blob: 12bdb32fec2efca95fad87c054e6869f3856060b [file] [log] [blame]
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "debugger.h"
#include <sys/uio.h>
#include <set>
#include "android-base/stringprintf.h"
#include "arch/context.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "base/enums.h"
#include "base/time_utils.h"
#include "class_linker.h"
#include "class_linker-inl.h"
#include "dex_file-inl.h"
#include "dex_file_annotations.h"
#include "dex_instruction.h"
#include "entrypoints/runtime_asm_entrypoints.h"
#include "gc/accounting/card_table-inl.h"
#include "gc/allocation_record.h"
#include "gc/scoped_gc_critical_section.h"
#include "gc/space/large_object_space.h"
#include "gc/space/space-inl.h"
#include "handle_scope-inl.h"
#include "jdwp/jdwp_priv.h"
#include "jdwp/object_registry.h"
#include "jni_internal.h"
#include "jvalue-inl.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/class_loader.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/string-inl.h"
#include "mirror/throwable.h"
#include "obj_ptr-inl.h"
#include "reflection.h"
#include "safe_map.h"
#include "scoped_thread_state_change-inl.h"
#include "ScopedLocalRef.h"
#include "ScopedPrimitiveArray.h"
#include "stack.h"
#include "thread_list.h"
#include "utf.h"
#include "well_known_classes.h"
namespace art {
using android::base::StringPrintf;
// The key identifying the debugger to update instrumentation.
static constexpr const char* kDbgInstrumentationKey = "Debugger";
// Limit alloc_record_count to the 2BE value (64k-1) that is the limit of the current protocol.
static uint16_t CappedAllocRecordCount(size_t alloc_record_count) {
const size_t cap = 0xffff;
if (alloc_record_count > cap) {
return cap;
}
return alloc_record_count;
}
// Takes a method and returns a 'canonical' one if the method is default (and therefore potentially
// copied from some other class). This ensures that the debugger does not get confused as to which
// method we are in.
static ArtMethod* GetCanonicalMethod(ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (LIKELY(!m->IsDefault())) {
return m;
} else {
mirror::Class* declaring_class = m->GetDeclaringClass();
return declaring_class->FindDeclaredVirtualMethod(declaring_class->GetDexCache(),
m->GetDexMethodIndex(),
kRuntimePointerSize);
}
}
class Breakpoint : public ValueObject {
public:
Breakpoint(ArtMethod* method, uint32_t dex_pc, DeoptimizationRequest::Kind deoptimization_kind)
: method_(GetCanonicalMethod(method)),
dex_pc_(dex_pc),
deoptimization_kind_(deoptimization_kind) {
CHECK(deoptimization_kind_ == DeoptimizationRequest::kNothing ||
deoptimization_kind_ == DeoptimizationRequest::kSelectiveDeoptimization ||
deoptimization_kind_ == DeoptimizationRequest::kFullDeoptimization);
}
Breakpoint(const Breakpoint& other) REQUIRES_SHARED(Locks::mutator_lock_)
: method_(other.method_),
dex_pc_(other.dex_pc_),
deoptimization_kind_(other.deoptimization_kind_) {}
// Method() is called from root visiting, do not use ScopedObjectAccess here or it can cause
// GC to deadlock if another thread tries to call SuspendAll while the GC is in a runnable state.
ArtMethod* Method() const {
return method_;
}
uint32_t DexPc() const {
return dex_pc_;
}
DeoptimizationRequest::Kind GetDeoptimizationKind() const {
return deoptimization_kind_;
}
// Returns true if the method of this breakpoint and the passed in method should be considered the
// same. That is, they are either the same method or they are copied from the same method.
bool IsInMethod(ArtMethod* m) const REQUIRES_SHARED(Locks::mutator_lock_) {
return method_ == GetCanonicalMethod(m);
}
private:
// The location of this breakpoint.
ArtMethod* method_;
uint32_t dex_pc_;
// Indicates whether breakpoint needs full deoptimization or selective deoptimization.
DeoptimizationRequest::Kind deoptimization_kind_;
};
static std::ostream& operator<<(std::ostream& os, const Breakpoint& rhs)
REQUIRES_SHARED(Locks::mutator_lock_) {
os << StringPrintf("Breakpoint[%s @%#x]", ArtMethod::PrettyMethod(rhs.Method()).c_str(),
rhs.DexPc());
return os;
}
class DebugInstrumentationListener FINAL : public instrumentation::InstrumentationListener {
public:
DebugInstrumentationListener() {}
virtual ~DebugInstrumentationListener() {}
void MethodEntered(Thread* thread,
Handle<mirror::Object> this_object,
ArtMethod* method,
uint32_t dex_pc)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
if (method->IsNative()) {
// TODO: post location events is a suspension point and native method entry stubs aren't.
return;
}
if (IsListeningToDexPcMoved()) {
// We also listen to kDexPcMoved instrumentation event so we know the DexPcMoved method is
// going to be called right after us. To avoid sending JDWP events twice for this location,
// we report the event in DexPcMoved. However, we must remind this is method entry so we
// send the METHOD_ENTRY event. And we can also group it with other events for this location
// like BREAKPOINT or SINGLE_STEP (or even METHOD_EXIT if this is a RETURN instruction).
thread->SetDebugMethodEntry();
} else if (IsListeningToMethodExit() && IsReturn(method, dex_pc)) {
// We also listen to kMethodExited instrumentation event and the current instruction is a
// RETURN so we know the MethodExited method is going to be called right after us. To avoid
// sending JDWP events twice for this location, we report the event(s) in MethodExited.
// However, we must remind this is method entry so we send the METHOD_ENTRY event. And we can
// also group it with other events for this location like BREAKPOINT or SINGLE_STEP.
thread->SetDebugMethodEntry();
} else {
Dbg::UpdateDebugger(thread, this_object.Get(), method, 0, Dbg::kMethodEntry, nullptr);
}
}
void MethodExited(Thread* thread,
Handle<mirror::Object> this_object,
ArtMethod* method,
uint32_t dex_pc,
const JValue& return_value)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
if (method->IsNative()) {
// TODO: post location events is a suspension point and native method entry stubs aren't.
return;
}
uint32_t events = Dbg::kMethodExit;
if (thread->IsDebugMethodEntry()) {
// It is also the method entry.
DCHECK(IsReturn(method, dex_pc));
events |= Dbg::kMethodEntry;
thread->ClearDebugMethodEntry();
}
Dbg::UpdateDebugger(thread, this_object.Get(), method, dex_pc, events, &return_value);
}
void MethodUnwind(Thread* thread ATTRIBUTE_UNUSED,
Handle<mirror::Object> this_object ATTRIBUTE_UNUSED,
ArtMethod* method,
uint32_t dex_pc)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
// We're not recorded to listen to this kind of event, so complain.
LOG(ERROR) << "Unexpected method unwind event in debugger " << ArtMethod::PrettyMethod(method)
<< " " << dex_pc;
}
void DexPcMoved(Thread* thread,
Handle<mirror::Object> this_object,
ArtMethod* method,
uint32_t new_dex_pc)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
if (IsListeningToMethodExit() && IsReturn(method, new_dex_pc)) {
// We also listen to kMethodExited instrumentation event and the current instruction is a
// RETURN so we know the MethodExited method is going to be called right after us. Like in
// MethodEntered, we delegate event reporting to MethodExited.
// Besides, if this RETURN instruction is the only one in the method, we can send multiple
// JDWP events in the same packet: METHOD_ENTRY, METHOD_EXIT, BREAKPOINT and/or SINGLE_STEP.
// Therefore, we must not clear the debug method entry flag here.
} else {
uint32_t events = 0;
if (thread->IsDebugMethodEntry()) {
// It is also the method entry.
events = Dbg::kMethodEntry;
thread->ClearDebugMethodEntry();
}
Dbg::UpdateDebugger(thread, this_object.Get(), method, new_dex_pc, events, nullptr);
}
}
void FieldRead(Thread* thread ATTRIBUTE_UNUSED,
Handle<mirror::Object> this_object,
ArtMethod* method,
uint32_t dex_pc,
ArtField* field)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
Dbg::PostFieldAccessEvent(method, dex_pc, this_object.Get(), field);
}
void FieldWritten(Thread* thread ATTRIBUTE_UNUSED,
Handle<mirror::Object> this_object,
ArtMethod* method,
uint32_t dex_pc,
ArtField* field,
const JValue& field_value)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
Dbg::PostFieldModificationEvent(method, dex_pc, this_object.Get(), field, &field_value);
}
void ExceptionCaught(Thread* thread ATTRIBUTE_UNUSED,
Handle<mirror::Throwable> exception_object)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
Dbg::PostException(exception_object.Get());
}
// We only care about branches in the Jit.
void Branch(Thread* /*thread*/, ArtMethod* method, uint32_t dex_pc, int32_t dex_pc_offset)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
LOG(ERROR) << "Unexpected branch event in debugger " << ArtMethod::PrettyMethod(method)
<< " " << dex_pc << ", " << dex_pc_offset;
}
// We only care about invokes in the Jit.
void InvokeVirtualOrInterface(Thread* thread ATTRIBUTE_UNUSED,
Handle<mirror::Object> this_object ATTRIBUTE_UNUSED,
ArtMethod* method,
uint32_t dex_pc,
ArtMethod* target ATTRIBUTE_UNUSED)
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
LOG(ERROR) << "Unexpected invoke event in debugger " << ArtMethod::PrettyMethod(method)
<< " " << dex_pc;
}
private:
static bool IsReturn(ArtMethod* method, uint32_t dex_pc)
REQUIRES_SHARED(Locks::mutator_lock_) {
const DexFile::CodeItem* code_item = method->GetCodeItem();
const Instruction* instruction = Instruction::At(&code_item->insns_[dex_pc]);
return instruction->IsReturn();
}
static bool IsListeningToDexPcMoved() REQUIRES_SHARED(Locks::mutator_lock_) {
return IsListeningTo(instrumentation::Instrumentation::kDexPcMoved);
}
static bool IsListeningToMethodExit() REQUIRES_SHARED(Locks::mutator_lock_) {
return IsListeningTo(instrumentation::Instrumentation::kMethodExited);
}
static bool IsListeningTo(instrumentation::Instrumentation::InstrumentationEvent event)
REQUIRES_SHARED(Locks::mutator_lock_) {
return (Dbg::GetInstrumentationEvents() & event) != 0;
}
DISALLOW_COPY_AND_ASSIGN(DebugInstrumentationListener);
} gDebugInstrumentationListener;
// JDWP is allowed unless the Zygote forbids it.
static bool gJdwpAllowed = true;
// Was there a -Xrunjdwp or -agentlib:jdwp= argument on the command line?
static bool gJdwpConfigured = false;
// JDWP options for debugging. Only valid if IsJdwpConfigured() is true.
static JDWP::JdwpOptions gJdwpOptions;
// Runtime JDWP state.
static JDWP::JdwpState* gJdwpState = nullptr;
static bool gDebuggerConnected; // debugger or DDMS is connected.
static bool gDdmThreadNotification = false;
// DDMS GC-related settings.
static Dbg::HpifWhen gDdmHpifWhen = Dbg::HPIF_WHEN_NEVER;
static Dbg::HpsgWhen gDdmHpsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmHpsgWhat;
static Dbg::HpsgWhen gDdmNhsgWhen = Dbg::HPSG_WHEN_NEVER;
static Dbg::HpsgWhat gDdmNhsgWhat;
bool Dbg::gDebuggerActive = false;
bool Dbg::gDisposed = false;
ObjectRegistry* Dbg::gRegistry = nullptr;
// Deoptimization support.
std::vector<DeoptimizationRequest> Dbg::deoptimization_requests_;
size_t Dbg::full_deoptimization_event_count_ = 0;
// Instrumentation event reference counters.
size_t Dbg::dex_pc_change_event_ref_count_ = 0;
size_t Dbg::method_enter_event_ref_count_ = 0;
size_t Dbg::method_exit_event_ref_count_ = 0;
size_t Dbg::field_read_event_ref_count_ = 0;
size_t Dbg::field_write_event_ref_count_ = 0;
size_t Dbg::exception_catch_event_ref_count_ = 0;
uint32_t Dbg::instrumentation_events_ = 0;
Dbg::DbgThreadLifecycleCallback Dbg::thread_lifecycle_callback_;
Dbg::DbgClassLoadCallback Dbg::class_load_callback_;
// Breakpoints.
static std::vector<Breakpoint> gBreakpoints GUARDED_BY(Locks::breakpoint_lock_);
void DebugInvokeReq::VisitRoots(RootVisitor* visitor, const RootInfo& root_info) {
receiver.VisitRootIfNonNull(visitor, root_info); // null for static method call.
klass.VisitRoot(visitor, root_info);
}
void SingleStepControl::AddDexPc(uint32_t dex_pc) {
dex_pcs_.insert(dex_pc);
}
bool SingleStepControl::ContainsDexPc(uint32_t dex_pc) const {
return dex_pcs_.find(dex_pc) == dex_pcs_.end();
}
static bool IsBreakpoint(ArtMethod* m, uint32_t dex_pc)
REQUIRES(!Locks::breakpoint_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) {
ReaderMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) {
if (gBreakpoints[i].DexPc() == dex_pc && gBreakpoints[i].IsInMethod(m)) {
VLOG(jdwp) << "Hit breakpoint #" << i << ": " << gBreakpoints[i];
return true;
}
}
return false;
}
static bool IsSuspendedForDebugger(ScopedObjectAccessUnchecked& soa, Thread* thread)
REQUIRES(!Locks::thread_suspend_count_lock_) {
MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
// A thread may be suspended for GC; in this code, we really want to know whether
// there's a debugger suspension active.
return thread->IsSuspended() && thread->GetDebugSuspendCount() > 0;
}
static mirror::Array* DecodeNonNullArray(JDWP::RefTypeId id, JDWP::JdwpError* error)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* o = Dbg::GetObjectRegistry()->Get<mirror::Object*>(id, error);
if (o == nullptr) {
*error = JDWP::ERR_INVALID_OBJECT;
return nullptr;
}
if (!o->IsArrayInstance()) {
*error = JDWP::ERR_INVALID_ARRAY;
return nullptr;
}
*error = JDWP::ERR_NONE;
return o->AsArray();
}
static mirror::Class* DecodeClass(JDWP::RefTypeId id, JDWP::JdwpError* error)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* o = Dbg::GetObjectRegistry()->Get<mirror::Object*>(id, error);
if (o == nullptr) {
*error = JDWP::ERR_INVALID_OBJECT;
return nullptr;
}
if (!o->IsClass()) {
*error = JDWP::ERR_INVALID_CLASS;
return nullptr;
}
*error = JDWP::ERR_NONE;
return o->AsClass();
}
static Thread* DecodeThread(ScopedObjectAccessUnchecked& soa, JDWP::ObjectId thread_id,
JDWP::JdwpError* error)
REQUIRES_SHARED(Locks::mutator_lock_)
REQUIRES(!Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_) {
mirror::Object* thread_peer = Dbg::GetObjectRegistry()->Get<mirror::Object*>(thread_id, error);
if (thread_peer == nullptr) {
// This isn't even an object.
*error = JDWP::ERR_INVALID_OBJECT;
return nullptr;
}
ObjPtr<mirror::Class> java_lang_Thread =
soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread);
if (!java_lang_Thread->IsAssignableFrom(thread_peer->GetClass())) {
// This isn't a thread.
*error = JDWP::ERR_INVALID_THREAD;
return nullptr;
}
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
Thread* thread = Thread::FromManagedThread(soa, thread_peer);
// If thread is null then this a java.lang.Thread without a Thread*. Must be a un-started or a
// zombie.
*error = (thread == nullptr) ? JDWP::ERR_THREAD_NOT_ALIVE : JDWP::ERR_NONE;
return thread;
}
static JDWP::JdwpTag BasicTagFromDescriptor(const char* descriptor) {
// JDWP deliberately uses the descriptor characters' ASCII values for its enum.
// Note that by "basic" we mean that we don't get more specific than JT_OBJECT.
return static_cast<JDWP::JdwpTag>(descriptor[0]);
}
static JDWP::JdwpTag BasicTagFromClass(mirror::Class* klass)
REQUIRES_SHARED(Locks::mutator_lock_) {
std::string temp;
const char* descriptor = klass->GetDescriptor(&temp);
return BasicTagFromDescriptor(descriptor);
}
static JDWP::JdwpTag TagFromClass(const ScopedObjectAccessUnchecked& soa, mirror::Class* c)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(c != nullptr);
if (c->IsArrayClass()) {
return JDWP::JT_ARRAY;
}
if (c->IsStringClass()) {
return JDWP::JT_STRING;
}
if (c->IsClassClass()) {
return JDWP::JT_CLASS_OBJECT;
}
{
ObjPtr<mirror::Class> thread_class =
soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread);
if (thread_class->IsAssignableFrom(c)) {
return JDWP::JT_THREAD;
}
}
{
ObjPtr<mirror::Class> thread_group_class =
soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ThreadGroup);
if (thread_group_class->IsAssignableFrom(c)) {
return JDWP::JT_THREAD_GROUP;
}
}
{
ObjPtr<mirror::Class> class_loader_class =
soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ClassLoader);
if (class_loader_class->IsAssignableFrom(c)) {
return JDWP::JT_CLASS_LOADER;
}
}
return JDWP::JT_OBJECT;
}
/*
* Objects declared to hold Object might actually hold a more specific
* type. The debugger may take a special interest in these (e.g. it
* wants to display the contents of Strings), so we want to return an
* appropriate tag.
*
* Null objects are tagged JT_OBJECT.
*/
JDWP::JdwpTag Dbg::TagFromObject(const ScopedObjectAccessUnchecked& soa, mirror::Object* o) {
return (o == nullptr) ? JDWP::JT_OBJECT : TagFromClass(soa, o->GetClass());
}
static bool IsPrimitiveTag(JDWP::JdwpTag tag) {
switch (tag) {
case JDWP::JT_BOOLEAN:
case JDWP::JT_BYTE:
case JDWP::JT_CHAR:
case JDWP::JT_FLOAT:
case JDWP::JT_DOUBLE:
case JDWP::JT_INT:
case JDWP::JT_LONG:
case JDWP::JT_SHORT:
case JDWP::JT_VOID:
return true;
default:
return false;
}
}
void Dbg::StartJdwp() {
if (!gJdwpAllowed || !IsJdwpConfigured()) {
// No JDWP for you!
return;
}
CHECK(gRegistry == nullptr);
gRegistry = new ObjectRegistry;
// Init JDWP if the debugger is enabled. This may connect out to a
// debugger, passively listen for a debugger, or block waiting for a
// debugger.
gJdwpState = JDWP::JdwpState::Create(&gJdwpOptions);
if (gJdwpState == nullptr) {
// We probably failed because some other process has the port already, which means that
// if we don't abort the user is likely to think they're talking to us when they're actually
// talking to that other process.
LOG(FATAL) << "Debugger thread failed to initialize";
}
// If a debugger has already attached, send the "welcome" message.
// This may cause us to suspend all threads.
if (gJdwpState->IsActive()) {
ScopedObjectAccess soa(Thread::Current());
gJdwpState->PostVMStart();
}
}
void Dbg::StopJdwp() {
// Post VM_DEATH event before the JDWP connection is closed (either by the JDWP thread or the
// destruction of gJdwpState).
if (gJdwpState != nullptr && gJdwpState->IsActive()) {
gJdwpState->PostVMDeath();
}
// Prevent the JDWP thread from processing JDWP incoming packets after we close the connection.
Dispose();
delete gJdwpState;
gJdwpState = nullptr;
delete gRegistry;
gRegistry = nullptr;
}
void Dbg::GcDidFinish() {
if (gDdmHpifWhen != HPIF_WHEN_NEVER) {
ScopedObjectAccess soa(Thread::Current());
VLOG(jdwp) << "Sending heap info to DDM";
DdmSendHeapInfo(gDdmHpifWhen);
}
if (gDdmHpsgWhen != HPSG_WHEN_NEVER) {
ScopedObjectAccess soa(Thread::Current());
VLOG(jdwp) << "Dumping heap to DDM";
DdmSendHeapSegments(false);
}
if (gDdmNhsgWhen != HPSG_WHEN_NEVER) {
ScopedObjectAccess soa(Thread::Current());
VLOG(jdwp) << "Dumping native heap to DDM";
DdmSendHeapSegments(true);
}
}
void Dbg::SetJdwpAllowed(bool allowed) {
gJdwpAllowed = allowed;
}
bool Dbg::IsJdwpAllowed() {
return gJdwpAllowed;
}
DebugInvokeReq* Dbg::GetInvokeReq() {
return Thread::Current()->GetInvokeReq();
}
Thread* Dbg::GetDebugThread() {
return (gJdwpState != nullptr) ? gJdwpState->GetDebugThread() : nullptr;
}
void Dbg::ClearWaitForEventThread() {
gJdwpState->ReleaseJdwpTokenForEvent();
}
void Dbg::Connected() {
CHECK(!gDebuggerConnected);
VLOG(jdwp) << "JDWP has attached";
gDebuggerConnected = true;
gDisposed = false;
}
bool Dbg::RequiresDeoptimization() {
// We don't need deoptimization if everything runs with interpreter after
// enabling -Xint mode.
return !Runtime::Current()->GetInstrumentation()->IsForcedInterpretOnly();
}
void Dbg::GoActive() {
// Enable all debugging features, including scans for breakpoints.
// This is a no-op if we're already active.
// Only called from the JDWP handler thread.
if (IsDebuggerActive()) {
return;
}
Thread* const self = Thread::Current();
{
// TODO: dalvik only warned if there were breakpoints left over. clear in Dbg::Disconnected?
ReaderMutexLock mu(self, *Locks::breakpoint_lock_);
CHECK_EQ(gBreakpoints.size(), 0U);
}
{
MutexLock mu(self, *Locks::deoptimization_lock_);
CHECK_EQ(deoptimization_requests_.size(), 0U);
CHECK_EQ(full_deoptimization_event_count_, 0U);
CHECK_EQ(dex_pc_change_event_ref_count_, 0U);
CHECK_EQ(method_enter_event_ref_count_, 0U);
CHECK_EQ(method_exit_event_ref_count_, 0U);
CHECK_EQ(field_read_event_ref_count_, 0U);
CHECK_EQ(field_write_event_ref_count_, 0U);
CHECK_EQ(exception_catch_event_ref_count_, 0U);
}
Runtime* runtime = Runtime::Current();
// Best effort deoptimization if the runtime is non-Java debuggable. This happens when
// ro.debuggable is set, but the application is not debuggable, or when a standalone
// dalvikvm invocation is not passed the debuggable option (-Xcompiler-option --debuggable).
//
// The performance cost of this is non-negligible during native-debugging due to the
// forced JIT, so we keep the AOT code in that case in exchange for limited native debugging.
if (!runtime->IsJavaDebuggable() &&
!runtime->GetInstrumentation()->IsForcedInterpretOnly() &&
!runtime->IsNativeDebuggable()) {
runtime->DeoptimizeBootImage();
}
ScopedSuspendAll ssa(__FUNCTION__);
if (RequiresDeoptimization()) {
runtime->GetInstrumentation()->EnableDeoptimization();
}
instrumentation_events_ = 0;
gDebuggerActive = true;
LOG(INFO) << "Debugger is active";
}
void Dbg::Disconnected() {
CHECK(gDebuggerConnected);
LOG(INFO) << "Debugger is no longer active";
// Suspend all threads and exclusively acquire the mutator lock. Remove the debugger as a listener
// and clear the object registry.
