| /* |
| * Copyright (C) 2017 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #ifndef ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |
| #define ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |
| |
| // This #include should never be used by compilation, because this header file (nodes_vector.h) |
| // is included in the header file nodes.h itself. However it gives editing tools better context. |
| #include "nodes.h" |
| |
| namespace art { |
| |
| // Memory alignment, represented as an offset relative to a base, where 0 <= offset < base, |
| // and base is a power of two. For example, the value Alignment(16, 0) means memory is |
| // perfectly aligned at a 16-byte boundary, whereas the value Alignment(16, 4) means |
| // memory is always exactly 4 bytes above such a boundary. |
| class Alignment { |
| public: |
| Alignment(size_t base, size_t offset) : base_(base), offset_(offset) { |
| DCHECK_LT(offset, base); |
| DCHECK(IsPowerOfTwo(base)); |
| } |
| |
| // Returns true if memory is at least aligned at the given boundary. |
| // Assumes requested base is power of two. |
| bool IsAlignedAt(size_t base) const { |
| DCHECK_NE(0u, base); |
| DCHECK(IsPowerOfTwo(base)); |
| return ((offset_ | base_) & (base - 1u)) == 0; |
| } |
| |
| size_t Base() const { return base_; } |
| |
| size_t Offset() const { return offset_; } |
| |
| std::string ToString() const { |
| return "ALIGN(" + std::to_string(base_) + "," + std::to_string(offset_) + ")"; |
| } |
| |
| bool operator==(const Alignment& other) const { |
| return base_ == other.base_ && offset_ == other.offset_; |
| } |
| |
| private: |
| size_t base_; |
| size_t offset_; |
| }; |
| |
| // |
| // Definitions of abstract vector operations in HIR. |
| // |
| |
| // Abstraction of a vector operation, i.e., an operation that performs |
| // GetVectorLength() x GetPackedType() operations simultaneously. |
| class HVecOperation : public HVariableInputSizeInstruction { |
| public: |
| // A SIMD operation looks like a FPU location. |
| // TODO: we could introduce SIMD types in HIR. |
| static constexpr DataType::Type kSIMDType = DataType::Type::kFloat64; |
| |
| HVecOperation(InstructionKind kind, |
| ArenaAllocator* allocator, |
| DataType::Type packed_type, |
| SideEffects side_effects, |
| size_t number_of_inputs, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVariableInputSizeInstruction(kind, |
| kSIMDType, |
| side_effects, |
| dex_pc, |
| allocator, |
| number_of_inputs, |
| kArenaAllocVectorNode), |
| vector_length_(vector_length) { |
| SetPackedField<PackedTypeField>(packed_type); |
| DCHECK_LT(1u, vector_length); |
| } |
| |
| // Returns the number of elements packed in a vector. |
| size_t GetVectorLength() const { |
| return vector_length_; |
| } |
| |
| // Returns the number of bytes in a full vector. |
| size_t GetVectorNumberOfBytes() const { |
| return vector_length_ * DataType::Size(GetPackedType()); |
| } |
| |
| // Returns the true component type packed in a vector. |
| DataType::Type GetPackedType() const { |
| return GetPackedField<PackedTypeField>(); |
| } |
| |
| // Assumes vector nodes cannot be moved by default. Each concrete implementation |
| // that can be moved should override this method and return true. |
| // |
| // Note: similar approach is used for instruction scheduling (if it is turned on for the target): |
| // by default HScheduler::IsSchedulable returns false for a particular HVecOperation. |
| // HScheduler${ARCH}::IsSchedulable can be overridden to return true for an instruction (see |
| // scheduler_arm64.h for example) if it is safe to schedule it; in this case one *must* also |
| // look at/update HScheduler${ARCH}::IsSchedulingBarrier for this instruction. |
| // |
| // Note: For newly introduced vector instructions HScheduler${ARCH}::IsSchedulingBarrier must be |
| // altered to return true if the instruction might reside outside the SIMD loop body since SIMD |
