| /* |
| * Copyright (C) 2015 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "intrinsics_x86_64.h" |
| |
| #include <limits> |
| |
| #include "arch/x86_64/instruction_set_features_x86_64.h" |
| #include "art_method.h" |
| #include "base/bit_utils.h" |
| #include "code_generator_x86_64.h" |
| #include "entrypoints/quick/quick_entrypoints.h" |
| #include "heap_poisoning.h" |
| #include "intrinsics.h" |
| #include "intrinsics_utils.h" |
| #include "lock_word.h" |
| #include "mirror/array-inl.h" |
| #include "mirror/object_array-inl.h" |
| #include "mirror/reference.h" |
| #include "mirror/string.h" |
| #include "scoped_thread_state_change-inl.h" |
| #include "thread-current-inl.h" |
| #include "utils/x86_64/assembler_x86_64.h" |
| #include "utils/x86_64/constants_x86_64.h" |
| |
| namespace art { |
| |
| namespace x86_64 { |
| |
| IntrinsicLocationsBuilderX86_64::IntrinsicLocationsBuilderX86_64(CodeGeneratorX86_64* codegen) |
| : allocator_(codegen->GetGraph()->GetAllocator()), codegen_(codegen) { |
| } |
| |
| X86_64Assembler* IntrinsicCodeGeneratorX86_64::GetAssembler() { |
| return down_cast<X86_64Assembler*>(codegen_->GetAssembler()); |
| } |
| |
| ArenaAllocator* IntrinsicCodeGeneratorX86_64::GetAllocator() { |
| return codegen_->GetGraph()->GetAllocator(); |
| } |
| |
| bool IntrinsicLocationsBuilderX86_64::TryDispatch(HInvoke* invoke) { |
| Dispatch(invoke); |
| LocationSummary* res = invoke->GetLocations(); |
| if (res == nullptr) { |
| return false; |
| } |
| return res->Intrinsified(); |
| } |
| |
| static void MoveArguments(HInvoke* invoke, CodeGeneratorX86_64* codegen) { |
| InvokeDexCallingConventionVisitorX86_64 calling_convention_visitor; |
| IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor); |
| } |
| |
| using IntrinsicSlowPathX86_64 = IntrinsicSlowPath<InvokeDexCallingConventionVisitorX86_64>; |
| |
| // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy. |
| #define __ down_cast<X86_64Assembler*>(codegen->GetAssembler())-> // NOLINT |
| |
| // Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers. |
| class ReadBarrierSystemArrayCopySlowPathX86_64 : public SlowPathCode { |
| public: |
| explicit ReadBarrierSystemArrayCopySlowPathX86_64(HInstruction* instruction) |
| : SlowPathCode(instruction) { |
| DCHECK(kEmitCompilerReadBarrier); |
| DCHECK(kUseBakerReadBarrier); |
| } |
| |
| void EmitNativeCode(CodeGenerator* codegen) OVERRIDE { |
| CodeGeneratorX86_64* x86_64_codegen = down_cast<CodeGeneratorX86_64*>(codegen); |
| LocationSummary* locations = instruction_->GetLocations(); |
| DCHECK(locations->CanCall()); |
| DCHECK(instruction_->IsInvokeStaticOrDirect()) |
| << "Unexpected instruction in read barrier arraycopy slow path: " |
| << instruction_->DebugName(); |
| DCHECK(instruction_->GetLocations()->Intrinsified()); |
| DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy); |
| |
| int32_t element_size = DataType::Size(DataType::Type::kReference); |
| |
| CpuRegister src_curr_addr = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister dst_curr_addr = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| CpuRegister src_stop_addr = locations->GetTemp(2).AsRegister<CpuRegister>(); |
| |
| __ Bind(GetEntryLabel()); |
| NearLabel loop; |
| __ Bind(&loop); |
| __ movl(CpuRegister(TMP), Address(src_curr_addr, 0)); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| // TODO: Inline the mark bit check before calling the runtime? |
| // TMP = ReadBarrier::Mark(TMP); |
| // No need to save live registers; it's taken care of by the |
| // entrypoint. Also, there is no need to update the stack mask, |
| // as this runtime call will not trigger a garbage collection. |
| int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset<kX86_64PointerSize>(TMP); |
| // This runtime call does not require a stack map. |
| x86_64_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this); |
| __ MaybePoisonHeapReference(CpuRegister(TMP)); |
| __ movl(Address(dst_curr_addr, 0), CpuRegister(TMP)); |
| __ addl(src_curr_addr, Immediate(element_size)); |
| __ addl(dst_curr_addr, Immediate(element_size)); |
| __ cmpl(src_curr_addr, src_stop_addr); |
| __ j(kNotEqual, &loop); |
| __ jmp(GetExitLabel()); |
| } |
| |
| const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathX86_64"; } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathX86_64); |
| }; |
| |
| #undef __ |
| |
| #define __ assembler-> |
| |
| static void CreateFPToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void CreateIntToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| static void MoveFPToInt(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ movd(output.AsRegister<CpuRegister>(), input.AsFpuRegister<XmmRegister>(), is64bit); |
| } |
| |
| static void MoveIntToFP(LocationSummary* locations, bool is64bit, X86_64Assembler* assembler) { |
| Location input = locations->InAt(0); |
| Location output = locations->Out(); |
| __ movd(output.AsFpuRegister<XmmRegister>(), input.AsRegister<CpuRegister>(), is64bit); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitDoubleLongBitsToDouble(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| CreateFPToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| CreateIntToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitFloatFloatToRawIntBits(HInvoke* invoke) { |
| MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitFloatIntBitsToFloat(HInvoke* invoke) { |
| MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler()); |
| } |
| |
| static void CreateIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| } |
| |
| static void GenReverseBytes(LocationSummary* locations, |
| DataType::Type size, |
| X86_64Assembler* assembler) { |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| switch (size) { |
| case DataType::Type::kInt16: |
| // TODO: Can be done with an xchg of 8b registers. This is straight from Quick. |
| __ bswapl(out); |
| __ sarl(out, Immediate(16)); |
| break; |
| case DataType::Type::kInt32: |
| __ bswapl(out); |
| break; |
| case DataType::Type::kInt64: |
| __ bswapq(out); |
| break; |
| default: |
| LOG(FATAL) << "Unexpected size for reverse-bytes: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitShortReverseBytes(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitShortReverseBytes(HInvoke* invoke) { |
| GenReverseBytes(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| static void CreateFPToFPLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresFpuRegister()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathSqrt(HInvoke* invoke) { |
| CreateFPToFPLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathSqrt(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| |
| GetAssembler()->sqrtsd(out, in); |
| } |
| |
| static void InvokeOutOfLineIntrinsic(CodeGeneratorX86_64* codegen, HInvoke* invoke) { |
| MoveArguments(invoke, codegen); |
| |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| codegen->GenerateStaticOrDirectCall( |
| invoke->AsInvokeStaticOrDirect(), Location::RegisterLocation(RDI)); |
| |
| // Copy the result back to the expected output. |
| Location out = invoke->GetLocations()->Out(); |
| if (out.IsValid()) { |
| DCHECK(out.IsRegister()); |
| codegen->MoveFromReturnRegister(out, invoke->GetType()); |
| } |
| } |
| |
| static void CreateSSE41FPToFPLocations(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| CodeGeneratorX86_64* codegen) { |
| // Do we have instruction support? |
| if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { |
| CreateFPToFPLocations(allocator, invoke); |
| return; |
| } |
| |
| // We have to fall back to a call to the intrinsic. |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| // Needs to be RDI for the invoke. |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| } |
| |
| static void GenSSE41FPToFPIntrinsic(CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, |
| X86_64Assembler* assembler, |
| int round_mode) { |
| LocationSummary* locations = invoke->GetLocations(); |
| if (locations->WillCall()) { |
| InvokeOutOfLineIntrinsic(codegen, invoke); |
| } else { |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister out = locations->Out().AsFpuRegister<XmmRegister>(); |
| __ roundsd(out, in, Immediate(round_mode)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCeil(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCeil(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 2); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathFloor(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathFloor(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 1); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathRint(HInvoke* invoke) { |
| CreateSSE41FPToFPLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathRint(HInvoke* invoke) { |
| GenSSE41FPToFPIntrinsic(codegen_, invoke, GetAssembler(), 0); |
| } |
| |
| static void CreateSSE41FPToIntLocations(ArenaAllocator* allocator, |
| HInvoke* invoke, |
| CodeGeneratorX86_64* codegen) { |
| // Do we have instruction support? |
| if (codegen->GetInstructionSetFeatures().HasSSE4_1()) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresFpuRegister()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| locations->AddTemp(Location::RequiresFpuRegister()); |
| return; |
| } |
| |
| // We have to fall back to a call to the intrinsic. |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| // Needs to be RDI for the invoke. |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathRoundFloat(HInvoke* invoke) { |
| CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathRoundFloat(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| if (locations->WillCall()) { |
| InvokeOutOfLineIntrinsic(codegen_, invoke); |
| return; |
| } |
| |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| NearLabel skip_incr, done; |
| X86_64Assembler* assembler = GetAssembler(); |
| |
| // Since no direct x86 rounding instruction matches the required semantics, |
| // this intrinsic is implemented as follows: |
| // result = floor(in); |
| // if (in - result >= 0.5f) |
| // result = result + 1.0f; |
| __ movss(t2, in); |
| __ roundss(t1, in, Immediate(1)); |
| __ subss(t2, t1); |
| __ comiss(t2, codegen_->LiteralFloatAddress(0.5f)); |
| __ j(kBelow, &skip_incr); |
| __ addss(t1, codegen_->LiteralFloatAddress(1.0f)); |
| __ Bind(&skip_incr); |
| |
| // Final conversion to an integer. Unfortunately this also does not have a |
| // direct x86 instruction, since NaN should map to 0 and large positive |
| // values need to be clipped to the extreme value. |
| codegen_->Load32BitValue(out, kPrimIntMax); |
| __ cvtsi2ss(t2, out); |
| __ comiss(t1, t2); |
| __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered |
| __ movl(out, Immediate(0)); // does not change flags |
| __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) |
| __ cvttss2si(out, t1); |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathRoundDouble(HInvoke* invoke) { |
| CreateSSE41FPToIntLocations(allocator_, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathRoundDouble(HInvoke* invoke) { |
| LocationSummary* locations = invoke->GetLocations(); |
| if (locations->WillCall()) { |
| InvokeOutOfLineIntrinsic(codegen_, invoke); |
| return; |
| } |
| |
| XmmRegister in = locations->InAt(0).AsFpuRegister<XmmRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| XmmRegister t1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>(); |
| XmmRegister t2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>(); |
| NearLabel skip_incr, done; |
| X86_64Assembler* assembler = GetAssembler(); |
| |
| // Since no direct x86 rounding instruction matches the required semantics, |
| // this intrinsic is implemented as follows: |
| // result = floor(in); |
| // if (in - result >= 0.5) |
| // result = result + 1.0f; |
| __ movsd(t2, in); |
| __ roundsd(t1, in, Immediate(1)); |
| __ subsd(t2, t1); |
| __ comisd(t2, codegen_->LiteralDoubleAddress(0.5)); |
| __ j(kBelow, &skip_incr); |
| __ addsd(t1, codegen_->LiteralDoubleAddress(1.0f)); |
| __ Bind(&skip_incr); |
| |
| // Final conversion to an integer. Unfortunately this also does not have a |
| // direct x86 instruction, since NaN should map to 0 and large positive |
| // values need to be clipped to the extreme value. |
| codegen_->Load64BitValue(out, kPrimLongMax); |
| __ cvtsi2sd(t2, out, /* is64bit */ true); |
| __ comisd(t1, t2); |
| __ j(kAboveEqual, &done); // clipped to max (already in out), does not jump on unordered |
| __ movl(out, Immediate(0)); // does not change flags, implicit zero extension to 64-bit |
| __ j(kUnordered, &done); // NaN mapped to 0 (just moved in out) |
| __ cvttsd2si(out, t1, /* is64bit */ true); |
| __ Bind(&done); |
| } |
| |
| static void CreateFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| |
| // We have to ensure that the native code doesn't clobber the XMM registers which are |
| // non-volatile for ART, but volatile for Native calls. This will ensure that they are |
| // saved in the prologue and properly restored. |
| for (FloatRegister fp_reg : non_volatile_xmm_regs) { |
| locations->AddTemp(Location::FpuRegisterLocation(fp_reg)); |
| } |
| } |
| |
| static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorX86_64* codegen, |
| QuickEntrypointEnum entry) { |
| LocationSummary* locations = invoke->GetLocations(); |
| DCHECK(locations->WillCall()); |
| DCHECK(invoke->IsInvokeStaticOrDirect()); |
| |
| codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCos); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathSin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathSin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSin); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAcos(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAcos(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAcos); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAsin(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAsin(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAsin); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAtan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAtan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCbrt(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCbrt(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCbrt); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathCosh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathCosh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickCosh); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathExp(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathExp(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExp); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathExpm1(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathExpm1(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickExpm1); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathLog(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathLog(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathLog10(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathLog10(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickLog10); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathSinh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathSinh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickSinh); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathTan(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathTan(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTan); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathTanh(HInvoke* invoke) { |
| CreateFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathTanh(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickTanh); |
| } |
| |
| static void CreateFPFPToFPCallLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0))); |
| locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1))); |
| locations->SetOut(Location::FpuRegisterLocation(XMM0)); |
| |
| // We have to ensure that the native code doesn't clobber the XMM registers which are |
| // non-volatile for ART, but volatile for Native calls. This will ensure that they are |
| // saved in the prologue and properly restored. |
| for (FloatRegister fp_reg : non_volatile_xmm_regs) { |
| locations->AddTemp(Location::FpuRegisterLocation(fp_reg)); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathAtan2(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathAtan2(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickAtan2); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathPow(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathPow(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickPow); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathHypot(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathHypot(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickHypot); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMathNextAfter(HInvoke* invoke) { |
| CreateFPFPToFPCallLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMathNextAfter(HInvoke* invoke) { |
| GenFPToFPCall(invoke, codegen_, kQuickNextAfter); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| // Check to see if we have known failures that will cause us to have to bail out |
| // to the runtime, and just generate the runtime call directly. |
| HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant(); |
| HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant(); |
| |
| // The positions must be non-negative. |
| if ((src_pos != nullptr && src_pos->GetValue() < 0) || |
| (dest_pos != nullptr && dest_pos->GetValue() < 0)) { |
| // We will have to fail anyways. |
| return; |
| } |
| |
| // The length must be > 0. |
| HIntConstant* length = invoke->InputAt(4)->AsIntConstant(); |
| if (length != nullptr) { |
| int32_t len = length->GetValue(); |
| if (len < 0) { |
| // Just call as normal. |
| return; |
| } |
| } |
| |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified); |
| // arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length). |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3))); |
| locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4))); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| locations->AddTemp(Location::RegisterLocation(RSI)); |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| } |
| |
| static void CheckPosition(X86_64Assembler* assembler, |
| Location pos, |
| CpuRegister input, |
| Location length, |
| SlowPathCode* slow_path, |
| CpuRegister temp, |
| bool length_is_input_length = false) { |
| // Where is the length in the Array? |
| const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); |
| |
| if (pos.IsConstant()) { |
| int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (pos_const == 0) { |
| if (!length_is_input_length) { |
| // Check that length(input) >= length. |
| if (length.IsConstant()) { |
| __ cmpl(Address(input, length_offset), |
| Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(Address(input, length_offset), length.AsRegister<CpuRegister>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } else { |
| // Check that length(input) >= pos. |
| __ movl(temp, Address(input, length_offset)); |
| __ subl(temp, Immediate(pos_const)); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| if (length.IsConstant()) { |
| __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(temp, length.AsRegister<CpuRegister>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } else if (length_is_input_length) { |
| // The only way the copy can succeed is if pos is zero. |
| CpuRegister pos_reg = pos.AsRegister<CpuRegister>(); |
| __ testl(pos_reg, pos_reg); |
| __ j(kNotEqual, slow_path->GetEntryLabel()); |
| } else { |
| // Check that pos >= 0. |
| CpuRegister pos_reg = pos.AsRegister<CpuRegister>(); |
| __ testl(pos_reg, pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that pos <= length(input). |
| __ cmpl(Address(input, length_offset), pos_reg); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| |
| // Check that (length(input) - pos) >= length. |
| __ movl(temp, Address(input, length_offset)); |
| __ subl(temp, pos_reg); |
| if (length.IsConstant()) { |
| __ cmpl(temp, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ cmpl(temp, length.AsRegister<CpuRegister>()); |
| } |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopyChar(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location src_pos = locations->InAt(1); |
| CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>(); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| |
| // Temporaries that we need for MOVSW. |
| CpuRegister src_base = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| DCHECK_EQ(src_base.AsRegister(), RSI); |
| CpuRegister dest_base = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| DCHECK_EQ(dest_base.AsRegister(), RDI); |
| CpuRegister count = locations->GetTemp(2).AsRegister<CpuRegister>(); |
| DCHECK_EQ(count.AsRegister(), RCX); |
| |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| |
| // Bail out if the source and destination are the same. |
| __ cmpl(src, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the source is null. |
| __ testl(src, src); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // Bail out if the destination is null. |
| __ testl(dest, dest); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant()) { |
| __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>()); |
