blob: fe6069c2420031400be680842431f1adeb3cfa99 [file] [log] [blame]
/*
* Copyright (C) 2015 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator_mips.h"
#include "arch/mips/entrypoints_direct_mips.h"
#include "arch/mips/instruction_set_features_mips.h"
#include "art_method.h"
#include "code_generator_utils.h"
#include "compiled_method.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "entrypoints/quick/quick_entrypoints_enum.h"
#include "gc/accounting/card_table.h"
#include "intrinsics.h"
#include "intrinsics_mips.h"
#include "mirror/array-inl.h"
#include "mirror/class-inl.h"
#include "offsets.h"
#include "thread.h"
#include "utils/assembler.h"
#include "utils/mips/assembler_mips.h"
#include "utils/stack_checks.h"
namespace art {
namespace mips {
static constexpr int kCurrentMethodStackOffset = 0;
static constexpr Register kMethodRegisterArgument = A0;
// We'll maximize the range of a single load instruction for dex cache array accesses
// by aligning offset -32768 with the offset of the first used element.
static constexpr uint32_t kDexCacheArrayLwOffset = 0x8000;
Location MipsReturnLocation(Primitive::Type return_type) {
switch (return_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot:
return Location::RegisterLocation(V0);
case Primitive::kPrimLong:
return Location::RegisterPairLocation(V0, V1);
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
return Location::FpuRegisterLocation(F0);
case Primitive::kPrimVoid:
return Location();
}
UNREACHABLE();
}
Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(Primitive::Type type) const {
return MipsReturnLocation(type);
}
Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const {
return Location::RegisterLocation(kMethodRegisterArgument);
}
Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(Primitive::Type type) {
Location next_location;
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
uint32_t gp_index = gp_index_++;
if (gp_index < calling_convention.GetNumberOfRegisters()) {
next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Location::StackSlot(stack_offset);
}
break;
}
case Primitive::kPrimLong: {
uint32_t gp_index = gp_index_;
gp_index_ += 2;
if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) {
if (calling_convention.GetRegisterAt(gp_index) == A1) {
gp_index_++; // Skip A1, and use A2_A3 instead.
gp_index++;
}
Register low_even = calling_convention.GetRegisterAt(gp_index);
Register high_odd = calling_convention.GetRegisterAt(gp_index + 1);
DCHECK_EQ(low_even + 1, high_odd);
next_location = Location::RegisterPairLocation(low_even, high_odd);
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Location::DoubleStackSlot(stack_offset);
}
break;
}
// Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double
// will take up the even/odd pair, while floats are stored in even regs only.
// On 64 bit FPU, both double and float are stored in even registers only.
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
uint32_t float_index = float_index_++;
if (float_index < calling_convention.GetNumberOfFpuRegisters()) {
next_location = Location::FpuRegisterLocation(
calling_convention.GetFpuRegisterAt(float_index));
} else {
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
: Location::StackSlot(stack_offset);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unexpected parameter type " << type;
break;
}
// Space on the stack is reserved for all arguments.
stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
return next_location;
}
Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type type) {
return MipsReturnLocation(type);
}
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(0),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimInt,
locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimInt);
QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
? kQuickThrowStringBounds
: kQuickThrowArrayBounds;
mips_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS);
};
class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
mips_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS);
};
class LoadClassSlowPathMIPS : public SlowPathCodeMIPS {
public:
LoadClassSlowPathMIPS(HLoadClass* cls,
HInstruction* at,
uint32_t dex_pc,
bool do_clinit)
: SlowPathCodeMIPS(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = at_->GetLocations();
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
__ LoadConst32(calling_convention.GetRegisterAt(0), cls_->GetTypeIndex());
QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
: kQuickInitializeType;
mips_codegen->InvokeRuntime(entrypoint, at_, dex_pc_, this);
if (do_clinit_) {
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
} else {
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
}
// Move the class to the desired location.
Location out = locations->Out();
if (out.IsValid()) {
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
Primitive::Type type = at_->GetType();
mips_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; }
private:
// The class this slow path will load.
HLoadClass* const cls_;
// The instruction where this slow path is happening.
// (Might be the load class or an initialization check).
HInstruction* const at_;
// The dex PC of `at_`.
const uint32_t dex_pc_;
// Whether to initialize the class.
const bool do_clinit_;
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS);
};
class LoadStringSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit LoadStringSlowPathMIPS(HLoadString* instruction) : SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
InvokeRuntimeCallingConvention calling_convention;
const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
__ LoadConst32(calling_convention.GetRegisterAt(0), string_index);
mips_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
Primitive::Type type = instruction_->GetType();
mips_codegen->MoveLocation(locations->Out(),
calling_convention.GetReturnLocation(type),
type);
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS);
};
class NullCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
if (instruction_->CanThrowIntoCatchBlock()) {
// Live registers will be restored in the catch block if caught.
SaveLiveRegisters(codegen, instruction_->GetLocations());
}
mips_codegen->InvokeRuntime(kQuickThrowNullPointer,
instruction_,
instruction_->GetDexPc(),
this);
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
}
bool IsFatal() const OVERRIDE { return true; }
const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS);
};
class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor)
: SlowPathCodeMIPS(instruction), successor_(successor) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
mips_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
if (successor_ == nullptr) {
__ B(GetReturnLabel());
} else {
__ B(mips_codegen->GetLabelOf(successor_));
}
}
MipsLabel* GetReturnLabel() {
DCHECK(successor_ == nullptr);
return &return_label_;
}
const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; }
private:
// If not null, the block to branch to after the suspend check.
HBasicBlock* const successor_;
// If `successor_` is null, the label to branch to after the suspend check.
MipsLabel return_label_;
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS);
};
class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit TypeCheckSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
LocationSummary* locations = instruction_->GetLocations();
Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0) : locations->Out();
uint32_t dex_pc = instruction_->GetDexPc();
DCHECK(instruction_->IsCheckCast()
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, locations);
// We're moving two locations to locations that could overlap, so we need a parallel
// move resolver.
InvokeRuntimeCallingConvention calling_convention;
codegen->EmitParallelMoves(locations->InAt(1),
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Primitive::kPrimNot,
object_class,
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
Primitive::kPrimNot);
if (instruction_->IsInstanceOf()) {
mips_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
CheckEntrypointTypes<
kQuickInstanceofNonTrivial, size_t, const mirror::Class*, const mirror::Class*>();
Primitive::Type ret_type = instruction_->GetType();
Location ret_loc = calling_convention.GetReturnLocation(ret_type);
mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
} else {
DCHECK(instruction_->IsCheckCast());
mips_codegen->InvokeRuntime(kQuickCheckCast, instruction_, dex_pc, this);
CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
}
RestoreLiveRegisters(codegen, locations);
__ B(GetExitLabel());
}
const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS);
};
class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS {
public:
explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction)
: SlowPathCodeMIPS(instruction) {}
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
__ Bind(GetEntryLabel());
SaveLiveRegisters(codegen, instruction_->GetLocations());
mips_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
CheckEntrypointTypes<kQuickDeoptimize, void, void>();
}
const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; }
private:
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS);
};
CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph,
const MipsInstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats)
: CodeGenerator(graph,
kNumberOfCoreRegisters,
kNumberOfFRegisters,
kNumberOfRegisterPairs,
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
arraysize(kCoreCalleeSaves)),
ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
arraysize(kFpuCalleeSaves)),
compiler_options,
stats),
block_labels_(nullptr),
location_builder_(graph, this),
instruction_visitor_(graph, this),
move_resolver_(graph->GetArena(), this),
assembler_(graph->GetArena(), &isa_features),
isa_features_(isa_features),
uint32_literals_(std::less<uint32_t>(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
method_patches_(MethodReferenceComparator(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
call_patches_(MethodReferenceComparator(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
boot_image_string_patches_(StringReferenceValueComparator(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
boot_image_type_patches_(TypeReferenceValueComparator(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
boot_image_address_patches_(std::less<uint32_t>(),
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
clobbered_ra_(false) {
// Save RA (containing the return address) to mimic Quick.
AddAllocatedRegister(Location::RegisterLocation(RA));
}
#undef __
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
#define __ down_cast<MipsAssembler*>(GetAssembler())-> // NOLINT
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) {
// Ensure that we fix up branches.
__ FinalizeCode();
// Adjust native pc offsets in stack maps.
for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
uint32_t old_position = stack_map_stream_.GetStackMap(i).native_pc_offset;
uint32_t new_position = __ GetAdjustedPosition(old_position);
DCHECK_GE(new_position, old_position);
stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
}
// Adjust pc offsets for the disassembly information.
if (disasm_info_ != nullptr) {
GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
for (auto& it : *disasm_info_->GetInstructionIntervals()) {
it.second.start = __ GetAdjustedPosition(it.second.start);
it.second.end = __ GetAdjustedPosition(it.second.end);
}
for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
}
}
CodeGenerator::Finalize(allocator);
}
MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const {
return codegen_->GetAssembler();
}
void ParallelMoveResolverMIPS::EmitMove(size_t index) {
DCHECK_LT(index, moves_.size());
MoveOperands* move = moves_[index];
codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
}
void ParallelMoveResolverMIPS::EmitSwap(size_t index) {
DCHECK_LT(index, moves_.size());
MoveOperands* move = moves_[index];
Primitive::Type type = move->GetType();
Location loc1 = move->GetDestination();
Location loc2 = move->GetSource();
DCHECK(!loc1.IsConstant());
DCHECK(!loc2.IsConstant());
if (loc1.Equals(loc2)) {
return;
}
if (loc1.IsRegister() && loc2.IsRegister()) {
// Swap 2 GPRs.
Register r1 = loc1.AsRegister<Register>();
Register r2 = loc2.AsRegister<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
} else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) {
FRegister f1 = loc1.AsFpuRegister<FRegister>();
FRegister f2 = loc2.AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ MovS(FTMP, f2);
__ MovS(f2, f1);
__ MovS(f1, FTMP);
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
__ MovD(FTMP, f2);
__ MovD(f2, f1);
__ MovD(f1, FTMP);
}
} else if ((loc1.IsRegister() && loc2.IsFpuRegister()) ||
(loc1.IsFpuRegister() && loc2.IsRegister())) {
// Swap FPR and GPR.
DCHECK_EQ(type, Primitive::kPrimFloat); // Can only swap a float.
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
: loc2.AsFpuRegister<FRegister>();
Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>()
: loc2.AsRegister<Register>();
__ Move(TMP, r2);
__ Mfc1(r2, f1);
__ Mtc1(TMP, f1);
} else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) {
// Swap 2 GPR register pairs.
Register r1 = loc1.AsRegisterPairLow<Register>();
Register r2 = loc2.AsRegisterPairLow<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
r1 = loc1.AsRegisterPairHigh<Register>();
r2 = loc2.AsRegisterPairHigh<Register>();
__ Move(TMP, r2);
__ Move(r2, r1);
__ Move(r1, TMP);
} else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) ||
(loc1.IsFpuRegister() && loc2.IsRegisterPair())) {
// Swap FPR and GPR register pair.
DCHECK_EQ(type, Primitive::kPrimDouble);
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
: loc2.AsFpuRegister<FRegister>();
Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
: loc2.AsRegisterPairLow<Register>();
Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
: loc2.AsRegisterPairHigh<Register>();
// Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and
// then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR
// unpredictable and the following mfch1 will fail.
__ Mfc1(TMP, f1);
__ MoveFromFpuHigh(AT, f1);
__ Mtc1(r2_l, f1);
__ MoveToFpuHigh(r2_h, f1);
__ Move(r2_l, TMP);
__ Move(r2_h, AT);
} else if (loc1.IsStackSlot() && loc2.IsStackSlot()) {
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false);
} else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) {
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true);
} else if ((loc1.IsRegister() && loc2.IsStackSlot()) ||
(loc1.IsStackSlot() && loc2.IsRegister())) {
Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>()
: loc2.AsRegister<Register>();
intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex()
: loc2.GetStackIndex();
__ Move(TMP, reg);
__ LoadFromOffset(kLoadWord, reg, SP, offset);
__ StoreToOffset(kStoreWord, TMP, SP, offset);
} else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) ||
(loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) {
Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
: loc2.AsRegisterPairLow<Register>();
Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
: loc2.AsRegisterPairHigh<Register>();
intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex()
: loc2.GetStackIndex();
intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize)
: loc2.GetHighStackIndex(kMipsWordSize);
__ Move(TMP, reg_l);
__ LoadFromOffset(kLoadWord, reg_l, SP, offset_l);
__ StoreToOffset(kStoreWord, TMP, SP, offset_l);
__ Move(TMP, reg_h);
__ LoadFromOffset(kLoadWord, reg_h, SP, offset_h);
__ StoreToOffset(kStoreWord, TMP, SP, offset_h);
} else {
LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported";
}
}
void ParallelMoveResolverMIPS::RestoreScratch(int reg) {
__ Pop(static_cast<Register>(reg));
}
void ParallelMoveResolverMIPS::SpillScratch(int reg) {
__ Push(static_cast<Register>(reg));
}
void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) {
// Allocate a scratch register other than TMP, if available.
// Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be
// automatically unspilled when the scratch scope object is destroyed).
ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters());
// If V0 spills onto the stack, SP-relative offsets need to be adjusted.
int stack_offset = ensure_scratch.IsSpilled() ? kMipsWordSize : 0;
for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) {
__ LoadFromOffset(kLoadWord,
Register(ensure_scratch.GetRegister()),
SP,
index1 + stack_offset);
__ LoadFromOffset(kLoadWord,
TMP,
SP,
index2 + stack_offset);
__ StoreToOffset(kStoreWord,
Register(ensure_scratch.GetRegister()),
SP,
index2 + stack_offset);
__ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset);
}
}
void CodeGeneratorMIPS::ComputeSpillMask() {
core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
// If there're FPU callee-saved registers and there's an odd number of GPR callee-saved
// registers, include the ZERO register to force alignment of FPU callee-saved registers
// within the stack frame.
if ((fpu_spill_mask_ != 0) && (POPCOUNT(core_spill_mask_) % 2 != 0)) {
core_spill_mask_ |= (1 << ZERO);
}
// If RA is clobbered by PC-relative operations on R2 and it's the only spilled register
// (this can happen in leaf methods), artificially spill the ZERO register in order to
// force explicit saving and restoring of RA. RA isn't saved/restored when it's the only
// spilled register.
// TODO: Can this be improved? It causes creation of a stack frame (while RA might be
// saved in an unused temporary register) and saving of RA and the current method pointer
// in the frame.
if (clobbered_ra_ && core_spill_mask_ == (1u << RA) && fpu_spill_mask_ == 0) {
core_spill_mask_ |= (1 << ZERO);
}
}
static dwarf::Reg DWARFReg(Register reg) {
return dwarf::Reg::MipsCore(static_cast<int>(reg));
}
// TODO: mapping of floating-point registers to DWARF.
void CodeGeneratorMIPS::GenerateFrameEntry() {
__ Bind(&frame_entry_label_);
bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kMips) || !IsLeafMethod();
if (do_overflow_check) {
__ LoadFromOffset(kLoadWord,
ZERO,
SP,
-static_cast<int32_t>(GetStackOverflowReservedBytes(kMips)));
RecordPcInfo(nullptr, 0);
}
if (HasEmptyFrame()) {
return;
}
// Make sure the frame size isn't unreasonably large.
if (GetFrameSize() > GetStackOverflowReservedBytes(kMips)) {
LOG(FATAL) << "Stack frame larger than " << GetStackOverflowReservedBytes(kMips) << " bytes";
}
// Spill callee-saved registers.
uint32_t ofs = GetFrameSize();
__ IncreaseFrameSize(ofs);
for (uint32_t mask = core_spill_mask_; mask != 0; ) {
Register reg = static_cast<Register>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsWordSize;
// The ZERO register is only included for alignment.
if (reg != ZERO) {
__ StoreToOffset(kStoreWord, reg, SP, ofs);
__ cfi().RelOffset(DWARFReg(reg), ofs);
}
}
for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsDoublewordSize;
__ StoreDToOffset(reg, SP, ofs);
// TODO: __ cfi().RelOffset(DWARFReg(reg), ofs);
}
// Store the current method pointer.
__ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, kCurrentMethodStackOffset);
}
void CodeGeneratorMIPS::GenerateFrameExit() {
__ cfi().RememberState();
if (!HasEmptyFrame()) {
// Restore callee-saved registers.
// For better instruction scheduling restore RA before other registers.
uint32_t ofs = GetFrameSize();
for (uint32_t mask = core_spill_mask_; mask != 0; ) {
Register reg = static_cast<Register>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsWordSize;
// The ZERO register is only included for alignment.
if (reg != ZERO) {
__ LoadFromOffset(kLoadWord, reg, SP, ofs);
__ cfi().Restore(DWARFReg(reg));
}
}
for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
mask ^= 1u << reg;
ofs -= kMipsDoublewordSize;
__ LoadDFromOffset(reg, SP, ofs);
// TODO: __ cfi().Restore(DWARFReg(reg));
}
size_t frame_size = GetFrameSize();
// Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
bool reordering = __ SetReorder(false);
if (exchange) {
__ Jr(RA);
__ DecreaseFrameSize(frame_size); // Single instruction in delay slot.
} else {
__ DecreaseFrameSize(frame_size);
__ Jr(RA);
__ Nop(); // In delay slot.
}
__ SetReorder(reordering);
} else {
__ Jr(RA);
__ NopIfNoReordering();
}
__ cfi().RestoreState();
__ cfi().DefCFAOffset(GetFrameSize());
}
void CodeGeneratorMIPS::Bind(HBasicBlock* block) {
__ Bind(GetLabelOf(block));
}
void CodeGeneratorMIPS::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
if (src.Equals(dst)) {
return;
}
if (src.IsConstant()) {
MoveConstant(dst, src.GetConstant());
} else {
if (Primitive::Is64BitType(dst_type)) {
Move64(dst, src);
} else {
Move32(dst, src);
}
}
}
void CodeGeneratorMIPS::Move32(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegister()) {
if (source.IsRegister()) {
__ Move(destination.AsRegister<Register>(), source.AsRegister<Register>());
} else if (source.IsFpuRegister()) {
__ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegister()) {
__ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>());
} else if (source.IsFpuRegister()) {
__ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
}
} else {
DCHECK(destination.IsStackSlot()) << destination;
if (source.IsRegister()) {
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, destination.GetStackIndex());
} else if (source.IsFpuRegister()) {
__ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
} else {
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, TMP, SP, destination.GetStackIndex());
}
}
}
void CodeGeneratorMIPS::Move64(Location destination, Location source) {
if (source.Equals(destination)) {
return;
}
if (destination.IsRegisterPair()) {
if (source.IsRegisterPair()) {
__ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
__ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
} else if (source.IsFpuRegister()) {
Register dst_high = destination.AsRegisterPairHigh<Register>();
Register dst_low = destination.AsRegisterPairLow<Register>();
FRegister src = source.AsFpuRegister<FRegister>();
__ Mfc1(dst_low, src);
__ MoveFromFpuHigh(dst_high, src);
} else {
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
int32_t off = source.GetStackIndex();
Register r = destination.AsRegisterPairLow<Register>();
__ LoadFromOffset(kLoadDoubleword, r, SP, off);
}
} else if (destination.IsFpuRegister()) {
if (source.IsRegisterPair()) {
FRegister dst = destination.AsFpuRegister<FRegister>();
Register src_high = source.AsRegisterPairHigh<Register>();
Register src_low = source.AsRegisterPairLow<Register>();
__ Mtc1(src_low, dst);
__ MoveToFpuHigh(src_high, dst);
} else if (source.IsFpuRegister()) {
__ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
} else {
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
}
} else {
DCHECK(destination.IsDoubleStackSlot()) << destination;
int32_t off = destination.GetStackIndex();
if (source.IsRegisterPair()) {
__ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, off);
} else if (source.IsFpuRegister()) {
__ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, off);
} else {
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
__ StoreToOffset(kStoreWord, TMP, SP, off);
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4);
__ StoreToOffset(kStoreWord, TMP, SP, off + 4);
}
}
}
void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) {
if (c->IsIntConstant() || c->IsNullConstant()) {
// Move 32 bit constant.
int32_t value = GetInt32ValueOf(c);
if (destination.IsRegister()) {
Register dst = destination.AsRegister<Register>();
__ LoadConst32(dst, value);
} else {
DCHECK(destination.IsStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
} else if (c->IsLongConstant()) {
// Move 64 bit constant.
int64_t value = GetInt64ValueOf(c);
if (destination.IsRegisterPair()) {
Register r_h = destination.AsRegisterPairHigh<Register>();
Register r_l = destination.AsRegisterPairLow<Register>();
__ LoadConst64(r_h, r_l, value);
} else {
DCHECK(destination.IsDoubleStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
} else if (c->IsFloatConstant()) {
// Move 32 bit float constant.
int32_t value = GetInt32ValueOf(c);
if (destination.IsFpuRegister()) {
__ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP);
} else {
DCHECK(destination.IsStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst32ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
} else {
// Move 64 bit double constant.
DCHECK(c->IsDoubleConstant()) << c->DebugName();
int64_t value = GetInt64ValueOf(c);
if (destination.IsFpuRegister()) {
FRegister fd = destination.AsFpuRegister<FRegister>();
__ LoadDConst64(fd, value, TMP);
} else {
DCHECK(destination.IsDoubleStackSlot())
<< "Cannot move " << c->DebugName() << " to " << destination;
__ StoreConst64ToOffset(value, SP, destination.GetStackIndex(), TMP);
}
}
}
void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) {
DCHECK(destination.IsRegister());
Register dst = destination.AsRegister<Register>();
__ LoadConst32(dst, value);
}
void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) {
if (location.IsRegister()) {
locations->AddTemp(location);
} else if (location.IsRegisterPair()) {
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
} else {
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
}
}
void CodeGeneratorMIPS::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
DCHECK(linker_patches->empty());
size_t size =
method_patches_.size() +
call_patches_.size() +
pc_relative_dex_cache_patches_.size() +
pc_relative_string_patches_.size() +
pc_relative_type_patches_.size() +
boot_image_string_patches_.size() +
boot_image_type_patches_.size() +
boot_image_address_patches_.size();
linker_patches->reserve(size);
for (const auto& entry : method_patches_) {
const MethodReference& target_method = entry.first;
Literal* literal = entry.second;
DCHECK(literal->GetLabel()->IsBound());
uint32_t literal_offset = __ GetLabelLocation(literal->GetLabel());
linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
target_method.dex_file,
target_method.dex_method_index));
}
for (const auto& entry : call_patches_) {
const MethodReference& target_method = entry.first;
Literal* literal = entry.second;
DCHECK(literal->GetLabel()->IsBound());
uint32_t literal_offset = __ GetLabelLocation(literal->GetLabel());
linker_patches->push_back(LinkerPatch::CodePatch(literal_offset,
target_method.dex_file,
target_method.dex_method_index));
}
for (const PcRelativePatchInfo& info : pc_relative_dex_cache_patches_) {
const DexFile& dex_file = info.target_dex_file;
size_t base_element_offset = info.offset_or_index;
DCHECK(info.high_label.IsBound());
uint32_t high_offset = __ GetLabelLocation(&info.high_label);
DCHECK(info.pc_rel_label.IsBound());
uint32_t pc_rel_offset = __ GetLabelLocation(&info.pc_rel_label);
linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(high_offset,
&dex_file,
pc_rel_offset,
base_element_offset));
}
for (const PcRelativePatchInfo& info : pc_relative_string_patches_) {
const DexFile& dex_file = info.target_dex_file;
size_t string_index = info.offset_or_index;
DCHECK(info.high_label.IsBound());
uint32_t high_offset = __ GetLabelLocation(&info.high_label);
// On R2 we use HMipsComputeBaseMethodAddress and patch relative to
// the assembler's base label used for PC-relative literals.
uint32_t pc_rel_offset = info.pc_rel_label.IsBound()
? __ GetLabelLocation(&info.pc_rel_label)
: __ GetPcRelBaseLabelLocation();
linker_patches->push_back(LinkerPatch::RelativeStringPatch(high_offset,
&dex_file,
pc_rel_offset,
string_index));
}
for (const PcRelativePatchInfo& info : pc_relative_type_patches_) {
const DexFile& dex_file = info.target_dex_file;
size_t type_index = info.offset_or_index;
DCHECK(info.high_label.IsBound());
uint32_t high_offset = __ GetLabelLocation(&info.high_label);
// On R2 we use HMipsComputeBaseMethodAddress and patch relative to
// the assembler's base label used for PC-relative literals.
uint32_t pc_rel_offset = info.pc_rel_label.IsBound()
? __ GetLabelLocation(&info.pc_rel_label)
: __ GetPcRelBaseLabelLocation();
linker_patches->push_back(LinkerPatch::RelativeTypePatch(high_offset,
&dex_file,
pc_rel_offset,
type_index));
}
for (const auto& entry : boot_image_string_patches_) {
const StringReference& target_string = entry.first;
Literal* literal = entry.second;
DCHECK(literal->GetLabel()->IsBound());
uint32_t literal_offset = __ GetLabelLocation(literal->GetLabel());
linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
target_string.dex_file,
target_string.string_index));
}
for (const auto& entry : boot_image_type_patches_) {
const TypeReference& target_type = entry.first;
Literal* literal = entry.second;
DCHECK(literal->GetLabel()->IsBound());
uint32_t literal_offset = __ GetLabelLocation(literal->GetLabel());
linker_patches->push_back(LinkerPatch::TypePatch(literal_offset,
target_type.dex_file,
target_type.type_index));
}
for (const auto& entry : boot_image_address_patches_) {
DCHECK(GetCompilerOptions().GetIncludePatchInformation());
Literal* literal = entry.second;
DCHECK(literal->GetLabel()->IsBound());
uint32_t literal_offset = __ GetLabelLocation(literal->GetLabel());
linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
}
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeStringPatch(
const DexFile& dex_file, uint32_t string_index) {
return NewPcRelativePatch(dex_file, string_index, &pc_relative_string_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeTypePatch(
const DexFile& dex_file, uint32_t type_index) {
return NewPcRelativePatch(dex_file, type_index, &pc_relative_type_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeDexCacheArrayPatch(
const DexFile& dex_file, uint32_t element_offset) {
return NewPcRelativePatch(dex_file, element_offset, &pc_relative_dex_cache_patches_);
}
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativePatch(
const DexFile& dex_file, uint32_t offset_or_index, ArenaDeque<PcRelativePatchInfo>* patches) {
patches->emplace_back(dex_file, offset_or_index);
return &patches->back();
}
Literal* CodeGeneratorMIPS::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
return map->GetOrCreate(
value,
[this, value]() { return __ NewLiteral<uint32_t>(value); });
}
Literal* CodeGeneratorMIPS::DeduplicateMethodLiteral(MethodReference target_method,
MethodToLiteralMap* map) {
return map->GetOrCreate(
target_method,
[this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
}
Literal* CodeGeneratorMIPS::DeduplicateMethodAddressLiteral(MethodReference target_method) {
return DeduplicateMethodLiteral(target_method, &method_patches_);
}
Literal* CodeGeneratorMIPS::DeduplicateMethodCodeLiteral(MethodReference target_method) {
return DeduplicateMethodLiteral(target_method, &call_patches_);
}
Literal* CodeGeneratorMIPS::DeduplicateBootImageStringLiteral(const DexFile& dex_file,
uint32_t string_index) {
return boot_image_string_patches_.GetOrCreate(
StringReference(&dex_file, string_index),
[this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
}
Literal* CodeGeneratorMIPS::DeduplicateBootImageTypeLiteral(const DexFile& dex_file,
uint32_t type_index) {
return boot_image_type_patches_.GetOrCreate(
TypeReference(&dex_file, type_index),
[this]() { return __ NewLiteral<uint32_t>(/* placeholder */ 0u); });
}
Literal* CodeGeneratorMIPS::DeduplicateBootImageAddressLiteral(uint32_t address) {
bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
}
void CodeGeneratorMIPS::MarkGCCard(Register object, Register value) {
MipsLabel done;
Register card = AT;
Register temp = TMP;
__ Beqz(value, &done);
__ LoadFromOffset(kLoadWord,
card,
TR,
Thread::CardTableOffset<kMipsPointerSize>().Int32Value());
__ Srl(temp, object, gc::accounting::CardTable::kCardShift);
__ Addu(temp, card, temp);
__ Sb(card, temp, 0);
__ Bind(&done);
}
void CodeGeneratorMIPS::SetupBlockedRegisters() const {
// Don't allocate the dalvik style register pair passing.
blocked_register_pairs_[A1_A2] = true;
// ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated.
blocked_core_registers_[ZERO] = true;
blocked_core_registers_[K0] = true;
blocked_core_registers_[K1] = true;
blocked_core_registers_[GP] = true;
blocked_core_registers_[SP] = true;
blocked_core_registers_[RA] = true;
// AT and TMP(T8) are used as temporary/scratch registers
// (similar to how AT is used by MIPS assemblers).
blocked_core_registers_[AT] = true;
blocked_core_registers_[TMP] = true;
blocked_fpu_registers_[FTMP] = true;
// Reserve suspend and thread registers.
blocked_core_registers_[S0] = true;
blocked_core_registers_[TR] = true;
// Reserve T9 for function calls
blocked_core_registers_[T9] = true;
// Reserve odd-numbered FPU registers.
for (size_t i = 1; i < kNumberOfFRegisters; i += 2) {
blocked_fpu_registers_[i] = true;
}
if (GetGraph()->IsDebuggable()) {
// Stubs do not save callee-save floating point registers. If the graph
// is debuggable, we need to deal with these registers differently. For
// now, just block them.
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
}
}
UpdateBlockedPairRegisters();
}
void CodeGeneratorMIPS::UpdateBlockedPairRegisters() const {
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
MipsManagedRegister current =
MipsManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
if (blocked_core_registers_[current.AsRegisterPairLow()]
|| blocked_core_registers_[current.AsRegisterPairHigh()]) {
blocked_register_pairs_[i] = true;
}
}
}
size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
__ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index);
return kMipsWordSize;
}
size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
__ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index);
return kMipsWordSize;
}
size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ StoreDToOffset(FRegister(reg_id), SP, stack_index);
return kMipsDoublewordSize;
}
size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
__ LoadDFromOffset(FRegister(reg_id), SP, stack_index);
return kMipsDoublewordSize;
}
void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const {
stream << Register(reg);
}
void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
stream << FRegister(reg);
}
constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16;
void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
ValidateInvokeRuntime(instruction, slow_path);
bool reordering = __ SetReorder(false);
__ LoadFromOffset(kLoadWord, T9, TR, GetThreadOffset<kMipsPointerSize>(entrypoint).Int32Value());
__ Jalr(T9);
if (IsDirectEntrypoint(entrypoint)) {
// Reserve argument space on stack (for $a0-$a3) for
// entrypoints that directly reference native implementations.
// Called function may use this space to store $a0-$a3 regs.
__ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); // Single instruction in delay slot.
__ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
} else {
__ Nop(); // In delay slot.
}
__ SetReorder(reordering);
if (EntrypointRequiresStackMap(entrypoint)) {
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path,
Register class_reg) {
__ LoadFromOffset(kLoadWord, TMP, class_reg, mirror::Class::StatusOffset().Int32Value());
__ LoadConst32(AT, mirror::Class::kStatusInitialized);
__ Blt(TMP, AT, slow_path->GetEntryLabel());
// Even if the initialized flag is set, we need to ensure consistent memory ordering.
__ Sync(0);
__ Bind(slow_path->GetExitLabel());
}
void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) {
__ Sync(0); // Only stype 0 is supported.
}
void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction,
HBasicBlock* successor) {
SuspendCheckSlowPathMIPS* slow_path =
new (GetGraph()->GetArena()) SuspendCheckSlowPathMIPS(instruction, successor);
codegen_->AddSlowPath(slow_path);
__ LoadFromOffset(kLoadUnsignedHalfword,
TMP,
TR,
Thread::ThreadFlagsOffset<kMipsPointerSize>().Int32Value());
if (successor == nullptr) {
__ Bnez(TMP, slow_path->GetEntryLabel());
__ Bind(slow_path->GetReturnLabel());
} else {
__ Beqz(TMP, codegen_->GetLabelOf(successor));
__ B(slow_path->GetEntryLabel());
// slow_path will return to GetLabelOf(successor).
}
}
InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph,
CodeGeneratorMIPS* codegen)
: InstructionCodeGenerator(graph, codegen),
assembler_(codegen->GetAssembler()),
codegen_(codegen) {}
void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
DCHECK_EQ(instruction->InputCount(), 2U);
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
Primitive::Type type = instruction->GetResultType();
switch (type) {
case Primitive::kPrimInt: {
locations->SetInAt(0, Location::RequiresRegister());
HInstruction* right = instruction->InputAt(1);
bool can_use_imm = false;
if (right->IsConstant()) {
int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant());
if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
can_use_imm = IsUint<16>(imm);
} else if (instruction->IsAdd()) {
can_use_imm = IsInt<16>(imm);
} else {
DCHECK(instruction->IsSub());
can_use_imm = IsInt<16>(-imm);
}
}
if (can_use_imm)
locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
else
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimLong: {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
DCHECK(instruction->IsAdd() || instruction->IsSub());
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
}
}
void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int32_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
if (instruction->IsAnd()) {
if (use_imm)
__ Andi(dst, lhs, rhs_imm);
else
__ And(dst, lhs, rhs_reg);
} else if (instruction->IsOr()) {
if (use_imm)
__ Ori(dst, lhs, rhs_imm);
else
__ Or(dst, lhs, rhs_reg);
} else if (instruction->IsXor()) {
if (use_imm)
__ Xori(dst, lhs, rhs_imm);
else
__ Xor(dst, lhs, rhs_reg);
} else if (instruction->IsAdd()) {
if (use_imm)
__ Addiu(dst, lhs, rhs_imm);
else
__ Addu(dst, lhs, rhs_reg);
} else {
DCHECK(instruction->IsSub());
if (use_imm)
__ Addiu(dst, lhs, -rhs_imm);
else
__ Subu(dst, lhs, rhs_reg);
}
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Location rhs_location = locations->InAt(1);
bool use_imm = rhs_location.IsConstant();
if (!use_imm) {
Register rhs_high = rhs_location.AsRegisterPairHigh<Register>();
Register rhs_low = rhs_location.AsRegisterPairLow<Register>();
if (instruction->IsAnd()) {
__ And(dst_low, lhs_low, rhs_low);
__ And(dst_high, lhs_high, rhs_high);
} else if (instruction->IsOr()) {
__ Or(dst_low, lhs_low, rhs_low);
__ Or(dst_high, lhs_high, rhs_high);
} else if (instruction->IsXor()) {
__ Xor(dst_low, lhs_low, rhs_low);
__ Xor(dst_high, lhs_high, rhs_high);
} else if (instruction->IsAdd()) {
if (lhs_low == rhs_low) {
// Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs.
__ Slt(TMP, lhs_low, ZERO);
__ Addu(dst_low, lhs_low, rhs_low);
} else {
__ Addu(dst_low, lhs_low, rhs_low);
// If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged.
__ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low);
}
__ Addu(dst_high, lhs_high, rhs_high);
__ Addu(dst_high, dst_high, TMP);
} else {
DCHECK(instruction->IsSub());
__ Sltu(TMP, lhs_low, rhs_low);
__ Subu(dst_low, lhs_low, rhs_low);
__ Subu(dst_high, lhs_high, rhs_high);
__ Subu(dst_high, dst_high, TMP);
}
} else {
int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant());
if (instruction->IsOr()) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (IsUint<16>(low)) {
if (dst_low != lhs_low || low != 0) {
__ Ori(dst_low, lhs_low, low);
}
} else {
__ LoadConst32(TMP, low);
__ Or(dst_low, lhs_low, TMP);
}
if (IsUint<16>(high)) {
if (dst_high != lhs_high || high != 0) {
__ Ori(dst_high, lhs_high, high);
}
} else {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ Or(dst_high, lhs_high, TMP);
}
} else if (instruction->IsXor()) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (IsUint<16>(low)) {
if (dst_low != lhs_low || low != 0) {
__ Xori(dst_low, lhs_low, low);
}
} else {
__ LoadConst32(TMP, low);
__ Xor(dst_low, lhs_low, TMP);
}
if (IsUint<16>(high)) {
if (dst_high != lhs_high || high != 0) {
__ Xori(dst_high, lhs_high, high);
}
} else {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ Xor(dst_high, lhs_high, TMP);
}
} else if (instruction->IsAnd()) {
uint32_t low = Low32Bits(value);
uint32_t high = High32Bits(value);
if (IsUint<16>(low)) {
__ Andi(dst_low, lhs_low, low);
} else if (low != 0xFFFFFFFF) {
__ LoadConst32(TMP, low);
__ And(dst_low, lhs_low, TMP);
} else if (dst_low != lhs_low) {
__ Move(dst_low, lhs_low);
}
if (IsUint<16>(high)) {
__ Andi(dst_high, lhs_high, high);
} else if (high != 0xFFFFFFFF) {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ And(dst_high, lhs_high, TMP);
} else if (dst_high != lhs_high) {
__ Move(dst_high, lhs_high);
}
} else {
if (instruction->IsSub()) {
value = -value;
} else {
DCHECK(instruction->IsAdd());
}
int32_t low = Low32Bits(value);
int32_t high = High32Bits(value);
if (IsInt<16>(low)) {
if (dst_low != lhs_low || low != 0) {
__ Addiu(dst_low, lhs_low, low);
}
if (low != 0) {
__ Sltiu(AT, dst_low, low);
}
} else {
__ LoadConst32(TMP, low);
__ Addu(dst_low, lhs_low, TMP);
__ Sltu(AT, dst_low, TMP);
}
if (IsInt<16>(high)) {
if (dst_high != lhs_high || high != 0) {
__ Addiu(dst_high, lhs_high, high);
}
} else {
if (high != low) {
__ LoadConst32(TMP, high);
}
__ Addu(dst_high, lhs_high, TMP);
}
if (low != 0) {
__ Addu(dst_high, dst_high, AT);
}
}
}
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (instruction->IsAdd()) {
if (type == Primitive::kPrimFloat) {
__ AddS(dst, lhs, rhs);
} else {
__ AddD(dst, lhs, rhs);
}
} else {
DCHECK(instruction->IsSub());
if (type == Primitive::kPrimFloat) {
__ SubS(dst, lhs, rhs);
} else {
__ SubD(dst, lhs, rhs);
}
}
break;
}
default:
LOG(FATAL) << "Unexpected binary operation type " << type;
}
}
void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
Primitive::Type type = instr->GetResultType();
switch (type) {
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
locations->SetOut(Location::RequiresRegister());
break;
default:
LOG(FATAL) << "Unexpected shift type " << type;
}
}
static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte;
void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) {
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
LocationSummary* locations = instr->GetLocations();
Primitive::Type type = instr->GetType();
Location rhs_location = locations->InAt(1);
bool use_imm = rhs_location.IsConstant();
Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>();
int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0;
const uint32_t shift_mask =
(type == Primitive::kPrimInt) ? kMaxIntShiftDistance : kMaxLongShiftDistance;
const uint32_t shift_value = rhs_imm & shift_mask;
// Are the INS (Insert Bit Field) and ROTR instructions supported?
bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
if (use_imm) {
if (shift_value == 0) {
if (dst != lhs) {
__ Move(dst, lhs);
}
} else if (instr->IsShl()) {
__ Sll(dst, lhs, shift_value);
} else if (instr->IsShr()) {
__ Sra(dst, lhs, shift_value);
} else if (instr->IsUShr()) {
__ Srl(dst, lhs, shift_value);
} else {
if (has_ins_rotr) {
__ Rotr(dst, lhs, shift_value);
} else {
__ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask);
__ Srl(dst, lhs, shift_value);
__ Or(dst, dst, TMP);
}
}
} else {
if (instr->IsShl()) {
__ Sllv(dst, lhs, rhs_reg);
} else if (instr->IsShr()) {
__ Srav(dst, lhs, rhs_reg);
} else if (instr->IsUShr()) {
__ Srlv(dst, lhs, rhs_reg);
} else {
if (has_ins_rotr) {
__ Rotrv(dst, lhs, rhs_reg);
} else {
__ Subu(TMP, ZERO, rhs_reg);
// 32-bit shift instructions use the 5 least significant bits of the shift count, so
// shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case
// when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out
// by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`,
// IOW, the OR'd values are equal.
__ Sllv(TMP, lhs, TMP);
__ Srlv(dst, lhs, rhs_reg);
__ Or(dst, dst, TMP);
}
}
}
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
if (use_imm) {
if (shift_value == 0) {
codegen_->Move64(locations->Out(), locations->InAt(0));
} else if (shift_value < kMipsBitsPerWord) {
if (has_ins_rotr) {
if (instr->IsShl()) {
__ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
__ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value);
__ Sll(dst_low, lhs_low, shift_value);
} else if (instr->IsShr()) {
__ Srl(dst_low, lhs_low, shift_value);
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
__ Sra(dst_high, lhs_high, shift_value);
} else if (instr->IsUShr()) {
__ Srl(dst_low, lhs_low, shift_value);
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
__ Srl(dst_high, lhs_high, shift_value);
} else {
__ Srl(dst_low, lhs_low, shift_value);
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
__ Srl(dst_high, lhs_high, shift_value);
__ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value);
}
} else {
if (instr->IsShl()) {
__ Sll(dst_low, lhs_low, shift_value);
__ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value);
__ Sll(dst_high, lhs_high, shift_value);
__ Or(dst_high, dst_high, TMP);
} else if (instr->IsShr()) {
__ Sra(dst_high, lhs_high, shift_value);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
__ Srl(dst_low, lhs_low, shift_value);
__ Or(dst_low, dst_low, TMP);
} else if (instr->IsUShr()) {
__ Srl(dst_high, lhs_high, shift_value);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
__ Srl(dst_low, lhs_low, shift_value);
__ Or(dst_low, dst_low, TMP);
} else {
__ Srl(TMP, lhs_low, shift_value);
__ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value);
__ Or(dst_low, dst_low, TMP);
__ Srl(TMP, lhs_high, shift_value);
__ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
__ Or(dst_high, dst_high, TMP);
}
}
} else {
const uint32_t shift_value_high = shift_value - kMipsBitsPerWord;
if (instr->IsShl()) {
__ Sll(dst_high, lhs_low, shift_value_high);
__ Move(dst_low, ZERO);
} else if (instr->IsShr()) {
__ Sra(dst_low, lhs_high, shift_value_high);
__ Sra(dst_high, dst_low, kMipsBitsPerWord - 1);
} else if (instr->IsUShr()) {
__ Srl(dst_low, lhs_high, shift_value_high);
__ Move(dst_high, ZERO);
} else {
if (shift_value == kMipsBitsPerWord) {
// 64-bit rotation by 32 is just a swap.
__ Move(dst_low, lhs_high);
__ Move(dst_high, lhs_low);
} else {
if (has_ins_rotr) {
__ Srl(dst_low, lhs_high, shift_value_high);
__ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high);
__ Srl(dst_high, lhs_low, shift_value_high);
__ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high);
} else {
__ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high);
__ Srl(dst_low, lhs_high, shift_value_high);
__ Or(dst_low, dst_low, TMP);
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high);
__ Srl(dst_high, lhs_low, shift_value_high);
__ Or(dst_high, dst_high, TMP);
}
}
}
}
} else {
MipsLabel done;
if (instr->IsShl()) {
__ Sllv(dst_low, lhs_low, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Srl(TMP, lhs_low, 1);
__ Srlv(TMP, TMP, AT);
__ Sllv(dst_high, lhs_high, rhs_reg);
__ Or(dst_high, dst_high, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
__ Beqz(TMP, &done);
__ Move(dst_high, dst_low);
__ Move(dst_low, ZERO);
} else if (instr->IsShr()) {
__ Srav(dst_high, lhs_high, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Sll(TMP, lhs_high, 1);
__ Sllv(TMP, TMP, AT);
__ Srlv(dst_low, lhs_low, rhs_reg);
__ Or(dst_low, dst_low, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
__ Beqz(TMP, &done);
__ Move(dst_low, dst_high);
__ Sra(dst_high, dst_high, 31);
} else if (instr->IsUShr()) {
__ Srlv(dst_high, lhs_high, rhs_reg);
__ Nor(AT, ZERO, rhs_reg);
__ Sll(TMP, lhs_high, 1);
__ Sllv(TMP, TMP, AT);
__ Srlv(dst_low, lhs_low, rhs_reg);
__ Or(dst_low, dst_low, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
__ Beqz(TMP, &done);
__ Move(dst_low, dst_high);
__ Move(dst_high, ZERO);
} else {
__ Nor(AT, ZERO, rhs_reg);
__ Srlv(TMP, lhs_low, rhs_reg);
__ Sll(dst_low, lhs_high, 1);
__ Sllv(dst_low, dst_low, AT);
__ Or(dst_low, dst_low, TMP);
__ Srlv(TMP, lhs_high, rhs_reg);
__ Sll(dst_high, lhs_low, 1);
__ Sllv(dst_high, dst_high, AT);
__ Or(dst_high, dst_high, TMP);
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
__ Beqz(TMP, &done);
__ Move(TMP, dst_high);
__ Move(dst_high, dst_low);
__ Move(dst_low, TMP);
}
__ Bind(&done);
}
break;
}
default:
LOG(FATAL) << "Unexpected shift operation type " << type;
}
}
void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
auto InstructionCodeGeneratorMIPS::GetImplicitNullChecker(HInstruction* instruction) {
auto null_checker = [this, instruction]() {
this->codegen_->MaybeRecordImplicitNullCheck(instruction);
};
return null_checker;
}
void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
auto null_checker = GetImplicitNullChecker(instruction);
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimBoolean: {
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimByte: {
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimShort: {
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimChar: {
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ LoadFromOffset(kLoadUnsignedHalfword, out, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
Register out = locations->Out().AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimLong: {
Register out = locations->Out().AsRegisterPairLow<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimFloat: {
FRegister out = locations->Out().AsFpuRegister<FRegister>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ LoadSFromOffset(out, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ LoadSFromOffset(out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimDouble: {
FRegister out = locations->Out().AsFpuRegister<FRegister>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ LoadDFromOffset(out, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ LoadDFromOffset(out, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
}
void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) {
LocationSummary* locations = instruction->GetLocations();
uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
Register obj = locations->InAt(0).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, obj, offset);
codegen_->MaybeRecordImplicitNullCheck(instruction);
}
void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) {
bool needs_runtime_call = instruction->NeedsTypeCheck();
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction,
needs_runtime_call ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall);
if (needs_runtime_call) {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
if (Primitive::IsFloatingPointType(instruction->InputAt(2)->GetType())) {
locations->SetInAt(2, Location::RequiresFpuRegister());
} else {
locations->SetInAt(2, Location::RequiresRegister());
}
}
}
void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Location index = locations->InAt(1);
Primitive::Type value_type = instruction->GetComponentType();
bool needs_runtime_call = locations->WillCall();
bool needs_write_barrier =
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
auto null_checker = GetImplicitNullChecker(instruction);
switch (value_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
__ StoreToOffset(kStoreByte, value, obj, offset, null_checker);
} else {
__ Addu(TMP, obj, index.AsRegister<Register>());
__ StoreToOffset(kStoreByte, value, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimShort:
case Primitive::kPrimChar: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
__ StoreToOffset(kStoreHalfword, value, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_2);
__ Addu(TMP, obj, TMP);
__ StoreToOffset(kStoreHalfword, value, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimInt:
case Primitive::kPrimNot: {
if (!needs_runtime_call) {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
Register value = locations->InAt(2).AsRegister<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreToOffset(kStoreWord, value, obj, offset, null_checker);
} else {
DCHECK(index.IsRegister()) << index;
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ StoreToOffset(kStoreWord, value, TMP, data_offset, null_checker);
}
if (needs_write_barrier) {
DCHECK_EQ(value_type, Primitive::kPrimNot);
codegen_->MarkGCCard(obj, value);
}
} else {
DCHECK_EQ(value_type, Primitive::kPrimNot);
codegen_->InvokeRuntime(kQuickAputObject, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
}
break;
}
case Primitive::kPrimLong: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
Register value = locations->InAt(2).AsRegisterPairLow<Register>();
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreToOffset(kStoreDoubleword, value, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ StoreToOffset(kStoreDoubleword, value, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimFloat: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
FRegister value = locations->InAt(2).AsFpuRegister<FRegister>();
DCHECK(locations->InAt(2).IsFpuRegister());
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
__ StoreSToOffset(value, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_4);
__ Addu(TMP, obj, TMP);
__ StoreSToOffset(value, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimDouble: {
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
FRegister value = locations->InAt(2).AsFpuRegister<FRegister>();
DCHECK(locations->InAt(2).IsFpuRegister());
if (index.IsConstant()) {
size_t offset =
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
__ StoreDToOffset(value, obj, offset, null_checker);
} else {
__ Sll(TMP, index.AsRegister<Register>(), TIMES_8);
__ Addu(TMP, obj, TMP);
__ StoreDToOffset(value, TMP, data_offset, null_checker);
}
break;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << instruction->GetType();
UNREACHABLE();
}
}
void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
LocationSummary* locations = instruction->GetLocations();
BoundsCheckSlowPathMIPS* slow_path =
new (GetGraph()->GetArena()) BoundsCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
Register index = locations->InAt(0).AsRegister<Register>();
Register length = locations->InAt(1).AsRegister<Register>();
// length is limited by the maximum positive signed 32-bit integer.