| // registers are not kept alive across vector loop boundaries (yet). |
| bool CanBeMoved() const OVERRIDE { return false; } |
| |
| // Tests if all data of a vector node (vector length and packed type) is equal. |
| // Each concrete implementation that adds more fields should test equality of |
| // those fields in its own method *and* call all super methods. |
| bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsVecOperation()); |
| const HVecOperation* o = other->AsVecOperation(); |
| return GetVectorLength() == o->GetVectorLength() && GetPackedType() == o->GetPackedType(); |
| } |
| |
| // Maps an integral type to the same-size signed type and leaves other types alone. |
| static DataType::Type ToSignedType(DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kBool: // 1-byte storage unit |
| case DataType::Type::kUint8: |
| return DataType::Type::kInt8; |
| case DataType::Type::kUint16: |
| return DataType::Type::kInt16; |
| default: |
| DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type; |
| return type; |
| } |
| } |
| |
| // Maps an integral type to the same-size unsigned type and leaves other types alone. |
| static DataType::Type ToUnsignedType(DataType::Type type) { |
| switch (type) { |
| case DataType::Type::kBool: // 1-byte storage unit |
| case DataType::Type::kInt8: |
| return DataType::Type::kUint8; |
| case DataType::Type::kInt16: |
| return DataType::Type::kUint16; |
| default: |
| DCHECK(type != DataType::Type::kVoid && type != DataType::Type::kReference) << type; |
| return type; |
| } |
| } |
| |
| // Maps an integral type to the same-size (un)signed type. Leaves other types alone. |
| static DataType::Type ToProperType(DataType::Type type, bool is_unsigned) { |
| return is_unsigned ? ToUnsignedType(type) : ToSignedType(type); |
| } |
| |
| // Helper method to determine if an instruction returns a SIMD value. |
| // TODO: This method is needed until we introduce SIMD as proper type. |
| static bool ReturnsSIMDValue(HInstruction* instruction) { |
| if (instruction->IsVecOperation()) { |
| return !instruction->IsVecExtractScalar(); // only scalar returning vec op |
| } else if (instruction->IsPhi()) { |
| // Vectorizer only uses Phis in reductions, so checking for a 2-way phi |
| // with a direct vector operand as second argument suffices. |
| return |
| instruction->GetType() == kSIMDType && |
| instruction->InputCount() == 2 && |
| instruction->InputAt(1)->IsVecOperation(); |
| } |
| return false; |
| } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(VecOperation); |
| |
| protected: |
| // Additional packed bits. |
| static constexpr size_t kFieldPackedType = HInstruction::kNumberOfGenericPackedBits; |
| static constexpr size_t kFieldPackedTypeSize = |
| MinimumBitsToStore(static_cast<size_t>(DataType::Type::kLast)); |
| static constexpr size_t kNumberOfVectorOpPackedBits = kFieldPackedType + kFieldPackedTypeSize; |
| static_assert(kNumberOfVectorOpPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| using PackedTypeField = BitField<DataType::Type, kFieldPackedType, kFieldPackedTypeSize>; |
| |
| DEFAULT_COPY_CONSTRUCTOR(VecOperation); |
| |
| private: |
| const size_t vector_length_; |
| }; |
| |
| // Abstraction of a unary vector operation. |
| class HVecUnaryOperation : public HVecOperation { |
| public: |
| HVecUnaryOperation(InstructionKind kind, |
| ArenaAllocator* allocator, |
| HInstruction* input, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(kind, |
| allocator, |
| packed_type, |
| SideEffects::None(), |
| /* number_of_inputs */ 1, |
| vector_length, |
| dex_pc) { |
| SetRawInputAt(0, input); |
| } |
| |
| HInstruction* GetInput() const { return InputAt(0); } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(VecUnaryOperation); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecUnaryOperation); |
| }; |
| |
| // Abstraction of a binary vector operation. |
| class HVecBinaryOperation : public HVecOperation { |
| public: |
| HVecBinaryOperation(InstructionKind kind, |
| ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(kind, |
| allocator, |
| packed_type, |
| SideEffects::None(), |
| /* number_of_inputs */ 2, |
| vector_length, |
| dex_pc) { |
| SetRawInputAt(0, left); |
| SetRawInputAt(1, right); |
| } |
| |
| HInstruction* GetLeft() const { return InputAt(0); } |
| HInstruction* GetRight() const { return InputAt(1); } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(VecBinaryOperation); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecBinaryOperation); |
| }; |
| |
| // Abstraction of a vector operation that references memory, with an alignment. |
| // The Android runtime guarantees elements have at least natural alignment. |
| class HVecMemoryOperation : public HVecOperation { |
| public: |
| HVecMemoryOperation(InstructionKind kind, |
| ArenaAllocator* allocator, |
| DataType::Type packed_type, |
| SideEffects side_effects, |
| size_t number_of_inputs, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(kind, |
| allocator, |
| packed_type, |
| side_effects, |
| number_of_inputs, |
| vector_length, |
| dex_pc), |
| alignment_(DataType::Size(packed_type), 0) { |
| DCHECK_GE(number_of_inputs, 2u); |
| } |
| |
| void SetAlignment(Alignment alignment) { alignment_ = alignment; } |
| |
| Alignment GetAlignment() const { return alignment_; } |
| |
| HInstruction* GetArray() const { return InputAt(0); } |
| HInstruction* GetIndex() const { return InputAt(1); } |
| |
| bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsVecMemoryOperation()); |
| const HVecMemoryOperation* o = other->AsVecMemoryOperation(); |
| return HVecOperation::InstructionDataEquals(o) && GetAlignment() == o->GetAlignment(); |
| } |
| |
| DECLARE_ABSTRACT_INSTRUCTION(VecMemoryOperation); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecMemoryOperation); |
| |
| private: |
| Alignment alignment_; |
| }; |
| |
| // Packed type consistency checker ("same vector length" integral types may mix freely). |
| // Tests relaxed type consistency in which packed same-size integral types can co-exist, |
| // but other type mixes are an error. |
| inline static bool HasConsistentPackedTypes(HInstruction* input, DataType::Type type) { |
| if (input->IsPhi()) { |
| return input->GetType() == HVecOperation::kSIMDType; // carries SIMD |
| } |
| DCHECK(input->IsVecOperation()); |
| DataType::Type input_type = input->AsVecOperation()->GetPackedType(); |
| DCHECK_EQ(HVecOperation::ToUnsignedType(input_type) == HVecOperation::ToUnsignedType(type), |
| HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type)); |
| return HVecOperation::ToSignedType(input_type) == HVecOperation::ToSignedType(type); |
| } |
| |
| // |
| // Definitions of concrete unary vector operations in HIR. |
| // |
| |
| // Replicates the given scalar into a vector, |
| // viz. replicate(x) = [ x, .. , x ]. |
| class HVecReplicateScalar FINAL : public HVecUnaryOperation { |
| public: |
| HVecReplicateScalar(ArenaAllocator* allocator, |
| HInstruction* scalar, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecUnaryOperation( |
| kVecReplicateScalar, allocator, scalar, packed_type, vector_length, dex_pc) { |
| DCHECK(!ReturnsSIMDValue(scalar)); |
| } |
| |
| // A replicate needs to stay in place, since SIMD registers are not |
| // kept alive across vector loop boundaries (yet). |
| bool CanBeMoved() const OVERRIDE { return false; } |
| |
| DECLARE_INSTRUCTION(VecReplicateScalar); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecReplicateScalar); |
| }; |
| |
| // Extracts a particular scalar from the given vector, |
| // viz. extract[ x1, .. , xn ] = x_i. |
| // |
| // TODO: for now only i == 1 case supported. |
| class HVecExtractScalar FINAL : public HVecUnaryOperation { |
| public: |
| HVecExtractScalar(ArenaAllocator* allocator, |
| HInstruction* input, |
| DataType::Type packed_type, |
| size_t vector_length, |
| size_t index, |
| uint32_t dex_pc) |
| : HVecUnaryOperation( |