| __ j(kLess, slow_path->GetEntryLabel()); |
| } |
| |
| // Validity checks: source. Use src_base as a temporary register. |
| CheckPosition(assembler, src_pos, src, length, slow_path, src_base); |
| |
| // Validity checks: dest. Use src_base as a temporary register. |
| CheckPosition(assembler, dest_pos, dest, length, slow_path, src_base); |
| |
| // We need the count in RCX. |
| if (length.IsConstant()) { |
| __ movl(count, Immediate(length.GetConstant()->AsIntConstant()->GetValue())); |
| } else { |
| __ movl(count, length.AsRegister<CpuRegister>()); |
| } |
| |
| // Okay, everything checks out. Finally time to do the copy. |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value(); |
| |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_base, Address(src, char_size * src_pos_const + data_offset)); |
| } else { |
| __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), |
| ScaleFactor::TIMES_2, data_offset)); |
| } |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(dest_base, Address(dest, char_size * dest_pos_const + data_offset)); |
| } else { |
| __ leal(dest_base, Address(dest, dest_pos.AsRegister<CpuRegister>(), |
| ScaleFactor::TIMES_2, data_offset)); |
| } |
| |
| // Do the move. |
| __ rep_movsw(); |
| |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| |
| void IntrinsicLocationsBuilderX86_64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CodeGenerator::CreateSystemArrayCopyLocationSummary(invoke); |
| } |
| |
| // Compute base source address, base destination address, and end |
| // source address for the System.arraycopy intrinsic in `src_base`, |
| // `dst_base` and `src_end` respectively. |
| static void GenSystemArrayCopyAddresses(X86_64Assembler* assembler, |
| DataType::Type type, |
| const CpuRegister& src, |
| const Location& src_pos, |
| const CpuRegister& dst, |
| const Location& dst_pos, |
| const Location& copy_length, |
| const CpuRegister& src_base, |
| const CpuRegister& dst_base, |
| const CpuRegister& src_end) { |
| // This routine is only used by the SystemArrayCopy intrinsic. |
| DCHECK_EQ(type, DataType::Type::kReference); |
| const int32_t element_size = DataType::Size(type); |
| const ScaleFactor scale_factor = static_cast<ScaleFactor>(DataType::SizeShift(type)); |
| const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value(); |
| |
| if (src_pos.IsConstant()) { |
| int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_base, Address(src, element_size * constant + data_offset)); |
| } else { |
| __ leal(src_base, Address(src, src_pos.AsRegister<CpuRegister>(), scale_factor, data_offset)); |
| } |
| |
| if (dst_pos.IsConstant()) { |
| int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(dst_base, Address(dst, element_size * constant + data_offset)); |
| } else { |
| __ leal(dst_base, Address(dst, dst_pos.AsRegister<CpuRegister>(), scale_factor, data_offset)); |
| } |
| |
| if (copy_length.IsConstant()) { |
| int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue(); |
| __ leal(src_end, Address(src_base, element_size * constant)); |
| } else { |
| __ leal(src_end, Address(src_base, copy_length.AsRegister<CpuRegister>(), scale_factor, 0)); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitSystemArrayCopy(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // SystemArrayCopy intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| uint32_t class_offset = mirror::Object::ClassOffset().Int32Value(); |
| uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value(); |
| uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value(); |
| uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value(); |
| uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value(); |
| |
| CpuRegister src = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location src_pos = locations->InAt(1); |
| CpuRegister dest = locations->InAt(2).AsRegister<CpuRegister>(); |
| Location dest_pos = locations->InAt(3); |
| Location length = locations->InAt(4); |
| Location temp1_loc = locations->GetTemp(0); |
| CpuRegister temp1 = temp1_loc.AsRegister<CpuRegister>(); |
| Location temp2_loc = locations->GetTemp(1); |
| CpuRegister temp2 = temp2_loc.AsRegister<CpuRegister>(); |
| Location temp3_loc = locations->GetTemp(2); |
| CpuRegister temp3 = temp3_loc.AsRegister<CpuRegister>(); |
| Location TMP_loc = Location::RegisterLocation(TMP); |
| |
| SlowPathCode* intrinsic_slow_path = |
| new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(intrinsic_slow_path); |
| |
| NearLabel conditions_on_positions_validated; |
| SystemArrayCopyOptimizations optimizations(invoke); |
| |
| // If source and destination are the same, we go to slow path if we need to do |
| // forward copying. |
| if (src_pos.IsConstant()) { |
| int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| if (optimizations.GetDestinationIsSource()) { |
| // Checked when building locations. |
| DCHECK_GE(src_pos_constant, dest_pos_constant); |
| } else if (src_pos_constant < dest_pos_constant) { |
| __ cmpl(src, dest); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ cmpl(src, dest); |
| __ j(kNotEqual, &conditions_on_positions_validated); |
| } |
| __ cmpl(dest_pos.AsRegister<CpuRegister>(), Immediate(src_pos_constant)); |
| __ j(kGreater, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else { |
| if (!optimizations.GetDestinationIsSource()) { |
| __ cmpl(src, dest); |
| __ j(kNotEqual, &conditions_on_positions_validated); |
| } |
| if (dest_pos.IsConstant()) { |
| int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue(); |
| __ cmpl(src_pos.AsRegister<CpuRegister>(), Immediate(dest_pos_constant)); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } else { |
| __ cmpl(src_pos.AsRegister<CpuRegister>(), dest_pos.AsRegister<CpuRegister>()); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } |
| |
| __ Bind(&conditions_on_positions_validated); |
| |
| if (!optimizations.GetSourceIsNotNull()) { |
| // Bail out if the source is null. |
| __ testl(src, src); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) { |
| // Bail out if the destination is null. |
| __ testl(dest, dest); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // If the length is negative, bail out. |
| // We have already checked in the LocationsBuilder for the constant case. |
| if (!length.IsConstant() && |
| !optimizations.GetCountIsSourceLength() && |
| !optimizations.GetCountIsDestinationLength()) { |
| __ testl(length.AsRegister<CpuRegister>(), length.AsRegister<CpuRegister>()); |
| __ j(kLess, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| // Validity checks: source. |
| CheckPosition(assembler, |
| src_pos, |
| src, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsSourceLength()); |
| |
| // Validity checks: dest. |
| CheckPosition(assembler, |
| dest_pos, |
| dest, |
| length, |
| intrinsic_slow_path, |
| temp1, |
| optimizations.GetCountIsDestinationLength()); |
| |
| if (!optimizations.GetDoesNotNeedTypeCheck()) { |
| // Check whether all elements of the source array are assignable to the component |
| // type of the destination array. We do two checks: the classes are the same, |
| // or the destination is Object[]. If none of these checks succeed, we go to the |
| // slow path. |
| |
| bool did_unpoison = false; |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, dest, class_offset, /* needs_null_check */ false); |
| // Register `temp1` is not trashed by the read barrier emitted |
| // by GenerateFieldLoadWithBakerReadBarrier below, as that |
| // method produces a call to a ReadBarrierMarkRegX entry point, |
| // which saves all potentially live registers, including |
| // temporaries such a `temp1`. |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp2_loc, src, class_offset, /* needs_null_check */ false); |
| // If heap poisoning is enabled, `temp1` and `temp2` have been |
| // unpoisoned by the the previous calls to |
| // GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ temp1 = dest->klass_ |
| __ movl(temp1, Address(dest, class_offset)); |
| // /* HeapReference<Class> */ temp2 = src->klass_ |
| __ movl(temp2, Address(src, class_offset)); |
| if (!optimizations.GetDestinationIsNonPrimitiveArray() || |
| !optimizations.GetSourceIsNonPrimitiveArray()) { |
| // One or two of the references need to be unpoisoned. Unpoison them |
| // both to make the identity check valid. |
| __ MaybeUnpoisonHeapReference(temp1); |
| __ MaybeUnpoisonHeapReference(temp2); |
| did_unpoison = true; |
| } |
| } |
| |
| if (!optimizations.GetDestinationIsNonPrimitiveArray()) { |
| // Bail out if the destination is not a non primitive array. |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, TMP_loc, temp1, component_offset, /* needs_null_check */ false); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `TMP` has been unpoisoned by |
| // the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| __ movl(CpuRegister(TMP), Address(temp1, component_offset)); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| } |
| __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| // Bail out if the source is not a non primitive array. |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // For the same reason given earlier, `temp1` is not trashed by the |
| // read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below. |
| // /* HeapReference<Class> */ TMP = temp2->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, TMP_loc, temp2, component_offset, /* needs_null_check */ false); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| // If heap poisoning is enabled, `TMP` has been unpoisoned by |
| // the the previous call to GenerateFieldLoadWithBakerReadBarrier. |
| } else { |
| // /* HeapReference<Class> */ TMP = temp2->component_type_ |
| __ movl(CpuRegister(TMP), Address(temp2, component_offset)); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| } |
| __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| __ cmpl(temp1, temp2); |
| |
| if (optimizations.GetDestinationIsTypedObjectArray()) { |
| NearLabel do_copy; |
| __ j(kEqual, &do_copy); |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, temp1, component_offset, /* needs_null_check */ false); |
| // We do not need to emit a read barrier for the following |
| // heap reference load, as `temp1` is only used in a |
| // comparison with null below, and this reference is not |
| // kept afterwards. |
| __ cmpl(Address(temp1, super_offset), Immediate(0)); |
| } else { |
| if (!did_unpoison) { |
| __ MaybeUnpoisonHeapReference(temp1); |
| } |
| // /* HeapReference<Class> */ temp1 = temp1->component_type_ |
| __ movl(temp1, Address(temp1, component_offset)); |
| __ MaybeUnpoisonHeapReference(temp1); |
| // No need to unpoison the following heap reference load, as |