Runtime* runtime = Runtime::Current();
Thread* self = Thread::Current();
{
// Required for DisableDeoptimization.
gc::ScopedGCCriticalSection gcs(self,
gc::kGcCauseInstrumentation,
gc::kCollectorTypeInstrumentation);
ScopedSuspendAll ssa(__FUNCTION__);
// Debugger may not be active at this point.
if (IsDebuggerActive()) {
{
// Since we're going to disable deoptimization, we clear the deoptimization requests queue.
// This prevents us from having any pending deoptimization request when the debugger attaches
// to us again while no event has been requested yet.
MutexLock mu(self, *Locks::deoptimization_lock_);
deoptimization_requests_.clear();
full_deoptimization_event_count_ = 0U;
}
if (instrumentation_events_ != 0) {
runtime->GetInstrumentation()->RemoveListener(&gDebugInstrumentationListener,
instrumentation_events_);
instrumentation_events_ = 0;
}
if (RequiresDeoptimization()) {
runtime->GetInstrumentation()->DisableDeoptimization(kDbgInstrumentationKey);
}
gDebuggerActive = false;
}
}
{
ScopedObjectAccess soa(self);
gRegistry->Clear();
}
gDebuggerConnected = false;
}
void Dbg::ConfigureJdwp(const JDWP::JdwpOptions& jdwp_options) {
CHECK_NE(jdwp_options.transport, JDWP::kJdwpTransportUnknown);
gJdwpOptions = jdwp_options;
gJdwpConfigured = true;
}
bool Dbg::IsJdwpConfigured() {
return gJdwpConfigured;
}
int64_t Dbg::LastDebuggerActivity() {
return gJdwpState->LastDebuggerActivity();
}
void Dbg::UndoDebuggerSuspensions() {
Runtime::Current()->GetThreadList()->UndoDebuggerSuspensions();
}
std::string Dbg::GetClassName(JDWP::RefTypeId class_id) {
JDWP::JdwpError error;
mirror::Object* o = gRegistry->Get<mirror::Object*>(class_id, &error);
if (o == nullptr) {
if (error == JDWP::ERR_NONE) {
return "null";
} else {
return StringPrintf("invalid object %p", reinterpret_cast<void*>(class_id));
}
}
if (!o->IsClass()) {
return StringPrintf("non-class %p", o); // This is only used for debugging output anyway.
}
return GetClassName(o->AsClass());
}
std::string Dbg::GetClassName(mirror::Class* klass) {
if (klass == nullptr) {
return "null";
}
std::string temp;
return DescriptorToName(klass->GetDescriptor(&temp));
}
JDWP::JdwpError Dbg::GetClassObject(JDWP::RefTypeId id, JDWP::ObjectId* class_object_id) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(id, &status);
if (c == nullptr) {
*class_object_id = 0;
return status;
}
*class_object_id = gRegistry->Add(c);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSuperclass(JDWP::RefTypeId id, JDWP::RefTypeId* superclass_id) {
JDWP::JdwpError status;
mirror::Class* c = DecodeClass(id, &status);
if (c == nullptr) {
*superclass_id = 0;
return status;
}
if (c->IsInterface()) {
// http://code.google.com/p/android/issues/detail?id=20856
*superclass_id = 0;
} else {
*superclass_id = gRegistry->Add(c->GetSuperClass());
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetClassLoader(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(id, &error);
if (c == nullptr) {
return error;
}
expandBufAddObjectId(pReply, gRegistry->Add(c->GetClassLoader()));
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetModifiers(JDWP::RefTypeId id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(id, &error);
if (c == nullptr) {
return error;
}
uint32_t access_flags = c->GetAccessFlags() & kAccJavaFlagsMask;
// Set ACC_SUPER. Dex files don't contain this flag but only classes are supposed to have it set,
// not interfaces.
// Class.getModifiers doesn't return it, but JDWP does, so we set it here.
if ((access_flags & kAccInterface) == 0) {
access_flags |= kAccSuper;
}
expandBufAdd4BE(pReply, access_flags);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetMonitorInfo(JDWP::ObjectId object_id, JDWP::ExpandBuf* reply) {
JDWP::JdwpError error;
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error);
if (o == nullptr) {
return JDWP::ERR_INVALID_OBJECT;
}
// Ensure all threads are suspended while we read objects' lock words.
Thread* self = Thread::Current();
CHECK_EQ(self->GetState(), kRunnable);
MonitorInfo monitor_info;
{
ScopedThreadSuspension sts(self, kSuspended);
ScopedSuspendAll ssa(__FUNCTION__);
monitor_info = MonitorInfo(o);
}
if (monitor_info.owner_ != nullptr) {
expandBufAddObjectId(reply, gRegistry->Add(monitor_info.owner_->GetPeerFromOtherThread()));
} else {
expandBufAddObjectId(reply, gRegistry->Add(nullptr));
}
expandBufAdd4BE(reply, monitor_info.entry_count_);
expandBufAdd4BE(reply, monitor_info.waiters_.size());
for (size_t i = 0; i < monitor_info.waiters_.size(); ++i) {
expandBufAddObjectId(reply, gRegistry->Add(monitor_info.waiters_[i]->GetPeerFromOtherThread()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetOwnedMonitors(JDWP::ObjectId thread_id,
std::vector<JDWP::ObjectId>* monitors,
std::vector<uint32_t>* stack_depths) {
struct OwnedMonitorVisitor : public StackVisitor {
OwnedMonitorVisitor(Thread* thread, Context* context,
std::vector<JDWP::ObjectId>* monitor_vector,
std::vector<uint32_t>* stack_depth_vector)
REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
current_stack_depth(0),
monitors(monitor_vector),
stack_depths(stack_depth_vector) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (!GetMethod()->IsRuntimeMethod()) {
Monitor::VisitLocks(this, AppendOwnedMonitors, this);
++current_stack_depth;
}
return true;
}
static void AppendOwnedMonitors(mirror::Object* owned_monitor, void* arg)
REQUIRES_SHARED(Locks::mutator_lock_) {
OwnedMonitorVisitor* visitor = reinterpret_cast<OwnedMonitorVisitor*>(arg);
visitor->monitors->push_back(gRegistry->Add(owned_monitor));
visitor->stack_depths->push_back(visitor->current_stack_depth);
}
size_t current_stack_depth;
std::vector<JDWP::ObjectId>* const monitors;
std::vector<uint32_t>* const stack_depths;
};
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (thread == nullptr) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
std::unique_ptr<Context> context(Context::Create());
OwnedMonitorVisitor visitor(thread, context.get(), monitors, stack_depths);
visitor.WalkStack();
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetContendedMonitor(JDWP::ObjectId thread_id,
JDWP::ObjectId* contended_monitor) {
ScopedObjectAccessUnchecked soa(Thread::Current());
*contended_monitor = 0;
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (thread == nullptr) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
mirror::Object* contended_monitor_obj = Monitor::GetContendedMonitor(thread);
// Add() requires the thread_list_lock_ not held to avoid the lock
// level violation.
*contended_monitor = gRegistry->Add(contended_monitor_obj);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetInstanceCounts(const std::vector<JDWP::RefTypeId>& class_ids,
std::vector<uint64_t>* counts) {
gc::Heap* heap = Runtime::Current()->GetHeap();
heap->CollectGarbage(false);
VariableSizedHandleScope hs(Thread::Current());
std::vector<Handle<mirror::Class>> classes;
counts->clear();
for (size_t i = 0; i < class_ids.size(); ++i) {
JDWP::JdwpError error;
ObjPtr<mirror::Class> c = DecodeClass(class_ids[i], &error);
if (c == nullptr) {
return error;
}
classes.push_back(hs.NewHandle(c));
counts->push_back(0);
}
heap->CountInstances(classes, false, &(*counts)[0]);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetInstances(JDWP::RefTypeId class_id, int32_t max_count,
std::vector<JDWP::ObjectId>* instances) {
gc::Heap* heap = Runtime::Current()->GetHeap();
// We only want reachable instances, so do a GC.
heap->CollectGarbage(false);
JDWP::JdwpError error;
ObjPtr<mirror::Class> c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
VariableSizedHandleScope hs(Thread::Current());
std::vector<Handle<mirror::Object>> raw_instances;
Runtime::Current()->GetHeap()->GetInstances(hs, hs.NewHandle(c), max_count, raw_instances);
for (size_t i = 0; i < raw_instances.size(); ++i) {
instances->push_back(gRegistry->Add(raw_instances[i].Get()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetReferringObjects(JDWP::ObjectId object_id, int32_t max_count,
std::vector<JDWP::ObjectId>* referring_objects) {
gc::Heap* heap = Runtime::Current()->GetHeap();
heap->CollectGarbage(false);
JDWP::JdwpError error;
ObjPtr<mirror::Object> o = gRegistry->Get<mirror::Object*>(object_id, &error);
if (o == nullptr) {
return JDWP::ERR_INVALID_OBJECT;
}
VariableSizedHandleScope hs(Thread::Current());
std::vector<Handle<mirror::Object>> raw_instances;
heap->GetReferringObjects(hs, hs.NewHandle(o), max_count, raw_instances);
for (size_t i = 0; i < raw_instances.size(); ++i) {
referring_objects->push_back(gRegistry->Add(raw_instances[i].Get()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::DisableCollection(JDWP::ObjectId object_id) {
JDWP::JdwpError error;
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error);
if (o == nullptr) {
return JDWP::ERR_INVALID_OBJECT;
}
gRegistry->DisableCollection(object_id);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::EnableCollection(JDWP::ObjectId object_id) {
JDWP::JdwpError error;
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error);
// Unlike DisableCollection, JDWP specs do not state an invalid object causes an error. The RI
// also ignores these cases and never return an error. However it's not obvious why this command
// should behave differently from DisableCollection and IsCollected commands. So let's be more
// strict and return an error if this happens.
if (o == nullptr) {
return JDWP::ERR_INVALID_OBJECT;
}
gRegistry->EnableCollection(object_id);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::IsCollected(JDWP::ObjectId object_id, bool* is_collected) {
*is_collected = true;
if (object_id == 0) {
// Null object id is invalid.
return JDWP::ERR_INVALID_OBJECT;
}
// JDWP specs state an INVALID_OBJECT error is returned if the object ID is not valid. However
// the RI seems to ignore this and assume object has been collected.
JDWP::JdwpError error;
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error);
if (o != nullptr) {
*is_collected = gRegistry->IsCollected(object_id);
}
return JDWP::ERR_NONE;
}
void Dbg::DisposeObject(JDWP::ObjectId object_id, uint32_t reference_count) {
gRegistry->DisposeObject(object_id, reference_count);
}
JDWP::JdwpTypeTag Dbg::GetTypeTag(ObjPtr<mirror::Class> klass) {
DCHECK(klass != nullptr);
if (klass->IsArrayClass()) {
return JDWP::TT_ARRAY;
} else if (klass->IsInterface()) {
return JDWP::TT_INTERFACE;
} else {
return JDWP::TT_CLASS;
}
}
JDWP::JdwpError Dbg::GetReflectedType(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
JDWP::JdwpTypeTag type_tag = GetTypeTag(c);
expandBufAdd1(pReply, type_tag);
expandBufAddRefTypeId(pReply, class_id);
return JDWP::ERR_NONE;
}
// Get the complete list of reference classes (i.e. all classes except
// the primitive types).
// Returns a newly-allocated buffer full of RefTypeId values.
class ClassListCreator : public ClassVisitor {
public:
explicit ClassListCreator(std::vector<JDWP::RefTypeId>* classes) : classes_(classes) {}
bool operator()(ObjPtr<mirror::Class> c) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
if (!c->IsPrimitive()) {
classes_->push_back(Dbg::GetObjectRegistry()->AddRefType(c));
}
return true;
}
private:
std::vector<JDWP::RefTypeId>* const classes_;
};
void Dbg::GetClassList(std::vector<JDWP::RefTypeId>* classes) {
ClassListCreator clc(classes);
Runtime::Current()->GetClassLinker()->VisitClassesWithoutClassesLock(&clc);
}
JDWP::JdwpError Dbg::GetClassInfo(JDWP::RefTypeId class_id, JDWP::JdwpTypeTag* pTypeTag,
uint32_t* pStatus, std::string* pDescriptor) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
if (c->IsArrayClass()) {
*pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED;
*pTypeTag = JDWP::TT_ARRAY;
} else {
if (c->IsErroneous()) {
*pStatus = JDWP::CS_ERROR;
} else {
*pStatus = JDWP::CS_VERIFIED | JDWP::CS_PREPARED | JDWP::CS_INITIALIZED;
}
*pTypeTag = c->IsInterface() ? JDWP::TT_INTERFACE : JDWP::TT_CLASS;
}
if (pDescriptor != nullptr) {
std::string temp;
*pDescriptor = c->GetDescriptor(&temp);
}
return JDWP::ERR_NONE;
}
void Dbg::FindLoadedClassBySignature(const char* descriptor, std::vector<JDWP::RefTypeId>* ids) {
std::vector<ObjPtr<mirror::Class>> classes;
Runtime::Current()->GetClassLinker()->LookupClasses(descriptor, classes);
ids->clear();
for (ObjPtr<mirror::Class> c : classes) {
ids->push_back(gRegistry->Add(c));
}
}
JDWP::JdwpError Dbg::GetReferenceType(JDWP::ObjectId object_id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error);
if (o == nullptr) {
return JDWP::ERR_INVALID_OBJECT;
}
JDWP::JdwpTypeTag type_tag = GetTypeTag(o->GetClass());
JDWP::RefTypeId type_id = gRegistry->AddRefType(o->GetClass());
expandBufAdd1(pReply, type_tag);
expandBufAddRefTypeId(pReply, type_id);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSignature(JDWP::RefTypeId class_id, std::string* signature) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
std::string temp;
*signature = c->GetDescriptor(&temp);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSourceDebugExtension(JDWP::RefTypeId class_id,
std::string* extension_data) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
StackHandleScope<1> hs(Thread::Current());
Handle<mirror::Class> klass(hs.NewHandle(c));
const char* data = annotations::GetSourceDebugExtension(klass);
if (data == nullptr) {
return JDWP::ERR_ABSENT_INFORMATION;
}
*extension_data = data;
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetSourceFile(JDWP::RefTypeId class_id, std::string* result) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
const char* source_file = c->GetSourceFile();
if (source_file == nullptr) {
return JDWP::ERR_ABSENT_INFORMATION;
}
*result = source_file;
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetObjectTag(JDWP::ObjectId object_id, uint8_t* tag) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
mirror::Object* o = gRegistry->Get<mirror::Object*>(object_id, &error);
if (error != JDWP::ERR_NONE) {
*tag = JDWP::JT_VOID;
return error;
}
*tag = TagFromObject(soa, o);
return JDWP::ERR_NONE;
}
size_t Dbg::GetTagWidth(JDWP::JdwpTag tag) {
switch (tag) {
case JDWP::JT_VOID:
return 0;
case JDWP::JT_BYTE:
case JDWP::JT_BOOLEAN:
return 1;
case JDWP::JT_CHAR:
case JDWP::JT_SHORT:
return 2;
case JDWP::JT_FLOAT:
case JDWP::JT_INT:
return 4;
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
return sizeof(JDWP::ObjectId);
case JDWP::JT_DOUBLE:
case JDWP::JT_LONG:
return 8;
default:
LOG(FATAL) << "Unknown tag " << tag;
return -1;
}
}
JDWP::JdwpError Dbg::GetArrayLength(JDWP::ObjectId array_id, int32_t* length) {
JDWP::JdwpError error;
mirror::Array* a = DecodeNonNullArray(array_id, &error);
if (a == nullptr) {
return error;
}
*length = a->GetLength();
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputArray(JDWP::ObjectId array_id, int offset, int count, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
mirror::Array* a = DecodeNonNullArray(array_id, &error);
if (a == nullptr) {
return error;
}
if (offset < 0 || count < 0 || offset > a->GetLength() || a->GetLength() - offset < count) {
LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count;
return JDWP::ERR_INVALID_LENGTH;
}
JDWP::JdwpTag element_tag = BasicTagFromClass(a->GetClass()->GetComponentType());
expandBufAdd1(pReply, element_tag);
expandBufAdd4BE(pReply, count);
if (IsPrimitiveTag(element_tag)) {
size_t width = GetTagWidth(element_tag);
uint8_t* dst = expandBufAddSpace(pReply, count * width);
if (width == 8) {
const uint64_t* src8 = reinterpret_cast<uint64_t*>(a->GetRawData(sizeof(uint64_t), 0));
for (int i = 0; i < count; ++i) JDWP::Write8BE(&dst, src8[offset + i]);
} else if (width == 4) {
const uint32_t* src4 = reinterpret_cast<uint32_t*>(a->GetRawData(sizeof(uint32_t), 0));
for (int i = 0; i < count; ++i) JDWP::Write4BE(&dst, src4[offset + i]);
} else if (width == 2) {
const uint16_t* src2 = reinterpret_cast<uint16_t*>(a->GetRawData(sizeof(uint16_t), 0));
for (int i = 0; i < count; ++i) JDWP::Write2BE(&dst, src2[offset + i]);
} else {
const uint8_t* src = reinterpret_cast<uint8_t*>(a->GetRawData(sizeof(uint8_t), 0));
memcpy(dst, &src[offset * width], count * width);
}
} else {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::ObjectArray<mirror::Object>* oa = a->AsObjectArray<mirror::Object>();
for (int i = 0; i < count; ++i) {
mirror::Object* element = oa->Get(offset + i);
JDWP::JdwpTag specific_tag = (element != nullptr) ? TagFromObject(soa, element)
: element_tag;
expandBufAdd1(pReply, specific_tag);
expandBufAddObjectId(pReply, gRegistry->Add(element));
}
}
return JDWP::ERR_NONE;
}
template <typename T>
static void CopyArrayData(mirror::Array* a, JDWP::Request* src, int offset, int count)
NO_THREAD_SAFETY_ANALYSIS {
// TODO: fix when annotalysis correctly handles non-member functions.
DCHECK(a->GetClass()->IsPrimitiveArray());
T* dst = reinterpret_cast<T*>(a->GetRawData(sizeof(T), offset));
for (int i = 0; i < count; ++i) {
*dst++ = src->ReadValue(sizeof(T));
}
}
JDWP::JdwpError Dbg::SetArrayElements(JDWP::ObjectId array_id, int offset, int count,
JDWP::Request* request) {
JDWP::JdwpError error;
mirror::Array* dst = DecodeNonNullArray(array_id, &error);
if (dst == nullptr) {
return error;
}
if (offset < 0 || count < 0 || offset > dst->GetLength() || dst->GetLength() - offset < count) {
LOG(WARNING) << __FUNCTION__ << " access out of bounds: offset=" << offset << "; count=" << count;
return JDWP::ERR_INVALID_LENGTH;
}
JDWP::JdwpTag element_tag = BasicTagFromClass(dst->GetClass()->GetComponentType());
if (IsPrimitiveTag(element_tag)) {
size_t width = GetTagWidth(element_tag);
if (width == 8) {
CopyArrayData<uint64_t>(dst, request, offset, count);
} else if (width == 4) {
CopyArrayData<uint32_t>(dst, request, offset, count);
} else if (width == 2) {
CopyArrayData<uint16_t>(dst, request, offset, count);
} else {
CopyArrayData<uint8_t>(dst, request, offset, count);
}
} else {
mirror::ObjectArray<mirror::Object>* oa = dst->AsObjectArray<mirror::Object>();
for (int i = 0; i < count; ++i) {
JDWP::ObjectId id = request->ReadObjectId();
mirror::Object* o = gRegistry->Get<mirror::Object*>(id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
// Check if the object's type is compatible with the array's type.
if (o != nullptr && !o->InstanceOf(oa->GetClass()->GetComponentType())) {
return JDWP::ERR_TYPE_MISMATCH;
}
oa->Set<false>(offset + i, o);
}
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::CreateString(const std::string& str, JDWP::ObjectId* new_string_id) {
Thread* self = Thread::Current();
mirror::String* new_string = mirror::String::AllocFromModifiedUtf8(self, str.c_str());
if (new_string == nullptr) {
DCHECK(self->IsExceptionPending());
self->ClearException();
LOG(ERROR) << "Could not allocate string";
*new_string_id = 0;
return JDWP::ERR_OUT_OF_MEMORY;
}
*new_string_id = gRegistry->Add(new_string);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::CreateObject(JDWP::RefTypeId class_id, JDWP::ObjectId* new_object_id) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
*new_object_id = 0;
return error;
}
Thread* self = Thread::Current();
ObjPtr<mirror::Object> new_object;
if (c->IsStringClass()) {
// Special case for java.lang.String.
gc::AllocatorType allocator_type = Runtime::Current()->GetHeap()->GetCurrentAllocator();
new_object = mirror::String::AllocEmptyString<true>(self, allocator_type);
} else {
new_object = c->AllocObject(self);
}
if (new_object == nullptr) {
DCHECK(self->IsExceptionPending());
self->ClearException();
LOG(ERROR) << "Could not allocate object of type " << mirror::Class::PrettyDescriptor(c);
*new_object_id = 0;
return JDWP::ERR_OUT_OF_MEMORY;
}
*new_object_id = gRegistry->Add(new_object.Ptr());
return JDWP::ERR_NONE;
}
/*
* Used by Eclipse's "Display" view to evaluate "new byte[5]" to get "(byte[]) [0, 0, 0, 0, 0]".
