blob: 590835e059b054ed16d9d9985eeab3bf02bb9124 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bit_vector.h"
namespace art {
// TODO: profile to make sure this is still a win relative to just using shifted masks.
static uint32_t check_masks[32] = {
0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010,
0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200,
0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000,
0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000,
0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000,
0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000,
0x40000000, 0x80000000 };
static inline uint32_t BitsToWords(uint32_t bits) {
return (bits + 31) >> 5;
}
// TODO: replace excessive argument defaulting when we are at gcc 4.7
// or later on host with delegating constructor support. Specifically,
// starts_bits and storage_size/storage are mutually exclusive.
BitVector::BitVector(uint32_t start_bits,
bool expandable,
Allocator* allocator,
uint32_t storage_size,
uint32_t* storage)
: allocator_(allocator),
expandable_(expandable),
storage_size_(storage_size),
storage_(storage) {
DCHECK_EQ(sizeof(*storage_), 4U); // Assuming 32-bit units.
if (storage_ == nullptr) {
storage_size_ = BitsToWords(start_bits);
storage_ = static_cast<uint32_t*>(allocator_->Alloc(storage_size_ * sizeof(*storage_)));
}
}
BitVector::~BitVector() {
allocator_->Free(storage_);
}
/*
* Determine whether or not the specified bit is set.
*/
bool BitVector::IsBitSet(uint32_t num) const {
// If the index is over the size:
if (num >= storage_size_ * sizeof(*storage_) * 8) {
// Whether it is expandable or not, this bit does not exist: thus it is not set.
return false;
}
uint32_t val = storage_[num >> 5] & check_masks[num & 0x1f];
return (val != 0);
}
// Mark all bits bit as "clear".
void BitVector::ClearAllBits() {
memset(storage_, 0, storage_size_ * sizeof(*storage_));
}
// Mark the specified bit as "set".
/*
* TUNING: this could have pathologically bad growth/expand behavior. Make sure we're
* not using it badly or change resize mechanism.
*/
void BitVector::SetBit(uint32_t num) {
if (num >= storage_size_ * sizeof(*storage_) * 8) {
DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << num;
/* Round up to word boundaries for "num+1" bits */
uint32_t new_size = BitsToWords(num + 1);
DCHECK_GT(new_size, storage_size_);
uint32_t *new_storage =
static_cast<uint32_t*>(allocator_->Alloc(new_size * sizeof(*storage_)));
memcpy(new_storage, storage_, storage_size_ * sizeof(*storage_));
// Zero out the new storage words.
memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * sizeof(*storage_));
// TOTO: collect stats on space wasted because of resize.
storage_ = new_storage;
storage_size_ = new_size;
}
storage_[num >> 5] |= check_masks[num & 0x1f];
}
// Mark the specified bit as "unset".
void BitVector::ClearBit(uint32_t num) {
// If the index is over the size, we don't have to do anything, it is cleared.
if (num < storage_size_ * sizeof(*storage_) * 8) {
// Otherwise, go ahead and clear it.
storage_[num >> 5] &= ~check_masks[num & 0x1f];
}
}
bool BitVector::SameBitsSet(const BitVector *src) {
int our_highest = GetHighestBitSet();
int src_highest = src->GetHighestBitSet();
// If the highest bit set is different, we are different.
if (our_highest != src_highest) {
return true;
}
// If the highest bit set is -1, both are cleared, we are the same.
// If the highest bit set is 0, both have a unique bit set, we are the same.
if (our_highest >= 0) {
return true;
}
// Get the highest bit set's cell's index.
int our_highest_index = (our_highest >> 5);
// This memcmp is enough: we know that the highest bit set is the same for both:
// - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less.
// ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index,
// they are automatically at 0.
return (memcmp(storage_, src->GetRawStorage(), our_highest_index * sizeof(*storage_)) != 0);
}
// Intersect with another bit vector.
void BitVector::Intersect(const BitVector* src) {
uint32_t src_storage_size = src->storage_size_;
// Get the minimum size between us and source.
uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size;
uint32_t idx;
for (idx = 0; idx < min_size; idx++) {
storage_[idx] &= src->GetRawStorageWord(idx);
}
// Now, due to this being an intersection, there are two possibilities:
// - Either src was larger than us: we don't care, all upper bits would thus be 0.
// - Either we are larger than src: we don't care, all upper bits would have been 0 too.
// So all we need to do is set all remaining bits to 0.
for (; idx < storage_size_; idx++) {
storage_[idx] = 0;
}
}
/*
* Union with another bit vector.
*/
void BitVector::Union(const BitVector* src) {
uint32_t src_size = src->storage_size_;
// Get our size, we use this variable for the last loop of the method:
// - It can change in the if block if src is of a different size.
uint32_t size = storage_size_;
// Is the storage size smaller than src's?
if (storage_size_ < src_size) {
// Get the highest bit to determine how much we need to expand.
int highest_bit = src->GetHighestBitSet();
// If src has no bit set, we are done: there is no need for a union with src.
if (highest_bit == -1) {
return;
}
// Set it to reallocate.