| // we're comparing against null. |
| __ cmpl(Address(temp1, super_offset), Immediate(0)); |
| } |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ Bind(&do_copy); |
| } else { |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| } else if (!optimizations.GetSourceIsNonPrimitiveArray()) { |
| DCHECK(optimizations.GetDestinationIsNonPrimitiveArray()); |
| // Bail out if the source is not a non primitive array. |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, temp1_loc, src, class_offset, /* needs_null_check */ false); |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| codegen_->GenerateFieldLoadWithBakerReadBarrier( |
| invoke, TMP_loc, temp1, component_offset, /* needs_null_check */ false); |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| } else { |
| // /* HeapReference<Class> */ temp1 = src->klass_ |
| __ movl(temp1, Address(src, class_offset)); |
| __ MaybeUnpoisonHeapReference(temp1); |
| // /* HeapReference<Class> */ TMP = temp1->component_type_ |
| __ movl(CpuRegister(TMP), Address(temp1, component_offset)); |
| // No need to unpoison `TMP` now, as we're comparing against null. |
| __ testl(CpuRegister(TMP), CpuRegister(TMP)); |
| __ j(kEqual, intrinsic_slow_path->GetEntryLabel()); |
| __ MaybeUnpoisonHeapReference(CpuRegister(TMP)); |
| } |
| __ cmpw(Address(CpuRegister(TMP), primitive_offset), Immediate(Primitive::kPrimNot)); |
| __ j(kNotEqual, intrinsic_slow_path->GetEntryLabel()); |
| } |
| |
| const DataType::Type type = DataType::Type::kReference; |
| const int32_t element_size = DataType::Size(type); |
| |
| // Compute base source address, base destination address, and end |
| // source address in `temp1`, `temp2` and `temp3` respectively. |
| GenSystemArrayCopyAddresses( |
| GetAssembler(), type, src, src_pos, dest, dest_pos, length, temp1, temp2, temp3); |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // SystemArrayCopy implementation for Baker read barriers (see |
| // also CodeGeneratorX86_64::GenerateReferenceLoadWithBakerReadBarrier): |
| // |
| // if (src_ptr != end_ptr) { |
| // uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState(); |
| // lfence; // Load fence or artificial data dependency to prevent load-load reordering |
| // bool is_gray = (rb_state == ReadBarrier::GrayState()); |
| // if (is_gray) { |
| // // Slow-path copy. |
| // do { |
| // *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++))); |
| // } while (src_ptr != end_ptr) |
| // } else { |
| // // Fast-path copy. |
| // do { |
| // *dest_ptr++ = *src_ptr++; |
| // } while (src_ptr != end_ptr) |
| // } |
| // } |
| |
| NearLabel loop, done; |
| |
| // Don't enter copy loop if `length == 0`. |
| __ cmpl(temp1, temp3); |
| __ j(kEqual, &done); |
| |
| // Given the numeric representation, it's enough to check the low bit of the rb_state. |
| static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0"); |
| static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); |
| constexpr uint32_t gray_byte_position = LockWord::kReadBarrierStateShift / kBitsPerByte; |
| constexpr uint32_t gray_bit_position = LockWord::kReadBarrierStateShift % kBitsPerByte; |
| constexpr int32_t test_value = static_cast<int8_t>(1 << gray_bit_position); |
| |
| // if (rb_state == ReadBarrier::GrayState()) |
| // goto slow_path; |
| // At this point, just do the "if" and make sure that flags are preserved until the branch. |
| __ testb(Address(src, monitor_offset + gray_byte_position), Immediate(test_value)); |
| |
| // Load fence to prevent load-load reordering. |
| // Note that this is a no-op, thanks to the x86-64 memory model. |
| codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny); |
| |
| // Slow path used to copy array when `src` is gray. |
| SlowPathCode* read_barrier_slow_path = |
| new (codegen_->GetScopedAllocator()) ReadBarrierSystemArrayCopySlowPathX86_64(invoke); |
| codegen_->AddSlowPath(read_barrier_slow_path); |
| |
| // We have done the "if" of the gray bit check above, now branch based on the flags. |
| __ j(kNotZero, read_barrier_slow_path->GetEntryLabel()); |
| |
| // Fast-path copy. |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| __ Bind(&loop); |
| __ movl(CpuRegister(TMP), Address(temp1, 0)); |
| __ movl(Address(temp2, 0), CpuRegister(TMP)); |
| __ addl(temp1, Immediate(element_size)); |
| __ addl(temp2, Immediate(element_size)); |
| __ cmpl(temp1, temp3); |
| __ j(kNotEqual, &loop); |
| |
| __ Bind(read_barrier_slow_path->GetExitLabel()); |
| __ Bind(&done); |
| } else { |
| // Non read barrier code. |
| |
| // Iterate over the arrays and do a raw copy of the objects. We don't need to |
| // poison/unpoison. |
| NearLabel loop, done; |
| __ cmpl(temp1, temp3); |
| __ j(kEqual, &done); |
| __ Bind(&loop); |
| __ movl(CpuRegister(TMP), Address(temp1, 0)); |
| __ movl(Address(temp2, 0), CpuRegister(TMP)); |
| __ addl(temp1, Immediate(element_size)); |
| __ addl(temp2, Immediate(element_size)); |
| __ cmpl(temp1, temp3); |
| __ j(kNotEqual, &loop); |
| __ Bind(&done); |
| } |
| |
| // We only need one card marking on the destination array. |
| codegen_->MarkGCCard(temp1, temp2, dest, CpuRegister(kNoRegister), /* value_can_be_null */ false); |
| |
| __ Bind(intrinsic_slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringCompareTo(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringCompareTo(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| CpuRegister argument = locations->InAt(1).AsRegister<CpuRegister>(); |
| __ testl(argument, argument); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringEquals(HInvoke* invoke) { |
| if (kEmitCompilerReadBarrier && |
| !StringEqualsOptimizations(invoke).GetArgumentIsString() && |
| !StringEqualsOptimizations(invoke).GetNoReadBarrierForStringClass()) { |
| // No support for this odd case (String class is moveable, not in the boot image). |
| return; |
| } |
| |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RequiresRegister()); |
| |
| // Request temporary registers, RCX and RDI needed for repe_cmpsq instruction. |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| |
| // Set output, RSI needed for repe_cmpsq instruction anyways. |
| locations->SetOut(Location::RegisterLocation(RSI), Location::kOutputOverlap); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringEquals(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister str = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister arg = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister rcx = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister rdi = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| CpuRegister rsi = locations->Out().AsRegister<CpuRegister>(); |
| |
| NearLabel end, return_true, return_false; |
| |
| // Get offsets of count, value, and class fields within a string object. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| StringEqualsOptimizations optimizations(invoke); |
| if (!optimizations.GetArgumentNotNull()) { |
| // Check if input is null, return false if it is. |
| __ testl(arg, arg); |
| __ j(kEqual, &return_false); |
| } |
| |
| if (!optimizations.GetArgumentIsString()) { |
| // Instanceof check for the argument by comparing class fields. |
| // All string objects must have the same type since String cannot be subclassed. |
| // Receiver must be a string object, so its class field is equal to all strings' class fields. |
| // If the argument is a string object, its class field must be equal to receiver's class field. |
| __ movl(rcx, Address(str, class_offset)); |
| __ cmpl(rcx, Address(arg, class_offset)); |
| __ j(kNotEqual, &return_false); |
| } |
| |
| // Reference equality check, return true if same reference. |
| __ cmpl(str, arg); |
| __ j(kEqual, &return_true); |
| |
| // Load length and compression flag of receiver string. |
| __ movl(rcx, Address(str, count_offset)); |
| // Check if lengths and compressiond flags are equal, return false if they're not. |
| // Two identical strings will always have same compression style since |
| // compression style is decided on alloc. |
| __ cmpl(rcx, Address(arg, count_offset)); |
| __ j(kNotEqual, &return_false); |
| // Return true if both strings are empty. Even with string compression `count == 0` means empty. |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ jrcxz(&return_true); |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel string_uncompressed; |
| // Extract length and differentiate between both compressed or both uncompressed. |
| // Different compression style is cut above. |
| __ shrl(rcx, Immediate(1)); |
| __ j(kCarrySet, &string_uncompressed); |
| // Divide string length by 2, rounding up, and continue as if uncompressed. |
| // Merge clearing the compression flag with +1 for rounding. |
| __ addl(rcx, Immediate(1)); |
| __ shrl(rcx, Immediate(1)); |
| __ Bind(&string_uncompressed); |
| } |
| // Load starting addresses of string values into RSI/RDI as required for repe_cmpsq instruction. |
| __ leal(rsi, Address(str, value_offset)); |
| __ leal(rdi, Address(arg, value_offset)); |
| |
| // Divide string length by 4 and adjust for lengths not divisible by 4. |
| __ addl(rcx, Immediate(3)); |
| __ shrl(rcx, Immediate(2)); |
| |
| // Assertions that must hold in order to compare strings 4 characters (uncompressed) |
| // or 8 characters (compressed) at a time. |
| DCHECK_ALIGNED(value_offset, 8); |
| static_assert(IsAligned<8>(kObjectAlignment), "String is not zero padded"); |
| |
| // Loop to compare strings four characters at a time starting at the beginning of the string. |
| __ repe_cmpsq(); |
| // If strings are not equal, zero flag will be cleared. |
| __ j(kNotEqual, &return_false); |
| |
| // Return true and exit the function. |
| // If loop does not result in returning false, we return true. |
| __ Bind(&return_true); |
| __ movl(rsi, Immediate(1)); |
| __ jmp(&end); |
| |
| // Return false and exit the function. |
| __ Bind(&return_false); |
| __ xorl(rsi, rsi); |
| __ Bind(&end); |
| } |
| |
| static void CreateStringIndexOfLocations(HInvoke* invoke, |
| ArenaAllocator* allocator, |
| bool start_at_zero) { |
| LocationSummary* locations = new (allocator) LocationSummary(invoke, |
| LocationSummary::kCallOnSlowPath, |
| kIntrinsified); |
| // The data needs to be in RDI for scasw. So request that the string is there, anyways. |
| locations->SetInAt(0, Location::RegisterLocation(RDI)); |
| // If we look for a constant char, we'll still have to copy it into RAX. So just request the |
| // allocator to do that, anyways. We can still do the constant check by checking the parameter |
| // of the instruction explicitly. |
| // Note: This works as we don't clobber RAX anywhere. |
