |
| DCHECK(image_file_names != nullptr); |
| |
| std::vector<std::string> images; |
| Split(boot_classpath, ':', &images); |
| |
| // Add the rest into the list. We have to adjust locations, possibly: |
| // |
| // For example, image_file_name is /a/b/c/d/e.art |
| // images[0] is f/c/d/e.art |
| // ---------------------------------------------- |
| // images[1] is g/h/i/j.art -> /a/b/h/i/j.art |
| const std::string& first_image = images[0]; |
| // Length of common suffix. |
| size_t common = 0; |
| while (common < input_image_file_name.size() && |
| common < first_image.size() && |
| *(input_image_file_name.end() - common - 1) == *(first_image.end() - common - 1)) { |
| ++common; |
| } |
| // We want to replace the prefix of the input image with the prefix of the boot class path. |
| // This handles the case where the image file contains @ separators. |
| // Example image_file_name is oats/system@framework@boot.art |
| // images[0] is .../arm/boot.art |
| // means that the image name prefix will be oats/system@framework@ |
| // so that the other images are openable. |
| const size_t old_prefix_length = first_image.size() - common; |
| const std::string new_prefix = input_image_file_name.substr( |
| 0, |
| input_image_file_name.size() - common); |
| |
| // Apply pattern to images[1] .. images[n]. |
| for (size_t i = 1; i < images.size(); ++i) { |
| const std::string& image = images[i]; |
| CHECK_GT(image.length(), old_prefix_length); |
| std::string suffix = image.substr(old_prefix_length); |
| image_file_names->push_back(new_prefix + suffix); |
| } |
| } |
| |
| void ImageSpace::DumpSections(std::ostream& os) const { |
| const uint8_t* base = Begin(); |
| const ImageHeader& header = GetImageHeader(); |
| for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) { |
| auto section_type = static_cast<ImageHeader::ImageSections>(i); |
| const ImageSection& section = header.GetImageSection(section_type); |
| os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset()) |
| << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n"; |
| } |
| } |
| |
| } // namespace space |
| } // namespace gc |
| } // namespace art |