// Unsigned comparison of length and index checks for index < 0
// and for length <= index simultaneously.
__ Bgeu(index, length, slow_path->GetEntryLabel());
}
void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction,
LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Note that TypeCheckSlowPathMIPS uses this register too.
locations->AddTemp(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Register obj_cls = locations->GetTemp(0).AsRegister<Register>();
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
// TODO: avoid this check if we know obj is not null.
__ Beqz(obj, slow_path->GetExitLabel());
// Compare the class of `obj` with `cls`.
__ LoadFromOffset(kLoadWord, obj_cls, obj, mirror::Object::ClassOffset().Int32Value());
__ Bne(obj_cls, cls, slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
locations->SetInAt(0, Location::RequiresRegister());
if (check->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) {
// We assume the class is not null.
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
check->GetLoadClass(),
check,
check->GetDexPc(),
true);
codegen_->AddSlowPath(slow_path);
GenerateClassInitializationCheck(slow_path,
check->GetLocations()->InAt(0).AsRegister<Register>());
}
void LocationsBuilderMIPS::VisitCompare(HCompare* compare) {
Primitive::Type in_type = compare->InputAt(0)->GetType();
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
switch (in_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// Output overlaps because it is written before doing the low comparison.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
}
}
void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register res = locations->Out().AsRegister<Register>();
Primitive::Type in_type = instruction->InputAt(0)->GetType();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
// 0 if: left == right
// 1 if: left > right
// -1 if: left < right
switch (in_type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimShort:
case Primitive::kPrimChar:
case Primitive::kPrimInt: {
Register lhs = locations->InAt(0).AsRegister<Register>();
Register rhs = locations->InAt(1).AsRegister<Register>();
__ Slt(TMP, lhs, rhs);
__ Slt(res, rhs, lhs);
__ Subu(res, res, TMP);
break;
}
case Primitive::kPrimLong: {
MipsLabel done;
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
// TODO: more efficient (direct) comparison with a constant.
__ Slt(TMP, lhs_high, rhs_high);
__ Slt(AT, rhs_high, lhs_high); // Inverted: is actually gt.
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
__ Bnez(res, &done); // If we compared ==, check if lower bits are also equal.
__ Sltu(TMP, lhs_low, rhs_low);
__ Sltu(AT, rhs_low, lhs_low); // Inverted: is actually gt.
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
__ Bind(&done);
break;
}
case Primitive::kPrimFloat: {
bool gt_bias = instruction->IsGtBias();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
MipsLabel done;
if (isR6) {
__ CmpEqS(FTMP, lhs, rhs);
__ LoadConst32(res, 0);
__ Bc1nez(FTMP, &done);
if (gt_bias) {
__ CmpLtS(FTMP, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, 1);
} else {
__ CmpLtS(FTMP, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, -1);
}
} else {
if (gt_bias) {
__ ColtS(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1t(0, &done);
__ CeqS(0, lhs, rhs);
__ LoadConst32(res, 1);
__ Movt(res, ZERO, 0);
} else {
__ ColtS(0, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1t(0, &done);
__ CeqS(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Movt(res, ZERO, 0);
}
}
__ Bind(&done);
break;
}
case Primitive::kPrimDouble: {
bool gt_bias = instruction->IsGtBias();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
MipsLabel done;
if (isR6) {
__ CmpEqD(FTMP, lhs, rhs);
__ LoadConst32(res, 0);
__ Bc1nez(FTMP, &done);
if (gt_bias) {
__ CmpLtD(FTMP, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, 1);
} else {
__ CmpLtD(FTMP, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1nez(FTMP, &done);
__ LoadConst32(res, -1);
}
} else {
if (gt_bias) {
__ ColtD(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Bc1t(0, &done);
__ CeqD(0, lhs, rhs);
__ LoadConst32(res, 1);
__ Movt(res, ZERO, 0);
} else {
__ ColtD(0, rhs, lhs);
__ LoadConst32(res, 1);
__ Bc1t(0, &done);
__ CeqD(0, lhs, rhs);
__ LoadConst32(res, -1);
__ Movt(res, ZERO, 0);
}
}
__ Bind(&done);
break;
}
default:
LOG(FATAL) << "Unimplemented compare type " << in_type;
}
}
void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
switch (instruction->InputAt(0)->GetType()) {
default:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
break;
}
if (!instruction->IsEmittedAtUseSite()) {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) {
if (instruction->IsEmittedAtUseSite()) {
return;
}
Primitive::Type type = instruction->InputAt(0)->GetType();
LocationSummary* locations = instruction->GetLocations();
Register dst = locations->Out().AsRegister<Register>();
MipsLabel true_label;
switch (type) {
default:
// Integer case.
GenerateIntCompare(instruction->GetCondition(), locations);
return;
case Primitive::kPrimLong:
// TODO: don't use branches.
GenerateLongCompareAndBranch(instruction->GetCondition(), locations, &true_label);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
// TODO: don't use branches.
GenerateFpCompareAndBranch(instruction->GetCondition(),
instruction->IsGtBias(),
type,
locations,
&true_label);
break;
}
// Convert the branches into the result.
MipsLabel done;
// False case: result = 0.
__ LoadConst32(dst, 0);
__ B(&done);
// True case: result = 1.
__ Bind(&true_label);
__ LoadConst32(dst, 1);
__ Bind(&done);
}
void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
DCHECK(imm == 1 || imm == -1);
if (instruction->IsRem()) {
__ Move(out, ZERO);
} else {
if (imm == -1) {
__ Subu(out, ZERO, dividend);
} else if (out != dividend) {
__ Move(out, dividend);
}
}
}
void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
int ctz_imm = CTZ(abs_imm);
if (instruction->IsDiv()) {
if (ctz_imm == 1) {
// Fast path for division by +/-2, which is very common.
__ Srl(TMP, dividend, 31);
} else {
__ Sra(TMP, dividend, 31);
__ Srl(TMP, TMP, 32 - ctz_imm);
}
__ Addu(out, dividend, TMP);
__ Sra(out, out, ctz_imm);
if (imm < 0) {
__ Subu(out, ZERO, out);
}
} else {
if (ctz_imm == 1) {
// Fast path for modulo +/-2, which is very common.
__ Sra(TMP, dividend, 31);
__ Subu(out, dividend, TMP);
__ Andi(out, out, 1);
__ Addu(out, out, TMP);
} else {
__ Sra(TMP, dividend, 31);
__ Srl(TMP, TMP, 32 - ctz_imm);
__ Addu(out, dividend, TMP);
if (IsUint<16>(abs_imm - 1)) {
__ Andi(out, out, abs_imm - 1);
} else {
__ Sll(out, out, 32 - ctz_imm);
__ Srl(out, out, 32 - ctz_imm);
}
__ Subu(out, out, TMP);
}
}
}
void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Location second = locations->InAt(1);
DCHECK(second.IsConstant());
Register out = locations->Out().AsRegister<Register>();
Register dividend = locations->InAt(0).AsRegister<Register>();
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
int64_t magic;
int shift;
CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
__ LoadConst32(TMP, magic);
if (isR6) {
__ MuhR6(TMP, dividend, TMP);
} else {
__ MultR2(dividend, TMP);
__ Mfhi(TMP);
}
if (imm > 0 && magic < 0) {
__ Addu(TMP, TMP, dividend);
} else if (imm < 0 && magic > 0) {
__ Subu(TMP, TMP, dividend);
}
if (shift != 0) {
__ Sra(TMP, TMP, shift);
}
if (instruction->IsDiv()) {
__ Sra(out, TMP, 31);
__ Subu(out, TMP, out);
} else {
__ Sra(AT, TMP, 31);
__ Subu(AT, TMP, AT);
__ LoadConst32(TMP, imm);
if (isR6) {
__ MulR6(TMP, AT, TMP);
} else {
__ MulR2(TMP, AT, TMP);
}
__ Subu(out, dividend, TMP);
}
}
void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) {
DCHECK(instruction->IsDiv() || instruction->IsRem());
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
LocationSummary* locations = instruction->GetLocations();
Register out = locations->Out().AsRegister<Register>();
Location second = locations->InAt(1);
if (second.IsConstant()) {
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
if (imm == 0) {
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
} else if (imm == 1 || imm == -1) {
DivRemOneOrMinusOne(instruction);
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
DivRemByPowerOfTwo(instruction);
} else {
DCHECK(imm <= -2 || imm >= 2);
GenerateDivRemWithAnyConstant(instruction);
}
} else {
Register dividend = locations->InAt(0).AsRegister<Register>();
Register divisor = second.AsRegister<Register>();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (instruction->IsDiv()) {
if (isR6) {
__ DivR6(out, dividend, divisor);
} else {
__ DivR2(out, dividend, divisor);
}
} else {
if (isR6) {
__ ModR6(out, dividend, divisor);
} else {
__ ModR2(out, dividend, divisor);
}
}
}
}
void LocationsBuilderMIPS::VisitDiv(HDiv* div) {
Primitive::Type type = div->GetResultType();
LocationSummary::CallKind call_kind = (type == Primitive::kPrimLong)
? LocationSummary::kCallOnMainOnly
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
switch (type) {
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt:
GenerateDivRemIntegral(instruction);
break;
case Primitive::kPrimLong: {
codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ DivS(dst, lhs, rhs);
} else {
__ DivD(dst, lhs, rhs);
}
break;
}
default:
LOG(FATAL) << "Unexpected div type " << type;
}
}
void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
Location value = instruction->GetLocations()->InAt(0);
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
case Primitive::kPrimChar:
case Primitive::kPrimShort:
case Primitive::kPrimInt: {
if (value.IsConstant()) {
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
DCHECK(value.IsRegister()) << value;
__ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel());
}
break;
}
case Primitive::kPrimLong: {
if (value.IsConstant()) {
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
__ B(slow_path->GetEntryLabel());
} else {
// A division by a non-null constant is valid. We don't need to perform
// any check, so simply fall through.
}
} else {
DCHECK(value.IsRegisterPair()) << value;
__ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>());
__ Beqz(TMP, slow_path->GetEntryLabel());
}
break;
}
default:
LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
}
}
void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitExit(HExit* exit) {
exit->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
}
void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitGoto(HGoto* got) {
got->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) {
DCHECK(!successor->IsExitBlock());
HBasicBlock* block = got->GetBlock();
HInstruction* previous = got->GetPrevious();
HLoopInformation* info = block->GetLoopInformation();
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
return;
}
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
}
if (!codegen_->GoesToNextBlock(block, successor)) {
__ B(codegen_->GetLabelOf(successor));
}
}
void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) {
HandleGoto(got, got->GetSuccessor());
}
void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
try_boundary->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
if (!successor->IsExitBlock()) {
HandleGoto(try_boundary, successor);
}
}
void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond,
LocationSummary* locations) {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int64_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
switch (cond) {
case kCondEQ:
case kCondNE:
if (use_imm && IsUint<16>(rhs_imm)) {
__ Xori(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Xor(dst, lhs, rhs_reg);
}
if (cond == kCondEQ) {
__ Sltiu(dst, dst, 1);
} else {
__ Sltu(dst, ZERO, dst);
}
break;
case kCondLT:
case kCondGE:
if (use_imm && IsInt<16>(rhs_imm)) {
__ Slti(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, lhs, rhs_reg);
}
if (cond == kCondGE) {
// Simulate lhs >= rhs via !(lhs < rhs) since there's
// only the slt instruction but no sge.
__ Xori(dst, dst, 1);
}
break;
case kCondLE:
case kCondGT:
if (use_imm && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
__ Slti(dst, lhs, rhs_imm + 1);
if (cond == kCondGT) {
// Simulate lhs > rhs via !(lhs <= rhs) since there's
// only the slti instruction but no sgti.
__ Xori(dst, dst, 1);
}
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Slt(dst, rhs_reg, lhs);
if (cond == kCondLE) {
// Simulate lhs <= rhs via !(rhs < lhs) since there's
// only the slt instruction but no sle.
__ Xori(dst, dst, 1);
}
}
break;
case kCondB:
case kCondAE:
if (use_imm && IsInt<16>(rhs_imm)) {
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm);
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, lhs, rhs_reg);
}
if (cond == kCondAE) {
// Simulate lhs >= rhs via !(lhs < rhs) since there's
// only the sltu instruction but no sgeu.
__ Xori(dst, dst, 1);
}
break;
case kCondBE:
case kCondA:
if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
// Simulate lhs <= rhs via lhs < rhs + 1.
// Note that this only works if rhs + 1 does not overflow
// to 0, hence the check above.