*/
JDWP::JdwpError Dbg::CreateArrayObject(JDWP::RefTypeId array_class_id, uint32_t length,
JDWP::ObjectId* new_array_id) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(array_class_id, &error);
if (c == nullptr) {
*new_array_id = 0;
return error;
}
Thread* self = Thread::Current();
gc::Heap* heap = Runtime::Current()->GetHeap();
mirror::Array* new_array = mirror::Array::Alloc<true>(self, c, length,
c->GetComponentSizeShift(),
heap->GetCurrentAllocator());
if (new_array == nullptr) {
DCHECK(self->IsExceptionPending());
self->ClearException();
LOG(ERROR) << "Could not allocate array of type " << mirror::Class::PrettyDescriptor(c);
*new_array_id = 0;
return JDWP::ERR_OUT_OF_MEMORY;
}
*new_array_id = gRegistry->Add(new_array);
return JDWP::ERR_NONE;
}
JDWP::FieldId Dbg::ToFieldId(const ArtField* f) {
return static_cast<JDWP::FieldId>(reinterpret_cast<uintptr_t>(f));
}
static JDWP::MethodId ToMethodId(ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_) {
return static_cast<JDWP::MethodId>(reinterpret_cast<uintptr_t>(GetCanonicalMethod(m)));
}
static ArtField* FromFieldId(JDWP::FieldId fid)
REQUIRES_SHARED(Locks::mutator_lock_) {
return reinterpret_cast<ArtField*>(static_cast<uintptr_t>(fid));
}
static ArtMethod* FromMethodId(JDWP::MethodId mid)
REQUIRES_SHARED(Locks::mutator_lock_) {
return reinterpret_cast<ArtMethod*>(static_cast<uintptr_t>(mid));
}
bool Dbg::MatchThread(JDWP::ObjectId expected_thread_id, Thread* event_thread) {
CHECK(event_thread != nullptr);
JDWP::JdwpError error;
mirror::Object* expected_thread_peer = gRegistry->Get<mirror::Object*>(
expected_thread_id, &error);
return expected_thread_peer == event_thread->GetPeerFromOtherThread();
}
bool Dbg::MatchLocation(const JDWP::JdwpLocation& expected_location,
const JDWP::EventLocation& event_location) {
if (expected_location.dex_pc != event_location.dex_pc) {
return false;
}
ArtMethod* m = FromMethodId(expected_location.method_id);
return m == event_location.method;
}
bool Dbg::MatchType(ObjPtr<mirror::Class> event_class, JDWP::RefTypeId class_id) {
if (event_class == nullptr) {
return false;
}
JDWP::JdwpError error;
ObjPtr<mirror::Class> expected_class = DecodeClass(class_id, &error);
CHECK(expected_class != nullptr);
return expected_class->IsAssignableFrom(event_class);
}
bool Dbg::MatchField(JDWP::RefTypeId expected_type_id, JDWP::FieldId expected_field_id,
ArtField* event_field) {
ArtField* expected_field = FromFieldId(expected_field_id);
if (expected_field != event_field) {
return false;
}
return Dbg::MatchType(event_field->GetDeclaringClass(), expected_type_id);
}
bool Dbg::MatchInstance(JDWP::ObjectId expected_instance_id, mirror::Object* event_instance) {
JDWP::JdwpError error;
mirror::Object* modifier_instance = gRegistry->Get<mirror::Object*>(expected_instance_id, &error);
return modifier_instance == event_instance;
}
void Dbg::SetJdwpLocation(JDWP::JdwpLocation* location, ArtMethod* m, uint32_t dex_pc) {
if (m == nullptr) {
memset(location, 0, sizeof(*location));
} else {
mirror::Class* c = m->GetDeclaringClass();
location->type_tag = GetTypeTag(c);
location->class_id = gRegistry->AddRefType(c);
// The RI Seems to return 0 for all obsolete methods. For compatibility we shall do the same.
location->method_id = m->IsObsolete() ? 0 : ToMethodId(m);
location->dex_pc = (m->IsNative() || m->IsProxyMethod()) ? static_cast<uint64_t>(-1) : dex_pc;
}
}
std::string Dbg::GetMethodName(JDWP::MethodId method_id) {
ArtMethod* m = FromMethodId(method_id);
if (m == nullptr) {
return "null";
}
return m->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
}
bool Dbg::IsMethodObsolete(JDWP::MethodId method_id) {
ArtMethod* m = FromMethodId(method_id);
if (m == nullptr) {
// NB Since we return 0 as MID for obsolete methods we want to default to true here.
return true;
}
return m->IsObsolete();
}
std::string Dbg::GetFieldName(JDWP::FieldId field_id) {
ArtField* f = FromFieldId(field_id);
if (f == nullptr) {
return "null";
}
return f->GetName();
}
/*
* Augment the access flags for synthetic methods and fields by setting
* the (as described by the spec) "0xf0000000 bit". Also, strip out any
* flags not specified by the Java programming language.
*/
static uint32_t MangleAccessFlags(uint32_t accessFlags) {
accessFlags &= kAccJavaFlagsMask;
if ((accessFlags & kAccSynthetic) != 0) {
accessFlags |= 0xf0000000;
}
return accessFlags;
}
/*
* Circularly shifts registers so that arguments come first. Debuggers
* expect slots to begin with arguments, but dex code places them at
* the end.
*/
static uint16_t MangleSlot(uint16_t slot, ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_) {
const DexFile::CodeItem* code_item = m->GetCodeItem();
if (code_item == nullptr) {
// We should not get here for a method without code (native, proxy or abstract). Log it and
// return the slot as is since all registers are arguments.
LOG(WARNING) << "Trying to mangle slot for method without code " << m->PrettyMethod();
return slot;
}
uint16_t ins_size = code_item->ins_size_;
uint16_t locals_size = code_item->registers_size_ - ins_size;
if (slot >= locals_size) {
return slot - locals_size;
} else {
return slot + ins_size;
}
}
static size_t GetMethodNumArgRegistersIncludingThis(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_) {
uint32_t num_registers = ArtMethod::NumArgRegisters(method->GetShorty());
if (!method->IsStatic()) {
++num_registers;
}
return num_registers;
}
/*
* Circularly shifts registers so that arguments come last. Reverts
* slots to dex style argument placement.
*/
static uint16_t DemangleSlot(uint16_t slot, ArtMethod* m, JDWP::JdwpError* error)
REQUIRES_SHARED(Locks::mutator_lock_) {
const DexFile::CodeItem* code_item = m->GetCodeItem();
if (code_item == nullptr) {
// We should not get here for a method without code (native, proxy or abstract). Log it and
// return the slot as is since all registers are arguments.
LOG(WARNING) << "Trying to demangle slot for method without code "
<< m->PrettyMethod();
uint16_t vreg_count = GetMethodNumArgRegistersIncludingThis(m);
if (slot < vreg_count) {
*error = JDWP::ERR_NONE;
return slot;
}
} else {
if (slot < code_item->registers_size_) {
uint16_t ins_size = code_item->ins_size_;
uint16_t locals_size = code_item->registers_size_ - ins_size;
*error = JDWP::ERR_NONE;
return (slot < ins_size) ? slot + locals_size : slot - ins_size;
}
}
// Slot is invalid in the method.
LOG(ERROR) << "Invalid local slot " << slot << " for method " << m->PrettyMethod();
*error = JDWP::ERR_INVALID_SLOT;
return DexFile::kDexNoIndex16;
}
JDWP::JdwpError Dbg::OutputDeclaredFields(JDWP::RefTypeId class_id, bool with_generic,
JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
size_t instance_field_count = c->NumInstanceFields();
size_t static_field_count = c->NumStaticFields();
expandBufAdd4BE(pReply, instance_field_count + static_field_count);
for (size_t i = 0; i < instance_field_count + static_field_count; ++i) {
ArtField* f = (i < instance_field_count) ? c->GetInstanceField(i) :
c->GetStaticField(i - instance_field_count);
expandBufAddFieldId(pReply, ToFieldId(f));
expandBufAddUtf8String(pReply, f->GetName());
expandBufAddUtf8String(pReply, f->GetTypeDescriptor());
if (with_generic) {
static const char genericSignature[1] = "";
expandBufAddUtf8String(pReply, genericSignature);
}
expandBufAdd4BE(pReply, MangleAccessFlags(f->GetAccessFlags()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputDeclaredMethods(JDWP::RefTypeId class_id, bool with_generic,
JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
expandBufAdd4BE(pReply, c->NumMethods());
auto* cl = Runtime::Current()->GetClassLinker();
auto ptr_size = cl->GetImagePointerSize();
for (ArtMethod& m : c->GetMethods(ptr_size)) {
expandBufAddMethodId(pReply, ToMethodId(&m));
expandBufAddUtf8String(pReply, m.GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName());
expandBufAddUtf8String(
pReply, m.GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetSignature().ToString());
if (with_generic) {
const char* generic_signature = "";
expandBufAddUtf8String(pReply, generic_signature);
}
expandBufAdd4BE(pReply, MangleAccessFlags(m.GetAccessFlags()));
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::OutputDeclaredInterfaces(JDWP::RefTypeId class_id, JDWP::ExpandBuf* pReply) {
JDWP::JdwpError error;
Thread* self = Thread::Current();
ObjPtr<mirror::Class> c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
size_t interface_count = c->NumDirectInterfaces();
expandBufAdd4BE(pReply, interface_count);
for (size_t i = 0; i < interface_count; ++i) {
ObjPtr<mirror::Class> interface = mirror::Class::GetDirectInterface(self, c, i);
DCHECK(interface != nullptr);
expandBufAddRefTypeId(pReply, gRegistry->AddRefType(interface));
}
return JDWP::ERR_NONE;
}
void Dbg::OutputLineTable(JDWP::RefTypeId, JDWP::MethodId method_id, JDWP::ExpandBuf* pReply) {
struct DebugCallbackContext {
int numItems;
JDWP::ExpandBuf* pReply;
static bool Callback(void* context, const DexFile::PositionInfo& entry) {
DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context);
expandBufAdd8BE(pContext->pReply, entry.address_);
expandBufAdd4BE(pContext->pReply, entry.line_);
pContext->numItems++;
return false;
}
};
ArtMethod* m = FromMethodId(method_id);
const DexFile::CodeItem* code_item = m->GetCodeItem();
uint64_t start, end;
if (code_item == nullptr) {
DCHECK(m->IsNative() || m->IsProxyMethod());
start = -1;
end = -1;
} else {
start = 0;
// Return the index of the last instruction
end = code_item->insns_size_in_code_units_ - 1;
}
expandBufAdd8BE(pReply, start);
expandBufAdd8BE(pReply, end);
// Add numLines later
size_t numLinesOffset = expandBufGetLength(pReply);
expandBufAdd4BE(pReply, 0);
DebugCallbackContext context;
context.numItems = 0;
context.pReply = pReply;
if (code_item != nullptr) {
m->GetDexFile()->DecodeDebugPositionInfo(code_item, DebugCallbackContext::Callback, &context);
}
JDWP::Set4BE(expandBufGetBuffer(pReply) + numLinesOffset, context.numItems);
}
void Dbg::OutputVariableTable(JDWP::RefTypeId, JDWP::MethodId method_id, bool with_generic,
JDWP::ExpandBuf* pReply) {
struct DebugCallbackContext {
ArtMethod* method;
JDWP::ExpandBuf* pReply;
size_t variable_count;
bool with_generic;
static void Callback(void* context, const DexFile::LocalInfo& entry)
REQUIRES_SHARED(Locks::mutator_lock_) {
DebugCallbackContext* pContext = reinterpret_cast<DebugCallbackContext*>(context);
uint16_t slot = entry.reg_;
VLOG(jdwp) << StringPrintf(" %2zd: %d(%d) '%s' '%s' '%s' actual slot=%d mangled slot=%d",
pContext->variable_count, entry.start_address_,
entry.end_address_ - entry.start_address_,
entry.name_, entry.descriptor_, entry.signature_, slot,
MangleSlot(slot, pContext->method));
slot = MangleSlot(slot, pContext->method);
expandBufAdd8BE(pContext->pReply, entry.start_address_);
expandBufAddUtf8String(pContext->pReply, entry.name_);
expandBufAddUtf8String(pContext->pReply, entry.descriptor_);
if (pContext->with_generic) {
expandBufAddUtf8String(pContext->pReply, entry.signature_);
}
expandBufAdd4BE(pContext->pReply, entry.end_address_- entry.start_address_);
expandBufAdd4BE(pContext->pReply, slot);
++pContext->variable_count;
}
};
ArtMethod* m = FromMethodId(method_id);
// arg_count considers doubles and longs to take 2 units.
// variable_count considers everything to take 1 unit.
expandBufAdd4BE(pReply, GetMethodNumArgRegistersIncludingThis(m));
// We don't know the total number of variables yet, so leave a blank and update it later.
size_t variable_count_offset = expandBufGetLength(pReply);
expandBufAdd4BE(pReply, 0);
DebugCallbackContext context;
context.method = m;
context.pReply = pReply;
context.variable_count = 0;
context.with_generic = with_generic;
const DexFile::CodeItem* code_item = m->GetCodeItem();
if (code_item != nullptr) {
m->GetDexFile()->DecodeDebugLocalInfo(
code_item, m->IsStatic(), m->GetDexMethodIndex(), DebugCallbackContext::Callback,
&context);
}
JDWP::Set4BE(expandBufGetBuffer(pReply) + variable_count_offset, context.variable_count);
}
void Dbg::OutputMethodReturnValue(JDWP::MethodId method_id, const JValue* return_value,
JDWP::ExpandBuf* pReply) {
ArtMethod* m = FromMethodId(method_id);
JDWP::JdwpTag tag = BasicTagFromDescriptor(m->GetShorty());
OutputJValue(tag, return_value, pReply);
}
void Dbg::OutputFieldValue(JDWP::FieldId field_id, const JValue* field_value,
JDWP::ExpandBuf* pReply) {
ArtField* f = FromFieldId(field_id);
JDWP::JdwpTag tag = BasicTagFromDescriptor(f->GetTypeDescriptor());
OutputJValue(tag, field_value, pReply);
}
JDWP::JdwpError Dbg::GetBytecodes(JDWP::RefTypeId, JDWP::MethodId method_id,
std::vector<uint8_t>* bytecodes) {
ArtMethod* m = FromMethodId(method_id);
if (m == nullptr) {
return JDWP::ERR_INVALID_METHODID;
}
const DexFile::CodeItem* code_item = m->GetCodeItem();
size_t byte_count = code_item->insns_size_in_code_units_ * 2;
const uint8_t* begin = reinterpret_cast<const uint8_t*>(code_item->insns_);
const uint8_t* end = begin + byte_count;
for (const uint8_t* p = begin; p != end; ++p) {
bytecodes->push_back(*p);
}
return JDWP::ERR_NONE;
}
JDWP::JdwpTag Dbg::GetFieldBasicTag(JDWP::FieldId field_id) {
return BasicTagFromDescriptor(FromFieldId(field_id)->GetTypeDescriptor());
}
JDWP::JdwpTag Dbg::GetStaticFieldBasicTag(JDWP::FieldId field_id) {
return BasicTagFromDescriptor(FromFieldId(field_id)->GetTypeDescriptor());
}
static JValue GetArtFieldValue(ArtField* f, mirror::Object* o)
REQUIRES_SHARED(Locks::mutator_lock_) {
Primitive::Type fieldType = f->GetTypeAsPrimitiveType();
JValue field_value;
switch (fieldType) {
case Primitive::kPrimBoolean:
field_value.SetZ(f->GetBoolean(o));
return field_value;
case Primitive::kPrimByte:
field_value.SetB(f->GetByte(o));
return field_value;
case Primitive::kPrimChar:
field_value.SetC(f->GetChar(o));
return field_value;
case Primitive::kPrimShort:
field_value.SetS(f->GetShort(o));
return field_value;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
// Int and Float must be treated as 32-bit values in JDWP.
field_value.SetI(f->GetInt(o));
return field_value;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
// Long and Double must be treated as 64-bit values in JDWP.
field_value.SetJ(f->GetLong(o));
return field_value;
case Primitive::kPrimNot:
field_value.SetL(f->GetObject(o).Ptr());
return field_value;
case Primitive::kPrimVoid:
LOG(FATAL) << "Attempt to read from field of type 'void'";
UNREACHABLE();
}
LOG(FATAL) << "Attempt to read from field of unknown type";
UNREACHABLE();
}
static JDWP::JdwpError GetFieldValueImpl(JDWP::RefTypeId ref_type_id, JDWP::ObjectId object_id,
JDWP::FieldId field_id, JDWP::ExpandBuf* pReply,
bool is_static)
REQUIRES_SHARED(Locks::mutator_lock_) {
JDWP::JdwpError error;
mirror::Class* c = DecodeClass(ref_type_id, &error);
if (ref_type_id != 0 && c == nullptr) {
return error;
}
Thread* self = Thread::Current();
StackHandleScope<2> hs(self);
MutableHandle<mirror::Object>
o(hs.NewHandle(Dbg::GetObjectRegistry()->Get<mirror::Object*>(object_id, &error)));
if ((!is_static && o == nullptr) || error != JDWP::ERR_NONE) {
return JDWP::ERR_INVALID_OBJECT;
}
ArtField* f = FromFieldId(field_id);
mirror::Class* receiver_class = c;
if (receiver_class == nullptr && o != nullptr) {
receiver_class = o->GetClass();
}
// TODO: should we give up now if receiver_class is null?
if (receiver_class != nullptr && !f->GetDeclaringClass()->IsAssignableFrom(receiver_class)) {
LOG(INFO) << "ERR_INVALID_FIELDID: " << f->PrettyField() << " "
<< receiver_class->PrettyClass();
return JDWP::ERR_INVALID_FIELDID;
}
// Ensure the field's class is initialized.
Handle<mirror::Class> klass(hs.NewHandle(f->GetDeclaringClass()));
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, klass, true, false)) {
LOG(WARNING) << "Not able to initialize class for SetValues: "
<< mirror::Class::PrettyClass(klass.Get());
}
// The RI only enforces the static/non-static mismatch in one direction.
// TODO: should we change the tests and check both?
if (is_static) {
if (!f->IsStatic()) {
return JDWP::ERR_INVALID_FIELDID;
}
} else {
if (f->IsStatic()) {
LOG(WARNING) << "Ignoring non-nullptr receiver for ObjectReference.GetValues"
<< " on static field " << f->PrettyField();
}
}
if (f->IsStatic()) {
o.Assign(f->GetDeclaringClass());
}
JValue field_value(GetArtFieldValue(f, o.Get()));
JDWP::JdwpTag tag = BasicTagFromDescriptor(f->GetTypeDescriptor());
Dbg::OutputJValue(tag, &field_value, pReply);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id,
JDWP::ExpandBuf* pReply) {
return GetFieldValueImpl(0, object_id, field_id, pReply, false);
}
JDWP::JdwpError Dbg::GetStaticFieldValue(JDWP::RefTypeId ref_type_id, JDWP::FieldId field_id,
JDWP::ExpandBuf* pReply) {
return GetFieldValueImpl(ref_type_id, 0, field_id, pReply, true);
}
static JDWP::JdwpError SetArtFieldValue(ArtField* f, mirror::Object* o, uint64_t value, int width)
REQUIRES_SHARED(Locks::mutator_lock_) {
Primitive::Type fieldType = f->GetTypeAsPrimitiveType();
// Debugging only happens at runtime so we know we are not running in a transaction.
static constexpr bool kNoTransactionMode = false;
switch (fieldType) {
case Primitive::kPrimBoolean:
CHECK_EQ(width, 1);
f->SetBoolean<kNoTransactionMode>(o, static_cast<uint8_t>(value));
return JDWP::ERR_NONE;
case Primitive::kPrimByte:
CHECK_EQ(width, 1);
f->SetByte<kNoTransactionMode>(o, static_cast<uint8_t>(value));
return JDWP::ERR_NONE;
case Primitive::kPrimChar:
CHECK_EQ(width, 2);
f->SetChar<kNoTransactionMode>(o, static_cast<uint16_t>(value));
return JDWP::ERR_NONE;
case Primitive::kPrimShort:
CHECK_EQ(width, 2);
f->SetShort<kNoTransactionMode>(o, static_cast<int16_t>(value));
return JDWP::ERR_NONE;
case Primitive::kPrimInt:
case Primitive::kPrimFloat:
CHECK_EQ(width, 4);
// Int and Float must be treated as 32-bit values in JDWP.
f->SetInt<kNoTransactionMode>(o, static_cast<int32_t>(value));
return JDWP::ERR_NONE;
case Primitive::kPrimLong:
case Primitive::kPrimDouble:
CHECK_EQ(width, 8);
// Long and Double must be treated as 64-bit values in JDWP.
f->SetLong<kNoTransactionMode>(o, value);
return JDWP::ERR_NONE;
case Primitive::kPrimNot: {
JDWP::JdwpError error;
mirror::Object* v = Dbg::GetObjectRegistry()->Get<mirror::Object*>(value, &error);
if (error != JDWP::ERR_NONE) {
return JDWP::ERR_INVALID_OBJECT;
}
if (v != nullptr) {
ObjPtr<mirror::Class> field_type;
{
StackHandleScope<2> hs(Thread::Current());
HandleWrapper<mirror::Object> h_v(hs.NewHandleWrapper(&v));
HandleWrapper<mirror::Object> h_o(hs.NewHandleWrapper(&o));
field_type = f->GetType<true>();
}
if (!field_type->IsAssignableFrom(v->GetClass())) {
return JDWP::ERR_INVALID_OBJECT;
}
}
f->SetObject<kNoTransactionMode>(o, v);
return JDWP::ERR_NONE;
}
case Primitive::kPrimVoid:
LOG(FATAL) << "Attempt to write to field of type 'void'";
UNREACHABLE();
}
LOG(FATAL) << "Attempt to write to field of unknown type";
UNREACHABLE();
}
static JDWP::JdwpError SetFieldValueImpl(JDWP::ObjectId object_id, JDWP::FieldId field_id,
uint64_t value, int width, bool is_static)
REQUIRES_SHARED(Locks::mutator_lock_) {
JDWP::JdwpError error;
Thread* self = Thread::Current();
StackHandleScope<2> hs(self);
MutableHandle<mirror::Object>
o(hs.NewHandle(Dbg::GetObjectRegistry()->Get<mirror::Object*>(object_id, &error)));
if ((!is_static && o == nullptr) || error != JDWP::ERR_NONE) {
return JDWP::ERR_INVALID_OBJECT;
}
ArtField* f = FromFieldId(field_id);
// Ensure the field's class is initialized.
Handle<mirror::Class> klass(hs.NewHandle(f->GetDeclaringClass()));
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, klass, true, false)) {
LOG(WARNING) << "Not able to initialize class for SetValues: "
<< mirror::Class::PrettyClass(klass.Get());
}
// The RI only enforces the static/non-static mismatch in one direction.
// TODO: should we change the tests and check both?
if (is_static) {
if (!f->IsStatic()) {
return JDWP::ERR_INVALID_FIELDID;
}
} else {
if (f->IsStatic()) {
LOG(WARNING) << "Ignoring non-nullptr receiver for ObjectReference.SetValues"
<< " on static field " << f->PrettyField();
}
}
if (f->IsStatic()) {
o.Assign(f->GetDeclaringClass());
}
return SetArtFieldValue(f, o.Get(), value, width);
}
JDWP::JdwpError Dbg::SetFieldValue(JDWP::ObjectId object_id, JDWP::FieldId field_id, uint64_t value,
int width) {
return SetFieldValueImpl(object_id, field_id, value, width, false);
}
JDWP::JdwpError Dbg::SetStaticFieldValue(JDWP::FieldId field_id, uint64_t value, int width) {
return SetFieldValueImpl(0, field_id, value, width, true);
}
JDWP::JdwpError Dbg::StringToUtf8(JDWP::ObjectId string_id, std::string* str) {
JDWP::JdwpError error;
mirror::Object* obj = gRegistry->Get<mirror::Object*>(string_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
if (obj == nullptr) {
return JDWP::ERR_INVALID_OBJECT;
}
{
ScopedObjectAccessUnchecked soa(Thread::Current());
ObjPtr<mirror::Class> java_lang_String =
soa.Decode<mirror::Class>(WellKnownClasses::java_lang_String);
if (!java_lang_String->IsAssignableFrom(obj->GetClass())) {
// This isn't a string.
return JDWP::ERR_INVALID_STRING;
}
}
*str = obj->AsString()->ToModifiedUtf8();
return JDWP::ERR_NONE;
}
void Dbg::OutputJValue(JDWP::JdwpTag tag, const JValue* return_value, JDWP::ExpandBuf* pReply) {
if (IsPrimitiveTag(tag)) {
expandBufAdd1(pReply, tag);
if (tag == JDWP::JT_BOOLEAN || tag == JDWP::JT_BYTE) {
expandBufAdd1(pReply, return_value->GetI());
} else if (tag == JDWP::JT_CHAR || tag == JDWP::JT_SHORT) {
expandBufAdd2BE(pReply, return_value->GetI());
} else if (tag == JDWP::JT_FLOAT || tag == JDWP::JT_INT) {
expandBufAdd4BE(pReply, return_value->GetI());
} else if (tag == JDWP::JT_DOUBLE || tag == JDWP::JT_LONG) {
expandBufAdd8BE(pReply, return_value->GetJ());
} else {
CHECK_EQ(tag, JDWP::JT_VOID);
}
} else {
ScopedObjectAccessUnchecked soa(Thread::Current());
mirror::Object* value = return_value->GetL();
expandBufAdd1(pReply, TagFromObject(soa, value));
expandBufAddObjectId(pReply, gRegistry->Add(value));
}
}
JDWP::JdwpError Dbg::GetThreadName(JDWP::ObjectId thread_id, std::string* name) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE && error != JDWP::ERR_THREAD_NOT_ALIVE) {
return error;
}
// We still need to report the zombie threads' names, so we can't just call Thread::GetThreadName.
mirror::Object* thread_object = gRegistry->Get<mirror::Object*>(thread_id, &error);
CHECK(thread_object != nullptr) << error;
ArtField* java_lang_Thread_name_field =
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
ObjPtr<mirror::String> s(java_lang_Thread_name_field->GetObject(thread_object)->AsString());
if (s != nullptr) {
*name = s->ToModifiedUtf8();
}
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetThreadGroup(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
mirror::Object* thread_object = gRegistry->Get<mirror::Object*>(thread_id, &error);
if (error != JDWP::ERR_NONE) {
return JDWP::ERR_INVALID_OBJECT;
}
ScopedAssertNoThreadSuspension ants("Debugger: GetThreadGroup");
// Okay, so it's an object, but is it actually a thread?