| locations->SetInAt(1, Location::RegisterLocation(RAX)); |
| if (!start_at_zero) { |
| locations->SetInAt(2, Location::RequiresRegister()); // The starting index. |
| } |
| // As we clobber RDI during execution anyways, also use it as the output. |
| locations->SetOut(Location::SameAsFirstInput()); |
| |
| // repne scasw uses RCX as the counter. |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| // Need another temporary to be able to compute the result. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void GenerateStringIndexOf(HInvoke* invoke, |
| X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| bool start_at_zero) { |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| // Note that the null check must have been done earlier. |
| DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0))); |
| |
| CpuRegister string_obj = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister search_value = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister counter = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister string_length = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| // Check our assumptions for registers. |
| DCHECK_EQ(string_obj.AsRegister(), RDI); |
| DCHECK_EQ(search_value.AsRegister(), RAX); |
| DCHECK_EQ(counter.AsRegister(), RCX); |
| DCHECK_EQ(out.AsRegister(), RDI); |
| |
| // Check for code points > 0xFFFF. Either a slow-path check when we don't know statically, |
| // or directly dispatch for a large constant, or omit slow-path for a small constant or a char. |
| SlowPathCode* slow_path = nullptr; |
| HInstruction* code_point = invoke->InputAt(1); |
| if (code_point->IsIntConstant()) { |
| if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > |
| std::numeric_limits<uint16_t>::max()) { |
| // Always needs the slow-path. We could directly dispatch to it, but this case should be |
| // rare, so for simplicity just put the full slow-path down and branch unconditionally. |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ jmp(slow_path->GetEntryLabel()); |
| __ Bind(slow_path->GetExitLabel()); |
| return; |
| } |
| } else if (code_point->GetType() != DataType::Type::kUint16) { |
| __ cmpl(search_value, Immediate(std::numeric_limits<uint16_t>::max())); |
| slow_path = new (codegen->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen->AddSlowPath(slow_path); |
| __ j(kAbove, slow_path->GetEntryLabel()); |
| } |
| |
| // From here down, we know that we are looking for a char that fits in |
| // 16 bits (uncompressed) or 8 bits (compressed). |
| // Location of reference to data array within the String object. |
| int32_t value_offset = mirror::String::ValueOffset().Int32Value(); |
| // Location of count within the String object. |
| int32_t count_offset = mirror::String::CountOffset().Int32Value(); |
| |
| // Load the count field of the string containing the length and compression flag. |
| __ movl(string_length, Address(string_obj, count_offset)); |
| |
| // Do a zero-length check. Even with string compression `count == 0` means empty. |
| // TODO: Support jecxz. |
| NearLabel not_found_label; |
| __ testl(string_length, string_length); |
| __ j(kEqual, ¬_found_label); |
| |
| if (mirror::kUseStringCompression) { |
| // Use TMP to keep string_length_flagged. |
| __ movl(CpuRegister(TMP), string_length); |
| // Mask out first bit used as compression flag. |
| __ shrl(string_length, Immediate(1)); |
| } |
| |
| if (start_at_zero) { |
| // Number of chars to scan is the same as the string length. |
| __ movl(counter, string_length); |
| // Move to the start of the string. |
| __ addq(string_obj, Immediate(value_offset)); |
| } else { |
| CpuRegister start_index = locations->InAt(2).AsRegister<CpuRegister>(); |
| |
| // Do a start_index check. |
| __ cmpl(start_index, string_length); |
| __ j(kGreaterEqual, ¬_found_label); |
| |
| // Ensure we have a start index >= 0; |
| __ xorl(counter, counter); |
| __ cmpl(start_index, Immediate(0)); |
| __ cmov(kGreater, counter, start_index, /* is64bit */ false); // 32-bit copy is enough. |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel modify_counter, offset_uncompressed_label; |
| __ testl(CpuRegister(TMP), Immediate(1)); |
| __ j(kNotZero, &offset_uncompressed_label); |
| __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_1, value_offset)); |
| __ jmp(&modify_counter); |
| // Move to the start of the string: string_obj + value_offset + 2 * start_index. |
| __ Bind(&offset_uncompressed_label); |
| __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); |
| __ Bind(&modify_counter); |
| } else { |
| __ leaq(string_obj, Address(string_obj, counter, ScaleFactor::TIMES_2, value_offset)); |
| } |
| // Now update ecx, the work counter: it's gonna be string.length - start_index. |
| __ negq(counter); // Needs to be 64-bit negation, as the address computation is 64-bit. |
| __ leaq(counter, Address(string_length, counter, ScaleFactor::TIMES_1, 0)); |
| } |
| |
| if (mirror::kUseStringCompression) { |
| NearLabel uncompressed_string_comparison; |
| NearLabel comparison_done; |
| __ testl(CpuRegister(TMP), Immediate(1)); |
| __ j(kNotZero, &uncompressed_string_comparison); |
| // Check if RAX (search_value) is ASCII. |
| __ cmpl(search_value, Immediate(127)); |
| __ j(kGreater, ¬_found_label); |
| // Comparing byte-per-byte. |
| __ repne_scasb(); |
| __ jmp(&comparison_done); |
| // Everything is set up for repne scasw: |
| // * Comparison address in RDI. |
| // * Counter in ECX. |
| __ Bind(&uncompressed_string_comparison); |
| __ repne_scasw(); |
| __ Bind(&comparison_done); |
| } else { |
| __ repne_scasw(); |
| } |
| // Did we find a match? |
| __ j(kNotEqual, ¬_found_label); |
| |
| // Yes, we matched. Compute the index of the result. |
| __ subl(string_length, counter); |
| __ leal(out, Address(string_length, -1)); |
| |
| NearLabel done; |
| __ jmp(&done); |
| |
| // Failed to match; return -1. |
| __ Bind(¬_found_label); |
| __ movl(out, Immediate(-1)); |
| |
| // And join up at the end. |
| __ Bind(&done); |
| if (slow_path != nullptr) { |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringIndexOf(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringIndexOf(HInvoke* invoke) { |
| GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| CreateStringIndexOfLocations(invoke, allocator_, /* start_at_zero */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringIndexOfAfter(HInvoke* invoke) { |
| GenerateStringIndexOf(invoke, GetAssembler(), codegen_, /* start_at_zero */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromBytes(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister byte_array = locations->InAt(0).AsRegister<CpuRegister>(); |
| __ testl(byte_array, byte_array); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kCallOnMainOnly, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1))); |
| locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromChars(HInvoke* invoke) { |
| // No need to emit code checking whether `locations->InAt(2)` is a null |
| // pointer, as callers of the native method |
| // |
| // java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data) |
| // |
| // all include a null check on `data` before calling that method. |
| codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>(); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringNewStringFromString(HInvoke* invoke) { |
| LocationSummary* locations = new (allocator_) LocationSummary( |
| invoke, LocationSummary::kCallOnMainAndSlowPath, kIntrinsified); |
| InvokeRuntimeCallingConvention calling_convention; |
| locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| locations->SetOut(Location::RegisterLocation(RAX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringNewStringFromString(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister string_to_copy = locations->InAt(0).AsRegister<CpuRegister>(); |
| __ testl(string_to_copy, string_to_copy); |
| SlowPathCode* slow_path = new (codegen_->GetScopedAllocator()) IntrinsicSlowPathX86_64(invoke); |
| codegen_->AddSlowPath(slow_path); |
| __ j(kEqual, slow_path->GetEntryLabel()); |
| |
| codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc()); |
| CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>(); |
| __ Bind(slow_path->GetExitLabel()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1))); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| // And we need some temporaries. We will use REP MOVSW, so we need fixed registers. |
| locations->AddTemp(Location::RegisterLocation(RSI)); |
| locations->AddTemp(Location::RegisterLocation(RDI)); |
| locations->AddTemp(Location::RegisterLocation(RCX)); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitStringGetCharsNoCheck(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| size_t char_component_size = DataType::Size(DataType::Type::kUint16); |
| // Location of data in char array buffer. |
| const uint32_t data_offset = mirror::Array::DataOffset(char_component_size).Uint32Value(); |
| // Location of char array data in string. |
| const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value(); |
| |
| // public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin); |
| CpuRegister obj = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location srcBegin = locations->InAt(1); |
| int srcBegin_value = |
| srcBegin.IsConstant() ? srcBegin.GetConstant()->AsIntConstant()->GetValue() : 0; |
| CpuRegister srcEnd = locations->InAt(2).AsRegister<CpuRegister>(); |
| CpuRegister dst = locations->InAt(3).AsRegister<CpuRegister>(); |
| CpuRegister dstBegin = locations->InAt(4).AsRegister<CpuRegister>(); |
| |
| // Check assumption that sizeof(Char) is 2 (used in scaling below). |
| const size_t char_size = DataType::Size(DataType::Type::kUint16); |
| DCHECK_EQ(char_size, 2u); |
| |
| NearLabel done; |
| // Compute the number of chars (words) to move. |
| __ movl(CpuRegister(RCX), srcEnd); |
| if (srcBegin.IsConstant()) { |
| __ subl(CpuRegister(RCX), Immediate(srcBegin_value)); |
| } else { |
| DCHECK(srcBegin.IsRegister()); |
| __ subl(CpuRegister(RCX), srcBegin.AsRegister<CpuRegister>()); |
| } |
| if (mirror::kUseStringCompression) { |
| NearLabel copy_uncompressed, copy_loop; |
| const size_t c_char_size = DataType::Size(DataType::Type::kInt8); |
| DCHECK_EQ(c_char_size, 1u); |
| // Location of count in string. |
| const uint32_t count_offset = mirror::String::CountOffset().Uint32Value(); |
| |
| __ testl(Address(obj, count_offset), Immediate(1)); |
| static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u, |
| "Expecting 0=compressed, 1=uncompressed"); |
| __ j(kNotZero, ©_uncompressed); |
| // Compute the address of the source string by adding the number of chars from |