// Sltiu sign-extends its 16-bit immediate operand before
// the comparison and thus lets us compare directly with
// unsigned values in the ranges [0, 0x7fff] and
// [0xffff8000, 0xffffffff].
__ Sltiu(dst, lhs, rhs_imm + 1);
if (cond == kCondA) {
// Simulate lhs > rhs via !(lhs <= rhs) since there's
// only the sltiu instruction but no sgtiu.
__ Xori(dst, dst, 1);
}
} else {
if (use_imm) {
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
__ Sltu(dst, rhs_reg, lhs);
if (cond == kCondBE) {
// Simulate lhs <= rhs via !(rhs < lhs) since there's
// only the sltu instruction but no sleu.
__ Xori(dst, dst, 1);
}
}
break;
}
}
void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label) {
Register lhs = locations->InAt(0).AsRegister<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_reg = ZERO;
int32_t rhs_imm = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
} else {
rhs_reg = rhs_location.AsRegister<Register>();
}
if (use_imm && rhs_imm == 0) {
switch (cond) {
case kCondEQ:
case kCondBE: // <= 0 if zero
__ Beqz(lhs, label);
break;
case kCondNE:
case kCondA: // > 0 if non-zero
__ Bnez(lhs, label);
break;
case kCondLT:
__ Bltz(lhs, label);
break;
case kCondGE:
__ Bgez(lhs, label);
break;
case kCondLE:
__ Blez(lhs, label);
break;
case kCondGT:
__ Bgtz(lhs, label);
break;
case kCondB: // always false
break;
case kCondAE: // always true
__ B(label);
break;
}
} else {
if (use_imm) {
// TODO: more efficient comparison with 16-bit constants without loading them into TMP.
rhs_reg = TMP;
__ LoadConst32(rhs_reg, rhs_imm);
}
switch (cond) {
case kCondEQ:
__ Beq(lhs, rhs_reg, label);
break;
case kCondNE:
__ Bne(lhs, rhs_reg, label);
break;
case kCondLT:
__ Blt(lhs, rhs_reg, label);
break;
case kCondGE:
__ Bge(lhs, rhs_reg, label);
break;
case kCondLE:
__ Bge(rhs_reg, lhs, label);
break;
case kCondGT:
__ Blt(rhs_reg, lhs, label);
break;
case kCondB:
__ Bltu(lhs, rhs_reg, label);
break;
case kCondAE:
__ Bgeu(lhs, rhs_reg, label);
break;
case kCondBE:
__ Bgeu(rhs_reg, lhs, label);
break;
case kCondA:
__ Bltu(rhs_reg, lhs, label);
break;
}
}
}
void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond,
LocationSummary* locations,
MipsLabel* label) {
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Location rhs_location = locations->InAt(1);
Register rhs_high = ZERO;
Register rhs_low = ZERO;
int64_t imm = 0;
uint32_t imm_high = 0;
uint32_t imm_low = 0;
bool use_imm = rhs_location.IsConstant();
if (use_imm) {
imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
imm_high = High32Bits(imm);
imm_low = Low32Bits(imm);
} else {
rhs_high = rhs_location.AsRegisterPairHigh<Register>();
rhs_low = rhs_location.AsRegisterPairLow<Register>();
}
if (use_imm && imm == 0) {
switch (cond) {
case kCondEQ:
case kCondBE: // <= 0 if zero
__ Or(TMP, lhs_high, lhs_low);
__ Beqz(TMP, label);
break;
case kCondNE:
case kCondA: // > 0 if non-zero
__ Or(TMP, lhs_high, lhs_low);
__ Bnez(TMP, label);
break;
case kCondLT:
__ Bltz(lhs_high, label);
break;
case kCondGE:
__ Bgez(lhs_high, label);
break;
case kCondLE:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Bgeu(AT, TMP, label);
break;
case kCondGT:
__ Or(TMP, lhs_high, lhs_low);
__ Sra(AT, lhs_high, 31);
__ Bltu(AT, TMP, label);
break;
case kCondB: // always false
break;
case kCondAE: // always true
__ B(label);
break;
}
} else if (use_imm) {
// TODO: more efficient comparison with constants without loading them into TMP/AT.
switch (cond) {
case kCondEQ:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondNE:
__ LoadConst32(TMP, imm_high);
__ Xor(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Xor(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Bnez(TMP, label);
break;
case kCondLT:
__ LoadConst32(TMP, imm_high);
__ Blt(lhs_high, TMP, label);
__ Slt(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Blt(TMP, AT, label);
break;
case kCondGE:
__ LoadConst32(TMP, imm_high);
__ Blt(TMP, lhs_high, label);
__ Slt(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondLE:
__ LoadConst32(TMP, imm_high);
__ Blt(lhs_high, TMP, label);
__ Slt(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondGT:
__ LoadConst32(TMP, imm_high);
__ Blt(TMP, lhs_high, label);
__ Slt(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Blt(TMP, AT, label);
break;
case kCondB:
__ LoadConst32(TMP, imm_high);
__ Bltu(lhs_high, TMP, label);
__ Sltu(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Blt(TMP, AT, label);
break;
case kCondAE:
__ LoadConst32(TMP, imm_high);
__ Bltu(TMP, lhs_high, label);
__ Sltu(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, lhs_low, AT);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondBE:
__ LoadConst32(TMP, imm_high);
__ Bltu(lhs_high, TMP, label);
__ Sltu(TMP, TMP, lhs_high);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondA:
__ LoadConst32(TMP, imm_high);
__ Bltu(TMP, lhs_high, label);
__ Sltu(TMP, lhs_high, TMP);
__ LoadConst32(AT, imm_low);
__ Sltu(AT, AT, lhs_low);
__ Blt(TMP, AT, label);
break;
}
} else {
switch (cond) {
case kCondEQ:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondNE:
__ Xor(TMP, lhs_high, rhs_high);
__ Xor(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Bnez(TMP, label);
break;
case kCondLT:
__ Blt(lhs_high, rhs_high, label);
__ Slt(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Blt(TMP, AT, label);
break;
case kCondGE:
__ Blt(rhs_high, lhs_high, label);
__ Slt(TMP, lhs_high, rhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondLE:
__ Blt(lhs_high, rhs_high, label);
__ Slt(TMP, rhs_high, lhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondGT:
__ Blt(rhs_high, lhs_high, label);
__ Slt(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Blt(TMP, AT, label);
break;
case kCondB:
__ Bltu(lhs_high, rhs_high, label);
__ Sltu(TMP, rhs_high, lhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Blt(TMP, AT, label);
break;
case kCondAE:
__ Bltu(rhs_high, lhs_high, label);
__ Sltu(TMP, lhs_high, rhs_high);
__ Sltu(AT, lhs_low, rhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondBE:
__ Bltu(lhs_high, rhs_high, label);
__ Sltu(TMP, rhs_high, lhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Or(TMP, TMP, AT);
__ Beqz(TMP, label);
break;
case kCondA:
__ Bltu(rhs_high, lhs_high, label);
__ Sltu(TMP, lhs_high, rhs_high);
__ Sltu(AT, rhs_low, lhs_low);
__ Blt(TMP, AT, label);
break;
}
}
}
void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond,
bool gt_bias,
Primitive::Type type,
LocationSummary* locations,
MipsLabel* label) {
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if (type == Primitive::kPrimFloat) {
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqS(FTMP, lhs, rhs);
__ Bc1nez(FTMP, label);
break;
case kCondNE:
__ CmpEqS(FTMP, lhs, rhs);
__ Bc1eqz(FTMP, label);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtS(FTMP, lhs, rhs);
} else {
__ CmpUltS(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeS(FTMP, lhs, rhs);
} else {
__ CmpUleS(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltS(FTMP, rhs, lhs);
} else {
__ CmpLtS(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleS(FTMP, rhs, lhs);
} else {
__ CmpLeS(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
} else {
switch (cond) {
case kCondEQ:
__ CeqS(0, lhs, rhs);
__ Bc1t(0, label);
break;
case kCondNE:
__ CeqS(0, lhs, rhs);
__ Bc1f(0, label);
break;
case kCondLT:
if (gt_bias) {
__ ColtS(0, lhs, rhs);
} else {
__ CultS(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondLE:
if (gt_bias) {
__ ColeS(0, lhs, rhs);
} else {
__ CuleS(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondGT:
if (gt_bias) {
__ CultS(0, rhs, lhs);
} else {
__ ColtS(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
case kCondGE:
if (gt_bias) {
__ CuleS(0, rhs, lhs);
} else {
__ ColeS(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
}
} else {
DCHECK_EQ(type, Primitive::kPrimDouble);
if (isR6) {
switch (cond) {
case kCondEQ:
__ CmpEqD(FTMP, lhs, rhs);
__ Bc1nez(FTMP, label);
break;
case kCondNE:
__ CmpEqD(FTMP, lhs, rhs);
__ Bc1eqz(FTMP, label);
break;
case kCondLT:
if (gt_bias) {
__ CmpLtD(FTMP, lhs, rhs);
} else {
__ CmpUltD(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondLE:
if (gt_bias) {
__ CmpLeD(FTMP, lhs, rhs);
} else {
__ CmpUleD(FTMP, lhs, rhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGT:
if (gt_bias) {
__ CmpUltD(FTMP, rhs, lhs);
} else {
__ CmpLtD(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
case kCondGE:
if (gt_bias) {
__ CmpUleD(FTMP, rhs, lhs);
} else {
__ CmpLeD(FTMP, rhs, lhs);
}
__ Bc1nez(FTMP, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
} else {
switch (cond) {
case kCondEQ:
__ CeqD(0, lhs, rhs);
__ Bc1t(0, label);
break;
case kCondNE:
__ CeqD(0, lhs, rhs);
__ Bc1f(0, label);
break;
case kCondLT:
if (gt_bias) {
__ ColtD(0, lhs, rhs);
} else {
__ CultD(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondLE:
if (gt_bias) {
__ ColeD(0, lhs, rhs);
} else {
__ CuleD(0, lhs, rhs);
}
__ Bc1t(0, label);
break;
case kCondGT:
if (gt_bias) {
__ CultD(0, rhs, lhs);
} else {
__ ColtD(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
case kCondGE:
if (gt_bias) {
__ CuleD(0, rhs, lhs);
} else {
__ ColeD(0, rhs, lhs);
}
__ Bc1t(0, label);
break;
default:
LOG(FATAL) << "Unexpected non-floating-point condition";
}
}
}
}
void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction,
size_t condition_input_index,
MipsLabel* true_target,
MipsLabel* false_target) {
HInstruction* cond = instruction->InputAt(condition_input_index);
if (true_target == nullptr && false_target == nullptr) {
// Nothing to do. The code always falls through.
return;
} else if (cond->IsIntConstant()) {
// Constant condition, statically compared against "true" (integer value 1).
if (cond->AsIntConstant()->IsTrue()) {
if (true_target != nullptr) {
__ B(true_target);
}
} else {
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
if (false_target != nullptr) {
__ B(false_target);
}
}
return;
}
// The following code generates these patterns:
// (1) true_target == nullptr && false_target != nullptr
// - opposite condition true => branch to false_target
// (2) true_target != nullptr && false_target == nullptr
// - condition true => branch to true_target
// (3) true_target != nullptr && false_target != nullptr
// - condition true => branch to true_target
// - branch to false_target
if (IsBooleanValueOrMaterializedCondition(cond)) {
// The condition instruction has been materialized, compare the output to 0.
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
DCHECK(cond_val.IsRegister());
if (true_target == nullptr) {
__ Beqz(cond_val.AsRegister<Register>(), false_target);
} else {
__ Bnez(cond_val.AsRegister<Register>(), true_target);
}
} else {
// The condition instruction has not been materialized, use its inputs as
// the comparison and its condition as the branch condition.
HCondition* condition = cond->AsCondition();
Primitive::Type type = condition->InputAt(0)->GetType();
LocationSummary* locations = cond->GetLocations();
IfCondition if_cond = condition->GetCondition();
MipsLabel* branch_target = true_target;
if (true_target == nullptr) {
if_cond = condition->GetOppositeCondition();
branch_target = false_target;
}
switch (type) {
default:
GenerateIntCompareAndBranch(if_cond, locations, branch_target);
break;
case Primitive::kPrimLong:
GenerateLongCompareAndBranch(if_cond, locations, branch_target);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target);
break;
}
}
// If neither branch falls through (case 3), the conditional branch to `true_target`
// was already emitted (case 2) and we need to emit a jump to `false_target`.
if (true_target != nullptr && false_target != nullptr) {
__ B(false_target);
}
}
void LocationsBuilderMIPS::VisitIf(HIf* if_instr) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) {
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
nullptr : codegen_->GetLabelOf(true_successor);
MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
nullptr : codegen_->GetLabelOf(false_successor);
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
}
void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
LocationSummary* locations = new (GetGraph()->GetArena())
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
locations->SetInAt(0, Location::RequiresRegister());
}
}
void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
SlowPathCodeMIPS* slow_path =
deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize);
GenerateTestAndBranch(deoptimize,
/* condition_input_index */ 0,
slow_path->GetEntryLabel(),
/* false_target */ nullptr);
}
void LocationsBuilderMIPS::VisitSelect(HSelect* select) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
if (Primitive::IsFloatingPointType(select->GetType())) {
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
}
if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
locations->SetInAt(2, Location::RequiresRegister());
}
locations->SetOut(Location::SameAsFirstInput());
}
void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) {
LocationSummary* locations = select->GetLocations();
MipsLabel false_target;
GenerateTestAndBranch(select,
/* condition_input_index */ 2,
/* true_target */ nullptr,
&false_target);
codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
__ Bind(&false_target);
}
void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) {
new (GetGraph()->GetArena()) LocationSummary(info);
}
void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) {
// MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
}
void CodeGeneratorMIPS::GenerateNop() {
__ Nop();
}
void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
Primitive::Type field_type = field_info.GetFieldType();
bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
bool generate_volatile = field_info.IsVolatile() && is_wide;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (generate_volatile) {
InvokeRuntimeCallingConvention calling_convention;
// need A0 to hold base + offset
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
if (field_type == Primitive::kPrimLong) {
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimLong));
} else {
// Use Location::Any() to prevent situations when running out of available fp registers.
locations->SetOut(Location::Any());
// Need some temp core regs since FP results are returned in core registers
Location reg = calling_convention.GetReturnLocation(Primitive::kPrimLong);
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>()));
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>()));
}
} else {
if (Primitive::IsFloatingPointType(instruction->GetType())) {
locations->SetOut(Location::RequiresFpuRegister());
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
}
}
void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction,
const FieldInfo& field_info,
uint32_t dex_pc) {
Primitive::Type type = field_info.GetFieldType();
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
LoadOperandType load_type = kLoadUnsignedByte;
bool is_volatile = field_info.IsVolatile();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
auto null_checker = GetImplicitNullChecker(instruction);
switch (type) {
case Primitive::kPrimBoolean:
load_type = kLoadUnsignedByte;
break;
case Primitive::kPrimByte:
load_type = kLoadSignedByte;
break;
case Primitive::kPrimShort:
load_type = kLoadSignedHalfword;
break;
case Primitive::kPrimChar:
load_type = kLoadUnsignedHalfword;
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
case Primitive::kPrimNot:
load_type = kLoadWord;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
load_type = kLoadDoubleword;
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (is_volatile && load_type == kLoadDoubleword) {
InvokeRuntimeCallingConvention calling_convention;
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
// Do implicit Null check
__ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
codegen_->InvokeRuntime(kQuickA64Load, instruction, dex_pc);
CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>();
if (type == Primitive::kPrimDouble) {
// FP results are returned in core registers. Need to move them.