DecodeThread(soa, thread_id, &error);
if (error == JDWP::ERR_THREAD_NOT_ALIVE) {
// Zombie threads are in the null group.
expandBufAddObjectId(pReply, JDWP::ObjectId(0));
error = JDWP::ERR_NONE;
} else if (error == JDWP::ERR_NONE) {
ObjPtr<mirror::Class> c = soa.Decode<mirror::Class>(WellKnownClasses::java_lang_Thread);
CHECK(c != nullptr);
ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group);
CHECK(f != nullptr);
ObjPtr<mirror::Object> group = f->GetObject(thread_object);
CHECK(group != nullptr);
JDWP::ObjectId thread_group_id = gRegistry->Add(group);
expandBufAddObjectId(pReply, thread_group_id);
}
return error;
}
static mirror::Object* DecodeThreadGroup(ScopedObjectAccessUnchecked& soa,
JDWP::ObjectId thread_group_id, JDWP::JdwpError* error)
REQUIRES_SHARED(Locks::mutator_lock_) {
mirror::Object* thread_group = Dbg::GetObjectRegistry()->Get<mirror::Object*>(thread_group_id,
error);
if (*error != JDWP::ERR_NONE) {
return nullptr;
}
if (thread_group == nullptr) {
*error = JDWP::ERR_INVALID_OBJECT;
return nullptr;
}
ObjPtr<mirror::Class> c =
soa.Decode<mirror::Class>(WellKnownClasses::java_lang_ThreadGroup);
CHECK(c != nullptr);
if (!c->IsAssignableFrom(thread_group->GetClass())) {
// This is not a java.lang.ThreadGroup.
*error = JDWP::ERR_INVALID_THREAD_GROUP;
return nullptr;
}
*error = JDWP::ERR_NONE;
return thread_group;
}
JDWP::JdwpError Dbg::GetThreadGroupName(JDWP::ObjectId thread_group_id, JDWP::ExpandBuf* pReply) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
mirror::Object* thread_group = DecodeThreadGroup(soa, thread_group_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
ScopedAssertNoThreadSuspension ants("Debugger: GetThreadGroupName");
ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
CHECK(f != nullptr);
ObjPtr<mirror::String> s = f->GetObject(thread_group)->AsString();
std::string thread_group_name(s->ToModifiedUtf8());
expandBufAddUtf8String(pReply, thread_group_name);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetThreadGroupParent(JDWP::ObjectId thread_group_id, JDWP::ExpandBuf* pReply) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
mirror::Object* thread_group = DecodeThreadGroup(soa, thread_group_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
ObjPtr<mirror::Object> parent;
{
ScopedAssertNoThreadSuspension ants("Debugger: GetThreadGroupParent");
ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_parent);
CHECK(f != nullptr);
parent = f->GetObject(thread_group);
}
JDWP::ObjectId parent_group_id = gRegistry->Add(parent);
expandBufAddObjectId(pReply, parent_group_id);
return JDWP::ERR_NONE;
}
static void GetChildThreadGroups(mirror::Object* thread_group,
std::vector<JDWP::ObjectId>* child_thread_group_ids)
REQUIRES_SHARED(Locks::mutator_lock_) {
CHECK(thread_group != nullptr);
// Get the int "ngroups" count of this thread group...
ArtField* ngroups_field = jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_ngroups);
CHECK(ngroups_field != nullptr);
const int32_t size = ngroups_field->GetInt(thread_group);
if (size == 0) {
return;
}
// Get the ThreadGroup[] "groups" out of this thread group...
ArtField* groups_field = jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_groups);
ObjPtr<mirror::Object> groups_array = groups_field->GetObject(thread_group);
CHECK(groups_array != nullptr);
CHECK(groups_array->IsObjectArray());
ObjPtr<mirror::ObjectArray<mirror::Object>> groups_array_as_array =
groups_array->AsObjectArray<mirror::Object>();
// Copy the first 'size' elements out of the array into the result.
ObjectRegistry* registry = Dbg::GetObjectRegistry();
for (int32_t i = 0; i < size; ++i) {
child_thread_group_ids->push_back(registry->Add(groups_array_as_array->Get(i)));
}
}
JDWP::JdwpError Dbg::GetThreadGroupChildren(JDWP::ObjectId thread_group_id,
JDWP::ExpandBuf* pReply) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
mirror::Object* thread_group = DecodeThreadGroup(soa, thread_group_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
// Add child threads.
{
std::vector<JDWP::ObjectId> child_thread_ids;
GetThreads(thread_group, &child_thread_ids);
expandBufAdd4BE(pReply, child_thread_ids.size());
for (JDWP::ObjectId child_thread_id : child_thread_ids) {
expandBufAddObjectId(pReply, child_thread_id);
}
}
// Add child thread groups.
{
std::vector<JDWP::ObjectId> child_thread_groups_ids;
GetChildThreadGroups(thread_group, &child_thread_groups_ids);
expandBufAdd4BE(pReply, child_thread_groups_ids.size());
for (JDWP::ObjectId child_thread_group_id : child_thread_groups_ids) {
expandBufAddObjectId(pReply, child_thread_group_id);
}
}
return JDWP::ERR_NONE;
}
JDWP::ObjectId Dbg::GetSystemThreadGroupId() {
ScopedObjectAccessUnchecked soa(Thread::Current());
ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_systemThreadGroup);
ObjPtr<mirror::Object> group = f->GetObject(f->GetDeclaringClass());
return gRegistry->Add(group);
}
JDWP::JdwpThreadStatus Dbg::ToJdwpThreadStatus(ThreadState state) {
switch (state) {
case kBlocked:
return JDWP::TS_MONITOR;
case kNative:
case kRunnable:
case kSuspended:
return JDWP::TS_RUNNING;
case kSleeping:
return JDWP::TS_SLEEPING;
case kStarting:
case kTerminated:
return JDWP::TS_ZOMBIE;
case kTimedWaiting:
case kWaitingForCheckPointsToRun:
case kWaitingForDebuggerSend:
case kWaitingForDebuggerSuspension:
case kWaitingForDebuggerToAttach:
case kWaitingForDeoptimization:
case kWaitingForGcToComplete:
case kWaitingForGetObjectsAllocated:
case kWaitingForJniOnLoad:
case kWaitingForMethodTracingStart:
case kWaitingForSignalCatcherOutput:
case kWaitingForVisitObjects:
case kWaitingInMainDebuggerLoop:
case kWaitingInMainSignalCatcherLoop:
case kWaitingPerformingGc:
case kWaitingWeakGcRootRead:
case kWaitingForGcThreadFlip:
case kWaiting:
return JDWP::TS_WAIT;
// Don't add a 'default' here so the compiler can spot incompatible enum changes.
}
LOG(FATAL) << "Unknown thread state: " << state;
return JDWP::TS_ZOMBIE;
}
JDWP::JdwpError Dbg::GetThreadStatus(JDWP::ObjectId thread_id, JDWP::JdwpThreadStatus* pThreadStatus,
JDWP::JdwpSuspendStatus* pSuspendStatus) {
ScopedObjectAccess soa(Thread::Current());
*pSuspendStatus = JDWP::SUSPEND_STATUS_NOT_SUSPENDED;
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
if (error == JDWP::ERR_THREAD_NOT_ALIVE) {
*pThreadStatus = JDWP::TS_ZOMBIE;
return JDWP::ERR_NONE;
}
return error;
}
if (IsSuspendedForDebugger(soa, thread)) {
*pSuspendStatus = JDWP::SUSPEND_STATUS_SUSPENDED;
}
*pThreadStatus = ToJdwpThreadStatus(thread->GetState());
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetThreadDebugSuspendCount(JDWP::ObjectId thread_id, JDWP::ExpandBuf* pReply) {
ScopedObjectAccess soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_);
expandBufAdd4BE(pReply, thread->GetDebugSuspendCount());
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::Interrupt(JDWP::ObjectId thread_id) {
ScopedObjectAccess soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
thread->Interrupt(soa.Self());
return JDWP::ERR_NONE;
}
static bool IsInDesiredThreadGroup(mirror::Object* desired_thread_group, mirror::Object* peer)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Do we want threads from all thread groups?
if (desired_thread_group == nullptr) {
return true;
}
ArtField* thread_group_field = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group);
DCHECK(thread_group_field != nullptr);
ObjPtr<mirror::Object> group = thread_group_field->GetObject(peer);
return (group == desired_thread_group);
}
void Dbg::GetThreads(mirror::Object* thread_group, std::vector<JDWP::ObjectId>* thread_ids) {
ScopedObjectAccessUnchecked soa(Thread::Current());
std::list<Thread*> all_threads_list;
{
MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
all_threads_list = Runtime::Current()->GetThreadList()->GetList();
}
for (Thread* t : all_threads_list) {
if (t == Dbg::GetDebugThread()) {
// Skip the JDWP thread. Some debuggers get bent out of shape when they can't suspend and
// query all threads, so it's easier if we just don't tell them about this thread.
continue;
}
if (t->IsStillStarting()) {
// This thread is being started (and has been registered in the thread list). However, it is
// not completely started yet so we must ignore it.
continue;
}
mirror::Object* peer = t->GetPeerFromOtherThread();
if (peer == nullptr) {
// peer might be null if the thread is still starting up. We can't tell the debugger about
// this thread yet.
// TODO: if we identified threads to the debugger by their Thread*
// rather than their peer's mirror::Object*, we could fix this.
// Doing so might help us report ZOMBIE threads too.
continue;
}
if (IsInDesiredThreadGroup(thread_group, peer)) {
thread_ids->push_back(gRegistry->Add(peer));
}
}
}
static int GetStackDepth(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_) {
struct CountStackDepthVisitor : public StackVisitor {
explicit CountStackDepthVisitor(Thread* thread_in)
: StackVisitor(thread_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
depth(0) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (!GetMethod()->IsRuntimeMethod()) {
++depth;
}
return true;
}
size_t depth;
};
CountStackDepthVisitor visitor(thread);
visitor.WalkStack();
return visitor.depth;
}
JDWP::JdwpError Dbg::GetThreadFrameCount(JDWP::ObjectId thread_id, size_t* result) {
ScopedObjectAccess soa(Thread::Current());
JDWP::JdwpError error;
*result = 0;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
*result = GetStackDepth(thread);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::GetThreadFrames(JDWP::ObjectId thread_id, size_t start_frame,
size_t frame_count, JDWP::ExpandBuf* buf) {
class GetFrameVisitor : public StackVisitor {
public:
GetFrameVisitor(Thread* thread, size_t start_frame_in, size_t frame_count_in,
JDWP::ExpandBuf* buf_in)
REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
depth_(0),
start_frame_(start_frame_in),
frame_count_(frame_count_in),
buf_(buf_in) {
expandBufAdd4BE(buf_, frame_count_);
}
bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
if (GetMethod()->IsRuntimeMethod()) {
return true; // The debugger can't do anything useful with a frame that has no Method*.
}
if (depth_ >= start_frame_ + frame_count_) {
return false;
}
if (depth_ >= start_frame_) {
JDWP::FrameId frame_id(GetFrameId());
JDWP::JdwpLocation location;
SetJdwpLocation(&location, GetMethod(), GetDexPc());
VLOG(jdwp) << StringPrintf(" Frame %3zd: id=%3" PRIu64 " ", depth_, frame_id) << location;
expandBufAdd8BE(buf_, frame_id);
expandBufAddLocation(buf_, location);
}
++depth_;
return true;
}
private:
size_t depth_;
const size_t start_frame_;
const size_t frame_count_;
JDWP::ExpandBuf* buf_;
};
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
GetFrameVisitor visitor(thread, start_frame, frame_count, buf);
visitor.WalkStack();
return JDWP::ERR_NONE;
}
JDWP::ObjectId Dbg::GetThreadSelfId() {
return GetThreadId(Thread::Current());
}
JDWP::ObjectId Dbg::GetThreadId(Thread* thread) {
ScopedObjectAccessUnchecked soa(Thread::Current());
return gRegistry->Add(thread->GetPeerFromOtherThread());
}
void Dbg::SuspendVM() {
// Avoid a deadlock between GC and debugger where GC gets suspended during GC. b/25800335.
gc::ScopedGCCriticalSection gcs(Thread::Current(),
gc::kGcCauseDebugger,
gc::kCollectorTypeDebugger);
Runtime::Current()->GetThreadList()->SuspendAllForDebugger();
}
void Dbg::ResumeVM() {
Runtime::Current()->GetThreadList()->ResumeAllForDebugger();
}
JDWP::JdwpError Dbg::SuspendThread(JDWP::ObjectId thread_id, bool request_suspension) {
Thread* self = Thread::Current();
ScopedLocalRef<jobject> peer(self->GetJniEnv(), nullptr);
{
ScopedObjectAccess soa(self);
JDWP::JdwpError error;
peer.reset(soa.AddLocalReference<jobject>(gRegistry->Get<mirror::Object*>(thread_id, &error)));
}
if (peer.get() == nullptr) {
return JDWP::ERR_THREAD_NOT_ALIVE;
}
// Suspend thread to build stack trace.
bool timed_out;
ThreadList* thread_list = Runtime::Current()->GetThreadList();
Thread* thread = thread_list->SuspendThreadByPeer(peer.get(),
request_suspension,
/* debug_suspension */ true,
&timed_out);
if (thread != nullptr) {
return JDWP::ERR_NONE;
} else if (timed_out) {
return JDWP::ERR_INTERNAL;
} else {
return JDWP::ERR_THREAD_NOT_ALIVE;
}
}
void Dbg::ResumeThread(JDWP::ObjectId thread_id) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
mirror::Object* peer = gRegistry->Get<mirror::Object*>(thread_id, &error);
CHECK(peer != nullptr) << error;
Thread* thread;
{
MutexLock mu(soa.Self(), *Locks::thread_list_lock_);
thread = Thread::FromManagedThread(soa, peer);
}
if (thread == nullptr) {
LOG(WARNING) << "No such thread for resume: " << peer;
return;
}
bool needs_resume;
{
MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_);
needs_resume = thread->GetDebugSuspendCount() > 0;
}
if (needs_resume) {
Runtime::Current()->GetThreadList()->Resume(thread, true);
}
}
void Dbg::SuspendSelf() {
Runtime::Current()->GetThreadList()->SuspendSelfForDebugger();
}
struct GetThisVisitor : public StackVisitor {
GetThisVisitor(Thread* thread, Context* context, JDWP::FrameId frame_id_in)
REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
this_object(nullptr),
frame_id(frame_id_in) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
virtual bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (frame_id != GetFrameId()) {
return true; // continue
} else {
this_object = GetThisObject();
return false;
}
}
mirror::Object* this_object;
JDWP::FrameId frame_id;
};
JDWP::JdwpError Dbg::GetThisObject(JDWP::ObjectId thread_id, JDWP::FrameId frame_id,
JDWP::ObjectId* result) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
std::unique_ptr<Context> context(Context::Create());
GetThisVisitor visitor(thread, context.get(), frame_id);
visitor.WalkStack();
*result = gRegistry->Add(visitor.this_object);
return JDWP::ERR_NONE;
}
// Walks the stack until we find the frame with the given FrameId.
class FindFrameVisitor FINAL : public StackVisitor {
public:
FindFrameVisitor(Thread* thread, Context* context, JDWP::FrameId frame_id)
REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(thread, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
frame_id_(frame_id),
error_(JDWP::ERR_INVALID_FRAMEID) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
if (GetFrameId() != frame_id_) {
return true; // Not our frame, carry on.
}
ArtMethod* m = GetMethod();
if (m->IsNative()) {
// We can't read/write local value from/into native method.
error_ = JDWP::ERR_OPAQUE_FRAME;
} else {
// We found our frame.
error_ = JDWP::ERR_NONE;
}
return false;
}
JDWP::JdwpError GetError() const {
return error_;
}
private:
const JDWP::FrameId frame_id_;
JDWP::JdwpError error_;
DISALLOW_COPY_AND_ASSIGN(FindFrameVisitor);
};
JDWP::JdwpError Dbg::GetLocalValues(JDWP::Request* request, JDWP::ExpandBuf* pReply) {
JDWP::ObjectId thread_id = request->ReadThreadId();
JDWP::FrameId frame_id = request->ReadFrameId();
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
// Find the frame with the given frame_id.
std::unique_ptr<Context> context(Context::Create());
FindFrameVisitor visitor(thread, context.get(), frame_id);
visitor.WalkStack();
if (visitor.GetError() != JDWP::ERR_NONE) {
return visitor.GetError();
}
// Read the values from visitor's context.
int32_t slot_count = request->ReadSigned32("slot count");
expandBufAdd4BE(pReply, slot_count); /* "int values" */
for (int32_t i = 0; i < slot_count; ++i) {
uint32_t slot = request->ReadUnsigned32("slot");
JDWP::JdwpTag reqSigByte = request->ReadTag();
VLOG(jdwp) << " --> slot " << slot << " " << reqSigByte;
size_t width = Dbg::GetTagWidth(reqSigByte);
uint8_t* ptr = expandBufAddSpace(pReply, width + 1);
error = Dbg::GetLocalValue(visitor, soa, slot, reqSigByte, ptr, width);
if (error != JDWP::ERR_NONE) {
return error;
}
}
return JDWP::ERR_NONE;
}
constexpr JDWP::JdwpError kStackFrameLocalAccessError = JDWP::ERR_ABSENT_INFORMATION;
static std::string GetStackContextAsString(const StackVisitor& visitor)
REQUIRES_SHARED(Locks::mutator_lock_) {
return StringPrintf(" at DEX pc 0x%08x in method %s", visitor.GetDexPc(false),
ArtMethod::PrettyMethod(visitor.GetMethod()).c_str());
}
static JDWP::JdwpError FailGetLocalValue(const StackVisitor& visitor, uint16_t vreg,
JDWP::JdwpTag tag)
REQUIRES_SHARED(Locks::mutator_lock_) {
LOG(ERROR) << "Failed to read " << tag << " local from register v" << vreg
<< GetStackContextAsString(visitor);
return kStackFrameLocalAccessError;
}
JDWP::JdwpError Dbg::GetLocalValue(const StackVisitor& visitor, ScopedObjectAccessUnchecked& soa,
int slot, JDWP::JdwpTag tag, uint8_t* buf, size_t width) {
ArtMethod* m = visitor.GetMethod();
JDWP::JdwpError error = JDWP::ERR_NONE;
uint16_t vreg = DemangleSlot(slot, m, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
// TODO: check that the tag is compatible with the actual type of the slot!
switch (tag) {
case JDWP::JT_BOOLEAN: {
CHECK_EQ(width, 1U);
uint32_t intVal;
if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
VLOG(jdwp) << "get boolean local " << vreg << " = " << intVal;
JDWP::Set1(buf + 1, intVal != 0);
break;
}
case JDWP::JT_BYTE: {
CHECK_EQ(width, 1U);
uint32_t intVal;
if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
VLOG(jdwp) << "get byte local " << vreg << " = " << intVal;
JDWP::Set1(buf + 1, intVal);
break;
}
case JDWP::JT_SHORT:
case JDWP::JT_CHAR: {
CHECK_EQ(width, 2U);
uint32_t intVal;
if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
VLOG(jdwp) << "get short/char local " << vreg << " = " << intVal;
JDWP::Set2BE(buf + 1, intVal);
break;
}
case JDWP::JT_INT: {
CHECK_EQ(width, 4U);
uint32_t intVal;
if (!visitor.GetVReg(m, vreg, kIntVReg, &intVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
VLOG(jdwp) << "get int local " << vreg << " = " << intVal;
JDWP::Set4BE(buf + 1, intVal);
break;
}
case JDWP::JT_FLOAT: {
CHECK_EQ(width, 4U);
uint32_t intVal;
if (!visitor.GetVReg(m, vreg, kFloatVReg, &intVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
VLOG(jdwp) << "get float local " << vreg << " = " << intVal;
JDWP::Set4BE(buf + 1, intVal);
break;
}
case JDWP::JT_ARRAY:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP: {
CHECK_EQ(width, sizeof(JDWP::ObjectId));
uint32_t intVal;
if (!visitor.GetVReg(m, vreg, kReferenceVReg, &intVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
mirror::Object* o = reinterpret_cast<mirror::Object*>(intVal);
VLOG(jdwp) << "get " << tag << " object local " << vreg << " = " << o;
if (!Runtime::Current()->GetHeap()->IsValidObjectAddress(o)) {
LOG(FATAL) << StringPrintf("Found invalid object %#" PRIxPTR " in register v%u",
reinterpret_cast<uintptr_t>(o), vreg)
<< GetStackContextAsString(visitor);
UNREACHABLE();
}
tag = TagFromObject(soa, o);
JDWP::SetObjectId(buf + 1, gRegistry->Add(o));
break;
}
case JDWP::JT_DOUBLE: {
CHECK_EQ(width, 8U);
uint64_t longVal;
if (!visitor.GetVRegPair(m, vreg, kDoubleLoVReg, kDoubleHiVReg, &longVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
VLOG(jdwp) << "get double local " << vreg << " = " << longVal;
JDWP::Set8BE(buf + 1, longVal);
break;
}
case JDWP::JT_LONG: {
CHECK_EQ(width, 8U);
uint64_t longVal;
if (!visitor.GetVRegPair(m, vreg, kLongLoVReg, kLongHiVReg, &longVal)) {
return FailGetLocalValue(visitor, vreg, tag);
}
VLOG(jdwp) << "get long local " << vreg << " = " << longVal;
JDWP::Set8BE(buf + 1, longVal);
break;
}
default:
LOG(FATAL) << "Unknown tag " << tag;
UNREACHABLE();
}
// Prepend tag, which may have been updated.