| // the source beginning to the value offset of a string. |
| __ leaq(CpuRegister(RSI), |
| CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_1, value_offset)); |
| // Start the loop to copy String's value to Array of Char. |
| __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); |
| |
| __ Bind(©_loop); |
| __ jrcxz(&done); |
| // Use TMP as temporary (convert byte from RSI to word). |
| // TODO: Selecting RAX as the temporary and using LODSB/STOSW. |
| __ movzxb(CpuRegister(TMP), Address(CpuRegister(RSI), 0)); |
| __ movw(Address(CpuRegister(RDI), 0), CpuRegister(TMP)); |
| __ leaq(CpuRegister(RDI), Address(CpuRegister(RDI), char_size)); |
| __ leaq(CpuRegister(RSI), Address(CpuRegister(RSI), c_char_size)); |
| // TODO: Add support for LOOP to X86_64Assembler. |
| __ subl(CpuRegister(RCX), Immediate(1)); |
| __ jmp(©_loop); |
| |
| __ Bind(©_uncompressed); |
| } |
| |
| __ leaq(CpuRegister(RSI), |
| CodeGeneratorX86_64::ArrayAddress(obj, srcBegin, TIMES_2, value_offset)); |
| // Compute the address of the destination buffer. |
| __ leaq(CpuRegister(RDI), Address(dst, dstBegin, ScaleFactor::TIMES_2, data_offset)); |
| // Do the move. |
| __ rep_movsw(); |
| |
| __ Bind(&done); |
| } |
| |
| static void GenPeek(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { |
| CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); // == address, here for clarity. |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case DataType::Type::kInt8: |
| __ movsxb(out, Address(address, 0)); |
| break; |
| case DataType::Type::kInt16: |
| __ movsxw(out, Address(address, 0)); |
| break; |
| case DataType::Type::kInt32: |
| __ movl(out, Address(address, 0)); |
| break; |
| case DataType::Type::kInt64: |
| __ movq(out, Address(address, 0)); |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for peek: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekByte(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekByte(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekIntNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekLongNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| CreateIntToIntLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPeekShortNative(HInvoke* invoke) { |
| GenPeek(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| static void CreateIntIntToVoidLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetInAt(1, Location::RegisterOrInt32Constant(invoke->InputAt(1))); |
| } |
| |
| static void GenPoke(LocationSummary* locations, DataType::Type size, X86_64Assembler* assembler) { |
| CpuRegister address = locations->InAt(0).AsRegister<CpuRegister>(); |
| Location value = locations->InAt(1); |
| // x86 allows unaligned access. We do not have to check the input or use specific instructions |
| // to avoid a SIGBUS. |
| switch (size) { |
| case DataType::Type::kInt8: |
| if (value.IsConstant()) { |
| __ movb(Address(address, 0), |
| Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); |
| } else { |
| __ movb(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case DataType::Type::kInt16: |
| if (value.IsConstant()) { |
| __ movw(Address(address, 0), |
| Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); |
| } else { |
| __ movw(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case DataType::Type::kInt32: |
| if (value.IsConstant()) { |
| __ movl(Address(address, 0), |
| Immediate(CodeGenerator::GetInt32ValueOf(value.GetConstant()))); |
| } else { |
| __ movl(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| case DataType::Type::kInt64: |
| if (value.IsConstant()) { |
| int64_t v = value.GetConstant()->AsLongConstant()->GetValue(); |
| DCHECK(IsInt<32>(v)); |
| int32_t v_32 = v; |
| __ movq(Address(address, 0), Immediate(v_32)); |
| } else { |
| __ movq(Address(address, 0), value.AsRegister<CpuRegister>()); |
| } |
| break; |
| default: |
| LOG(FATAL) << "Type not recognized for poke: " << size; |
| UNREACHABLE(); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeByte(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeByte(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt8, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeIntNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt32, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeLongNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt64, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| CreateIntIntToVoidLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitMemoryPokeShortNative(HInvoke* invoke) { |
| GenPoke(invoke->GetLocations(), DataType::Type::kInt16, GetAssembler()); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitThreadCurrentThread(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitThreadCurrentThread(HInvoke* invoke) { |
| CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>(); |
| GetAssembler()->gs()->movl(out, Address::Absolute(Thread::PeerOffset<kX86_64PointerSize>(), |
| /* no_rip */ true)); |
| } |
| |
| static void GenUnsafeGet(HInvoke* invoke, |
| DataType::Type type, |
| bool is_volatile ATTRIBUTE_UNUSED, |
| CodeGeneratorX86_64* codegen) { |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| Location base_loc = locations->InAt(1); |
| CpuRegister base = base_loc.AsRegister<CpuRegister>(); |
| Location offset_loc = locations->InAt(2); |
| CpuRegister offset = offset_loc.AsRegister<CpuRegister>(); |
| Location output_loc = locations->Out(); |
| CpuRegister output = output_loc.AsRegister<CpuRegister>(); |
| |
| switch (type) { |
| case DataType::Type::kInt32: |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| |
| case DataType::Type::kReference: { |
| if (kEmitCompilerReadBarrier) { |
| if (kUseBakerReadBarrier) { |
| Address src(base, offset, ScaleFactor::TIMES_1, 0); |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, output_loc, base, src, /* needs_null_check */ false); |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| codegen->GenerateReadBarrierSlow( |
| invoke, output_loc, output_loc, base_loc, 0U, offset_loc); |
| } |
| } else { |
| __ movl(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| __ MaybeUnpoisonHeapReference(output); |
| } |
| break; |
| } |
| |
| case DataType::Type::kInt64: |
| __ movq(output, Address(base, offset, ScaleFactor::TIMES_1, 0)); |
| break; |
| |
| default: |
| LOG(FATAL) << "Unsupported op size " << type; |
| UNREACHABLE(); |
| } |
| } |
| |
| static void CreateIntIntIntToIntLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| bool can_call = kEmitCompilerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject || |
| invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| if (can_call && kUseBakerReadBarrier) { |
| locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers. |
| } |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetOut(Location::RequiresRegister(), |
| (can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap)); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGet(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLong(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObject(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntToIntLocations(allocator_, invoke); |
| } |
| |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGet(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt32, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLong(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetLongVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kInt64, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObject(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) { |
| GenUnsafeGet(invoke, DataType::Type::kReference, /* is_volatile */ true, codegen_); |
| } |
| |
| |
| static void CreateIntIntIntIntToVoidPlusTempsLocations(ArenaAllocator* allocator, |
| DataType::Type type, |
| HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| locations->SetInAt(3, Location::RequiresRegister()); |
| if (type == DataType::Type::kReference) { |
| // Need temp registers for card-marking. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePut(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt32, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObject(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kReference, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLong(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| CreateIntIntIntIntToVoidPlusTempsLocations(allocator_, DataType::Type::kInt64, invoke); |
| } |
| |
| // We don't care for ordered: it requires an AnyStore barrier, which is already given by the x86 |
| // memory model. |
| static void GenUnsafePut(LocationSummary* locations, DataType::Type type, bool is_volatile, |
| CodeGeneratorX86_64* codegen) { |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>(); |
| CpuRegister value = locations->InAt(3).AsRegister<CpuRegister>(); |
| |
| if (type == DataType::Type::kInt64) { |
| __ movq(Address(base, offset, ScaleFactor::TIMES_1, 0), value); |
| } else if (kPoisonHeapReferences && type == DataType::Type::kReference) { |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| __ movl(temp, value); |
| __ PoisonHeapReference(temp); |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), temp); |
| } else { |
| __ movl(Address(base, offset, ScaleFactor::TIMES_1, 0), value); |
| } |
| |
| if (is_volatile) { |
| codegen->MemoryFence(); |
| } |
| |
| if (type == DataType::Type::kReference) { |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(locations->GetTemp(0).AsRegister<CpuRegister>(), |
| locations->GetTemp(1).AsRegister<CpuRegister>(), |
| base, |
| value, |
| value_can_be_null); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePut(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt32, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObject(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectOrdered(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutObjectVolatile(HInvoke* invoke) { |
| GenUnsafePut( |
| invoke->GetLocations(), DataType::Type::kReference, /* is_volatile */ true, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLong(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongOrdered(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ false, codegen_); |
| } |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafePutLongVolatile(HInvoke* invoke) { |
| GenUnsafePut(invoke->GetLocations(), DataType::Type::kInt64, /* is_volatile */ true, codegen_); |
| } |
| |
| static void CreateIntIntIntIntIntToInt(ArenaAllocator* allocator, |
| DataType::Type type, |
| HInvoke* invoke) { |
| bool can_call = kEmitCompilerReadBarrier && |
| kUseBakerReadBarrier && |
| (invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject); |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, |