Location out = locations->Out();
if (out.IsFpuRegister()) {
__ Mtc1(locations->GetTemp(1).AsRegister<Register>(), out.AsFpuRegister<FRegister>());
__ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
out.AsFpuRegister<FRegister>());
} else {
DCHECK(out.IsDoubleStackSlot());
__ StoreToOffset(kStoreWord,
locations->GetTemp(1).AsRegister<Register>(),
SP,
out.GetStackIndex());
__ StoreToOffset(kStoreWord,
locations->GetTemp(2).AsRegister<Register>(),
SP,
out.GetStackIndex() + 4);
}
}
} else {
if (!Primitive::IsFloatingPointType(type)) {
Register dst;
if (type == Primitive::kPrimLong) {
DCHECK(locations->Out().IsRegisterPair());
dst = locations->Out().AsRegisterPairLow<Register>();
} else {
DCHECK(locations->Out().IsRegister());
dst = locations->Out().AsRegister<Register>();
}
__ LoadFromOffset(load_type, dst, obj, offset, null_checker);
} else {
DCHECK(locations->Out().IsFpuRegister());
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ LoadSFromOffset(dst, obj, offset, null_checker);
} else {
__ LoadDFromOffset(dst, obj, offset, null_checker);
}
}
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
}
}
void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
Primitive::Type field_type = field_info.GetFieldType();
bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
bool generate_volatile = field_info.IsVolatile() && is_wide;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
if (generate_volatile) {
InvokeRuntimeCallingConvention calling_convention;
// need A0 to hold base + offset
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
if (field_type == Primitive::kPrimLong) {
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
} else {
// Use Location::Any() to prevent situations when running out of available fp registers.
locations->SetInAt(1, Location::Any());
// Pass FP parameters in core registers.
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
}
} else {
if (Primitive::IsFloatingPointType(field_type)) {
locations->SetInAt(1, Location::RequiresFpuRegister());
} else {
locations->SetInAt(1, Location::RequiresRegister());
}
}
}
void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction,
const FieldInfo& field_info,
uint32_t dex_pc) {
Primitive::Type type = field_info.GetFieldType();
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
StoreOperandType store_type = kStoreByte;
bool is_volatile = field_info.IsVolatile();
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
auto null_checker = GetImplicitNullChecker(instruction);
switch (type) {
case Primitive::kPrimBoolean:
case Primitive::kPrimByte:
store_type = kStoreByte;
break;
case Primitive::kPrimShort:
case Primitive::kPrimChar:
store_type = kStoreHalfword;
break;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
case Primitive::kPrimNot:
store_type = kStoreWord;
break;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
store_type = kStoreDoubleword;
break;
case Primitive::kPrimVoid:
LOG(FATAL) << "Unreachable type " << type;
UNREACHABLE();
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
}
if (is_volatile && store_type == kStoreDoubleword) {
InvokeRuntimeCallingConvention calling_convention;
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
// Do implicit Null check.
__ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
if (type == Primitive::kPrimDouble) {
// Pass FP parameters in core registers.
Location in = locations->InAt(1);
if (in.IsFpuRegister()) {
__ Mfc1(locations->GetTemp(1).AsRegister<Register>(), in.AsFpuRegister<FRegister>());
__ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
in.AsFpuRegister<FRegister>());
} else if (in.IsDoubleStackSlot()) {
__ LoadFromOffset(kLoadWord,
locations->GetTemp(1).AsRegister<Register>(),
SP,
in.GetStackIndex());
__ LoadFromOffset(kLoadWord,
locations->GetTemp(2).AsRegister<Register>(),
SP,
in.GetStackIndex() + 4);
} else {
DCHECK(in.IsConstant());
DCHECK(in.GetConstant()->IsDoubleConstant());
int64_t value = bit_cast<int64_t, double>(in.GetConstant()->AsDoubleConstant()->GetValue());
__ LoadConst64(locations->GetTemp(2).AsRegister<Register>(),
locations->GetTemp(1).AsRegister<Register>(),
value);
}
}
codegen_->InvokeRuntime(kQuickA64Store, instruction, dex_pc);
CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>();
} else {
if (!Primitive::IsFloatingPointType(type)) {
Register src;
if (type == Primitive::kPrimLong) {
DCHECK(locations->InAt(1).IsRegisterPair());
src = locations->InAt(1).AsRegisterPairLow<Register>();
} else {
DCHECK(locations->InAt(1).IsRegister());
src = locations->InAt(1).AsRegister<Register>();
}
__ StoreToOffset(store_type, src, obj, offset, null_checker);
} else {
DCHECK(locations->InAt(1).IsFpuRegister());
FRegister src = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ StoreSToOffset(src, obj, offset, null_checker);
} else {
__ StoreDToOffset(src, obj, offset, null_checker);
}
}
}
// TODO: memory barriers?
if (CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1))) {
DCHECK(locations->InAt(1).IsRegister());
Register src = locations->InAt(1).AsRegister<Register>();
codegen_->MarkGCCard(obj, src);
}
if (is_volatile) {
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
}
}
void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void InstructionCodeGeneratorMIPS::GenerateGcRootFieldLoad(
HInstruction* instruction ATTRIBUTE_UNUSED,
Location root,
Register obj,
uint32_t offset) {
Register root_reg = root.AsRegister<Register>();
if (kEmitCompilerReadBarrier) {
UNIMPLEMENTED(FATAL) << "for read barrier";
} else {
// Plain GC root load with no read barrier.
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
// Note that GC roots are not affected by heap poisoning, thus we
// do not have to unpoison `root_reg` here.
}
}
void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary::CallKind call_kind =
instruction->IsExactCheck() ? LocationSummary::kNoCall : LocationSummary::kCallOnSlowPath;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
// The output does overlap inputs.
// Note that TypeCheckSlowPathMIPS uses this register too.
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) {
LocationSummary* locations = instruction->GetLocations();
Register obj = locations->InAt(0).AsRegister<Register>();
Register cls = locations->InAt(1).AsRegister<Register>();
Register out = locations->Out().AsRegister<Register>();
MipsLabel done;
// Return 0 if `obj` is null.
// TODO: Avoid this check if we know `obj` is not null.
__ Move(out, ZERO);
__ Beqz(obj, &done);
// Compare the class of `obj` with `cls`.
__ LoadFromOffset(kLoadWord, out, obj, mirror::Object::ClassOffset().Int32Value());
if (instruction->IsExactCheck()) {
// Classes must be equal for the instanceof to succeed.
__ Xor(out, out, cls);
__ Sltiu(out, out, 1);
} else {
// If the classes are not equal, we go into a slow path.
DCHECK(locations->OnlyCallsOnSlowPath());
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction);
codegen_->AddSlowPath(slow_path);
__ Bne(out, cls, slow_path->GetEntryLabel());
__ LoadConst32(out, 1);
__ Bind(slow_path->GetExitLabel());
}
__ Bind(&done);
}
void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) {
InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
}
void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
HandleInvoke(invoke);
// The register T0 is required to be used for the hidden argument in
// art_quick_imt_conflict_trampoline, so add the hidden argument.
invoke->GetLocations()->AddTemp(Location::RegisterLocation(T0));
}
void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
Location receiver = invoke->GetLocations()->InAt(0);
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
// Set the hidden argument.
__ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
invoke->GetDexMethodIndex());
// temp = object->GetClass();
if (receiver.IsStackSlot()) {
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
} else {
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
}
codegen_->MaybeRecordImplicitNullCheck(invoke);
__ LoadFromOffset(kLoadWord, temp, temp,
mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
invoke->GetImtIndex(), kMipsPointerSize));
// temp = temp->GetImtEntryAt(method_offset);
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// T9 = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
// T9();
__ Jalr(T9);
__ NopIfNoReordering();
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
return;
}
HandleInvoke(invoke);
}
void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind();
HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
// kDirectAddressWithFixup and kCallDirectWithFixup need no extra input on R6 because
// R6 has PC-relative addressing.
bool has_extra_input = !isR6 &&
((method_load_kind == HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup) ||
(code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup));
if (invoke->HasPcRelativeDexCache()) {
// kDexCachePcRelative is mutually exclusive with
// kDirectAddressWithFixup/kCallDirectWithFixup.
CHECK(!has_extra_input);
has_extra_input = true;
}
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
if (intrinsic.TryDispatch(invoke)) {
if (invoke->GetLocations()->CanCall() && has_extra_input) {
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
}
return;
}
HandleInvoke(invoke);
// Add the extra input register if either the dex cache array base register
// or the PC-relative base register for accessing literals is needed.
if (has_extra_input) {
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
}
}
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
if (invoke->GetLocations()->Intrinsified()) {
IntrinsicCodeGeneratorMIPS intrinsic(codegen);
intrinsic.Dispatch(invoke);
return true;
}
return false;
}
HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind(
HLoadString::LoadKind desired_string_load_kind) {
if (kEmitCompilerReadBarrier) {
UNIMPLEMENTED(FATAL) << "for read barrier";
}
// We disable PC-relative load when there is an irreducible loop, as the optimization
// is incompatible with it.
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
bool fallback_load = has_irreducible_loops;
switch (desired_string_load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
DCHECK(!GetCompilerOptions().GetCompilePic());
break;
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
DCHECK(GetCompilerOptions().GetCompilePic());
break;
case HLoadString::LoadKind::kBootImageAddress:
break;
case HLoadString::LoadKind::kDexCacheAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
fallback_load = false;
break;
case HLoadString::LoadKind::kDexCachePcRelative:
DCHECK(!Runtime::Current()->UseJitCompilation());
// TODO: Create as many MipsDexCacheArraysBase instructions as needed for methods
// with irreducible loops.
break;
case HLoadString::LoadKind::kDexCacheViaMethod:
fallback_load = false;
break;
}
if (fallback_load) {
desired_string_load_kind = HLoadString::LoadKind::kDexCacheViaMethod;
}
return desired_string_load_kind;
}
HLoadClass::LoadKind CodeGeneratorMIPS::GetSupportedLoadClassKind(
HLoadClass::LoadKind desired_class_load_kind) {
if (kEmitCompilerReadBarrier) {
UNIMPLEMENTED(FATAL) << "for read barrier";
}
// We disable pc-relative load when there is an irreducible loop, as the optimization
// is incompatible with it.
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
bool fallback_load = has_irreducible_loops;
switch (desired_class_load_kind) {
case HLoadClass::LoadKind::kReferrersClass:
fallback_load = false;
break;
case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
DCHECK(!GetCompilerOptions().GetCompilePic());
break;
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
DCHECK(GetCompilerOptions().GetCompilePic());
break;
case HLoadClass::LoadKind::kBootImageAddress:
break;
case HLoadClass::LoadKind::kDexCacheAddress:
DCHECK(Runtime::Current()->UseJitCompilation());
fallback_load = false;
break;
case HLoadClass::LoadKind::kDexCachePcRelative:
DCHECK(!Runtime::Current()->UseJitCompilation());
// TODO: Create as many MipsDexCacheArraysBase instructions as needed for methods
// with irreducible loops.
break;
case HLoadClass::LoadKind::kDexCacheViaMethod:
fallback_load = false;
break;
}
if (fallback_load) {
desired_class_load_kind = HLoadClass::LoadKind::kDexCacheViaMethod;
}
return desired_class_load_kind;
}
Register CodeGeneratorMIPS::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
Register temp) {
CHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
if (!invoke->GetLocations()->Intrinsified()) {
return location.AsRegister<Register>();
}
// For intrinsics we allow any location, so it may be on the stack.
if (!location.IsRegister()) {
__ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
return temp;
}
// For register locations, check if the register was saved. If so, get it from the stack.
// Note: There is a chance that the register was saved but not overwritten, so we could
// save one load. However, since this is just an intrinsic slow path we prefer this
// simple and more robust approach rather that trying to determine if that's the case.
SlowPathCode* slow_path = GetCurrentSlowPath();
DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path.
if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
__ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
return temp;
}
return location.AsRegister<Register>();
}
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch(
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
MethodReference target_method ATTRIBUTE_UNUSED) {
HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
// We disable PC-relative load when there is an irreducible loop, as the optimization
// is incompatible with it.
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
bool fallback_load = true;
bool fallback_call = true;
switch (dispatch_info.method_load_kind) {
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative:
fallback_load = has_irreducible_loops;
break;
default:
fallback_load = false;
break;
}
switch (dispatch_info.code_ptr_location) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
fallback_call = has_irreducible_loops;
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
// TODO: Implement this type.
break;
default:
fallback_call = false;
break;
}
if (fallback_load) {
dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
dispatch_info.method_load_data = 0;
}
if (fallback_call) {
dispatch_info.code_ptr_location = HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod;
dispatch_info.direct_code_ptr = 0;
}
return dispatch_info;
}
void CodeGeneratorMIPS::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
// All registers are assumed to be correctly set up per the calling convention.
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind();
HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation();
bool isR6 = isa_features_.IsR6();
// kDirectAddressWithFixup and kCallDirectWithFixup have no extra input on R6 because
// R6 has PC-relative addressing.
bool has_extra_input = invoke->HasPcRelativeDexCache() ||
(!isR6 &&
((method_load_kind == HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup) ||
(code_ptr_location == HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup)));
Register base_reg = has_extra_input
? GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>())
: ZERO;
// For better instruction scheduling we load the direct code pointer before the method pointer.
switch (code_ptr_location) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
// T9 = invoke->GetDirectCodePtr();
__ LoadConst32(T9, invoke->GetDirectCodePtr());
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
// T9 = code address from literal pool with link-time patch.
__ LoadLiteral(T9, base_reg, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
break;
default:
break;
}
switch (method_load_kind) {
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
// temp = thread->string_init_entrypoint
__ LoadFromOffset(kLoadWord,
temp.AsRegister<Register>(),
TR,
invoke->GetStringInitOffset());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
__ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
__ LoadLiteral(temp.AsRegister<Register>(),
base_reg,
DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
break;
case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
HMipsDexCacheArraysBase* base =
invoke->InputAt(invoke->GetSpecialInputIndex())->AsMipsDexCacheArraysBase();
int32_t offset =
invoke->GetDexCacheArrayOffset() - base->GetElementOffset() - kDexCacheArrayLwOffset;
__ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), base_reg, offset);
break;
}
case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
Register reg = temp.AsRegister<Register>();
Register method_reg;
if (current_method.IsRegister()) {
method_reg = current_method.AsRegister<Register>();
} else {
// TODO: use the appropriate DCHECK() here if possible.
// DCHECK(invoke->GetLocations()->Intrinsified());
DCHECK(!current_method.IsValid());
method_reg = reg;
__ Lw(reg, SP, kCurrentMethodStackOffset);
}
// temp = temp->dex_cache_resolved_methods_;
__ LoadFromOffset(kLoadWord,
reg,
method_reg,
ArtMethod::DexCacheResolvedMethodsOffset(kMipsPointerSize).Int32Value());
// temp = temp[index_in_cache];
// Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
uint32_t index_in_cache = invoke->GetDexMethodIndex();
__ LoadFromOffset(kLoadWord,
reg,
reg,
CodeGenerator::GetCachePointerOffset(index_in_cache));
break;
}
}
switch (code_ptr_location) {
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
__ Bal(&frame_entry_label_);
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
// T9 prepared above for better instruction scheduling.
// T9()
__ Jalr(T9);
__ NopIfNoReordering();
break;
case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative:
// TODO: Implement this type.
// Currently filtered out by GetSupportedInvokeStaticOrDirectDispatch().