JDWP::Set1(buf, tag);
return JDWP::ERR_NONE;
}
JDWP::JdwpError Dbg::SetLocalValues(JDWP::Request* request) {
JDWP::ObjectId thread_id = request->ReadThreadId();
JDWP::FrameId frame_id = request->ReadFrameId();
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
if (!IsSuspendedForDebugger(soa, thread)) {
return JDWP::ERR_THREAD_NOT_SUSPENDED;
}
// Find the frame with the given frame_id.
std::unique_ptr<Context> context(Context::Create());
FindFrameVisitor visitor(thread, context.get(), frame_id);
visitor.WalkStack();
if (visitor.GetError() != JDWP::ERR_NONE) {
return visitor.GetError();
}
// Writes the values into visitor's context.
int32_t slot_count = request->ReadSigned32("slot count");
for (int32_t i = 0; i < slot_count; ++i) {
uint32_t slot = request->ReadUnsigned32("slot");
JDWP::JdwpTag sigByte = request->ReadTag();
size_t width = Dbg::GetTagWidth(sigByte);
uint64_t value = request->ReadValue(width);
VLOG(jdwp) << " --> slot " << slot << " " << sigByte << " " << value;
error = Dbg::SetLocalValue(thread, visitor, slot, sigByte, value, width);
if (error != JDWP::ERR_NONE) {
return error;
}
}
return JDWP::ERR_NONE;
}
template<typename T>
static JDWP::JdwpError FailSetLocalValue(const StackVisitor& visitor, uint16_t vreg,
JDWP::JdwpTag tag, T value)
REQUIRES_SHARED(Locks::mutator_lock_) {
LOG(ERROR) << "Failed to write " << tag << " local " << value
<< " (0x" << std::hex << value << ") into register v" << vreg
<< GetStackContextAsString(visitor);
return kStackFrameLocalAccessError;
}
JDWP::JdwpError Dbg::SetLocalValue(Thread* thread, StackVisitor& visitor, int slot,
JDWP::JdwpTag tag, uint64_t value, size_t width) {
ArtMethod* m = visitor.GetMethod();
JDWP::JdwpError error = JDWP::ERR_NONE;
uint16_t vreg = DemangleSlot(slot, m, &error);
if (error != JDWP::ERR_NONE) {
return error;
}
// TODO: check that the tag is compatible with the actual type of the slot!
switch (tag) {
case JDWP::JT_BOOLEAN:
case JDWP::JT_BYTE:
CHECK_EQ(width, 1U);
if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kIntVReg)) {
return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value));
}
break;
case JDWP::JT_SHORT:
case JDWP::JT_CHAR:
CHECK_EQ(width, 2U);
if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kIntVReg)) {
return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value));
}
break;
case JDWP::JT_INT:
CHECK_EQ(width, 4U);
if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kIntVReg)) {
return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value));
}
break;
case JDWP::JT_FLOAT:
CHECK_EQ(width, 4U);
if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(value), kFloatVReg)) {
return FailSetLocalValue(visitor, vreg, tag, static_cast<uint32_t>(value));
}
break;
case JDWP::JT_ARRAY:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP: {
CHECK_EQ(width, sizeof(JDWP::ObjectId));
mirror::Object* o = gRegistry->Get<mirror::Object*>(static_cast<JDWP::ObjectId>(value),
&error);
if (error != JDWP::ERR_NONE) {
VLOG(jdwp) << tag << " object " << o << " is an invalid object";
return JDWP::ERR_INVALID_OBJECT;
}
if (!visitor.SetVReg(m, vreg, static_cast<uint32_t>(reinterpret_cast<uintptr_t>(o)),
kReferenceVReg)) {
return FailSetLocalValue(visitor, vreg, tag, reinterpret_cast<uintptr_t>(o));
}
break;
}
case JDWP::JT_DOUBLE: {
CHECK_EQ(width, 8U);
if (!visitor.SetVRegPair(m, vreg, value, kDoubleLoVReg, kDoubleHiVReg)) {
return FailSetLocalValue(visitor, vreg, tag, value);
}
break;
}
case JDWP::JT_LONG: {
CHECK_EQ(width, 8U);
if (!visitor.SetVRegPair(m, vreg, value, kLongLoVReg, kLongHiVReg)) {
return FailSetLocalValue(visitor, vreg, tag, value);
}
break;
}
default:
LOG(FATAL) << "Unknown tag " << tag;
UNREACHABLE();
}
// If we set the local variable in a compiled frame, we need to trigger a deoptimization of
// the stack so we continue execution with the interpreter using the new value(s) of the updated
// local variable(s). To achieve this, we install instrumentation exit stub on each method of the
// thread's stack. The stub will cause the deoptimization to happen.
if (!visitor.IsShadowFrame() && thread->HasDebuggerShadowFrames()) {
Runtime::Current()->GetInstrumentation()->InstrumentThreadStack(thread);
}
return JDWP::ERR_NONE;
}
static void SetEventLocation(JDWP::EventLocation* location, ArtMethod* m, uint32_t dex_pc)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(location != nullptr);
if (m == nullptr) {
memset(location, 0, sizeof(*location));
} else {
location->method = GetCanonicalMethod(m);
location->dex_pc = (m->IsNative() || m->IsProxyMethod()) ? static_cast<uint32_t>(-1) : dex_pc;
}
}
void Dbg::PostLocationEvent(ArtMethod* m, int dex_pc, mirror::Object* this_object,
int event_flags, const JValue* return_value) {
if (!IsDebuggerActive()) {
return;
}
DCHECK(m != nullptr);
DCHECK_EQ(m->IsStatic(), this_object == nullptr);
JDWP::EventLocation location;
SetEventLocation(&location, m, dex_pc);
// We need to be sure no exception is pending when calling JdwpState::PostLocationEvent.
// This is required to be able to call JNI functions to create JDWP ids. To achieve this,
// we temporarily clear the current thread's exception (if any) and will restore it after
// the call.
// Note: the only way to get a pending exception here is to suspend on a move-exception
// instruction.
Thread* const self = Thread::Current();
StackHandleScope<1> hs(self);
Handle<mirror::Throwable> pending_exception(hs.NewHandle(self->GetException()));
self->ClearException();
if (kIsDebugBuild && pending_exception != nullptr) {
const DexFile::CodeItem* code_item = location.method->GetCodeItem();
const Instruction* instr = Instruction::At(&code_item->insns_[location.dex_pc]);
CHECK_EQ(Instruction::MOVE_EXCEPTION, instr->Opcode());
}
gJdwpState->PostLocationEvent(&location, this_object, event_flags, return_value);
if (pending_exception != nullptr) {
self->SetException(pending_exception.Get());
}
}
void Dbg::PostFieldAccessEvent(ArtMethod* m, int dex_pc,
mirror::Object* this_object, ArtField* f) {
// TODO We should send events for native methods.
if (!IsDebuggerActive() || m->IsNative()) {
return;
}
DCHECK(m != nullptr);
DCHECK(f != nullptr);
JDWP::EventLocation location;
SetEventLocation(&location, m, dex_pc);
gJdwpState->PostFieldEvent(&location, f, this_object, nullptr, false);
}
void Dbg::PostFieldModificationEvent(ArtMethod* m, int dex_pc,
mirror::Object* this_object, ArtField* f,
const JValue* field_value) {
// TODO We should send events for native methods.
if (!IsDebuggerActive() || m->IsNative()) {
return;
}
DCHECK(m != nullptr);
DCHECK(f != nullptr);
DCHECK(field_value != nullptr);
JDWP::EventLocation location;
SetEventLocation(&location, m, dex_pc);
gJdwpState->PostFieldEvent(&location, f, this_object, field_value, true);
}
/**
* Finds the location where this exception will be caught. We search until we reach the top
* frame, in which case this exception is considered uncaught.
*/
class CatchLocationFinder : public StackVisitor {
public:
CatchLocationFinder(Thread* self, const Handle<mirror::Throwable>& exception, Context* context)
REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(self, context, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
exception_(exception),
handle_scope_(self),
this_at_throw_(handle_scope_.NewHandle<mirror::Object>(nullptr)),
catch_method_(nullptr),
throw_method_(nullptr),
catch_dex_pc_(DexFile::kDexNoIndex),
throw_dex_pc_(DexFile::kDexNoIndex) {
}
bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
ArtMethod* method = GetMethod();
DCHECK(method != nullptr);
if (method->IsRuntimeMethod()) {
// Ignore callee save method.
DCHECK(method->IsCalleeSaveMethod());
return true;
}
uint32_t dex_pc = GetDexPc();
if (throw_method_ == nullptr) {
// First Java method found. It is either the method that threw the exception,
// or the Java native method that is reporting an exception thrown by
// native code.
this_at_throw_.Assign(GetThisObject());
throw_method_ = method;
throw_dex_pc_ = dex_pc;
}
if (dex_pc != DexFile::kDexNoIndex) {
StackHandleScope<1> hs(GetThread());
uint32_t found_dex_pc;
Handle<mirror::Class> exception_class(hs.NewHandle(exception_->GetClass()));
bool unused_clear_exception;
found_dex_pc = method->FindCatchBlock(exception_class, dex_pc, &unused_clear_exception);
if (found_dex_pc != DexFile::kDexNoIndex) {
catch_method_ = method;
catch_dex_pc_ = found_dex_pc;
return false; // End stack walk.
}
}
return true; // Continue stack walk.
}
ArtMethod* GetCatchMethod() REQUIRES_SHARED(Locks::mutator_lock_) {
return catch_method_;
}
ArtMethod* GetThrowMethod() REQUIRES_SHARED(Locks::mutator_lock_) {
return throw_method_;
}
mirror::Object* GetThisAtThrow() REQUIRES_SHARED(Locks::mutator_lock_) {
return this_at_throw_.Get();
}
uint32_t GetCatchDexPc() const {
return catch_dex_pc_;
}
uint32_t GetThrowDexPc() const {
return throw_dex_pc_;
}
private:
const Handle<mirror::Throwable>& exception_;
StackHandleScope<1> handle_scope_;
MutableHandle<mirror::Object> this_at_throw_;
ArtMethod* catch_method_;
ArtMethod* throw_method_;
uint32_t catch_dex_pc_;
uint32_t throw_dex_pc_;
DISALLOW_COPY_AND_ASSIGN(CatchLocationFinder);
};
void Dbg::PostException(mirror::Throwable* exception_object) {
if (!IsDebuggerActive()) {
return;
}
Thread* const self = Thread::Current();
StackHandleScope<1> handle_scope(self);
Handle<mirror::Throwable> h_exception(handle_scope.NewHandle(exception_object));
std::unique_ptr<Context> context(Context::Create());
CatchLocationFinder clf(self, h_exception, context.get());
clf.WalkStack(/* include_transitions */ false);
JDWP::EventLocation exception_throw_location;
SetEventLocation(&exception_throw_location, clf.GetThrowMethod(), clf.GetThrowDexPc());
JDWP::EventLocation exception_catch_location;
SetEventLocation(&exception_catch_location, clf.GetCatchMethod(), clf.GetCatchDexPc());
gJdwpState->PostException(&exception_throw_location, h_exception.Get(), &exception_catch_location,
clf.GetThisAtThrow());
}
void Dbg::PostClassPrepare(mirror::Class* c) {
if (!IsDebuggerActive()) {
return;
}
gJdwpState->PostClassPrepare(c);
}
void Dbg::UpdateDebugger(Thread* thread, mirror::Object* this_object,
ArtMethod* m, uint32_t dex_pc,
int event_flags, const JValue* return_value) {
if (!IsDebuggerActive() || dex_pc == static_cast<uint32_t>(-2) /* fake method exit */) {
return;
}
if (IsBreakpoint(m, dex_pc)) {
event_flags |= kBreakpoint;
}
// If the debugger is single-stepping one of our threads, check to
// see if we're that thread and we've reached a step point.
const SingleStepControl* single_step_control = thread->GetSingleStepControl();
if (single_step_control != nullptr) {
CHECK(!m->IsNative());
if (single_step_control->GetStepDepth() == JDWP::SD_INTO) {
// Step into method calls. We break when the line number
// or method pointer changes. If we're in SS_MIN mode, we
// always stop.
if (single_step_control->GetMethod() != m) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new method";
} else if (single_step_control->GetStepSize() == JDWP::SS_MIN) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new instruction";
} else if (single_step_control->ContainsDexPc(dex_pc)) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new line";
}
} else if (single_step_control->GetStepDepth() == JDWP::SD_OVER) {
// Step over method calls. We break when the line number is
// different and the frame depth is <= the original frame
// depth. (We can't just compare on the method, because we
// might get unrolled past it by an exception, and it's tricky
// to identify recursion.)
int stack_depth = GetStackDepth(thread);
if (stack_depth < single_step_control->GetStackDepth()) {
// Popped up one or more frames, always trigger.
event_flags |= kSingleStep;
VLOG(jdwp) << "SS method pop";
} else if (stack_depth == single_step_control->GetStackDepth()) {
// Same depth, see if we moved.
if (single_step_control->GetStepSize() == JDWP::SS_MIN) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new instruction";
} else if (single_step_control->ContainsDexPc(dex_pc)) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS new line";
}
}
} else {
CHECK_EQ(single_step_control->GetStepDepth(), JDWP::SD_OUT);
// Return from the current method. We break when the frame
// depth pops up.
// This differs from the "method exit" break in that it stops
// with the PC at the next instruction in the returned-to
// function, rather than the end of the returning function.
int stack_depth = GetStackDepth(thread);
if (stack_depth < single_step_control->GetStackDepth()) {
event_flags |= kSingleStep;
VLOG(jdwp) << "SS method pop";
}
}
}
// If there's something interesting going on, see if it matches one
// of the debugger filters.
if (event_flags != 0) {
Dbg::PostLocationEvent(m, dex_pc, this_object, event_flags, return_value);
}
}
size_t* Dbg::GetReferenceCounterForEvent(uint32_t instrumentation_event) {
switch (instrumentation_event) {
case instrumentation::Instrumentation::kMethodEntered:
return &method_enter_event_ref_count_;
case instrumentation::Instrumentation::kMethodExited:
return &method_exit_event_ref_count_;
case instrumentation::Instrumentation::kDexPcMoved:
return &dex_pc_change_event_ref_count_;
case instrumentation::Instrumentation::kFieldRead:
return &field_read_event_ref_count_;
case instrumentation::Instrumentation::kFieldWritten:
return &field_write_event_ref_count_;
case instrumentation::Instrumentation::kExceptionCaught:
return &exception_catch_event_ref_count_;
default:
return nullptr;
}
}
// Process request while all mutator threads are suspended.
void Dbg::ProcessDeoptimizationRequest(const DeoptimizationRequest& request) {
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
switch (request.GetKind()) {
case DeoptimizationRequest::kNothing:
LOG(WARNING) << "Ignoring empty deoptimization request.";
break;
case DeoptimizationRequest::kRegisterForEvent:
VLOG(jdwp) << StringPrintf("Add debugger as listener for instrumentation event 0x%x",
request.InstrumentationEvent());
instrumentation->AddListener(&gDebugInstrumentationListener, request.InstrumentationEvent());
instrumentation_events_ |= request.InstrumentationEvent();
break;
case DeoptimizationRequest::kUnregisterForEvent:
VLOG(jdwp) << StringPrintf("Remove debugger as listener for instrumentation event 0x%x",
request.InstrumentationEvent());
instrumentation->RemoveListener(&gDebugInstrumentationListener,
request.InstrumentationEvent());
instrumentation_events_ &= ~request.InstrumentationEvent();
break;
case DeoptimizationRequest::kFullDeoptimization:
VLOG(jdwp) << "Deoptimize the world ...";
instrumentation->DeoptimizeEverything(kDbgInstrumentationKey);
VLOG(jdwp) << "Deoptimize the world DONE";
break;
case DeoptimizationRequest::kFullUndeoptimization:
VLOG(jdwp) << "Undeoptimize the world ...";
instrumentation->UndeoptimizeEverything(kDbgInstrumentationKey);
VLOG(jdwp) << "Undeoptimize the world DONE";
break;
case DeoptimizationRequest::kSelectiveDeoptimization:
VLOG(jdwp) << "Deoptimize method " << ArtMethod::PrettyMethod(request.Method()) << " ...";
instrumentation->Deoptimize(request.Method());
VLOG(jdwp) << "Deoptimize method " << ArtMethod::PrettyMethod(request.Method()) << " DONE";
break;
case DeoptimizationRequest::kSelectiveUndeoptimization:
VLOG(jdwp) << "Undeoptimize method " << ArtMethod::PrettyMethod(request.Method()) << " ...";
instrumentation->Undeoptimize(request.Method());
VLOG(jdwp) << "Undeoptimize method " << ArtMethod::PrettyMethod(request.Method()) << " DONE";
break;
default:
LOG(FATAL) << "Unsupported deoptimization request kind " << request.GetKind();
break;
}
}
void Dbg::RequestDeoptimization(const DeoptimizationRequest& req) {
if (req.GetKind() == DeoptimizationRequest::kNothing) {
// Nothing to do.
return;
}
MutexLock mu(Thread::Current(), *Locks::deoptimization_lock_);
RequestDeoptimizationLocked(req);
}
void Dbg::RequestDeoptimizationLocked(const DeoptimizationRequest& req) {
switch (req.GetKind()) {
case DeoptimizationRequest::kRegisterForEvent: {
DCHECK_NE(req.InstrumentationEvent(), 0u);
size_t* counter = GetReferenceCounterForEvent(req.InstrumentationEvent());
CHECK(counter != nullptr) << StringPrintf("No counter for instrumentation event 0x%x",
req.InstrumentationEvent());
if (*counter == 0) {
VLOG(jdwp) << StringPrintf("Queue request #%zd to start listening to instrumentation event 0x%x",
deoptimization_requests_.size(), req.InstrumentationEvent());
deoptimization_requests_.push_back(req);
}
*counter = *counter + 1;
break;
}
case DeoptimizationRequest::kUnregisterForEvent: {
DCHECK_NE(req.InstrumentationEvent(), 0u);
size_t* counter = GetReferenceCounterForEvent(req.InstrumentationEvent());
CHECK(counter != nullptr) << StringPrintf("No counter for instrumentation event 0x%x",
req.InstrumentationEvent());
*counter = *counter - 1;
if (*counter == 0) {
VLOG(jdwp) << StringPrintf("Queue request #%zd to stop listening to instrumentation event 0x%x",
deoptimization_requests_.size(), req.InstrumentationEvent());
deoptimization_requests_.push_back(req);
}
break;
}
case DeoptimizationRequest::kFullDeoptimization: {
DCHECK(req.Method() == nullptr);
if (full_deoptimization_event_count_ == 0) {
VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size()
<< " for full deoptimization";
deoptimization_requests_.push_back(req);
}
++full_deoptimization_event_count_;
break;
}
case DeoptimizationRequest::kFullUndeoptimization: {
DCHECK(req.Method() == nullptr);
DCHECK_GT(full_deoptimization_event_count_, 0U);
--full_deoptimization_event_count_;
if (full_deoptimization_event_count_ == 0) {
VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size()
<< " for full undeoptimization";
deoptimization_requests_.push_back(req);
}
break;
}
case DeoptimizationRequest::kSelectiveDeoptimization: {
DCHECK(req.Method() != nullptr);
VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size()
<< " for deoptimization of " << req.Method()->PrettyMethod();
deoptimization_requests_.push_back(req);
break;
}
case DeoptimizationRequest::kSelectiveUndeoptimization: {
DCHECK(req.Method() != nullptr);
VLOG(jdwp) << "Queue request #" << deoptimization_requests_.size()
<< " for undeoptimization of " << req.Method()->PrettyMethod();
deoptimization_requests_.push_back(req);
break;
}
default: {
LOG(FATAL) << "Unknown deoptimization request kind " << req.GetKind();
break;
}
}
}
void Dbg::ManageDeoptimization() {
Thread* const self = Thread::Current();
{
// Avoid suspend/resume if there is no pending request.
MutexLock mu(self, *Locks::deoptimization_lock_);
if (deoptimization_requests_.empty()) {
return;
}
}
CHECK_EQ(self->GetState(), kRunnable);
ScopedThreadSuspension sts(self, kWaitingForDeoptimization);
// Required for ProcessDeoptimizationRequest.
gc::ScopedGCCriticalSection gcs(self,
gc::kGcCauseInstrumentation,
gc::kCollectorTypeInstrumentation);
// We need to suspend mutator threads first.
ScopedSuspendAll ssa(__FUNCTION__);
const ThreadState old_state = self->SetStateUnsafe(kRunnable);
{
MutexLock mu(self, *Locks::deoptimization_lock_);
size_t req_index = 0;
for (DeoptimizationRequest& request : deoptimization_requests_) {
VLOG(jdwp) << "Process deoptimization request #" << req_index++;
ProcessDeoptimizationRequest(request);
}
deoptimization_requests_.clear();
}
CHECK_EQ(self->SetStateUnsafe(old_state), kRunnable);
}
static const Breakpoint* FindFirstBreakpointForMethod(ArtMethod* m)
REQUIRES_SHARED(Locks::mutator_lock_, Locks::breakpoint_lock_) {
for (Breakpoint& breakpoint : gBreakpoints) {
if (breakpoint.IsInMethod(m)) {
return &breakpoint;
}
}
return nullptr;
}
bool Dbg::MethodHasAnyBreakpoints(ArtMethod* method) {
ReaderMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
return FindFirstBreakpointForMethod(method) != nullptr;
}
// Sanity checks all existing breakpoints on the same method.
static void SanityCheckExistingBreakpoints(ArtMethod* m,
DeoptimizationRequest::Kind deoptimization_kind)
REQUIRES_SHARED(Locks::mutator_lock_, Locks::breakpoint_lock_) {
for (const Breakpoint& breakpoint : gBreakpoints) {
if (breakpoint.IsInMethod(m)) {
CHECK_EQ(deoptimization_kind, breakpoint.GetDeoptimizationKind());
}
}
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
if (deoptimization_kind == DeoptimizationRequest::kFullDeoptimization) {
// We should have deoptimized everything but not "selectively" deoptimized this method.
CHECK(instrumentation->AreAllMethodsDeoptimized());
CHECK(!instrumentation->IsDeoptimized(m));
} else if (deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization) {
// We should have "selectively" deoptimized this method.
// Note: while we have not deoptimized everything for this method, we may have done it for
// another event.
CHECK(instrumentation->IsDeoptimized(m));
} else {
// This method does not require deoptimization.
CHECK_EQ(deoptimization_kind, DeoptimizationRequest::kNothing);
CHECK(!instrumentation->IsDeoptimized(m));
}
}
// Returns the deoptimization kind required to set a breakpoint in a method.
// If a breakpoint has already been set, we also return the first breakpoint
// through the given 'existing_brkpt' pointer.
static DeoptimizationRequest::Kind GetRequiredDeoptimizationKind(Thread* self,
ArtMethod* m,
const Breakpoint** existing_brkpt)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (!Dbg::RequiresDeoptimization()) {
// We already run in interpreter-only mode so we don't need to deoptimize anything.