| kVecExtractScalar, allocator, input, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(input, packed_type)); |
| DCHECK_LT(index, vector_length); |
| DCHECK_EQ(index, 0u); |
| // Yields a single component in the vector. |
| // Overrides the kSIMDType set by the VecOperation constructor. |
| SetPackedField<TypeField>(packed_type); |
| } |
| |
| // An extract needs to stay in place, since SIMD registers are not |
| // kept alive across vector loop boundaries (yet). |
| bool CanBeMoved() const OVERRIDE { return false; } |
| |
| DECLARE_INSTRUCTION(VecExtractScalar); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecExtractScalar); |
| }; |
| |
| // Reduces the given vector into the first element as sum/min/max, |
| // viz. sum-reduce[ x1, .. , xn ] = [ y, ---- ], where y = sum xi |
| // and the "-" denotes "don't care" (implementation dependent). |
| class HVecReduce FINAL : public HVecUnaryOperation { |
| public: |
| enum ReductionKind { |
| kSum = 1, |
| kMin = 2, |
| kMax = 3 |
| }; |
| |
| HVecReduce(ArenaAllocator* allocator, |
| HInstruction* input, |
| DataType::Type packed_type, |
| size_t vector_length, |
| ReductionKind kind, |
| uint32_t dex_pc) |
| : HVecUnaryOperation(kVecReduce, allocator, input, packed_type, vector_length, dex_pc), |
| kind_(kind) { |
| DCHECK(HasConsistentPackedTypes(input, packed_type)); |
| } |
| |
| ReductionKind GetKind() const { return kind_; } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsVecReduce()); |
| const HVecReduce* o = other->AsVecReduce(); |
| return HVecOperation::InstructionDataEquals(o) && GetKind() == o->GetKind(); |
| } |
| |
| DECLARE_INSTRUCTION(VecReduce); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecReduce); |
| |
| private: |
| const ReductionKind kind_; |
| }; |
| |
| // Converts every component in the vector, |
| // viz. cnv[ x1, .. , xn ] = [ cnv(x1), .. , cnv(xn) ]. |
| class HVecCnv FINAL : public HVecUnaryOperation { |
| public: |
| HVecCnv(ArenaAllocator* allocator, |
| HInstruction* input, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecUnaryOperation(kVecCnv, allocator, input, packed_type, vector_length, dex_pc) { |
| DCHECK(input->IsVecOperation()); |
| DCHECK_NE(GetInputType(), GetResultType()); // actual convert |
| } |
| |
| DataType::Type GetInputType() const { return InputAt(0)->AsVecOperation()->GetPackedType(); } |
| DataType::Type GetResultType() const { return GetPackedType(); } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecCnv); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecCnv); |
| }; |
| |
| // Negates every component in the vector, |
| // viz. neg[ x1, .. , xn ] = [ -x1, .. , -xn ]. |
| class HVecNeg FINAL : public HVecUnaryOperation { |
| public: |
| HVecNeg(ArenaAllocator* allocator, |
| HInstruction* input, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecUnaryOperation(kVecNeg, allocator, input, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(input, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecNeg); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecNeg); |
| }; |
| |
| // Takes absolute value of every component in the vector, |
| // viz. abs[ x1, .. , xn ] = [ |x1|, .. , |xn| ] |
| // for signed operand x. |
| class HVecAbs FINAL : public HVecUnaryOperation { |
| public: |
| HVecAbs(ArenaAllocator* allocator, |
| HInstruction* input, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecUnaryOperation(kVecAbs, allocator, input, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(input, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecAbs); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecAbs); |
| }; |
| |
| // Bitwise- or boolean-nots every component in the vector, |
| // viz. not[ x1, .. , xn ] = [ ~x1, .. , ~xn ], or |
| // not[ x1, .. , xn ] = [ !x1, .. , !xn ] for boolean. |
| class HVecNot FINAL : public HVecUnaryOperation { |
| public: |
| HVecNot(ArenaAllocator* allocator, |
