| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "bit_vector.h" |
| |
| namespace art { |
| |
| // TODO: profile to make sure this is still a win relative to just using shifted masks. |
| static uint32_t check_masks[32] = { |
| 0x00000001, 0x00000002, 0x00000004, 0x00000008, 0x00000010, |
| 0x00000020, 0x00000040, 0x00000080, 0x00000100, 0x00000200, |
| 0x00000400, 0x00000800, 0x00001000, 0x00002000, 0x00004000, |
| 0x00008000, 0x00010000, 0x00020000, 0x00040000, 0x00080000, |
| 0x00100000, 0x00200000, 0x00400000, 0x00800000, 0x01000000, |
| 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, |
| 0x40000000, 0x80000000 }; |
| |
| static inline uint32_t BitsToWords(uint32_t bits) { |
| return (bits + 31) >> 5; |
| } |
| |
| // TODO: replace excessive argument defaulting when we are at gcc 4.7 |
| // or later on host with delegating constructor support. Specifically, |
| // starts_bits and storage_size/storage are mutually exclusive. |
| BitVector::BitVector(uint32_t start_bits, |
| bool expandable, |
| Allocator* allocator, |
| uint32_t storage_size, |
| uint32_t* storage) |
| : allocator_(allocator), |
| expandable_(expandable), |
| storage_size_(storage_size), |
| storage_(storage) { |
| DCHECK_EQ(sizeof(*storage_), 4U); // Assuming 32-bit units. |
| if (storage_ == nullptr) { |
| storage_size_ = BitsToWords(start_bits); |
| storage_ = static_cast<uint32_t*>(allocator_->Alloc(storage_size_ * sizeof(*storage_))); |
| } |
| } |
| |
| BitVector::~BitVector() { |
| allocator_->Free(storage_); |
| } |
| |
| /* |
| * Determine whether or not the specified bit is set. |
| */ |
| bool BitVector::IsBitSet(uint32_t num) const { |
| // If the index is over the size: |
| if (num >= storage_size_ * sizeof(*storage_) * 8) { |
| // Whether it is expandable or not, this bit does not exist: thus it is not set. |
| return false; |
| } |
| |
| uint32_t val = storage_[num >> 5] & check_masks[num & 0x1f]; |
| return (val != 0); |
| } |
| |
| // Mark all bits bit as "clear". |
| void BitVector::ClearAllBits() { |
| memset(storage_, 0, storage_size_ * sizeof(*storage_)); |
| } |
| |
| // Mark the specified bit as "set". |
| /* |
| * TUNING: this could have pathologically bad growth/expand behavior. Make sure we're |
| * not using it badly or change resize mechanism. |
| */ |
| void BitVector::SetBit(uint32_t num) { |
| if (num >= storage_size_ * sizeof(*storage_) * 8) { |
| DCHECK(expandable_) << "Attempted to expand a non-expandable bitmap to position " << num; |
| |
| /* Round up to word boundaries for "num+1" bits */ |
| uint32_t new_size = BitsToWords(num + 1); |
| DCHECK_GT(new_size, storage_size_); |
| uint32_t *new_storage = |
| static_cast<uint32_t*>(allocator_->Alloc(new_size * sizeof(*storage_))); |
| memcpy(new_storage, storage_, storage_size_ * sizeof(*storage_)); |
| // Zero out the new storage words. |
| memset(&new_storage[storage_size_], 0, (new_size - storage_size_) * sizeof(*storage_)); |
| // TOTO: collect stats on space wasted because of resize. |
| storage_ = new_storage; |
| storage_size_ = new_size; |
| } |
| |
| storage_[num >> 5] |= check_masks[num & 0x1f]; |
| } |
| |
| // Mark the specified bit as "unset". |
| void BitVector::ClearBit(uint32_t num) { |
| // If the index is over the size, we don't have to do anything, it is cleared. |
| if (num < storage_size_ * sizeof(*storage_) * 8) { |
| // Otherwise, go ahead and clear it. |
| storage_[num >> 5] &= ~check_masks[num & 0x1f]; |
| } |
| } |
| |
| bool BitVector::SameBitsSet(const BitVector *src) { |
| int our_highest = GetHighestBitSet(); |
| int src_highest = src->GetHighestBitSet(); |
| |
| // If the highest bit set is different, we are different. |
| if (our_highest != src_highest) { |
| return true; |
| } |
| |
| // If the highest bit set is -1, both are cleared, we are the same. |
| // If the highest bit set is 0, both have a unique bit set, we are the same. |
| if (our_highest >= 0) { |
| return true; |
| } |
| |
| // Get the highest bit set's cell's index. |
| int our_highest_index = (our_highest >> 5); |
| |
| // This memcmp is enough: we know that the highest bit set is the same for both: |
| // - Therefore, min_size goes up to at least that, we are thus comparing at least what we need to, but not less. |
| // ie. we are comparing all storage cells that could have difference, if both vectors have cells above our_highest_index, |
| // they are automatically at 0. |
| return (memcmp(storage_, src->GetRawStorage(), our_highest_index * sizeof(*storage_)) != 0); |
| } |
| |
| // Intersect with another bit vector. |
| void BitVector::Intersect(const BitVector* src) { |
| uint32_t src_storage_size = src->storage_size_; |
| |