VLOG(jdwp) << "No need for deoptimization when fully running with interpreter for method "
<< ArtMethod::PrettyMethod(m);
return DeoptimizationRequest::kNothing;
}
const Breakpoint* first_breakpoint;
{
ReaderMutexLock mu(self, *Locks::breakpoint_lock_);
first_breakpoint = FindFirstBreakpointForMethod(m);
*existing_brkpt = first_breakpoint;
}
if (first_breakpoint == nullptr) {
// There is no breakpoint on this method yet: we need to deoptimize. If this method is default,
// we deoptimize everything; otherwise we deoptimize only this method. We
// deoptimize with defaults because we do not know everywhere they are used. It is possible some
// of the copies could be missed.
// TODO Deoptimizing on default methods might not be necessary in all cases.
bool need_full_deoptimization = m->IsDefault();
if (need_full_deoptimization) {
VLOG(jdwp) << "Need full deoptimization because of copying of method "
<< ArtMethod::PrettyMethod(m);
return DeoptimizationRequest::kFullDeoptimization;
} else {
// We don't need to deoptimize if the method has not been compiled.
const bool is_compiled = m->HasAnyCompiledCode();
if (is_compiled) {
VLOG(jdwp) << "Need selective deoptimization for compiled method "
<< ArtMethod::PrettyMethod(m);
return DeoptimizationRequest::kSelectiveDeoptimization;
} else {
// Method is not compiled: we don't need to deoptimize.
VLOG(jdwp) << "No need for deoptimization for non-compiled method "
<< ArtMethod::PrettyMethod(m);
return DeoptimizationRequest::kNothing;
}
}
} else {
// There is at least one breakpoint for this method: we don't need to deoptimize.
// Let's check that all breakpoints are configured the same way for deoptimization.
VLOG(jdwp) << "Breakpoint already set: no deoptimization is required";
DeoptimizationRequest::Kind deoptimization_kind = first_breakpoint->GetDeoptimizationKind();
if (kIsDebugBuild) {
ReaderMutexLock mu(self, *Locks::breakpoint_lock_);
SanityCheckExistingBreakpoints(m, deoptimization_kind);
}
return DeoptimizationRequest::kNothing;
}
}
// Installs a breakpoint at the specified location. Also indicates through the deoptimization
// request if we need to deoptimize.
void Dbg::WatchLocation(const JDWP::JdwpLocation* location, DeoptimizationRequest* req) {
Thread* const self = Thread::Current();
ArtMethod* m = FromMethodId(location->method_id);
DCHECK(m != nullptr) << "No method for method id " << location->method_id;
const Breakpoint* existing_breakpoint = nullptr;
const DeoptimizationRequest::Kind deoptimization_kind =
GetRequiredDeoptimizationKind(self, m, &existing_breakpoint);
req->SetKind(deoptimization_kind);
if (deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization) {
req->SetMethod(m);
} else {
CHECK(deoptimization_kind == DeoptimizationRequest::kNothing ||
deoptimization_kind == DeoptimizationRequest::kFullDeoptimization);
req->SetMethod(nullptr);
}
{
WriterMutexLock mu(self, *Locks::breakpoint_lock_);
// If there is at least one existing breakpoint on the same method, the new breakpoint
// must have the same deoptimization kind than the existing breakpoint(s).
DeoptimizationRequest::Kind breakpoint_deoptimization_kind;
if (existing_breakpoint != nullptr) {
breakpoint_deoptimization_kind = existing_breakpoint->GetDeoptimizationKind();
} else {
breakpoint_deoptimization_kind = deoptimization_kind;
}
gBreakpoints.push_back(Breakpoint(m, location->dex_pc, breakpoint_deoptimization_kind));
VLOG(jdwp) << "Set breakpoint #" << (gBreakpoints.size() - 1) << ": "
<< gBreakpoints[gBreakpoints.size() - 1];
}
}
// Uninstalls a breakpoint at the specified location. Also indicates through the deoptimization
// request if we need to undeoptimize.
void Dbg::UnwatchLocation(const JDWP::JdwpLocation* location, DeoptimizationRequest* req) {
WriterMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
ArtMethod* m = FromMethodId(location->method_id);
DCHECK(m != nullptr) << "No method for method id " << location->method_id;
DeoptimizationRequest::Kind deoptimization_kind = DeoptimizationRequest::kNothing;
for (size_t i = 0, e = gBreakpoints.size(); i < e; ++i) {
if (gBreakpoints[i].DexPc() == location->dex_pc && gBreakpoints[i].IsInMethod(m)) {
VLOG(jdwp) << "Removed breakpoint #" << i << ": " << gBreakpoints[i];
deoptimization_kind = gBreakpoints[i].GetDeoptimizationKind();
DCHECK_EQ(deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization,
Runtime::Current()->GetInstrumentation()->IsDeoptimized(m));
gBreakpoints.erase(gBreakpoints.begin() + i);
break;
}
}
const Breakpoint* const existing_breakpoint = FindFirstBreakpointForMethod(m);
if (existing_breakpoint == nullptr) {
// There is no more breakpoint on this method: we need to undeoptimize.
if (deoptimization_kind == DeoptimizationRequest::kFullDeoptimization) {
// This method required full deoptimization: we need to undeoptimize everything.
req->SetKind(DeoptimizationRequest::kFullUndeoptimization);
req->SetMethod(nullptr);
} else if (deoptimization_kind == DeoptimizationRequest::kSelectiveDeoptimization) {
// This method required selective deoptimization: we need to undeoptimize only that method.
req->SetKind(DeoptimizationRequest::kSelectiveUndeoptimization);
req->SetMethod(m);
} else {
// This method had no need for deoptimization: do nothing.
CHECK_EQ(deoptimization_kind, DeoptimizationRequest::kNothing);
req->SetKind(DeoptimizationRequest::kNothing);
req->SetMethod(nullptr);
}
} else {
// There is at least one breakpoint for this method: we don't need to undeoptimize.
req->SetKind(DeoptimizationRequest::kNothing);
req->SetMethod(nullptr);
if (kIsDebugBuild) {
SanityCheckExistingBreakpoints(m, deoptimization_kind);
}
}
}
bool Dbg::IsForcedInterpreterNeededForCallingImpl(Thread* thread, ArtMethod* m) {
const SingleStepControl* const ssc = thread->GetSingleStepControl();
if (ssc == nullptr) {
// If we are not single-stepping, then we don't have to force interpreter.
return false;
}
if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) {
// If we are in interpreter only mode, then we don't have to force interpreter.
return false;
}
if (!m->IsNative() && !m->IsProxyMethod()) {
// If we want to step into a method, then we have to force interpreter on that call.
if (ssc->GetStepDepth() == JDWP::SD_INTO) {
return true;
}
}
return false;
}
bool Dbg::IsForcedInterpreterNeededForResolutionImpl(Thread* thread, ArtMethod* m) {
instrumentation::Instrumentation* const instrumentation =
Runtime::Current()->GetInstrumentation();
// If we are in interpreter only mode, then we don't have to force interpreter.
if (instrumentation->InterpretOnly()) {
return false;
}
// We can only interpret pure Java method.
if (m->IsNative() || m->IsProxyMethod()) {
return false;
}
const SingleStepControl* const ssc = thread->GetSingleStepControl();
if (ssc != nullptr) {
// If we want to step into a method, then we have to force interpreter on that call.
if (ssc->GetStepDepth() == JDWP::SD_INTO) {
return true;
}
// If we are stepping out from a static initializer, by issuing a step
// in or step over, that was implicitly invoked by calling a static method,
// then we need to step into that method. Having a lower stack depth than
// the one the single step control has indicates that the step originates
// from the static initializer.
if (ssc->GetStepDepth() != JDWP::SD_OUT &&
ssc->GetStackDepth() > GetStackDepth(thread)) {
return true;
}
}
// There are cases where we have to force interpreter on deoptimized methods,
// because in some cases the call will not be performed by invoking an entry
// point that has been replaced by the deoptimization, but instead by directly
// invoking the compiled code of the method, for example.
return instrumentation->IsDeoptimized(m);
}
bool Dbg::IsForcedInstrumentationNeededForResolutionImpl(Thread* thread, ArtMethod* m) {
// The upcall can be null and in that case we don't need to do anything.
if (m == nullptr) {
return false;
}
instrumentation::Instrumentation* const instrumentation =
Runtime::Current()->GetInstrumentation();
// If we are in interpreter only mode, then we don't have to force interpreter.
if (instrumentation->InterpretOnly()) {
return false;
}
// We can only interpret pure Java method.
if (m->IsNative() || m->IsProxyMethod()) {
return false;
}
const SingleStepControl* const ssc = thread->GetSingleStepControl();
if (ssc != nullptr) {
// If we are stepping out from a static initializer, by issuing a step
// out, that was implicitly invoked by calling a static method, then we
// need to step into the caller of that method. Having a lower stack
// depth than the one the single step control has indicates that the
// step originates from the static initializer.
if (ssc->GetStepDepth() == JDWP::SD_OUT &&
ssc->GetStackDepth() > GetStackDepth(thread)) {
return true;
}
}
// If we are returning from a static intializer, that was implicitly
// invoked by calling a static method and the caller is deoptimized,
// then we have to deoptimize the stack without forcing interpreter
// on the static method that was called originally. This problem can
// be solved easily by forcing instrumentation on the called method,
// because the instrumentation exit hook will recognise the need of
// stack deoptimization by calling IsForcedInterpreterNeededForUpcall.
return instrumentation->IsDeoptimized(m);
}
bool Dbg::IsForcedInterpreterNeededForUpcallImpl(Thread* thread, ArtMethod* m) {
// The upcall can be null and in that case we don't need to do anything.
if (m == nullptr) {
return false;
}
instrumentation::Instrumentation* const instrumentation =
Runtime::Current()->GetInstrumentation();
// If we are in interpreter only mode, then we don't have to force interpreter.
if (instrumentation->InterpretOnly()) {
return false;
}
// We can only interpret pure Java method.
if (m->IsNative() || m->IsProxyMethod()) {
return false;
}
const SingleStepControl* const ssc = thread->GetSingleStepControl();
if (ssc != nullptr) {
// The debugger is not interested in what is happening under the level
// of the step, thus we only force interpreter when we are not below of
// the step.
if (ssc->GetStackDepth() >= GetStackDepth(thread)) {
return true;
}
}
if (thread->HasDebuggerShadowFrames()) {
// We need to deoptimize the stack for the exception handling flow so that
// we don't miss any deoptimization that should be done when there are
// debugger shadow frames.
return true;
}
// We have to require stack deoptimization if the upcall is deoptimized.
return instrumentation->IsDeoptimized(m);
}
class NeedsDeoptimizationVisitor : public StackVisitor {
public:
explicit NeedsDeoptimizationVisitor(Thread* self)
REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(self, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
needs_deoptimization_(false) {}
bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
// The visitor is meant to be used when handling exception from compiled code only.
CHECK(!IsShadowFrame()) << "We only expect to visit compiled frame: "
<< ArtMethod::PrettyMethod(GetMethod());
ArtMethod* method = GetMethod();
if (method == nullptr) {
// We reach an upcall and don't need to deoptimize this part of the stack (ManagedFragment)
// so we can stop the visit.
DCHECK(!needs_deoptimization_);
return false;
}
if (Runtime::Current()->GetInstrumentation()->InterpretOnly()) {
// We found a compiled frame in the stack but instrumentation is set to interpret
// everything: we need to deoptimize.
needs_deoptimization_ = true;
return false;
}
if (Runtime::Current()->GetInstrumentation()->IsDeoptimized(method)) {
// We found a deoptimized method in the stack.
needs_deoptimization_ = true;
return false;
}
ShadowFrame* frame = GetThread()->FindDebuggerShadowFrame(GetFrameId());
if (frame != nullptr) {
// The debugger allocated a ShadowFrame to update a variable in the stack: we need to
// deoptimize the stack to execute (and deallocate) this frame.
needs_deoptimization_ = true;
return false;
}
return true;
}
bool NeedsDeoptimization() const {
return needs_deoptimization_;
}
private:
// Do we need to deoptimize the stack?
bool needs_deoptimization_;
DISALLOW_COPY_AND_ASSIGN(NeedsDeoptimizationVisitor);
};
// Do we need to deoptimize the stack to handle an exception?
bool Dbg::IsForcedInterpreterNeededForExceptionImpl(Thread* thread) {
const SingleStepControl* const ssc = thread->GetSingleStepControl();
if (ssc != nullptr) {
// We deopt to step into the catch handler.
return true;
}
// Deoptimization is required if at least one method in the stack needs it. However we
// skip frames that will be unwound (thus not executed).
NeedsDeoptimizationVisitor visitor(thread);
visitor.WalkStack(true); // includes upcall.
return visitor.NeedsDeoptimization();
}
// Scoped utility class to suspend a thread so that we may do tasks such as walk its stack. Doesn't
// cause suspension if the thread is the current thread.
class ScopedDebuggerThreadSuspension {
public:
ScopedDebuggerThreadSuspension(Thread* self, JDWP::ObjectId thread_id)
REQUIRES(!Locks::thread_list_lock_)
REQUIRES_SHARED(Locks::mutator_lock_) :
thread_(nullptr),
error_(JDWP::ERR_NONE),
self_suspend_(false),
other_suspend_(false) {
ScopedObjectAccessUnchecked soa(self);
thread_ = DecodeThread(soa, thread_id, &error_);
if (error_ == JDWP::ERR_NONE) {
if (thread_ == soa.Self()) {
self_suspend_ = true;
} else {
Thread* suspended_thread;
{
ScopedThreadSuspension sts(self, kWaitingForDebuggerSuspension);
jobject thread_peer = Dbg::GetObjectRegistry()->GetJObject(thread_id);
bool timed_out;
ThreadList* const thread_list = Runtime::Current()->GetThreadList();
suspended_thread = thread_list->SuspendThreadByPeer(thread_peer,
/* request_suspension */ true,
/* debug_suspension */ true,
&timed_out);
}
if (suspended_thread == nullptr) {
// Thread terminated from under us while suspending.
error_ = JDWP::ERR_INVALID_THREAD;
} else {
CHECK_EQ(suspended_thread, thread_);
other_suspend_ = true;
}
}
}
}
Thread* GetThread() const {
return thread_;
}
JDWP::JdwpError GetError() const {
return error_;
}
~ScopedDebuggerThreadSuspension() {
if (other_suspend_) {
Runtime::Current()->GetThreadList()->Resume(thread_, true);
}
}
private:
Thread* thread_;
JDWP::JdwpError error_;
bool self_suspend_;
bool other_suspend_;
};
JDWP::JdwpError Dbg::ConfigureStep(JDWP::ObjectId thread_id, JDWP::JdwpStepSize step_size,
JDWP::JdwpStepDepth step_depth) {
Thread* self = Thread::Current();
ScopedDebuggerThreadSuspension sts(self, thread_id);
if (sts.GetError() != JDWP::ERR_NONE) {
return sts.GetError();
}
// Work out what ArtMethod* we're in, the current line number, and how deep the stack currently
// is for step-out.
struct SingleStepStackVisitor : public StackVisitor {
explicit SingleStepStackVisitor(Thread* thread) REQUIRES_SHARED(Locks::mutator_lock_)
: StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
stack_depth(0),
method(nullptr),
line_number(-1) {}
// TODO: Enable annotalysis. We know lock is held in constructor, but abstraction confuses
// annotalysis.
bool VisitFrame() NO_THREAD_SAFETY_ANALYSIS {
ArtMethod* m = GetMethod();
if (!m->IsRuntimeMethod()) {
++stack_depth;
if (method == nullptr) {
const DexFile* dex_file = m->GetDexFile();
method = m;
if (dex_file != nullptr) {
line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc());
}
}
}
return true;
}
int stack_depth;
ArtMethod* method;
int32_t line_number;
};
Thread* const thread = sts.GetThread();
SingleStepStackVisitor visitor(thread);
visitor.WalkStack();
// Find the dex_pc values that correspond to the current line, for line-based single-stepping.
struct DebugCallbackContext {
DebugCallbackContext(SingleStepControl* single_step_control_cb,
int32_t line_number_cb, const DexFile::CodeItem* code_item)
: single_step_control_(single_step_control_cb), line_number_(line_number_cb),
code_item_(code_item), last_pc_valid(false), last_pc(0) {
}
static bool Callback(void* raw_context, const DexFile::PositionInfo& entry) {
DebugCallbackContext* context = reinterpret_cast<DebugCallbackContext*>(raw_context);
if (static_cast<int32_t>(entry.line_) == context->line_number_) {
if (!context->last_pc_valid) {
// Everything from this address until the next line change is ours.
context->last_pc = entry.address_;
context->last_pc_valid = true;
}
// Otherwise, if we're already in a valid range for this line,
// just keep going (shouldn't really happen)...
} else if (context->last_pc_valid) { // and the line number is new
// Add everything from the last entry up until here to the set
for (uint32_t dex_pc = context->last_pc; dex_pc < entry.address_; ++dex_pc) {
context->single_step_control_->AddDexPc(dex_pc);
}
context->last_pc_valid = false;
}
return false; // There may be multiple entries for any given line.
}
~DebugCallbackContext() {
// If the line number was the last in the position table...
if (last_pc_valid) {
size_t end = code_item_->insns_size_in_code_units_;
for (uint32_t dex_pc = last_pc; dex_pc < end; ++dex_pc) {
single_step_control_->AddDexPc(dex_pc);
}
}
}
SingleStepControl* const single_step_control_;
const int32_t line_number_;
const DexFile::CodeItem* const code_item_;
bool last_pc_valid;
uint32_t last_pc;
};
// Allocate single step.
SingleStepControl* single_step_control =
new (std::nothrow) SingleStepControl(step_size, step_depth,
visitor.stack_depth, visitor.method);
if (single_step_control == nullptr) {
LOG(ERROR) << "Failed to allocate SingleStepControl";
return JDWP::ERR_OUT_OF_MEMORY;
}
ArtMethod* m = single_step_control->GetMethod();
const int32_t line_number = visitor.line_number;
// Note: if the thread is not running Java code (pure native thread), there is no "current"
// method on the stack (and no line number either).
if (m != nullptr && !m->IsNative()) {
const DexFile::CodeItem* const code_item = m->GetCodeItem();
DebugCallbackContext context(single_step_control, line_number, code_item);
m->GetDexFile()->DecodeDebugPositionInfo(code_item, DebugCallbackContext::Callback, &context);
}
// Activate single-step in the thread.
thread->ActivateSingleStepControl(single_step_control);
if (VLOG_IS_ON(jdwp)) {
VLOG(jdwp) << "Single-step thread: " << *thread;
VLOG(jdwp) << "Single-step step size: " << single_step_control->GetStepSize();
VLOG(jdwp) << "Single-step step depth: " << single_step_control->GetStepDepth();
VLOG(jdwp) << "Single-step current method: "
<< ArtMethod::PrettyMethod(single_step_control->GetMethod());
VLOG(jdwp) << "Single-step current line: " << line_number;
VLOG(jdwp) << "Single-step current stack depth: " << single_step_control->GetStackDepth();
VLOG(jdwp) << "Single-step dex_pc values:";
for (uint32_t dex_pc : single_step_control->GetDexPcs()) {
VLOG(jdwp) << StringPrintf(" %#x", dex_pc);
}
}
return JDWP::ERR_NONE;
}
void Dbg::UnconfigureStep(JDWP::ObjectId thread_id) {
ScopedObjectAccessUnchecked soa(Thread::Current());
JDWP::JdwpError error;
Thread* thread = DecodeThread(soa, thread_id, &error);
if (error == JDWP::ERR_NONE) {
thread->DeactivateSingleStepControl();
}
}
static char JdwpTagToShortyChar(JDWP::JdwpTag tag) {
switch (tag) {
default:
LOG(FATAL) << "unknown JDWP tag: " << PrintableChar(tag);
UNREACHABLE();
// Primitives.
case JDWP::JT_BYTE: return 'B';
case JDWP::JT_CHAR: return 'C';
case JDWP::JT_FLOAT: return 'F';
case JDWP::JT_DOUBLE: return 'D';
case JDWP::JT_INT: return 'I';
case JDWP::JT_LONG: return 'J';
case JDWP::JT_SHORT: return 'S';
case JDWP::JT_VOID: return 'V';
case JDWP::JT_BOOLEAN: return 'Z';
// Reference types.
case JDWP::JT_ARRAY:
case JDWP::JT_OBJECT:
case JDWP::JT_STRING:
case JDWP::JT_THREAD:
case JDWP::JT_THREAD_GROUP:
case JDWP::JT_CLASS_LOADER:
case JDWP::JT_CLASS_OBJECT:
return 'L';
}
}
JDWP::JdwpError Dbg::PrepareInvokeMethod(uint32_t request_id, JDWP::ObjectId thread_id,
JDWP::ObjectId object_id, JDWP::RefTypeId class_id,
JDWP::MethodId method_id, uint32_t arg_count,
uint64_t arg_values[], JDWP::JdwpTag* arg_types,
uint32_t options) {
Thread* const self = Thread::Current();
CHECK_EQ(self, GetDebugThread()) << "This must be called by the JDWP thread";
const bool resume_all_threads = ((options & JDWP::INVOKE_SINGLE_THREADED) == 0);
ThreadList* thread_list = Runtime::Current()->GetThreadList();
Thread* targetThread = nullptr;
{
ScopedObjectAccessUnchecked soa(self);
JDWP::JdwpError error;
targetThread = DecodeThread(soa, thread_id, &error);
if (error != JDWP::ERR_NONE) {
LOG(ERROR) << "InvokeMethod request for invalid thread id " << thread_id;
return error;
}
if (targetThread->GetInvokeReq() != nullptr) {
// Thread is already invoking a method on behalf of the debugger.
LOG(ERROR) << "InvokeMethod request for thread already invoking a method: " << *targetThread;
return JDWP::ERR_ALREADY_INVOKING;
}
if (!targetThread->IsReadyForDebugInvoke()) {
// Thread is not suspended by an event so it cannot invoke a method.
LOG(ERROR) << "InvokeMethod request for thread not stopped by event: " << *targetThread;
return JDWP::ERR_INVALID_THREAD;
}
/*
* According to the JDWP specs, we are expected to resume all threads (or only the
* target thread) once. So if a thread has been suspended more than once (either by
* the debugger for an event or by the runtime for GC), it will remain suspended before
* the invoke is executed. This means the debugger is responsible to properly resume all
* the threads it has suspended so the target thread can execute the method.
*
* However, for compatibility reason with older versions of debuggers (like Eclipse), we
* fully resume all threads (by canceling *all* debugger suspensions) when the debugger
* wants us to resume all threads. This is to avoid ending up in deadlock situation.
*
* On the other hand, if we are asked to only resume the target thread, then we follow the
* JDWP specs by resuming that thread only once. This means the thread will remain suspended
* if it has been suspended more than once before the invoke (and again, this is the
* responsibility of the debugger to properly resume that thread before invoking a method).
*/
int suspend_count;
{
MutexLock mu2(soa.Self(), *Locks::thread_suspend_count_lock_);
suspend_count = targetThread->GetSuspendCount();
}
if (suspend_count > 1 && resume_all_threads) {
// The target thread will remain suspended even after we resume it. Let's emit a warning
// to indicate the invoke won't be executed until the thread is resumed.