| can_call |
| ? LocationSummary::kCallOnSlowPath |
| : LocationSummary::kNoCall, |
| kIntrinsified); |
| locations->SetInAt(0, Location::NoLocation()); // Unused receiver. |
| locations->SetInAt(1, Location::RequiresRegister()); |
| locations->SetInAt(2, Location::RequiresRegister()); |
| // expected value must be in EAX/RAX. |
| locations->SetInAt(3, Location::RegisterLocation(RAX)); |
| locations->SetInAt(4, Location::RequiresRegister()); |
| |
| locations->SetOut(Location::RequiresRegister()); |
| if (type == DataType::Type::kReference) { |
| // Need temporary registers for card-marking, and possibly for |
| // (Baker) read barrier. |
| locations->AddTemp(Location::RequiresRegister()); // Possibly used for reference poisoning too. |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASInt(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt32, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASLong(HInvoke* invoke) { |
| CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kInt64, invoke); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) { |
| return; |
| } |
| |
| CreateIntIntIntIntIntToInt(allocator_, DataType::Type::kReference, invoke); |
| } |
| |
| static void GenCAS(DataType::Type type, HInvoke* invoke, CodeGeneratorX86_64* codegen) { |
| X86_64Assembler* assembler = down_cast<X86_64Assembler*>(codegen->GetAssembler()); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister base = locations->InAt(1).AsRegister<CpuRegister>(); |
| CpuRegister offset = locations->InAt(2).AsRegister<CpuRegister>(); |
| CpuRegister expected = locations->InAt(3).AsRegister<CpuRegister>(); |
| // Ensure `expected` is in RAX (required by the CMPXCHG instruction). |
| DCHECK_EQ(expected.AsRegister(), RAX); |
| CpuRegister value = locations->InAt(4).AsRegister<CpuRegister>(); |
| Location out_loc = locations->Out(); |
| CpuRegister out = out_loc.AsRegister<CpuRegister>(); |
| |
| if (type == DataType::Type::kReference) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| |
| // Mark card for object assuming new value is stored. |
| bool value_can_be_null = true; // TODO: Worth finding out this information? |
| codegen->MarkGCCard(temp1, temp2, base, value, value_can_be_null); |
| |
| // The address of the field within the holding object. |
| Address field_addr(base, offset, ScaleFactor::TIMES_1, 0); |
| |
| if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) { |
| // Need to make sure the reference stored in the field is a to-space |
| // one before attempting the CAS or the CAS could fail incorrectly. |
| codegen->GenerateReferenceLoadWithBakerReadBarrier( |
| invoke, |
| out_loc, // Unused, used only as a "temporary" within the read barrier. |
| base, |
| field_addr, |
| /* needs_null_check */ false, |
| /* always_update_field */ true, |
| &temp1, |
| &temp2); |
| } |
| |
| bool base_equals_value = (base.AsRegister() == value.AsRegister()); |
| Register value_reg = value.AsRegister(); |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // If `base` and `value` are the same register location, move |
| // `value_reg` to a temporary register. This way, poisoning |
| // `value_reg` won't invalidate `base`. |
| value_reg = temp1.AsRegister(); |
| __ movl(CpuRegister(value_reg), base); |
| } |
| |
| // Check that the register allocator did not assign the location |
| // of `expected` (RAX) to `value` nor to `base`, so that heap |
| // poisoning (when enabled) works as intended below. |
| // - If `value` were equal to `expected`, both references would |
| // be poisoned twice, meaning they would not be poisoned at |
| // all, as heap poisoning uses address negation. |
| // - If `base` were equal to `expected`, poisoning `expected` |
| // would invalidate `base`. |
| DCHECK_NE(value_reg, expected.AsRegister()); |
| DCHECK_NE(base.AsRegister(), expected.AsRegister()); |
| |
| __ PoisonHeapReference(expected); |
| __ PoisonHeapReference(CpuRegister(value_reg)); |
| } |
| |
| __ LockCmpxchgl(field_addr, CpuRegister(value_reg)); |
| |
| // LOCK CMPXCHG has full barrier semantics, and we don't need |
| // scheduling barriers at this time. |
| |
| // Convert ZF into the Boolean result. |
| __ setcc(kZero, out); |
| __ movzxb(out, out); |
| |
| // If heap poisoning is enabled, we need to unpoison the values |
| // that were poisoned earlier. |
| if (kPoisonHeapReferences) { |
| if (base_equals_value) { |
| // `value_reg` has been moved to a temporary register, no need |
| // to unpoison it. |
| } else { |
| // Ensure `value` is different from `out`, so that unpoisoning |
| // the former does not invalidate the latter. |
| DCHECK_NE(value_reg, out.AsRegister()); |
| __ UnpoisonHeapReference(CpuRegister(value_reg)); |
| } |
| // Ensure `expected` is different from `out`, so that unpoisoning |
| // the former does not invalidate the latter. |
| DCHECK_NE(expected.AsRegister(), out.AsRegister()); |
| __ UnpoisonHeapReference(expected); |
| } |
| } else { |
| if (type == DataType::Type::kInt32) { |
| __ LockCmpxchgl(Address(base, offset, TIMES_1, 0), value); |
| } else if (type == DataType::Type::kInt64) { |
| __ LockCmpxchgq(Address(base, offset, TIMES_1, 0), value); |
| } else { |
| LOG(FATAL) << "Unexpected CAS type " << type; |
| } |
| |
| // LOCK CMPXCHG has full barrier semantics, and we don't need |
| // scheduling barriers at this time. |
| |
| // Convert ZF into the Boolean result. |
| __ setcc(kZero, out); |
| __ movzxb(out, out); |
| } |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASInt(HInvoke* invoke) { |
| GenCAS(DataType::Type::kInt32, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASLong(HInvoke* invoke) { |
| GenCAS(DataType::Type::kInt64, invoke, codegen_); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitUnsafeCASObject(HInvoke* invoke) { |
| // The only read barrier implementation supporting the |
| // UnsafeCASObject intrinsic is the Baker-style read barriers. |
| DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier); |
| |
| GenCAS(DataType::Type::kReference, invoke, codegen_); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerReverse(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void SwapBits(CpuRegister reg, CpuRegister temp, int32_t shift, int32_t mask, |
| X86_64Assembler* assembler) { |
| Immediate imm_shift(shift); |
| Immediate imm_mask(mask); |
| __ movl(temp, reg); |
| __ shrl(reg, imm_shift); |
| __ andl(temp, imm_mask); |
| __ andl(reg, imm_mask); |
| __ shll(temp, imm_shift); |
| __ orl(reg, temp); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerReverse(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister temp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| |
| /* |
| * Use one bswap instruction to reverse byte order first and then use 3 rounds of |
| * swapping bits to reverse bits in a number x. Using bswap to save instructions |
| * compared to generic luni implementation which has 5 rounds of swapping bits. |
| * x = bswap x |
| * x = (x & 0x55555555) << 1 | (x >> 1) & 0x55555555; |
| * x = (x & 0x33333333) << 2 | (x >> 2) & 0x33333333; |
| * x = (x & 0x0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F; |
| */ |
| __ bswapl(reg); |
| SwapBits(reg, temp, 1, 0x55555555, assembler); |
| SwapBits(reg, temp, 2, 0x33333333, assembler); |
| SwapBits(reg, temp, 4, 0x0f0f0f0f, assembler); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongReverse(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::RequiresRegister()); |
| locations->SetOut(Location::SameAsFirstInput()); |
| locations->AddTemp(Location::RequiresRegister()); |
| locations->AddTemp(Location::RequiresRegister()); |
| } |
| |
| static void SwapBits64(CpuRegister reg, CpuRegister temp, CpuRegister temp_mask, |
| int32_t shift, int64_t mask, X86_64Assembler* assembler) { |
| Immediate imm_shift(shift); |
| __ movq(temp_mask, Immediate(mask)); |
| __ movq(temp, reg); |
| __ shrq(reg, imm_shift); |
| __ andq(temp, temp_mask); |
| __ andq(reg, temp_mask); |
| __ shlq(temp, imm_shift); |
| __ orq(reg, temp); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongReverse(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| LocationSummary* locations = invoke->GetLocations(); |
| |
| CpuRegister reg = locations->InAt(0).AsRegister<CpuRegister>(); |
| CpuRegister temp1 = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| CpuRegister temp2 = locations->GetTemp(1).AsRegister<CpuRegister>(); |
| |
| /* |
| * Use one bswap instruction to reverse byte order first and then use 3 rounds of |
| * swapping bits to reverse bits in a long number x. Using bswap to save instructions |
| * compared to generic luni implementation which has 5 rounds of swapping bits. |
| * x = bswap x |
| * x = (x & 0x5555555555555555) << 1 | (x >> 1) & 0x5555555555555555; |
| * x = (x & 0x3333333333333333) << 2 | (x >> 2) & 0x3333333333333333; |
| * x = (x & 0x0F0F0F0F0F0F0F0F) << 4 | (x >> 4) & 0x0F0F0F0F0F0F0F0F; |
| */ |
| __ bswapq(reg); |
| SwapBits64(reg, temp1, temp2, 1, INT64_C(0x5555555555555555), assembler); |
| SwapBits64(reg, temp1, temp2, 2, INT64_C(0x3333333333333333), assembler); |
| SwapBits64(reg, temp1, temp2, 4, INT64_C(0x0f0f0f0f0f0f0f0f), assembler); |
| } |
| |
| static void CreateBitCountLocations( |
| ArenaAllocator* allocator, CodeGeneratorX86_64* codegen, HInvoke* invoke) { |
| if (!codegen->GetInstructionSetFeatures().HasPopCnt()) { |
| // Do nothing if there is no popcnt support. This results in generating |
| // a call for the intrinsic rather than direct code. |
| return; |
| } |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenBitCount(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, |
| bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| int32_t result = is_long |
| ? POPCOUNT(static_cast<uint64_t>(value)) |
| : POPCOUNT(static_cast<uint32_t>(value)); |
| codegen->Load32BitValue(out, result); |
| return; |
| } |
| |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ popcntq(out, src.AsRegister<CpuRegister>()); |
| } else { |
| __ popcntl(out, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ popcntq(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ popcntl(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(allocator_, codegen_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongBitCount(HInvoke* invoke) { |
| CreateBitCountLocations(allocator_, codegen_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongBitCount(HInvoke* invoke) { |
| GenBitCount(GetAssembler(), codegen_, invoke, /* is_long */ true); |
| } |
| |
| static void CreateOneBitLocations(ArenaAllocator* allocator, HInvoke* invoke, bool is_high) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| locations->AddTemp(is_high ? Location::RegisterLocation(RCX) // needs CL |