| HInstruction* input, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecUnaryOperation(kVecNot, allocator, input, packed_type, vector_length, dex_pc) { |
| DCHECK(input->IsVecOperation()); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecNot); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecNot); |
| }; |
| |
| // |
| // Definitions of concrete binary vector operations in HIR. |
| // |
| |
| // Adds every component in the two vectors, |
| // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 + y1, .. , xn + yn ]. |
| class HVecAdd FINAL : public HVecBinaryOperation { |
| public: |
| HVecAdd(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecAdd, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecAdd); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecAdd); |
| }; |
| |
| // Adds every component in the two vectors using saturation arithmetic, |
| // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 +_sat y1, .. , xn +_sat yn ] |
| // for either both signed or both unsigned operands x, y (reflected in packed_type). |
| class HVecSaturationAdd FINAL : public HVecBinaryOperation { |
| public: |
| HVecSaturationAdd(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation( |
| kVecSaturationAdd, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecSaturationAdd); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecSaturationAdd); |
| }; |
| |
| // Performs halving add on every component in the two vectors, viz. |
| // rounded [ x1, .. , xn ] hradd [ y1, .. , yn ] = [ (x1 + y1 + 1) >> 1, .. , (xn + yn + 1) >> 1 ] |
| // truncated [ x1, .. , xn ] hadd [ y1, .. , yn ] = [ (x1 + y1) >> 1, .. , (xn + yn ) >> 1 ] |
| // for either both signed or both unsigned operands x, y (reflected in packed_type). |
| class HVecHalvingAdd FINAL : public HVecBinaryOperation { |
| public: |
| HVecHalvingAdd(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| bool is_rounded, |
| uint32_t dex_pc) |
| : HVecBinaryOperation( |
| kVecHalvingAdd, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| SetPackedFlag<kFieldHAddIsRounded>(is_rounded); |
| } |
| |
| bool IsRounded() const { return GetPackedFlag<kFieldHAddIsRounded>(); } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsVecHalvingAdd()); |
| const HVecHalvingAdd* o = other->AsVecHalvingAdd(); |
| return HVecOperation::InstructionDataEquals(o) && IsRounded() == o->IsRounded(); |
| } |
| |
| DECLARE_INSTRUCTION(VecHalvingAdd); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecHalvingAdd); |
| |
| private: |
| // Additional packed bits. |
| static constexpr size_t kFieldHAddIsRounded = HVecOperation::kNumberOfVectorOpPackedBits; |
| static constexpr size_t kNumberOfHAddPackedBits = kFieldHAddIsRounded + 1; |
| static_assert(kNumberOfHAddPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| }; |
| |
| // Subtracts every component in the two vectors, |
| // viz. [ x1, .. , xn ] - [ y1, .. , yn ] = [ x1 - y1, .. , xn - yn ]. |
| class HVecSub FINAL : public HVecBinaryOperation { |
| public: |
| HVecSub(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecSub, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecSub); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecSub); |
| }; |
| |
| // Subtracts every component in the two vectors using saturation arithmetic, |
| // viz. [ x1, .. , xn ] + [ y1, .. , yn ] = [ x1 -_sat y1, .. , xn -_sat yn ] |
| // for either both signed or both unsigned operands x, y (reflected in packed_type). |
| class HVecSaturationSub FINAL : public HVecBinaryOperation { |
| public: |
| HVecSaturationSub(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation( |
| kVecSaturationSub, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecSaturationSub); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecSaturationSub); |
| }; |
| |
| // Multiplies every component in the two vectors, |
| // viz. [ x1, .. , xn ] * [ y1, .. , yn ] = [ x1 * y1, .. , xn * yn ]. |
| class HVecMul FINAL : public HVecBinaryOperation { |
| public: |