LOG(WARNING) << *targetThread << " suspended more than once (suspend count == "
<< suspend_count << "). This thread will invoke the method only once "
<< "it is fully resumed.";
}
mirror::Object* receiver = gRegistry->Get<mirror::Object*>(object_id, &error);
if (error != JDWP::ERR_NONE) {
return JDWP::ERR_INVALID_OBJECT;
}
gRegistry->Get<mirror::Object*>(thread_id, &error);
if (error != JDWP::ERR_NONE) {
return JDWP::ERR_INVALID_OBJECT;
}
mirror::Class* c = DecodeClass(class_id, &error);
if (c == nullptr) {
return error;
}
ArtMethod* m = FromMethodId(method_id);
if (m->IsStatic() != (receiver == nullptr)) {
return JDWP::ERR_INVALID_METHODID;
}
if (m->IsStatic()) {
if (m->GetDeclaringClass() != c) {
return JDWP::ERR_INVALID_METHODID;
}
} else {
if (!m->GetDeclaringClass()->IsAssignableFrom(c)) {
return JDWP::ERR_INVALID_METHODID;
}
}
// Check the argument list matches the method.
uint32_t shorty_len = 0;
const char* shorty = m->GetShorty(&shorty_len);
if (shorty_len - 1 != arg_count) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
{
StackHandleScope<2> hs(soa.Self());
HandleWrapper<mirror::Object> h_obj(hs.NewHandleWrapper(&receiver));
HandleWrapper<mirror::Class> h_klass(hs.NewHandleWrapper(&c));
const DexFile::TypeList* types = m->GetParameterTypeList();
for (size_t i = 0; i < arg_count; ++i) {
if (shorty[i + 1] != JdwpTagToShortyChar(arg_types[i])) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
if (shorty[i + 1] == 'L') {
// Did we really get an argument of an appropriate reference type?
mirror::Class* parameter_type =
m->GetClassFromTypeIndex(types->GetTypeItem(i).type_idx_, true /* resolve */);
mirror::Object* argument = gRegistry->Get<mirror::Object*>(arg_values[i], &error);
if (error != JDWP::ERR_NONE) {
return JDWP::ERR_INVALID_OBJECT;
}
if (argument != nullptr && !argument->InstanceOf(parameter_type)) {
return JDWP::ERR_ILLEGAL_ARGUMENT;
}
// Turn the on-the-wire ObjectId into a jobject.
jvalue& v = reinterpret_cast<jvalue&>(arg_values[i]);
v.l = gRegistry->GetJObject(arg_values[i]);
}
}
}
// Allocates a DebugInvokeReq.
DebugInvokeReq* req = new (std::nothrow) DebugInvokeReq(request_id, thread_id, receiver, c, m,
options, arg_values, arg_count);
if (req == nullptr) {
LOG(ERROR) << "Failed to allocate DebugInvokeReq";
return JDWP::ERR_OUT_OF_MEMORY;
}
// Attaches the DebugInvokeReq to the target thread so it executes the method when
// it is resumed. Once the invocation completes, the target thread will delete it before
// suspending itself (see ThreadList::SuspendSelfForDebugger).
targetThread->SetDebugInvokeReq(req);
}
// The fact that we've released the thread list lock is a bit risky --- if the thread goes
// away we're sitting high and dry -- but we must release this before the UndoDebuggerSuspensions
// call.
if (resume_all_threads) {
VLOG(jdwp) << " Resuming all threads";
thread_list->UndoDebuggerSuspensions();
} else {
VLOG(jdwp) << " Resuming event thread only";
thread_list->Resume(targetThread, true);
}
return JDWP::ERR_NONE;
}
void Dbg::ExecuteMethod(DebugInvokeReq* pReq) {
Thread* const self = Thread::Current();
CHECK_NE(self, GetDebugThread()) << "This must be called by the event thread";
ScopedObjectAccess soa(self);
// We can be called while an exception is pending. We need
// to preserve that across the method invocation.
StackHandleScope<1> hs(soa.Self());
Handle<mirror::Throwable> old_exception = hs.NewHandle(soa.Self()->GetException());
soa.Self()->ClearException();
// Execute the method then sends reply to the debugger.
ExecuteMethodWithoutPendingException(soa, pReq);
// If an exception was pending before the invoke, restore it now.
if (old_exception != nullptr) {
soa.Self()->SetException(old_exception.Get());
}
}
// Helper function: write a variable-width value into the output input buffer.
static void WriteValue(JDWP::ExpandBuf* pReply, int width, uint64_t value) {
switch (width) {
case 1:
expandBufAdd1(pReply, value);
break;
case 2:
expandBufAdd2BE(pReply, value);
break;
case 4:
expandBufAdd4BE(pReply, value);
break;
case 8:
expandBufAdd8BE(pReply, value);
break;
default:
LOG(FATAL) << width;
UNREACHABLE();
}
}
void Dbg::ExecuteMethodWithoutPendingException(ScopedObjectAccess& soa, DebugInvokeReq* pReq) {
soa.Self()->AssertNoPendingException();
// Translate the method through the vtable, unless the debugger wants to suppress it.
ArtMethod* m = pReq->method;
PointerSize image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
if ((pReq->options & JDWP::INVOKE_NONVIRTUAL) == 0 && pReq->receiver.Read() != nullptr) {
ArtMethod* actual_method =
pReq->klass.Read()->FindVirtualMethodForVirtualOrInterface(m, image_pointer_size);
if (actual_method != m) {
VLOG(jdwp) << "ExecuteMethod translated " << ArtMethod::PrettyMethod(m)
<< " to " << ArtMethod::PrettyMethod(actual_method);
m = actual_method;
}
}
VLOG(jdwp) << "ExecuteMethod " << ArtMethod::PrettyMethod(m)
<< " receiver=" << pReq->receiver.Read()
<< " arg_count=" << pReq->arg_count;
CHECK(m != nullptr);
static_assert(sizeof(jvalue) == sizeof(uint64_t), "jvalue and uint64_t have different sizes.");
// Invoke the method.
ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(pReq->receiver.Read()));
JValue result = InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(m),
reinterpret_cast<jvalue*>(pReq->arg_values.get()));
// Prepare JDWP ids for the reply.
JDWP::JdwpTag result_tag = BasicTagFromDescriptor(m->GetShorty());
const bool is_object_result = (result_tag == JDWP::JT_OBJECT);
StackHandleScope<3> hs(soa.Self());
Handle<mirror::Object> object_result = hs.NewHandle(is_object_result ? result.GetL() : nullptr);
Handle<mirror::Throwable> exception = hs.NewHandle(soa.Self()->GetException());
soa.Self()->ClearException();
if (!IsDebuggerActive()) {
// The debugger detached: we must not re-suspend threads. We also don't need to fill the reply
// because it won't be sent either.
return;
}
JDWP::ObjectId exceptionObjectId = gRegistry->Add(exception);
uint64_t result_value = 0;
if (exceptionObjectId != 0) {
VLOG(jdwp) << " JDWP invocation returning with exception=" << exception.Get()
<< " " << exception->Dump();
result_value = 0;
} else if (is_object_result) {
/* if no exception was thrown, examine object result more closely */
JDWP::JdwpTag new_tag = TagFromObject(soa, object_result.Get());
if (new_tag != result_tag) {
VLOG(jdwp) << " JDWP promoted result from " << result_tag << " to " << new_tag;
result_tag = new_tag;
}
// Register the object in the registry and reference its ObjectId. This ensures
// GC safety and prevents from accessing stale reference if the object is moved.
result_value = gRegistry->Add(object_result.Get());
} else {
// Primitive result.
DCHECK(IsPrimitiveTag(result_tag));
result_value = result.GetJ();
}
const bool is_constructor = m->IsConstructor() && !m->IsStatic();
if (is_constructor) {
// If we invoked a constructor (which actually returns void), return the receiver,
// unless we threw, in which case we return null.
DCHECK_EQ(JDWP::JT_VOID, result_tag);
if (exceptionObjectId == 0) {
if (m->GetDeclaringClass()->IsStringClass()) {
// For string constructors, the new string is remapped to the receiver (stored in ref).
Handle<mirror::Object> decoded_ref = hs.NewHandle(soa.Self()->DecodeJObject(ref.get()));
result_value = gRegistry->Add(decoded_ref);
result_tag = TagFromObject(soa, decoded_ref.Get());
} else {
// TODO we could keep the receiver ObjectId in the DebugInvokeReq to avoid looking into the
// object registry.
result_value = GetObjectRegistry()->Add(pReq->receiver.Read());
result_tag = TagFromObject(soa, pReq->receiver.Read());
}
} else {
result_value = 0;
result_tag = JDWP::JT_OBJECT;
}
}
// Suspend other threads if the invoke is not single-threaded.
if ((pReq->options & JDWP::INVOKE_SINGLE_THREADED) == 0) {
ScopedThreadSuspension sts(soa.Self(), kWaitingForDebuggerSuspension);
// Avoid a deadlock between GC and debugger where GC gets suspended during GC. b/25800335.
gc::ScopedGCCriticalSection gcs(soa.Self(), gc::kGcCauseDebugger, gc::kCollectorTypeDebugger);
VLOG(jdwp) << " Suspending all threads";
Runtime::Current()->GetThreadList()->SuspendAllForDebugger();
}
VLOG(jdwp) << " --> returned " << result_tag
<< StringPrintf(" %#" PRIx64 " (except=%#" PRIx64 ")", result_value,
exceptionObjectId);
// Show detailed debug output.
if (result_tag == JDWP::JT_STRING && exceptionObjectId == 0) {
if (result_value != 0) {
if (VLOG_IS_ON(jdwp)) {
std::string result_string;
JDWP::JdwpError error = Dbg::StringToUtf8(result_value, &result_string);
CHECK_EQ(error, JDWP::ERR_NONE);
VLOG(jdwp) << " string '" << result_string << "'";
}
} else {
VLOG(jdwp) << " string (null)";
}
}
// Attach the reply to DebugInvokeReq so it can be sent to the debugger when the event thread
// is ready to suspend.
BuildInvokeReply(pReq->reply, pReq->request_id, result_tag, result_value, exceptionObjectId);
}
void Dbg::BuildInvokeReply(JDWP::ExpandBuf* pReply, uint32_t request_id, JDWP::JdwpTag result_tag,
uint64_t result_value, JDWP::ObjectId exception) {
// Make room for the JDWP header since we do not know the size of the reply yet.
JDWP::expandBufAddSpace(pReply, kJDWPHeaderLen);
size_t width = GetTagWidth(result_tag);
JDWP::expandBufAdd1(pReply, result_tag);
if (width != 0) {
WriteValue(pReply, width, result_value);
}
JDWP::expandBufAdd1(pReply, JDWP::JT_OBJECT);
JDWP::expandBufAddObjectId(pReply, exception);
// Now we know the size, we can complete the JDWP header.
uint8_t* buf = expandBufGetBuffer(pReply);
JDWP::Set4BE(buf + kJDWPHeaderSizeOffset, expandBufGetLength(pReply));
JDWP::Set4BE(buf + kJDWPHeaderIdOffset, request_id);
JDWP::Set1(buf + kJDWPHeaderFlagsOffset, kJDWPFlagReply); // flags
JDWP::Set2BE(buf + kJDWPHeaderErrorCodeOffset, JDWP::ERR_NONE);
}
void Dbg::FinishInvokeMethod(DebugInvokeReq* pReq) {
CHECK_NE(Thread::Current(), GetDebugThread()) << "This must be called by the event thread";
JDWP::ExpandBuf* const pReply = pReq->reply;
CHECK(pReply != nullptr) << "No reply attached to DebugInvokeReq";
// We need to prevent other threads (including JDWP thread) from interacting with the debugger
// while we send the reply but are not yet suspended. The JDWP token will be released just before
// we suspend ourself again (see ThreadList::SuspendSelfForDebugger).
gJdwpState->AcquireJdwpTokenForEvent(pReq->thread_id);
// Send the reply unless the debugger detached before the completion of the method.
if (IsDebuggerActive()) {
const size_t replyDataLength = expandBufGetLength(pReply) - kJDWPHeaderLen;
VLOG(jdwp) << StringPrintf("REPLY INVOKE id=0x%06x (length=%zu)",
pReq->request_id, replyDataLength);
gJdwpState->SendRequest(pReply);
} else {
VLOG(jdwp) << "Not sending invoke reply because debugger detached";
}
}
/*
* "request" contains a full JDWP packet, possibly with multiple chunks. We
* need to process each, accumulate the replies, and ship the whole thing
* back.
*
* Returns "true" if we have a reply. The reply buffer is newly allocated,
* and includes the chunk type/length, followed by the data.
*
* OLD-TODO: we currently assume that the request and reply include a single
* chunk. If this becomes inconvenient we will need to adapt.
*/
bool Dbg::DdmHandlePacket(JDWP::Request* request, uint8_t** pReplyBuf, int* pReplyLen) {
Thread* self = Thread::Current();
JNIEnv* env = self->GetJniEnv();
uint32_t type = request->ReadUnsigned32("type");
uint32_t length = request->ReadUnsigned32("length");
// Create a byte[] corresponding to 'request'.
size_t request_length = request->size();
ScopedLocalRef<jbyteArray> dataArray(env, env->NewByteArray(request_length));
if (dataArray.get() == nullptr) {
LOG(WARNING) << "byte[] allocation failed: " << request_length;
env->ExceptionClear();
return false;
}
env->SetByteArrayRegion(dataArray.get(), 0, request_length,
reinterpret_cast<const jbyte*>(request->data()));
request->Skip(request_length);
// Run through and find all chunks. [Currently just find the first.]
ScopedByteArrayRO contents(env, dataArray.get());
if (length != request_length) {
LOG(WARNING) << StringPrintf("bad chunk found (len=%u pktLen=%zd)", length, request_length);
return false;
}
// Call "private static Chunk dispatch(int type, byte[] data, int offset, int length)".
ScopedLocalRef<jobject> chunk(env, env->CallStaticObjectMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer,
WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_dispatch,
type, dataArray.get(), 0, length));
if (env->ExceptionCheck()) {
LOG(INFO) << StringPrintf("Exception thrown by dispatcher for 0x%08x", type);
env->ExceptionDescribe();
env->ExceptionClear();
return false;
}
if (chunk.get() == nullptr) {
return false;
}
/*
* Pull the pieces out of the chunk. We copy the results into a
* newly-allocated buffer that the caller can free. We don't want to
* continue using the Chunk object because nothing has a reference to it.
*
* We could avoid this by returning type/data/offset/length and having
* the caller be aware of the object lifetime issues, but that
* integrates the JDWP code more tightly into the rest of the runtime, and doesn't work
* if we have responses for multiple chunks.
*
* So we're pretty much stuck with copying data around multiple times.
*/
ScopedLocalRef<jbyteArray> replyData(env, reinterpret_cast<jbyteArray>(env->GetObjectField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_data)));
jint offset = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_offset);
length = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_length);
type = env->GetIntField(chunk.get(), WellKnownClasses::org_apache_harmony_dalvik_ddmc_Chunk_type);
VLOG(jdwp) << StringPrintf("DDM reply: type=0x%08x data=%p offset=%d length=%d", type, replyData.get(), offset, length);
if (length == 0 || replyData.get() == nullptr) {
return false;
}
const int kChunkHdrLen = 8;
uint8_t* reply = new uint8_t[length + kChunkHdrLen];
if (reply == nullptr) {
LOG(WARNING) << "malloc failed: " << (length + kChunkHdrLen);
return false;
}
JDWP::Set4BE(reply + 0, type);
JDWP::Set4BE(reply + 4, length);
env->GetByteArrayRegion(replyData.get(), offset, length, reinterpret_cast<jbyte*>(reply + kChunkHdrLen));
*pReplyBuf = reply;
*pReplyLen = length + kChunkHdrLen;
VLOG(jdwp) << StringPrintf("dvmHandleDdm returning type=%.4s %p len=%d", reinterpret_cast<char*>(reply), reply, length);
return true;
}
void Dbg::DdmBroadcast(bool connect) {
VLOG(jdwp) << "Broadcasting DDM " << (connect ? "connect" : "disconnect") << "...";
Thread* self = Thread::Current();
if (self->GetState() != kRunnable) {
LOG(ERROR) << "DDM broadcast in thread state " << self->GetState();
/* try anyway? */
}
JNIEnv* env = self->GetJniEnv();
jint event = connect ? 1 /*DdmServer.CONNECTED*/ : 2 /*DdmServer.DISCONNECTED*/;
env->CallStaticVoidMethod(WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer,
WellKnownClasses::org_apache_harmony_dalvik_ddmc_DdmServer_broadcast,
event);
if (env->ExceptionCheck()) {
LOG(ERROR) << "DdmServer.broadcast " << event << " failed";
env->ExceptionDescribe();
env->ExceptionClear();
}
}
void Dbg::DdmConnected() {
Dbg::DdmBroadcast(true);
}
void Dbg::DdmDisconnected() {
Dbg::DdmBroadcast(false);
gDdmThreadNotification = false;
}
/*
* Send a notification when a thread starts, stops, or changes its name.
*
* Because we broadcast the full set of threads when the notifications are
* first enabled, it's possible for "thread" to be actively executing.
*/
void Dbg::DdmSendThreadNotification(Thread* t, uint32_t type) {
if (!gDdmThreadNotification) {
return;
}
if (type == CHUNK_TYPE("THDE")) {
uint8_t buf[4];
JDWP::Set4BE(&buf[0], t->GetThreadId());
Dbg::DdmSendChunk(CHUNK_TYPE("THDE"), 4, buf);
} else {
CHECK(type == CHUNK_TYPE("THCR") || type == CHUNK_TYPE("THNM")) << type;
ScopedObjectAccessUnchecked soa(Thread::Current());
StackHandleScope<1> hs(soa.Self());
Handle<mirror::String> name(hs.NewHandle(t->GetThreadName()));
size_t char_count = (name != nullptr) ? name->GetLength() : 0;
const jchar* chars = (name != nullptr) ? name->GetValue() : nullptr;
bool is_compressed = (name != nullptr) ? name->IsCompressed() : false;
std::vector<uint8_t> bytes;
JDWP::Append4BE(bytes, t->GetThreadId());
if (is_compressed) {
const uint8_t* chars_compressed = name->GetValueCompressed();
JDWP::AppendUtf16CompressedBE(bytes, chars_compressed, char_count);
} else {
JDWP::AppendUtf16BE(bytes, chars, char_count);
}
CHECK_EQ(bytes.size(), char_count*2 + sizeof(uint32_t)*2);
Dbg::DdmSendChunk(type, bytes);
}
}
void Dbg::DdmSetThreadNotification(bool enable) {
// Enable/disable thread notifications.
gDdmThreadNotification = enable;
if (enable) {
// Suspend the VM then post thread start notifications for all threads. Threads attaching will
// see a suspension in progress and block until that ends. They then post their own start
// notification.
SuspendVM();
std::list<Thread*> threads;
Thread* self = Thread::Current();
{
MutexLock mu(self, *Locks::thread_list_lock_);
threads = Runtime::Current()->GetThreadList()->GetList();
}
{
ScopedObjectAccess soa(self);
for (Thread* thread : threads) {
Dbg::DdmSendThreadNotification(thread, CHUNK_TYPE("THCR"));
}
}
ResumeVM();
}
}
void Dbg::PostThreadStartOrStop(Thread* t, uint32_t type) {
if (IsDebuggerActive()) {
gJdwpState->PostThreadChange(t, type == CHUNK_TYPE("THCR"));
}
Dbg::DdmSendThreadNotification(t, type);
}
void Dbg::PostThreadStart(Thread* t) {
Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THCR"));
}
void Dbg::PostThreadDeath(Thread* t) {
Dbg::PostThreadStartOrStop(t, CHUNK_TYPE("THDE"));
}
void Dbg::DdmSendChunk(uint32_t type, size_t byte_count, const uint8_t* buf) {
CHECK(buf != nullptr);
iovec vec[1];
vec[0].iov_base = reinterpret_cast<void*>(const_cast<uint8_t*>(buf));
vec[0].iov_len = byte_count;
Dbg::DdmSendChunkV(type, vec, 1);
}
void Dbg::DdmSendChunk(uint32_t type, const std::vector<uint8_t>& bytes) {
DdmSendChunk(type, bytes.size(), &bytes[0]);
}
void Dbg::DdmSendChunkV(uint32_t type, const iovec* iov, int iov_count) {
if (gJdwpState == nullptr) {
VLOG(jdwp) << "Debugger thread not active, ignoring DDM send: " << type;
} else {
gJdwpState->DdmSendChunkV(type, iov, iov_count);
}
}
JDWP::JdwpState* Dbg::GetJdwpState() {
return gJdwpState;
}
int Dbg::DdmHandleHpifChunk(HpifWhen when) {
if (when == HPIF_WHEN_NOW) {
DdmSendHeapInfo(when);
return true;
}
if (when != HPIF_WHEN_NEVER && when != HPIF_WHEN_NEXT_GC && when != HPIF_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpifWhen value: " << static_cast<int>(when);
return false;
}
gDdmHpifWhen = when;
return true;
}
bool Dbg::DdmHandleHpsgNhsgChunk(Dbg::HpsgWhen when, Dbg::HpsgWhat what, bool native) {
if (when != HPSG_WHEN_NEVER && when != HPSG_WHEN_EVERY_GC) {
LOG(ERROR) << "invalid HpsgWhen value: " << static_cast<int>(when);
return false;
}
if (what != HPSG_WHAT_MERGED_OBJECTS && what != HPSG_WHAT_DISTINCT_OBJECTS) {
LOG(ERROR) << "invalid HpsgWhat value: " << static_cast<int>(what);
return false;
}
if (native) {
gDdmNhsgWhen = when;
gDdmNhsgWhat = what;
} else {
gDdmHpsgWhen = when;
gDdmHpsgWhat = what;
}
return true;
}
void Dbg::DdmSendHeapInfo(HpifWhen reason) {
// If there's a one-shot 'when', reset it.
if (reason == gDdmHpifWhen) {
if (gDdmHpifWhen == HPIF_WHEN_NEXT_GC) {
gDdmHpifWhen = HPIF_WHEN_NEVER;
}
}
/*
* Chunk HPIF (client --> server)
*
* Heap Info. General information about the heap,
* suitable for a summary display.
*
* [u4]: number of heaps
*
* For each heap:
* [u4]: heap ID
* [u8]: timestamp in ms since Unix epoch
* [u1]: capture reason (same as 'when' value from server)
* [u4]: max heap size in bytes (-Xmx)
* [u4]: current heap size in bytes
* [u4]: current number of bytes allocated
* [u4]: current number of objects allocated
*/
uint8_t heap_count = 1;
gc::Heap* heap = Runtime::Current()->GetHeap();
std::vector<uint8_t> bytes;
JDWP::Append4BE(bytes, heap_count);
JDWP::Append4BE(bytes, 1); // Heap id (bogus; we only have one heap).
JDWP::Append8BE(bytes, MilliTime());
JDWP::Append1BE(bytes, reason);
JDWP::Append4BE(bytes, heap->GetMaxMemory()); // Max allowed heap size in bytes.
JDWP::Append4BE(bytes, heap->GetTotalMemory()); // Current heap size in bytes.