LOG(FATAL) << "Unsupported";
UNREACHABLE();
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
// T9 = callee_method->entry_point_from_quick_compiled_code_;
__ LoadFromOffset(kLoadWord,
T9,
callee_method.AsRegister<Register>(),
ArtMethod::EntryPointFromQuickCompiledCodeOffset(
kMipsPointerSize).Int32Value());
// T9()
__ Jalr(T9);
__ NopIfNoReordering();
break;
}
DCHECK(!IsLeafMethod());
}
void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
// Explicit clinit checks triggered by static invokes must have been pruned by
// art::PrepareForRegisterAllocation.
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
LocationSummary* locations = invoke->GetLocations();
codegen_->GenerateStaticOrDirectCall(invoke,
locations->HasTemps()
? locations->GetTemp(0)
: Location::NoLocation());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void CodeGeneratorMIPS::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_location) {
LocationSummary* locations = invoke->GetLocations();
Location receiver = locations->InAt(0);
Register temp = temp_location.AsRegister<Register>();
size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
invoke->GetVTableIndex(), kMipsPointerSize).SizeValue();
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
// temp = object->GetClass();
DCHECK(receiver.IsRegister());
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
MaybeRecordImplicitNullCheck(invoke);
// temp = temp->GetMethodAt(method_offset);
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
// T9 = temp->GetEntryPoint();
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
// T9();
__ Jalr(T9);
__ NopIfNoReordering();
}
void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
return;
}
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
DCHECK(!codegen_->IsLeafMethod());
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
}
void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) {
if (cls->NeedsAccessCheck()) {
InvokeRuntimeCallingConvention calling_convention;
CodeGenerator::CreateLoadClassLocationSummary(
cls,
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
Location::RegisterLocation(V0),
/* code_generator_supports_read_barrier */ false); // TODO: revisit this bool.
return;
}
LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || kEmitCompilerReadBarrier)
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
case HLoadClass::LoadKind::kBootImageAddress:
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
if (codegen_->GetInstructionSetFeatures().IsR6()) {
break;
}
FALLTHROUGH_INTENDED;
// We need an extra register for PC-relative dex cache accesses.
case HLoadClass::LoadKind::kDexCachePcRelative:
case HLoadClass::LoadKind::kReferrersClass:
case HLoadClass::LoadKind::kDexCacheViaMethod:
locations->SetInAt(0, Location::RequiresRegister());
break;
default:
break;
}
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) {
LocationSummary* locations = cls->GetLocations();
if (cls->NeedsAccessCheck()) {
codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
codegen_->InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
return;
}
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
Register base_or_current_method_reg;
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
case HLoadClass::LoadKind::kBootImageAddress:
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
base_or_current_method_reg = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
break;
// We need an extra register for PC-relative dex cache accesses.
case HLoadClass::LoadKind::kDexCachePcRelative:
case HLoadClass::LoadKind::kReferrersClass:
case HLoadClass::LoadKind::kDexCacheViaMethod:
base_or_current_method_reg = locations->InAt(0).AsRegister<Register>();
break;
default:
base_or_current_method_reg = ZERO;
break;
}
bool generate_null_check = false;
switch (load_kind) {
case HLoadClass::LoadKind::kReferrersClass: {
DCHECK(!cls->CanCallRuntime());
DCHECK(!cls->MustGenerateClinitCheck());
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
GenerateGcRootFieldLoad(cls,
out_loc,
base_or_current_method_reg,
ArtMethod::DeclaringClassOffset().Int32Value());
break;
}
case HLoadClass::LoadKind::kBootImageLinkTimeAddress:
DCHECK(!kEmitCompilerReadBarrier);
__ LoadLiteral(out,
base_or_current_method_reg,
codegen_->DeduplicateBootImageTypeLiteral(cls->GetDexFile(),
cls->GetTypeIndex()));
break;
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(!kEmitCompilerReadBarrier);
CodeGeneratorMIPS::PcRelativePatchInfo* info =
codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
bool reordering = __ SetReorder(false);
if (isR6) {
__ Bind(&info->high_label);
__ Bind(&info->pc_rel_label);
// Add a 32-bit offset to PC.
__ Auipc(out, /* placeholder */ 0x1234);
__ Addiu(out, out, /* placeholder */ 0x5678);
} else {
__ Bind(&info->high_label);
__ Lui(out, /* placeholder */ 0x1234);
// We do not bind info->pc_rel_label here, we'll use the assembler's label
// for PC-relative literals and the base from HMipsComputeBaseMethodAddress.
__ Ori(out, out, /* placeholder */ 0x5678);
// Add a 32-bit offset to PC.
__ Addu(out, out, base_or_current_method_reg);
}
__ SetReorder(reordering);
break;
}
case HLoadClass::LoadKind::kBootImageAddress: {
DCHECK(!kEmitCompilerReadBarrier);
DCHECK_NE(cls->GetAddress(), 0u);
uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
__ LoadLiteral(out,
base_or_current_method_reg,
codegen_->DeduplicateBootImageAddressLiteral(address));
break;
}
case HLoadClass::LoadKind::kDexCacheAddress: {
DCHECK_NE(cls->GetAddress(), 0u);
uint32_t address = dchecked_integral_cast<uint32_t>(cls->GetAddress());
static_assert(sizeof(GcRoot<mirror::Class>) == 4u, "Expected GC root to be 4 bytes.");
DCHECK_ALIGNED(cls->GetAddress(), 4u);
int16_t offset = Low16Bits(address);
uint32_t base_address = address - offset; // This accounts for offset sign extension.
__ Lui(out, High16Bits(base_address));
// /* GcRoot<mirror::Class> */ out = *(base_address + offset)
GenerateGcRootFieldLoad(cls, out_loc, out, offset);
generate_null_check = !cls->IsInDexCache();
break;
}
case HLoadClass::LoadKind::kDexCachePcRelative: {
HMipsDexCacheArraysBase* base = cls->InputAt(0)->AsMipsDexCacheArraysBase();
int32_t offset =
cls->GetDexCacheElementOffset() - base->GetElementOffset() - kDexCacheArrayLwOffset;
// /* GcRoot<mirror::Class> */ out = *(dex_cache_arrays_base + offset)
GenerateGcRootFieldLoad(cls, out_loc, base_or_current_method_reg, offset);
generate_null_check = !cls->IsInDexCache();
break;
}
case HLoadClass::LoadKind::kDexCacheViaMethod: {
// /* GcRoot<mirror::Class>[] */ out =
// current_method.ptr_sized_fields_->dex_cache_resolved_types_
__ LoadFromOffset(kLoadWord,
out,
base_or_current_method_reg,
ArtMethod::DexCacheResolvedTypesOffset(kArmPointerSize).Int32Value());
// /* GcRoot<mirror::Class> */ out = out[type_index]
size_t offset = CodeGenerator::GetCacheOffset(cls->GetTypeIndex());
GenerateGcRootFieldLoad(cls, out_loc, out, offset);
generate_null_check = !cls->IsInDexCache();
}
}
if (generate_null_check || cls->MustGenerateClinitCheck()) {
DCHECK(cls->CanCallRuntime());
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
codegen_->AddSlowPath(slow_path);
if (generate_null_check) {
__ Beqz(out, slow_path->GetEntryLabel());
}
if (cls->MustGenerateClinitCheck()) {
GenerateClassInitializationCheck(slow_path, out);
} else {
__ Bind(slow_path->GetExitLabel());
}
}
}
static int32_t GetExceptionTlsOffset() {
return Thread::ExceptionOffset<kMipsPointerSize>().Int32Value();
}
void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) {
Register out = load->GetLocations()->Out().AsRegister<Register>();
__ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
}
void LocationsBuilderMIPS::VisitClearException(HClearException* clear) {
new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
}
void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
__ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset());
}
void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) {
LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
HLoadString::LoadKind load_kind = load->GetLoadKind();
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
case HLoadString::LoadKind::kBootImageAddress:
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
if (codegen_->GetInstructionSetFeatures().IsR6()) {
break;
}
FALLTHROUGH_INTENDED;
// We need an extra register for PC-relative dex cache accesses.
case HLoadString::LoadKind::kDexCachePcRelative:
case HLoadString::LoadKind::kDexCacheViaMethod:
locations->SetInAt(0, Location::RequiresRegister());
break;
default:
break;
}
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) {
HLoadString::LoadKind load_kind = load->GetLoadKind();
LocationSummary* locations = load->GetLocations();
Location out_loc = locations->Out();
Register out = out_loc.AsRegister<Register>();
Register base_or_current_method_reg;
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (load_kind) {
// We need an extra register for PC-relative literals on R2.
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
case HLoadString::LoadKind::kBootImageAddress:
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
base_or_current_method_reg = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
break;
default:
base_or_current_method_reg = ZERO;
break;
}
switch (load_kind) {
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
DCHECK(!kEmitCompilerReadBarrier);
__ LoadLiteral(out,
base_or_current_method_reg,
codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
load->GetStringIndex()));
return; // No dex cache slow path.
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
DCHECK(!kEmitCompilerReadBarrier);
CodeGeneratorMIPS::PcRelativePatchInfo* info =
codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
bool reordering = __ SetReorder(false);
if (isR6) {
__ Bind(&info->high_label);
__ Bind(&info->pc_rel_label);
// Add a 32-bit offset to PC.
__ Auipc(out, /* placeholder */ 0x1234);
__ Addiu(out, out, /* placeholder */ 0x5678);
} else {
__ Bind(&info->high_label);
__ Lui(out, /* placeholder */ 0x1234);
// We do not bind info->pc_rel_label here, we'll use the assembler's label
// for PC-relative literals and the base from HMipsComputeBaseMethodAddress.
__ Ori(out, out, /* placeholder */ 0x5678);
// Add a 32-bit offset to PC.
__ Addu(out, out, base_or_current_method_reg);
}
__ SetReorder(reordering);
return; // No dex cache slow path.
}
case HLoadString::LoadKind::kBootImageAddress: {
DCHECK(!kEmitCompilerReadBarrier);
DCHECK_NE(load->GetAddress(), 0u);
uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
__ LoadLiteral(out,
base_or_current_method_reg,
codegen_->DeduplicateBootImageAddressLiteral(address));
return; // No dex cache slow path.
}
default:
break;
}
// TODO: Re-add the compiler code to do string dex cache lookup again.
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathMIPS(load);
codegen_->AddSlowPath(slow_path);
__ B(slow_path->GetEntryLabel());
__ Bind(slow_path->GetExitLabel());
}
void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
locations->SetOut(Location::ConstantLocation(constant));
}
void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
// Will be generated at use site.
}
void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
if (instruction->IsEnter()) {
codegen_->InvokeRuntime(kQuickLockObject, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
} else {
codegen_->InvokeRuntime(kQuickUnlockObject, instruction, instruction->GetDexPc());
}
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
}
void LocationsBuilderMIPS::VisitMul(HMul* mul) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
switch (mul->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetInAt(1, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register lhs = locations->InAt(0).AsRegister<Register>();
Register rhs = locations->InAt(1).AsRegister<Register>();
if (isR6) {
__ MulR6(dst, lhs, rhs);
} else {
__ MulR2(dst, lhs, rhs);
}
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
// Extra checks to protect caused by the existance of A1_A2.
// The algorithm is wrong if dst_high is either lhs_lo or rhs_lo:
// (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2).
DCHECK_NE(dst_high, lhs_low);
DCHECK_NE(dst_high, rhs_low);
// A_B * C_D
// dst_hi: [ low(A*D) + low(B*C) + hi(B*D) ]
// dst_lo: [ low(B*D) ]
// Note: R2 and R6 MUL produce the low 32 bit of the multiplication result.
if (isR6) {
__ MulR6(TMP, lhs_high, rhs_low);
__ MulR6(dst_high, lhs_low, rhs_high);
__ Addu(dst_high, dst_high, TMP);
__ MuhuR6(TMP, lhs_low, rhs_low);
__ Addu(dst_high, dst_high, TMP);
__ MulR6(dst_low, lhs_low, rhs_low);
} else {
__ MulR2(TMP, lhs_high, rhs_low);
__ MulR2(dst_high, lhs_low, rhs_high);
__ Addu(dst_high, dst_high, TMP);
__ MultuR2(lhs_low, rhs_low);
__ Mfhi(TMP);
__ Addu(dst_high, dst_high, TMP);
__ Mflo(dst_low);
}
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ MulS(dst, lhs, rhs);
} else {
__ MulD(dst, lhs, rhs);
}
break;
}
default:
LOG(FATAL) << "Unexpected mul type " << type;
}
}
void LocationsBuilderMIPS::VisitNeg(HNeg* neg) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
switch (neg->GetResultType()) {
case Primitive::kPrimInt:
case Primitive::kPrimLong:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
locations->SetInAt(0, Location::RequiresFpuRegister());
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
break;
default:
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
}
}
void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
__ Subu(dst, ZERO, src);
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
__ Subu(dst_low, ZERO, src_low);
__ Sltu(TMP, ZERO, dst_low);
__ Subu(dst_high, ZERO, src_high);
__ Subu(dst_high, dst_high, TMP);
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
if (type == Primitive::kPrimFloat) {
__ NegS(dst, src);
} else {
__ NegD(dst, src);
}
break;
}
default:
LOG(FATAL) << "Unexpected neg type " << type;
}
}
void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) {
InvokeRuntimeCallingConvention calling_convention;
Register current_method_register = calling_convention.GetRegisterAt(2);
__ Lw(current_method_register, SP, kCurrentMethodStackOffset);
// Move an uint16_t value to a register.
__ LoadConst32(calling_convention.GetRegisterAt(0), instruction->GetTypeIndex());
codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck,
void*, uint32_t, int32_t, ArtMethod*>();
}
void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
if (instruction->IsStringAlloc()) {
locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
} else {
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
}
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
}
void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) {
if (instruction->IsStringAlloc()) {
// String is allocated through StringFactory. Call NewEmptyString entry point.
Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
__ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
__ LoadFromOffset(kLoadWord, T9, temp, code_offset.Int32Value());
__ Jalr(T9);
__ NopIfNoReordering();
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
} else {
codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
}
}
void LocationsBuilderMIPS::VisitNot(HNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) {
Primitive::Type type = instruction->GetType();
LocationSummary* locations = instruction->GetLocations();
switch (type) {
case Primitive::kPrimInt: {
Register dst = locations->Out().AsRegister<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
__ Nor(dst, src, ZERO);
break;
}
case Primitive::kPrimLong: {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
__ Nor(dst_high, src_high, ZERO);
__ Nor(dst_low, src_low, ZERO);
break;
}
default:
LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
}
}
void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) {
LocationSummary* locations = instruction->GetLocations();
__ Xori(locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
1);
}
void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) {
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
? LocationSummary::kCallOnSlowPath
: LocationSummary::kNoCall;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
locations->SetInAt(0, Location::RequiresRegister());
if (instruction->HasUses()) {
locations->SetOut(Location::SameAsFirstInput());
}
}
void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) {
if (CanMoveNullCheckToUser(instruction)) {
return;
}
Location obj = instruction->GetLocations()->InAt(0);
__ Lw(ZERO, obj.AsRegister<Register>(), 0);
RecordPcInfo(instruction, instruction->GetDexPc());
}
void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) {
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathMIPS(instruction);
AddSlowPath(slow_path);
Location obj = instruction->GetLocations()->InAt(0);
__ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
}
void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) {
codegen_->GenerateNullCheck(instruction);
}
void LocationsBuilderMIPS::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) {
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
}
void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
if (location.IsStackSlot()) {
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
} else if (location.IsDoubleStackSlot()) {
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
}
locations->SetOut(location);
}
void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction
ATTRIBUTE_UNUSED) {
// Nothing to do, the parameter is already at its location.
}
void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
}
void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction
ATTRIBUTE_UNUSED) {
// Nothing to do, the method is already at its location.