| : Location::RequiresRegister()); // any will do |
| } |
| |
| static void GenOneBit(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, |
| bool is_high, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| __ xorl(out, out); // Clears upper bits too. |
| return; |
| } |
| // Nonzero value. |
| if (is_high) { |
| value = is_long ? 63 - CLZ(static_cast<uint64_t>(value)) |
| : 31 - CLZ(static_cast<uint32_t>(value)); |
| } else { |
| value = is_long ? CTZ(static_cast<uint64_t>(value)) |
| : CTZ(static_cast<uint32_t>(value)); |
| } |
| if (is_long) { |
| codegen->Load64BitValue(out, 1ULL << value); |
| } else { |
| codegen->Load32BitValue(out, 1 << value); |
| } |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| CpuRegister tmp = locations->GetTemp(0).AsRegister<CpuRegister>(); |
| if (is_high) { |
| // Use architectural support: basically 1 << bsr. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ bsrq(tmp, src.AsRegister<CpuRegister>()); |
| } else { |
| __ bsrl(tmp, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ bsrq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsrl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| // BSR sets ZF if the input was zero. |
| NearLabel is_zero, done; |
| __ j(kEqual, &is_zero); |
| __ movl(out, Immediate(1)); // Clears upper bits too. |
| if (is_long) { |
| __ shlq(out, tmp); |
| } else { |
| __ shll(out, tmp); |
| } |
| __ jmp(&done); |
| __ Bind(&is_zero); |
| __ xorl(out, out); // Clears upper bits too. |
| __ Bind(&done); |
| } else { |
| // Copy input into temporary. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ movq(tmp, src.AsRegister<CpuRegister>()); |
| } else { |
| __ movl(tmp, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ movq(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ movl(tmp, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| // Do the bit twiddling: basically tmp & -tmp; |
| if (is_long) { |
| __ movq(out, tmp); |
| __ negq(tmp); |
| __ andq(out, tmp); |
| } else { |
| __ movl(out, tmp); |
| __ negl(tmp); |
| __ andl(out, tmp); |
| } |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerHighestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongHighestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high */ true); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongHighestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ true, /* is_long */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerLowestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongLowestOneBit(HInvoke* invoke) { |
| CreateOneBitLocations(allocator_, invoke, /* is_high */ false); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongLowestOneBit(HInvoke* invoke) { |
| GenOneBit(GetAssembler(), codegen_, invoke, /* is_high */ false, /* is_long */ true); |
| } |
| |
| static void CreateLeadingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenLeadingZeros(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| int zero_value_result = is_long ? 64 : 32; |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = zero_value_result; |
| } else { |
| value = is_long ? CLZ(static_cast<uint64_t>(value)) : CLZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ bsrq(out, src.AsRegister<CpuRegister>()); |
| } else { |
| __ bsrl(out, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ bsrq(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsrl(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| |
| // BSR sets ZF if the input was zero, and the output is undefined. |
| NearLabel is_zero, done; |
| __ j(kEqual, &is_zero); |
| |
| // Correct the result from BSR to get the CLZ result. |
| __ xorl(out, Immediate(zero_value_result - 1)); |
| __ jmp(&done); |
| |
| // Fix the zero case with the expected result. |
| __ Bind(&is_zero); |
| __ movl(out, Immediate(zero_value_result)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| CreateLeadingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) { |
| GenLeadingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); |
| } |
| |
| static void CreateTrailingZeroLocations(ArenaAllocator* allocator, HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| static void GenTrailingZeros(X86_64Assembler* assembler, |
| CodeGeneratorX86_64* codegen, |
| HInvoke* invoke, bool is_long) { |
| LocationSummary* locations = invoke->GetLocations(); |
| Location src = locations->InAt(0); |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| |
| int zero_value_result = is_long ? 64 : 32; |
| if (invoke->InputAt(0)->IsConstant()) { |
| // Evaluate this at compile time. |
| int64_t value = Int64FromConstant(invoke->InputAt(0)->AsConstant()); |
| if (value == 0) { |
| value = zero_value_result; |
| } else { |
| value = is_long ? CTZ(static_cast<uint64_t>(value)) : CTZ(static_cast<uint32_t>(value)); |
| } |
| codegen->Load32BitValue(out, value); |
| return; |
| } |
| |
| // Handle the non-constant cases. |
| if (src.IsRegister()) { |
| if (is_long) { |
| __ bsfq(out, src.AsRegister<CpuRegister>()); |
| } else { |
| __ bsfl(out, src.AsRegister<CpuRegister>()); |
| } |
| } else if (is_long) { |
| DCHECK(src.IsDoubleStackSlot()); |
| __ bsfq(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } else { |
| DCHECK(src.IsStackSlot()); |
| __ bsfl(out, Address(CpuRegister(RSP), src.GetStackIndex())); |
| } |
| |
| // BSF sets ZF if the input was zero, and the output is undefined. |
| NearLabel done; |
| __ j(kNotEqual, &done); |
| |
| // Fix the zero case with the expected result. |
| __ movl(out, Immediate(zero_value_result)); |
| |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ false); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| CreateTrailingZeroLocations(allocator_, invoke); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) { |
| GenTrailingZeros(GetAssembler(), codegen_, invoke, /* is_long */ true); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitIntegerValueOf(HInvoke* invoke) { |
| InvokeRuntimeCallingConvention calling_convention; |
| IntrinsicVisitor::ComputeIntegerValueOfLocations( |
| invoke, |
| codegen_, |
| Location::RegisterLocation(RAX), |
| Location::RegisterLocation(calling_convention.GetRegisterAt(0))); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitIntegerValueOf(HInvoke* invoke) { |
| IntrinsicVisitor::IntegerValueOfInfo info = |
| IntrinsicVisitor::ComputeIntegerValueOfInfo(invoke, codegen_->GetCompilerOptions()); |
| LocationSummary* locations = invoke->GetLocations(); |
| X86_64Assembler* assembler = GetAssembler(); |
| |
| CpuRegister out = locations->Out().AsRegister<CpuRegister>(); |
| InvokeRuntimeCallingConvention calling_convention; |
| CpuRegister argument = CpuRegister(calling_convention.GetRegisterAt(0)); |
| if (invoke->InputAt(0)->IsIntConstant()) { |
| int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue(); |
| if (static_cast<uint32_t>(value - info.low) < info.length) { |
| // Just embed the j.l.Integer in the code. |
| DCHECK_NE(info.value_boot_image_reference, IntegerValueOfInfo::kInvalidReference); |
| codegen_->LoadBootImageAddress(out, info.value_boot_image_reference); |
| } else { |
| DCHECK(locations->CanCall()); |
| // Allocate and initialize a new j.l.Integer. |
| // TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the |
| // JIT object table. |
| codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), |
| info.integer_boot_image_offset); |
| __ movl(Address(out, info.value_offset), Immediate(value)); |
| } |
| } else { |
| DCHECK(locations->CanCall()); |
| CpuRegister in = locations->InAt(0).AsRegister<CpuRegister>(); |
| // Check bounds of our cache. |
| __ leal(out, Address(in, -info.low)); |
| __ cmpl(out, Immediate(info.length)); |
| NearLabel allocate, done; |
| __ j(kAboveEqual, &allocate); |
| // If the value is within the bounds, load the j.l.Integer directly from the array. |
| DCHECK_NE(out.AsRegister(), argument.AsRegister()); |
| codegen_->LoadBootImageAddress(argument, info.array_data_boot_image_reference); |
| static_assert((1u << TIMES_4) == sizeof(mirror::HeapReference<mirror::Object>), |
| "Check heap reference size."); |
| __ movl(out, Address(argument, out, TIMES_4, 0)); |
| __ MaybeUnpoisonHeapReference(out); |
| __ jmp(&done); |
| __ Bind(&allocate); |
| // Otherwise allocate and initialize a new j.l.Integer. |
| codegen_->AllocateInstanceForIntrinsic(invoke->AsInvokeStaticOrDirect(), |
| info.integer_boot_image_offset); |
| __ movl(Address(out, info.value_offset), in); |
| __ Bind(&done); |
| } |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitThreadInterrupted(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetOut(Location::RequiresRegister()); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitThreadInterrupted(HInvoke* invoke) { |
| X86_64Assembler* assembler = GetAssembler(); |
| CpuRegister out = invoke->GetLocations()->Out().AsRegister<CpuRegister>(); |
| Address address = Address::Absolute |
| (Thread::InterruptedOffset<kX86_64PointerSize>().Int32Value(), /* no_rip */ true); |
| NearLabel done; |
| __ gs()->movl(out, address); |
| __ testl(out, out); |
| __ j(kEqual, &done); |
| __ gs()->movl(address, Immediate(0)); |
| codegen_->MemoryFence(); |
| __ Bind(&done); |
| } |
| |
| void IntrinsicLocationsBuilderX86_64::VisitReachabilityFence(HInvoke* invoke) { |
| LocationSummary* locations = |
| new (allocator_) LocationSummary(invoke, LocationSummary::kNoCall, kIntrinsified); |
| locations->SetInAt(0, Location::Any()); |
| } |
| |
| void IntrinsicCodeGeneratorX86_64::VisitReachabilityFence(HInvoke* invoke ATTRIBUTE_UNUSED) { } |
| |
| UNIMPLEMENTED_INTRINSIC(X86_64, ReferenceGetReferent) |
| UNIMPLEMENTED_INTRINSIC(X86_64, FloatIsInfinite) |
| UNIMPLEMENTED_INTRINSIC(X86_64, DoubleIsInfinite) |
| |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOf); |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringStringIndexOfAfter); |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferAppend); |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferLength); |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringBufferToString); |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderAppend); |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderLength); |
| UNIMPLEMENTED_INTRINSIC(X86_64, StringBuilderToString); |
| |
| // 1.8. |
| UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddInt) |
| UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndAddLong) |
| UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetInt) |
| UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetLong) |
| UNIMPLEMENTED_INTRINSIC(X86_64, UnsafeGetAndSetObject) |
| |
| UNREACHABLE_INTRINSICS(X86_64) |
| |
| #undef __ |
| |
| } // namespace x86_64 |
| } // namespace art |