| HVecMul(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecMul, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecMul); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecMul); |
| }; |
| |
| // Divides every component in the two vectors, |
| // viz. [ x1, .. , xn ] / [ y1, .. , yn ] = [ x1 / y1, .. , xn / yn ]. |
| class HVecDiv FINAL : public HVecBinaryOperation { |
| public: |
| HVecDiv(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecDiv, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecDiv); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecDiv); |
| }; |
| |
| // Takes minimum of every component in the two vectors, |
| // viz. MIN( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ min(x1, y1), .. , min(xn, yn) ] |
| // for either both signed or both unsigned operands x, y (reflected in packed_type). |
| class HVecMin FINAL : public HVecBinaryOperation { |
| public: |
| HVecMin(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecMin, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecMin); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecMin); |
| }; |
| |
| // Takes maximum of every component in the two vectors, |
| // viz. MAX( [ x1, .. , xn ] , [ y1, .. , yn ]) = [ max(x1, y1), .. , max(xn, yn) ] |
| // for either both signed or both unsigned operands x, y (reflected in packed_type). |
| class HVecMax FINAL : public HVecBinaryOperation { |
| public: |
| HVecMax(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecMax, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(right, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecMax); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecMax); |
| }; |
| |
| // Bitwise-ands every component in the two vectors, |
| // viz. [ x1, .. , xn ] & [ y1, .. , yn ] = [ x1 & y1, .. , xn & yn ]. |
| class HVecAnd FINAL : public HVecBinaryOperation { |
| public: |
| HVecAnd(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecAnd, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecAnd); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecAnd); |
| }; |
| |
| // Bitwise-and-nots every component in the two vectors, |
| // viz. [ x1, .. , xn ] and-not [ y1, .. , yn ] = [ ~x1 & y1, .. , ~xn & yn ]. |
| class HVecAndNot FINAL : public HVecBinaryOperation { |
| public: |
| HVecAndNot(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation( |
| kVecAndNot, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecAndNot); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecAndNot); |
| }; |
| |
| // Bitwise-ors every component in the two vectors, |
| // viz. [ x1, .. , xn ] | [ y1, .. , yn ] = [ x1 | y1, .. , xn | yn ]. |
| class HVecOr FINAL : public HVecBinaryOperation { |
| public: |
| HVecOr(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecOr, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecOr); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecOr); |
| }; |
| |
| // Bitwise-xors every component in the two vectors, |
| // viz. [ x1, .. , xn ] ^ [ y1, .. , yn ] = [ x1 ^ y1, .. , xn ^ yn ]. |
| class HVecXor FINAL : public HVecBinaryOperation { |
| public: |
| HVecXor(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecXor, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(left->IsVecOperation() && right->IsVecOperation()); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecXor); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecXor); |
| }; |
| |
| // Logically shifts every component in the vector left by the given distance, |
| // viz. [ x1, .. , xn ] << d = [ x1 << d, .. , xn << d ]. |
| class HVecShl FINAL : public HVecBinaryOperation { |
| public: |
| HVecShl(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecShl, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecShl); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecShl); |
| }; |
| |
| // Arithmetically shifts every component in the vector right by the given distance, |
| // viz. [ x1, .. , xn ] >> d = [ x1 >> d, .. , xn >> d ]. |