JDWP::Append4BE(bytes, heap->GetBytesAllocated());
JDWP::Append4BE(bytes, heap->GetObjectsAllocated());
CHECK_EQ(bytes.size(), 4U + (heap_count * (4 + 8 + 1 + 4 + 4 + 4 + 4)));
Dbg::DdmSendChunk(CHUNK_TYPE("HPIF"), bytes);
}
enum HpsgSolidity {
SOLIDITY_FREE = 0,
SOLIDITY_HARD = 1,
SOLIDITY_SOFT = 2,
SOLIDITY_WEAK = 3,
SOLIDITY_PHANTOM = 4,
SOLIDITY_FINALIZABLE = 5,
SOLIDITY_SWEEP = 6,
};
enum HpsgKind {
KIND_OBJECT = 0,
KIND_CLASS_OBJECT = 1,
KIND_ARRAY_1 = 2,
KIND_ARRAY_2 = 3,
KIND_ARRAY_4 = 4,
KIND_ARRAY_8 = 5,
KIND_UNKNOWN = 6,
KIND_NATIVE = 7,
};
#define HPSG_PARTIAL (1<<7)
#define HPSG_STATE(solidity, kind) ((uint8_t)((((kind) & 0x7) << 3) | ((solidity) & 0x7)))
class HeapChunkContext {
public:
// Maximum chunk size. Obtain this from the formula:
// (((maximum_heap_size / ALLOCATION_UNIT_SIZE) + 255) / 256) * 2
HeapChunkContext(bool merge, bool native)
: buf_(16384 - 16),
type_(0),
chunk_overhead_(0) {
Reset();
if (native) {
type_ = CHUNK_TYPE("NHSG");
} else {
type_ = merge ? CHUNK_TYPE("HPSG") : CHUNK_TYPE("HPSO");
}
}
~HeapChunkContext() {
if (p_ > &buf_[0]) {
Flush();
}
}
void SetChunkOverhead(size_t chunk_overhead) {
chunk_overhead_ = chunk_overhead;
}
void ResetStartOfNextChunk() {
startOfNextMemoryChunk_ = nullptr;
}
void EnsureHeader(const void* chunk_ptr) {
if (!needHeader_) {
return;
}
// Start a new HPSx chunk.
JDWP::Write4BE(&p_, 1); // Heap id (bogus; we only have one heap).
JDWP::Write1BE(&p_, 8); // Size of allocation unit, in bytes.
JDWP::Write4BE(&p_, reinterpret_cast<uintptr_t>(chunk_ptr)); // virtual address of segment start.
JDWP::Write4BE(&p_, 0); // offset of this piece (relative to the virtual address).
// [u4]: length of piece, in allocation units
// We won't know this until we're done, so save the offset and stuff in a dummy value.
pieceLenField_ = p_;
JDWP::Write4BE(&p_, 0x55555555);
needHeader_ = false;
}
void Flush() REQUIRES_SHARED(Locks::mutator_lock_) {
if (pieceLenField_ == nullptr) {
// Flush immediately post Reset (maybe back-to-back Flush). Ignore.
CHECK(needHeader_);
return;
}
// Patch the "length of piece" field.
CHECK_LE(&buf_[0], pieceLenField_);
CHECK_LE(pieceLenField_, p_);
JDWP::Set4BE(pieceLenField_, totalAllocationUnits_);
Dbg::DdmSendChunk(type_, p_ - &buf_[0], &buf_[0]);
Reset();
}
static void HeapChunkJavaCallback(void* start, void* end, size_t used_bytes, void* arg)
REQUIRES_SHARED(Locks::heap_bitmap_lock_,
Locks::mutator_lock_) {
reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkJavaCallback(start, end, used_bytes);
}
static void HeapChunkNativeCallback(void* start, void* end, size_t used_bytes, void* arg)
REQUIRES_SHARED(Locks::mutator_lock_) {
reinterpret_cast<HeapChunkContext*>(arg)->HeapChunkNativeCallback(start, end, used_bytes);
}
private:
enum { ALLOCATION_UNIT_SIZE = 8 };
void Reset() {
p_ = &buf_[0];
ResetStartOfNextChunk();
totalAllocationUnits_ = 0;
needHeader_ = true;
pieceLenField_ = nullptr;
}
bool IsNative() const {
return type_ == CHUNK_TYPE("NHSG");
}
// Returns true if the object is not an empty chunk.
bool ProcessRecord(void* start, size_t used_bytes) REQUIRES_SHARED(Locks::mutator_lock_) {
// Note: heap call backs cannot manipulate the heap upon which they are crawling, care is taken
// in the following code not to allocate memory, by ensuring buf_ is of the correct size
if (used_bytes == 0) {
if (start == nullptr) {
// Reset for start of new heap.
startOfNextMemoryChunk_ = nullptr;
Flush();
}
// Only process in use memory so that free region information
// also includes dlmalloc book keeping.
return false;
}
if (startOfNextMemoryChunk_ != nullptr) {
// Transmit any pending free memory. Native free memory of over kMaxFreeLen could be because
// of the use of mmaps, so don't report. If not free memory then start a new segment.
bool flush = true;
if (start > startOfNextMemoryChunk_) {
const size_t kMaxFreeLen = 2 * kPageSize;
void* free_start = startOfNextMemoryChunk_;
void* free_end = start;
const size_t free_len =
reinterpret_cast<uintptr_t>(free_end) - reinterpret_cast<uintptr_t>(free_start);
if (!IsNative() || free_len < kMaxFreeLen) {
AppendChunk(HPSG_STATE(SOLIDITY_FREE, 0), free_start, free_len, IsNative());
flush = false;
}
}
if (flush) {
startOfNextMemoryChunk_ = nullptr;
Flush();
}
}
return true;
}
void HeapChunkNativeCallback(void* start, void* /*end*/, size_t used_bytes)
REQUIRES_SHARED(Locks::mutator_lock_) {
if (ProcessRecord(start, used_bytes)) {
uint8_t state = ExamineNativeObject(start);
AppendChunk(state, start, used_bytes + chunk_overhead_, true /*is_native*/);
startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_;
}
}
void HeapChunkJavaCallback(void* start, void* /*end*/, size_t used_bytes)
REQUIRES_SHARED(Locks::heap_bitmap_lock_, Locks::mutator_lock_) {
if (ProcessRecord(start, used_bytes)) {
// Determine the type of this chunk.
// OLD-TODO: if context.merge, see if this chunk is different from the last chunk.
// If it's the same, we should combine them.
uint8_t state = ExamineJavaObject(reinterpret_cast<mirror::Object*>(start));
AppendChunk(state, start, used_bytes + chunk_overhead_, false /*is_native*/);
startOfNextMemoryChunk_ = reinterpret_cast<char*>(start) + used_bytes + chunk_overhead_;
}
}
void AppendChunk(uint8_t state, void* ptr, size_t length, bool is_native)
REQUIRES_SHARED(Locks::mutator_lock_) {
// Make sure there's enough room left in the buffer.
// We need to use two bytes for every fractional 256 allocation units used by the chunk plus
// 17 bytes for any header.
const size_t needed = ((RoundUp(length / ALLOCATION_UNIT_SIZE, 256) / 256) * 2) + 17;
size_t byte_left = &buf_.back() - p_;
if (byte_left < needed) {
if (is_native) {
// Cannot trigger memory allocation while walking native heap.
return;
}
Flush();
}
byte_left = &buf_.back() - p_;
if (byte_left < needed) {
LOG(WARNING) << "Chunk is too big to transmit (chunk_len=" << length << ", "
<< needed << " bytes)";
return;
}
EnsureHeader(ptr);
// Write out the chunk description.
length /= ALLOCATION_UNIT_SIZE; // Convert to allocation units.
totalAllocationUnits_ += length;
while (length > 256) {
*p_++ = state | HPSG_PARTIAL;
*p_++ = 255; // length - 1
length -= 256;
}
*p_++ = state;
*p_++ = length - 1;
}
uint8_t ExamineNativeObject(const void* p) REQUIRES_SHARED(Locks::mutator_lock_) {
return p == nullptr ? HPSG_STATE(SOLIDITY_FREE, 0) : HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
}
uint8_t ExamineJavaObject(mirror::Object* o)
REQUIRES_SHARED(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
if (o == nullptr) {
return HPSG_STATE(SOLIDITY_FREE, 0);
}
// It's an allocated chunk. Figure out what it is.
gc::Heap* heap = Runtime::Current()->GetHeap();
if (!heap->IsLiveObjectLocked(o)) {
LOG(ERROR) << "Invalid object in managed heap: " << o;
return HPSG_STATE(SOLIDITY_HARD, KIND_NATIVE);
}
mirror::Class* c = o->GetClass();
if (c == nullptr) {
// The object was probably just created but hasn't been initialized yet.
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
if (!heap->IsValidObjectAddress(c)) {
LOG(ERROR) << "Invalid class for managed heap object: " << o << " " << c;
return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
}
if (c->GetClass() == nullptr) {
LOG(ERROR) << "Null class of class " << c << " for object " << o;
return HPSG_STATE(SOLIDITY_HARD, KIND_UNKNOWN);
}
if (c->IsClassClass()) {
return HPSG_STATE(SOLIDITY_HARD, KIND_CLASS_OBJECT);
}
if (c->IsArrayClass()) {
switch (c->GetComponentSize()) {
case 1: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_1);
case 2: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_2);
case 4: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_4);
case 8: return HPSG_STATE(SOLIDITY_HARD, KIND_ARRAY_8);
}
}
return HPSG_STATE(SOLIDITY_HARD, KIND_OBJECT);
}
std::vector<uint8_t> buf_;
uint8_t* p_;
uint8_t* pieceLenField_;
void* startOfNextMemoryChunk_;
size_t totalAllocationUnits_;
uint32_t type_;
bool needHeader_;
size_t chunk_overhead_;
DISALLOW_COPY_AND_ASSIGN(HeapChunkContext);
};
static void BumpPointerSpaceCallback(mirror::Object* obj, void* arg)
REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
const size_t size = RoundUp(obj->SizeOf(), kObjectAlignment);
HeapChunkContext::HeapChunkJavaCallback(
obj, reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(obj) + size), size, arg);
}
void Dbg::DdmSendHeapSegments(bool native) {
Dbg::HpsgWhen when = native ? gDdmNhsgWhen : gDdmHpsgWhen;
Dbg::HpsgWhat what = native ? gDdmNhsgWhat : gDdmHpsgWhat;
if (when == HPSG_WHEN_NEVER) {
return;
}
// Figure out what kind of chunks we'll be sending.
CHECK(what == HPSG_WHAT_MERGED_OBJECTS || what == HPSG_WHAT_DISTINCT_OBJECTS)
<< static_cast<int>(what);
// First, send a heap start chunk.
uint8_t heap_id[4];
JDWP::Set4BE(&heap_id[0], 1); // Heap id (bogus; we only have one heap).
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHST") : CHUNK_TYPE("HPST"), sizeof(heap_id), heap_id);
Thread* self = Thread::Current();
Locks::mutator_lock_->AssertSharedHeld(self);
// Send a series of heap segment chunks.
HeapChunkContext context(what == HPSG_WHAT_MERGED_OBJECTS, native);
if (native) {
UNIMPLEMENTED(WARNING) << "Native heap inspection is not supported";
} else {
gc::Heap* heap = Runtime::Current()->GetHeap();
for (const auto& space : heap->GetContinuousSpaces()) {
if (space->IsDlMallocSpace()) {
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
// dlmalloc's chunk header is 2 * sizeof(size_t), but if the previous chunk is in use for an
// allocation then the first sizeof(size_t) may belong to it.
context.SetChunkOverhead(sizeof(size_t));
space->AsDlMallocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
} else if (space->IsRosAllocSpace()) {
context.SetChunkOverhead(0);
// Need to acquire the mutator lock before the heap bitmap lock with exclusive access since
// RosAlloc's internal logic doesn't know to release and reacquire the heap bitmap lock.
ScopedThreadSuspension sts(self, kSuspended);
ScopedSuspendAll ssa(__FUNCTION__);
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
space->AsRosAllocSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
} else if (space->IsBumpPointerSpace()) {
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
context.SetChunkOverhead(0);
space->AsBumpPointerSpace()->Walk(BumpPointerSpaceCallback, &context);
HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context);
} else if (space->IsRegionSpace()) {
heap->IncrementDisableMovingGC(self);
{
ScopedThreadSuspension sts(self, kSuspended);
ScopedSuspendAll ssa(__FUNCTION__);
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
context.SetChunkOverhead(0);
space->AsRegionSpace()->Walk(BumpPointerSpaceCallback, &context);
HeapChunkContext::HeapChunkJavaCallback(nullptr, nullptr, 0, &context);
}
heap->DecrementDisableMovingGC(self);
} else {
UNIMPLEMENTED(WARNING) << "Not counting objects in space " << *space;
}
context.ResetStartOfNextChunk();
}
ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
// Walk the large objects, these are not in the AllocSpace.
context.SetChunkOverhead(0);
heap->GetLargeObjectsSpace()->Walk(HeapChunkContext::HeapChunkJavaCallback, &context);
}
// Finally, send a heap end chunk.
Dbg::DdmSendChunk(native ? CHUNK_TYPE("NHEN") : CHUNK_TYPE("HPEN"), sizeof(heap_id), heap_id);
}
void Dbg::SetAllocTrackingEnabled(bool enable) {
gc::AllocRecordObjectMap::SetAllocTrackingEnabled(enable);
}
void Dbg::DumpRecentAllocations() {
ScopedObjectAccess soa(Thread::Current());
MutexLock mu(soa.Self(), *Locks::alloc_tracker_lock_);
if (!Runtime::Current()->GetHeap()->IsAllocTrackingEnabled()) {
LOG(INFO) << "Not recording tracked allocations";
return;
}
gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords();
CHECK(records != nullptr);
const uint16_t capped_count = CappedAllocRecordCount(records->GetRecentAllocationSize());
uint16_t count = capped_count;
LOG(INFO) << "Tracked allocations, (count=" << count << ")";
for (auto it = records->RBegin(), end = records->REnd();
count > 0 && it != end; count--, it++) {
const gc::AllocRecord* record = &it->second;
LOG(INFO) << StringPrintf(" Thread %-2d %6zd bytes ", record->GetTid(), record->ByteCount())
<< mirror::Class::PrettyClass(record->GetClass());
for (size_t stack_frame = 0, depth = record->GetDepth(); stack_frame < depth; ++stack_frame) {
const gc::AllocRecordStackTraceElement& stack_element = record->StackElement(stack_frame);
ArtMethod* m = stack_element.GetMethod();
LOG(INFO) << " " << ArtMethod::PrettyMethod(m) << " line "
<< stack_element.ComputeLineNumber();
}
// pause periodically to help logcat catch up
if ((count % 5) == 0) {
usleep(40000);
}
}
}
class StringTable {
public:
StringTable() {
}
void Add(const std::string& str) {
table_.insert(str);
}
void Add(const char* str) {
table_.insert(str);
}
size_t IndexOf(const char* s) const {
auto it = table_.find(s);
if (it == table_.end()) {
LOG(FATAL) << "IndexOf(\"" << s << "\") failed";
}
return std::distance(table_.begin(), it);
}
size_t Size() const {
return table_.size();
}
void WriteTo(std::vector<uint8_t>& bytes) const {
for (const std::string& str : table_) {
const char* s = str.c_str();
size_t s_len = CountModifiedUtf8Chars(s);
std::unique_ptr<uint16_t[]> s_utf16(new uint16_t[s_len]);
ConvertModifiedUtf8ToUtf16(s_utf16.get(), s);
JDWP::AppendUtf16BE(bytes, s_utf16.get(), s_len);
}
}
private:
std::set<std::string> table_;
DISALLOW_COPY_AND_ASSIGN(StringTable);
};
static const char* GetMethodSourceFile(ArtMethod* method)
REQUIRES_SHARED(Locks::mutator_lock_) {
DCHECK(method != nullptr);
const char* source_file = method->GetDeclaringClassSourceFile();
return (source_file != nullptr) ? source_file : "";
}
/*
* The data we send to DDMS contains everything we have recorded.
*
* Message header (all values big-endian):
* (1b) message header len (to allow future expansion); includes itself
* (1b) entry header len
* (1b) stack frame len
* (2b) number of entries
* (4b) offset to string table from start of message
* (2b) number of class name strings
* (2b) number of method name strings
* (2b) number of source file name strings
* For each entry:
* (4b) total allocation size
* (2b) thread id
* (2b) allocated object's class name index
* (1b) stack depth
* For each stack frame:
* (2b) method's class name
* (2b) method name
* (2b) method source file
* (2b) line number, clipped to 32767; -2 if native; -1 if no source
* (xb) class name strings
* (xb) method name strings
* (xb) source file strings
*
* As with other DDM traffic, strings are sent as a 4-byte length
* followed by UTF-16 data.
*
* We send up 16-bit unsigned indexes into string tables. In theory there
* can be (kMaxAllocRecordStackDepth * alloc_record_max_) unique strings in
* each table, but in practice there should be far fewer.
*
* The chief reason for using a string table here is to keep the size of
* the DDMS message to a minimum. This is partly to make the protocol
* efficient, but also because we have to form the whole thing up all at
* once in a memory buffer.
*
* We use separate string tables for class names, method names, and source
* files to keep the indexes small. There will generally be no overlap
* between the contents of these tables.
*/
jbyteArray Dbg::GetRecentAllocations() {
if ((false)) {
DumpRecentAllocations();
}
Thread* self = Thread::Current();
std::vector<uint8_t> bytes;
{
MutexLock mu(self, *Locks::alloc_tracker_lock_);
gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords();
// In case this method is called when allocation tracker is disabled,
// we should still send some data back.
gc::AllocRecordObjectMap dummy;
if (records == nullptr) {
CHECK(!Runtime::Current()->GetHeap()->IsAllocTrackingEnabled());
records = &dummy;
}
// We don't need to wait on the condition variable records->new_record_condition_, because this
// function only reads the class objects, which are already marked so it doesn't change their
// reachability.
//
// Part 1: generate string tables.
//
StringTable class_names;
StringTable method_names;
StringTable filenames;
const uint16_t capped_count = CappedAllocRecordCount(records->GetRecentAllocationSize());
uint16_t count = capped_count;
for (auto it = records->RBegin(), end = records->REnd();
count > 0 && it != end; count--, it++) {
const gc::AllocRecord* record = &it->second;
std::string temp;
class_names.Add(record->GetClassDescriptor(&temp));
for (size_t i = 0, depth = record->GetDepth(); i < depth; i++) {
ArtMethod* m = record->StackElement(i).GetMethod();
class_names.Add(m->GetDeclaringClassDescriptor());
method_names.Add(m->GetName());
filenames.Add(GetMethodSourceFile(m));
}
}
LOG(INFO) << "recent allocation records: " << capped_count;
LOG(INFO) << "allocation records all objects: " << records->Size();
//
// Part 2: Generate the output and store it in the buffer.
//
// (1b) message header len (to allow future expansion); includes itself
// (1b) entry header len
// (1b) stack frame len
const int kMessageHeaderLen = 15;
const int kEntryHeaderLen = 9;
const int kStackFrameLen = 8;
JDWP::Append1BE(bytes, kMessageHeaderLen);
JDWP::Append1BE(bytes, kEntryHeaderLen);
JDWP::Append1BE(bytes, kStackFrameLen);
// (2b) number of entries
// (4b) offset to string table from start of message
// (2b) number of class name strings
// (2b) number of method name strings
// (2b) number of source file name strings
JDWP::Append2BE(bytes, capped_count);
size_t string_table_offset = bytes.size();
JDWP::Append4BE(bytes, 0); // We'll patch this later...
JDWP::Append2BE(bytes, class_names.Size());
JDWP::Append2BE(bytes, method_names.Size());
JDWP::Append2BE(bytes, filenames.Size());
std::string temp;
count = capped_count;
// The last "count" number of allocation records in "records" are the most recent "count" number
// of allocations. Reverse iterate to get them. The most recent allocation is sent first.
for (auto it = records->RBegin(), end = records->REnd();
count > 0 && it != end; count--, it++) {
// For each entry:
// (4b) total allocation size
// (2b) thread id
// (2b) allocated object's class name index
// (1b) stack depth
const gc::AllocRecord* record = &it->second;
size_t stack_depth = record->GetDepth();
size_t allocated_object_class_name_index =
class_names.IndexOf(record->GetClassDescriptor(&temp));
JDWP::Append4BE(bytes, record->ByteCount());
JDWP::Append2BE(bytes, static_cast<uint16_t>(record->GetTid()));
JDWP::Append2BE(bytes, allocated_object_class_name_index);
JDWP::Append1BE(bytes, stack_depth);
for (size_t stack_frame = 0; stack_frame < stack_depth; ++stack_frame) {
// For each stack frame:
// (2b) method's class name
// (2b) method name
// (2b) method source file
// (2b) line number, clipped to 32767; -2 if native; -1 if no source
ArtMethod* m = record->StackElement(stack_frame).GetMethod();
size_t class_name_index = class_names.IndexOf(m->GetDeclaringClassDescriptor());
size_t method_name_index = method_names.IndexOf(m->GetName());
size_t file_name_index = filenames.IndexOf(GetMethodSourceFile(m));
JDWP::Append2BE(bytes, class_name_index);
JDWP::Append2BE(bytes, method_name_index);
JDWP::Append2BE(bytes, file_name_index);
JDWP::Append2BE(bytes, record->StackElement(stack_frame).ComputeLineNumber());
}
}
// (xb) class name strings
// (xb) method name strings
// (xb) source file strings
JDWP::Set4BE(&bytes[string_table_offset], bytes.size());
class_names.WriteTo(bytes);
method_names.WriteTo(bytes);
filenames.WriteTo(bytes);
}
JNIEnv* env = self->GetJniEnv();
jbyteArray result = env->NewByteArray(bytes.size());
if (result != nullptr) {
env->SetByteArrayRegion(result, 0, bytes.size(), reinterpret_cast<const jbyte*>(&bytes[0]));
}
return result;
}
ArtMethod* DeoptimizationRequest::Method() const {
return jni::DecodeArtMethod(method_);
}
void DeoptimizationRequest::SetMethod(ArtMethod* m) {
method_ = jni::EncodeArtMethod(m);
}
void Dbg::VisitRoots(RootVisitor* visitor) {
// Visit breakpoint roots, used to prevent unloading of methods with breakpoints.
ReaderMutexLock mu(Thread::Current(), *Locks::breakpoint_lock_);
BufferedRootVisitor<128> root_visitor(visitor, RootInfo(kRootVMInternal));
for (Breakpoint& breakpoint : gBreakpoints) {
breakpoint.Method()->VisitRoots(root_visitor, kRuntimePointerSize);
}
}
void Dbg::DbgThreadLifecycleCallback::ThreadStart(Thread* self) {
Dbg::PostThreadStart(self);
}
void Dbg::DbgThreadLifecycleCallback::ThreadDeath(Thread* self) {
Dbg::PostThreadDeath(self);
}
void Dbg::DbgClassLoadCallback::ClassLoad(Handle<mirror::Class> klass ATTRIBUTE_UNUSED) {
// Ignore ClassLoad;
}
void Dbg::DbgClassLoadCallback::ClassPrepare(Handle<mirror::Class> temp_klass ATTRIBUTE_UNUSED,
Handle<mirror::Class> klass) {
Dbg::PostClassPrepare(klass.Get());
}
} // namespace art