SetBit(highest_bit);
// Paranoid: storage size should be big enough to hold this bit now.
DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * sizeof(*(storage_)) * 8);
// Update the size, our size can now not be bigger than the src size
size = storage_size_;
}
for (uint32_t idx = 0; idx < size; idx++) {
storage_[idx] |= src->GetRawStorageWord(idx);
}
}
void BitVector::Subtract(const BitVector *src) {
uint32_t src_size = src->storage_size_;
// We only need to operate on bytes up to the smaller of the sizes of the two operands.
unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_;
// Difference until max, we know both accept it:
// There is no need to do more:
// If we are bigger than src, the upper bits are unchanged.
// If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted.
for (uint32_t idx = 0; idx < min_size; idx++) {
storage_[idx] &= (~(src->GetRawStorageWord(idx)));
}
}
// Count the number of bits that are set.
uint32_t BitVector::NumSetBits() const {
uint32_t count = 0;
for (uint32_t word = 0; word < storage_size_; word++) {
count += __builtin_popcount(storage_[word]);
}
return count;
}
// Count the number of bits that are set up through and including num.
uint32_t BitVector::NumSetBits(uint32_t num) const {
DCHECK_LT(num, storage_size_ * sizeof(*storage_) * 8);
uint32_t last_word = num >> 5;
uint32_t partial_word_bits = num & 0x1f;
// partial_word_bits | # | | | partial_word_mask
// 00000 | 0 | 0xffffffff >> (31 - 0) | (1 << (0 + 1)) - 1 | 0x00000001
// 00001 | 1 | 0xffffffff >> (31 - 1) | (1 << (1 + 1)) - 1 | 0x00000003
// 00010 | 2 | 0xffffffff >> (31 - 2) | (1 << (2 + 1)) - 1 | 0x00000007
// ..... |
// 11110 | 30 | 0xffffffff >> (31 - 30) | (1 << (30 + 1)) - 1 | 0x7fffffff
// 11111 | 31 | 0xffffffff >> (31 - 31) | last_full_word++ | 0xffffffff
uint32_t partial_word_mask = 0xffffffff >> (0x1f - partial_word_bits);
uint32_t count = 0;
for (uint32_t word = 0; word < last_word; word++) {
count += __builtin_popcount(storage_[word]);
}
count += __builtin_popcount(storage_[last_word] & partial_word_mask);
return count;
}
BitVector::Iterator* BitVector::GetIterator() const {
return new (allocator_) Iterator(this);
}
/*
* Mark specified number of bits as "set". Cannot set all bits like ClearAll
* since there might be unused bits - setting those to one will confuse the
* iterator.
*/
void BitVector::SetInitialBits(uint32_t num_bits) {
// If num_bits is 0, clear everything.
if (num_bits == 0) {
ClearAllBits();
return;
}
// Set the highest bit we want to set to get the BitVector allocated if need be.
SetBit(num_bits - 1);
uint32_t idx;
// We can set every storage element with -1.
for (idx = 0; idx < (num_bits >> 5); idx++) {
storage_[idx] = -1;
}
// Handle the potentially last few bits.
uint32_t rem_num_bits = num_bits & 0x1f;
if (rem_num_bits != 0) {
storage_[idx] = (1 << rem_num_bits) - 1;
++idx;
}
// Now set the upper ones to 0.
for (; idx < storage_size_; idx++) {
storage_[idx] = 0;
}
}
int BitVector::GetHighestBitSet() const {
unsigned int max = storage_size_;
for (int idx = max - 1; idx >= 0; idx--) {
// If not 0, we have more work: check the bits.
uint32_t value = storage_[idx];
if (value != 0) {
// Shift right for the counting.
value /= 2;
int cnt = 0;
// Count the bits.
while (value > 0) {
value /= 2;
cnt++;
}
// Return cnt + how many storage units still remain * the number of bits per unit.
int res = cnt + (idx * (sizeof(*storage_) * 8));
return res;
}
}
// All zero, therefore return -1.
return -1;
}
void BitVector::Copy(const BitVector *src) {
// Get highest bit set, we only need to copy till then.
int highest_bit = src->GetHighestBitSet();
// If nothing is set, clear everything.
if (highest_bit == -1) {
ClearAllBits();
return;
}
// Set upper bit to ensure right size before copy.
SetBit(highest_bit);
// Now set until highest bit's storage.
uint32_t size = 1 + (highest_bit / (sizeof(*storage_) * 8));
memcpy(storage_, src->GetRawStorage(), sizeof(*storage_) * size);
// Set upper bits to 0.
uint32_t left = storage_size_ - size;
if (left > 0) {
memset(storage_ + size, 0, sizeof(*storage_) * left);
}
}
} // namespace art