| class HVecShr FINAL : public HVecBinaryOperation { |
| public: |
| HVecShr(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecShr, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecShr); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecShr); |
| }; |
| |
| // Logically shifts every component in the vector right by the given distance, |
| // viz. [ x1, .. , xn ] >>> d = [ x1 >>> d, .. , xn >>> d ]. |
| class HVecUShr FINAL : public HVecBinaryOperation { |
| public: |
| HVecUShr(ArenaAllocator* allocator, |
| HInstruction* left, |
| HInstruction* right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecBinaryOperation(kVecUShr, allocator, left, right, packed_type, vector_length, dex_pc) { |
| DCHECK(HasConsistentPackedTypes(left, packed_type)); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| DECLARE_INSTRUCTION(VecUShr); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecUShr); |
| }; |
| |
| // |
| // Definitions of concrete miscellaneous vector operations in HIR. |
| // |
| |
| // Assigns the given scalar elements to a vector, |
| // viz. set( array(x1, .. , xn) ) = [ x1, .. , xn ] if n == m, |
| // set( array(x1, .. , xm) ) = [ x1, .. , xm, 0, .. , 0 ] if m < n. |
| class HVecSetScalars FINAL : public HVecOperation { |
| public: |
| HVecSetScalars(ArenaAllocator* allocator, |
| HInstruction* scalars[], |
| DataType::Type packed_type, |
| size_t vector_length, |
| size_t number_of_scalars, |
| uint32_t dex_pc) |
| : HVecOperation(kVecSetScalars, |
| allocator, |
| packed_type, |
| SideEffects::None(), |
| number_of_scalars, |
| vector_length, |
| dex_pc) { |
| for (size_t i = 0; i < number_of_scalars; i++) { |
| DCHECK(!ReturnsSIMDValue(scalars[i])); |
| SetRawInputAt(0, scalars[i]); |
| } |
| } |
| |
| // Setting scalars needs to stay in place, since SIMD registers are not |
| // kept alive across vector loop boundaries (yet). |
| bool CanBeMoved() const OVERRIDE { return false; } |
| |
| DECLARE_INSTRUCTION(VecSetScalars); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecSetScalars); |
| }; |
| |
| // Multiplies every component in the two vectors, adds the result vector to the accumulator vector, |
| // viz. [ a1, .. , an ] + [ x1, .. , xn ] * [ y1, .. , yn ] = [ a1 + x1 * y1, .. , an + xn * yn ]. |
| // For floating point types, Java rounding behavior must be preserved; the products are rounded to |
| // the proper precision before being added. "Fused" multiply-add operations available on several |
| // architectures are not usable since they would violate Java language rules. |
| class HVecMultiplyAccumulate FINAL : public HVecOperation { |
| public: |
| HVecMultiplyAccumulate(ArenaAllocator* allocator, |
| InstructionKind op, |
| HInstruction* accumulator, |
| HInstruction* mul_left, |
| HInstruction* mul_right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(kVecMultiplyAccumulate, |
| allocator, |
| packed_type, |
| SideEffects::None(), |
| /* number_of_inputs */ 3, |
| vector_length, |
| dex_pc), |
| op_kind_(op) { |
| DCHECK(op == InstructionKind::kAdd || op == InstructionKind::kSub); |
| DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); |
| DCHECK(HasConsistentPackedTypes(mul_left, packed_type)); |
| DCHECK(HasConsistentPackedTypes(mul_right, packed_type)); |
| // Remove the following if we add an architecture that supports floating point multiply-add |
| // with Java-compatible rounding. |
| DCHECK(DataType::IsIntegralType(packed_type)); |
| SetRawInputAt(0, accumulator); |
| SetRawInputAt(1, mul_left); |
| SetRawInputAt(2, mul_right); |
| } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsVecMultiplyAccumulate()); |
| const HVecMultiplyAccumulate* o = other->AsVecMultiplyAccumulate(); |
| return HVecOperation::InstructionDataEquals(o) && GetOpKind() == o->GetOpKind(); |
| } |
| |
| InstructionKind GetOpKind() const { return op_kind_; } |
| |
| DECLARE_INSTRUCTION(VecMultiplyAccumulate); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecMultiplyAccumulate); |