}
void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
locations->SetInAt(i, Location::Any());
}
locations->SetOut(Location::Any());
}
void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderMIPS::VisitRem(HRem* rem) {
Primitive::Type type = rem->GetResultType();
LocationSummary::CallKind call_kind =
(type == Primitive::kPrimInt) ? LocationSummary::kNoCall : LocationSummary::kCallOnMainOnly;
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
switch (type) {
case Primitive::kPrimInt:
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
break;
case Primitive::kPrimLong: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
locations->SetInAt(1, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
case Primitive::kPrimFloat:
case Primitive::kPrimDouble: {
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
locations->SetOut(calling_convention.GetReturnLocation(type));
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) {
Primitive::Type type = instruction->GetType();
switch (type) {
case Primitive::kPrimInt:
GenerateDivRemIntegral(instruction);
break;
case Primitive::kPrimLong: {
codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
break;
}
case Primitive::kPrimFloat: {
codegen_->InvokeRuntime(kQuickFmodf, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickFmodf, float, float, float>();
break;
}
case Primitive::kPrimDouble: {
codegen_->InvokeRuntime(kQuickFmod, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickFmod, double, double, double>();
break;
}
default:
LOG(FATAL) << "Unexpected rem type " << type;
}
}
void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
memory_barrier->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
}
void LocationsBuilderMIPS::VisitReturn(HReturn* ret) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret);
Primitive::Type return_type = ret->InputAt(0)->GetType();
locations->SetInAt(0, MipsReturnLocation(return_type));
}
void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) {
ret->SetLocations(nullptr);
}
void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
codegen_->GenerateFrameExit();
}
void LocationsBuilderMIPS::VisitRor(HRor* ror) {
HandleShift(ror);
}
void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) {
HandleShift(ror);
}
void LocationsBuilderMIPS::VisitShl(HShl* shl) {
HandleShift(shl);
}
void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) {
HandleShift(shl);
}
void LocationsBuilderMIPS::VisitShr(HShr* shr) {
HandleShift(shr);
}
void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) {
HandleShift(shr);
}
void LocationsBuilderMIPS::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo());
}
void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
}
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet(
HUnresolvedInstanceFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet(
HUnresolvedInstanceFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet(
HUnresolvedStaticFieldGet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
instruction->GetFieldType(),
calling_convention);
}
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet(
HUnresolvedStaticFieldSet* instruction) {
FieldAccessCallingConventionMIPS calling_convention;
codegen_->GenerateUnresolvedFieldAccess(instruction,
instruction->GetFieldType(),
instruction->GetFieldIndex(),
instruction->GetDexPc(),
calling_convention);
}
void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
}
void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
HBasicBlock* block = instruction->GetBlock();
if (block->GetLoopInformation() != nullptr) {
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
// The back edge will generate the suspend check.
return;
}
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
// The goto will generate the suspend check.
return;
}
GenerateSuspendCheck(instruction, nullptr);
}
void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
InvokeRuntimeCallingConvention calling_convention;
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
}
void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) {
codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
}
void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) {
Primitive::Type input_type = conversion->GetInputType();
Primitive::Type result_type = conversion->GetResultType();
DCHECK_NE(input_type, result_type);
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
(result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
}
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
if (!isR6 &&
((Primitive::IsFloatingPointType(result_type) && input_type == Primitive::kPrimLong) ||
(result_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(input_type)))) {
call_kind = LocationSummary::kCallOnMainOnly;
}
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
if (call_kind == LocationSummary::kNoCall) {
if (Primitive::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::RequiresFpuRegister());
} else {
locations->SetInAt(0, Location::RequiresRegister());
}
if (Primitive::IsFloatingPointType(result_type)) {
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
} else {
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
}
} else {
InvokeRuntimeCallingConvention calling_convention;
if (Primitive::IsFloatingPointType(input_type)) {
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
} else {
DCHECK_EQ(input_type, Primitive::kPrimLong);
locations->SetInAt(0, Location::RegisterPairLocation(
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
}
locations->SetOut(calling_convention.GetReturnLocation(result_type));
}
}
void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) {
LocationSummary* locations = conversion->GetLocations();
Primitive::Type result_type = conversion->GetResultType();
Primitive::Type input_type = conversion->GetInputType();
bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
DCHECK_NE(input_type, result_type);
if (result_type == Primitive::kPrimLong && Primitive::IsIntegralType(input_type)) {
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
Register src = locations->InAt(0).AsRegister<Register>();
if (dst_low != src) {
__ Move(dst_low, src);
}
__ Sra(dst_high, src, 31);
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
Register dst = locations->Out().AsRegister<Register>();
Register src = (input_type == Primitive::kPrimLong)
? locations->InAt(0).AsRegisterPairLow<Register>()
: locations->InAt(0).AsRegister<Register>();
switch (result_type) {
case Primitive::kPrimChar:
__ Andi(dst, src, 0xFFFF);
break;
case Primitive::kPrimByte:
if (has_sign_extension) {
__ Seb(dst, src);
} else {
__ Sll(dst, src, 24);
__ Sra(dst, dst, 24);
}
break;
case Primitive::kPrimShort:
if (has_sign_extension) {
__ Seh(dst, src);
} else {
__ Sll(dst, src, 16);
__ Sra(dst, dst, 16);
}
break;
case Primitive::kPrimInt:
if (dst != src) {
__ Move(dst, src);
}
break;
default:
LOG(FATAL) << "Unexpected type conversion from " << input_type
<< " to " << result_type;
}
} else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
if (input_type == Primitive::kPrimLong) {
if (isR6) {
// cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
// architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
__ Mtc1(src_low, FTMP);
__ Mthc1(src_high, FTMP);
if (result_type == Primitive::kPrimFloat) {
__ Cvtsl(dst, FTMP);
} else {
__ Cvtdl(dst, FTMP);
}
} else {
QuickEntrypointEnum entrypoint = (result_type == Primitive::kPrimFloat) ? kQuickL2f
: kQuickL2d;
codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
if (result_type == Primitive::kPrimFloat) {
CheckEntrypointTypes<kQuickL2f, float, int64_t>();
} else {
CheckEntrypointTypes<kQuickL2d, double, int64_t>();
}
}
} else {
Register src = locations->InAt(0).AsRegister<Register>();
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
__ Mtc1(src, FTMP);
if (result_type == Primitive::kPrimFloat) {
__ Cvtsw(dst, FTMP);
} else {
__ Cvtdw(dst, FTMP);
}
}
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
if (result_type == Primitive::kPrimLong) {
if (isR6) {
// trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
// architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
MipsLabel truncate;
MipsLabel done;
// When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive
// value when the input is either a NaN or is outside of the range of the output type
// after the truncation. IOW, the three special cases (NaN, too small, too big) produce
// the same result.
//
// When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum
// value of the output type if the input is outside of the range after the truncation or
// produces 0 when the input is a NaN. IOW, the three special cases produce three distinct
// results. This matches the desired float/double-to-int/long conversion exactly.
//
// So, NAN2008 affects handling of negative values and NaNs by the truncate instruction.
//
// The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate
// instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6,
// even though it must be NAN2008=1 on R6.
//
// The code takes care of the different behaviors by first comparing the input to the
// minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int).
// If the input is greater than or equal to the minimum, it procedes to the truncate
// instruction, which will handle such an input the same way irrespective of NAN2008.
// Otherwise the input is compared to itself to determine whether it is a NaN or not
// in order to return either zero or the minimum value.
//
// TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the
// truncate instruction for MIPS64R6.
if (input_type == Primitive::kPrimFloat) {
uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int64_t>::min());
__ LoadConst32(TMP, min_val);
__ Mtc1(TMP, FTMP);
__ CmpLeS(FTMP, FTMP, src);
} else {
uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int64_t>::min());
__ LoadConst32(TMP, High32Bits(min_val));
__ Mtc1(ZERO, FTMP);
__ Mthc1(TMP, FTMP);
__ CmpLeD(FTMP, FTMP, src);
}
__ Bc1nez(FTMP, &truncate);
if (input_type == Primitive::kPrimFloat) {
__ CmpEqS(FTMP, src, src);
} else {
__ CmpEqD(FTMP, src, src);
}
__ Move(dst_low, ZERO);
__ LoadConst32(dst_high, std::numeric_limits<int32_t>::min());
__ Mfc1(TMP, FTMP);
__ And(dst_high, dst_high, TMP);
__ B(&done);
__ Bind(&truncate);
if (input_type == Primitive::kPrimFloat) {
__ TruncLS(FTMP, src);
} else {
__ TruncLD(FTMP, src);
}
__ Mfc1(dst_low, FTMP);
__ Mfhc1(dst_high, FTMP);
__ Bind(&done);
} else {
QuickEntrypointEnum entrypoint = (input_type == Primitive::kPrimFloat) ? kQuickF2l
: kQuickD2l;
codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
if (input_type == Primitive::kPrimFloat) {
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
} else {
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
}
}
} else {
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
Register dst = locations->Out().AsRegister<Register>();
MipsLabel truncate;
MipsLabel done;
// The following code supports both NAN2008=0 and NAN2008=1 behaviors of the truncate
// instruction, the reason being that the emulator implements NAN2008=0 on MIPS64R6,
// even though it must be NAN2008=1 on R6.
//
// For details see the large comment above for the truncation of float/double to long on R6.
//
// TODO: simplify this when the emulator correctly implements NAN2008=1 behavior of the
// truncate instruction for MIPS64R6.
if (input_type == Primitive::kPrimFloat) {
uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min());
__ LoadConst32(TMP, min_val);
__ Mtc1(TMP, FTMP);
} else {
uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min());
__ LoadConst32(TMP, High32Bits(min_val));
__ Mtc1(ZERO, FTMP);
__ MoveToFpuHigh(TMP, FTMP);
}
if (isR6) {
if (input_type == Primitive::kPrimFloat) {
__ CmpLeS(FTMP, FTMP, src);
} else {
__ CmpLeD(FTMP, FTMP, src);
}
__ Bc1nez(FTMP, &truncate);
if (input_type == Primitive::kPrimFloat) {
__ CmpEqS(FTMP, src, src);
} else {
__ CmpEqD(FTMP, src, src);
}
__ LoadConst32(dst, std::numeric_limits<int32_t>::min());
__ Mfc1(TMP, FTMP);
__ And(dst, dst, TMP);
} else {
if (input_type == Primitive::kPrimFloat) {
__ ColeS(0, FTMP, src);
} else {
__ ColeD(0, FTMP, src);
}
__ Bc1t(0, &truncate);
if (input_type == Primitive::kPrimFloat) {
__ CeqS(0, src, src);
} else {
__ CeqD(0, src, src);
}
__ LoadConst32(dst, std::numeric_limits<int32_t>::min());
__ Movf(dst, ZERO, 0);
}
__ B(&done);
__ Bind(&truncate);
if (input_type == Primitive::kPrimFloat) {
__ TruncWS(FTMP, src);
} else {
__ TruncWD(FTMP, src);
}
__ Mfc1(dst, FTMP);
__ Bind(&done);
}
} else if (Primitive::IsFloatingPointType(result_type) &&
Primitive::IsFloatingPointType(input_type)) {
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
if (result_type == Primitive::kPrimFloat) {
__ Cvtsd(dst, src);
} else {
__ Cvtds(dst, src);
}
} else {
LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
<< " to " << result_type;
}
}
void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) {
HandleShift(ushr);
}
void LocationsBuilderMIPS::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) {
HandleBinaryOp(instruction);
}
void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
// Nothing to do, this should be removed during prepare for register allocator.
LOG(FATAL) << "Unreachable";
}
void LocationsBuilderMIPS::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
HandleCondition(comp);
}
void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
int32_t lower_bound = switch_instr->GetStartValue();
int32_t num_entries = switch_instr->GetNumEntries();
LocationSummary* locations = switch_instr->GetLocations();
Register value_reg = locations->InAt(0).AsRegister<Register>();
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
// Create a set of compare/jumps.
Register temp_reg = TMP;
__ Addiu32(temp_reg, value_reg, -lower_bound);
// Jump to default if index is negative
// Note: We don't check the case that index is positive while value < lower_bound, because in
// this case, index >= num_entries must be true. So that we can save one branch instruction.
__ Bltz(temp_reg, codegen_->GetLabelOf(default_block));
const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
// Jump to successors[0] if value == lower_bound.
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[0]));
int32_t last_index = 0;
for (; num_entries - last_index > 2; last_index += 2) {
__ Addiu(temp_reg, temp_reg, -2);
// Jump to successors[last_index + 1] if value < case_value[last_index + 2].
__ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
// Jump to successors[last_index + 2] if value == case_value[last_index + 2].
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2]));
}
if (num_entries - last_index == 2) {
// The last missing case_value.
__ Addiu(temp_reg, temp_reg, -1);
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
}
// And the default for any other value.
if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
__ B(codegen_->GetLabelOf(default_block));
}
}
void LocationsBuilderMIPS::VisitMipsComputeBaseMethodAddress(
HMipsComputeBaseMethodAddress* insn) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitMipsComputeBaseMethodAddress(
HMipsComputeBaseMethodAddress* insn) {
LocationSummary* locations = insn->GetLocations();
Register reg = locations->Out().AsRegister<Register>();
CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
// Generate a dummy PC-relative call to obtain PC.
__ Nal();
// Grab the return address off RA.
__ Move(reg, RA);
// TODO: Can we share this code with that of VisitMipsDexCacheArraysBase()?
// Remember this offset (the obtained PC value) for later use with constant area.
__ BindPcRelBaseLabel();
}
void LocationsBuilderMIPS::VisitMipsDexCacheArraysBase(HMipsDexCacheArraysBase* base) {
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(base);
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitMipsDexCacheArraysBase(HMipsDexCacheArraysBase* base) {
Register reg = base->GetLocations()->Out().AsRegister<Register>();
CodeGeneratorMIPS::PcRelativePatchInfo* info =
codegen_->NewPcRelativeDexCacheArrayPatch(base->GetDexFile(), base->GetElementOffset());
bool reordering = __ SetReorder(false);
if (codegen_->GetInstructionSetFeatures().IsR6()) {
__ Bind(&info->high_label);
__ Bind(&info->pc_rel_label);
// Add a 32-bit offset to PC.
__ Auipc(reg, /* placeholder */ 0x1234);
__ Addiu(reg, reg, /* placeholder */ 0x5678);
} else {
// Generate a dummy PC-relative call to obtain PC.
__ Nal();
__ Bind(&info->high_label);
__ Lui(reg, /* placeholder */ 0x1234);
__ Bind(&info->pc_rel_label);
__ Ori(reg, reg, /* placeholder */ 0x5678);
// Add a 32-bit offset to PC.
__ Addu(reg, reg, RA);
// TODO: Can we share this code with that of VisitMipsComputeBaseMethodAddress()?
}
__ SetReorder(reordering);
}
void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
// The trampoline uses the same calling convention as dex calling conventions,
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
// the method_idx.
HandleInvoke(invoke);
}
void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
}
void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations =
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
locations->SetInAt(0, Location::RequiresRegister());
locations->SetOut(Location::RequiresRegister());
}
void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
instruction->GetIndex(), kMipsPointerSize).SizeValue();
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
method_offset);
} else {
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
instruction->GetIndex(), kMipsPointerSize));
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->InAt(0).AsRegister<Register>(),
mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
__ LoadFromOffset(kLoadWord,
locations->Out().AsRegister<Register>(),
locations->Out().AsRegister<Register>(),
method_offset);
}
}
#undef __
#undef QUICK_ENTRY_POINT
} // namespace mips
} // namespace art