| |
| private: |
| // Indicates if this is a MADD or MSUB. |
| const InstructionKind op_kind_; |
| }; |
| |
| // Takes the absolute difference of two vectors, and adds the results to |
| // same-precision or wider-precision components in the accumulator, |
| // viz. SAD([ a1, .. , am ], [ x1, .. , xn ], [ y1, .. , yn ]) = |
| // [ a1 + sum abs(xi-yi), .. , am + sum abs(xj-yj) ], |
| // for m <= n, non-overlapping sums, and signed operands x, y. |
| class HVecSADAccumulate FINAL : public HVecOperation { |
| public: |
| HVecSADAccumulate(ArenaAllocator* allocator, |
| HInstruction* accumulator, |
| HInstruction* sad_left, |
| HInstruction* sad_right, |
| DataType::Type packed_type, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecOperation(kVecSADAccumulate, |
| allocator, |
| packed_type, |
| SideEffects::None(), |
| /* number_of_inputs */ 3, |
| vector_length, |
| dex_pc) { |
| DCHECK(HasConsistentPackedTypes(accumulator, packed_type)); |
| DCHECK(sad_left->IsVecOperation()); |
| DCHECK(sad_right->IsVecOperation()); |
| DCHECK_EQ(ToSignedType(sad_left->AsVecOperation()->GetPackedType()), |
| ToSignedType(sad_right->AsVecOperation()->GetPackedType())); |
| SetRawInputAt(0, accumulator); |
| SetRawInputAt(1, sad_left); |
| SetRawInputAt(2, sad_right); |
| } |
| |
| DECLARE_INSTRUCTION(VecSADAccumulate); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecSADAccumulate); |
| }; |
| |
| // Loads a vector from memory, viz. load(mem, 1) |
| // yield the vector [ mem(1), .. , mem(n) ]. |
| class HVecLoad FINAL : public HVecMemoryOperation { |
| public: |
| HVecLoad(ArenaAllocator* allocator, |
| HInstruction* base, |
| HInstruction* index, |
| DataType::Type packed_type, |
| SideEffects side_effects, |
| size_t vector_length, |
| bool is_string_char_at, |
| uint32_t dex_pc) |
| : HVecMemoryOperation(kVecLoad, |
| allocator, |
| packed_type, |
| side_effects, |
| /* number_of_inputs */ 2, |
| vector_length, |
| dex_pc) { |
| SetRawInputAt(0, base); |
| SetRawInputAt(1, index); |
| SetPackedFlag<kFieldIsStringCharAt>(is_string_char_at); |
| } |
| |
| bool IsStringCharAt() const { return GetPackedFlag<kFieldIsStringCharAt>(); } |
| |
| bool CanBeMoved() const OVERRIDE { return true; } |
| |
| bool InstructionDataEquals(const HInstruction* other) const OVERRIDE { |
| DCHECK(other->IsVecLoad()); |
| const HVecLoad* o = other->AsVecLoad(); |
| return HVecMemoryOperation::InstructionDataEquals(o) && IsStringCharAt() == o->IsStringCharAt(); |
| } |
| |
| DECLARE_INSTRUCTION(VecLoad); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecLoad); |
| |
| private: |
| // Additional packed bits. |
| static constexpr size_t kFieldIsStringCharAt = HVecOperation::kNumberOfVectorOpPackedBits; |
| static constexpr size_t kNumberOfVecLoadPackedBits = kFieldIsStringCharAt + 1; |
| static_assert(kNumberOfVecLoadPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields."); |
| }; |
| |
| // Stores a vector to memory, viz. store(m, 1, [x1, .. , xn] ) |
| // sets mem(1) = x1, .. , mem(n) = xn. |
| class HVecStore FINAL : public HVecMemoryOperation { |
| public: |
| HVecStore(ArenaAllocator* allocator, |
| HInstruction* base, |
| HInstruction* index, |
| HInstruction* value, |
| DataType::Type packed_type, |
| SideEffects side_effects, |
| size_t vector_length, |
| uint32_t dex_pc) |
| : HVecMemoryOperation(kVecStore, |
| allocator, |
| packed_type, |
| side_effects, |
| /* number_of_inputs */ 3, |
| vector_length, |
| dex_pc) { |
| DCHECK(HasConsistentPackedTypes(value, packed_type)); |
| SetRawInputAt(0, base); |
| SetRawInputAt(1, index); |
| SetRawInputAt(2, value); |
| } |
| |
| // A store needs to stay in place. |
| bool CanBeMoved() const OVERRIDE { return false; } |
| |
| DECLARE_INSTRUCTION(VecStore); |
| |
| protected: |
| DEFAULT_COPY_CONSTRUCTOR(VecStore) |
| }; |
| |
| } // namespace art |
| |
| #endif // ART_COMPILER_OPTIMIZING_NODES_VECTOR_H_ |