| // Get the minimum size between us and source. |
| uint32_t min_size = (storage_size_ < src_storage_size) ? storage_size_ : src_storage_size; |
| |
| uint32_t idx; |
| for (idx = 0; idx < min_size; idx++) { |
| storage_[idx] &= src->GetRawStorageWord(idx); |
| } |
| |
| // Now, due to this being an intersection, there are two possibilities: |
| // - Either src was larger than us: we don't care, all upper bits would thus be 0. |
| // - Either we are larger than src: we don't care, all upper bits would have been 0 too. |
| // So all we need to do is set all remaining bits to 0. |
| for (; idx < storage_size_; idx++) { |
| storage_[idx] = 0; |
| } |
| } |
| |
| /* |
| * Union with another bit vector. |
| */ |
| void BitVector::Union(const BitVector* src) { |
| uint32_t src_size = src->storage_size_; |
| |
| // Get our size, we use this variable for the last loop of the method: |
| // - It can change in the if block if src is of a different size. |
| uint32_t size = storage_size_; |
| |
| // Is the storage size smaller than src's? |
| if (storage_size_ < src_size) { |
| // Get the highest bit to determine how much we need to expand. |
| int highest_bit = src->GetHighestBitSet(); |
| |
| // If src has no bit set, we are done: there is no need for a union with src. |
| if (highest_bit == -1) { |
| return; |
| } |
| |
| // Set it to reallocate. |
| SetBit(highest_bit); |
| |
| // Paranoid: storage size should be big enough to hold this bit now. |
| DCHECK_LT(static_cast<uint32_t> (highest_bit), storage_size_ * sizeof(*(storage_)) * 8); |
| |
| // Update the size, our size can now not be bigger than the src size |
| size = storage_size_; |
| } |
| |
| for (uint32_t idx = 0; idx < size; idx++) { |
| storage_[idx] |= src->GetRawStorageWord(idx); |
| } |
| } |
| |
| void BitVector::Subtract(const BitVector *src) { |
| uint32_t src_size = src->storage_size_; |
| |
| // We only need to operate on bytes up to the smaller of the sizes of the two operands. |
| unsigned int min_size = (storage_size_ > src_size) ? src_size : storage_size_; |
| |
| // Difference until max, we know both accept it: |
| // There is no need to do more: |
| // If we are bigger than src, the upper bits are unchanged. |
| // If we are smaller than src, the non-existant upper bits are 0 and thus can't get subtracted. |
| for (uint32_t idx = 0; idx < min_size; idx++) { |
| storage_[idx] &= (~(src->GetRawStorageWord(idx))); |
| } |
| } |
| |
| // Count the number of bits that are set. |
| uint32_t BitVector::NumSetBits() const { |
| uint32_t count = 0; |
| for (uint32_t word = 0; word < storage_size_; word++) { |
| count += __builtin_popcount(storage_[word]); |
| } |
| return count; |
| } |
| |
| // Count the number of bits that are set up through and including num. |
| uint32_t BitVector::NumSetBits(uint32_t num) const { |
| DCHECK_LT(num, storage_size_ * sizeof(*storage_) * 8); |
| uint32_t last_word = num >> 5; |
| uint32_t partial_word_bits = num & 0x1f; |
| |
| // partial_word_bits | # | | | partial_word_mask |
| // 00000 | 0 | 0xffffffff >> (31 - 0) | (1 << (0 + 1)) - 1 | 0x00000001 |
| // 00001 | 1 | 0xffffffff >> (31 - 1) | (1 << (1 + 1)) - 1 | 0x00000003 |
| // 00010 | 2 | 0xffffffff >> (31 - 2) | (1 << (2 + 1)) - 1 | 0x00000007 |
| // ..... | |
| // 11110 | 30 | 0xffffffff >> (31 - 30) | (1 << (30 + 1)) - 1 | 0x7fffffff |
| // 11111 | 31 | 0xffffffff >> (31 - 31) | last_full_word++ | 0xffffffff |
| uint32_t partial_word_mask = 0xffffffff >> (0x1f - partial_word_bits); |
| |
| uint32_t count = 0; |
| for (uint32_t word = 0; word < last_word; word++) { |
| count += __builtin_popcount(storage_[word]); |
| } |
| count += __builtin_popcount(storage_[last_word] & partial_word_mask); |
| return count; |
| } |
| |
| BitVector::Iterator* BitVector::GetIterator() const { |
| return new (allocator_) Iterator(this); |
| } |
| |
| /* |
| * Mark specified number of bits as "set". Cannot set all bits like ClearAll |
| * since there might be unused bits - setting those to one will confuse the |
| * iterator. |
| */ |
| void BitVector::SetInitialBits(uint32_t num_bits) { |
| // If num_bits is 0, clear everything. |
| if (num_bits == 0) { |
| ClearAllBits(); |
| return; |
| } |
| |
| // Set the highest bit we want to set to get the BitVector allocated if need be. |
| SetBit(num_bits - 1); |
| |
| uint32_t idx; |
| // We can set every storage element with -1. |
| for (idx = 0; idx < (num_bits >> 5); idx++) { |
| storage_[idx] = -1; |
| } |
| |
| // Handle the potentially last few bits. |
| uint32_t rem_num_bits = num_bits & 0x1f; |
| if (rem_num_bits != 0) { |
| storage_[idx] = (1 << rem_num_bits) - 1; |
| ++idx; |
| } |
| |
| // Now set the upper ones to 0. |
| for (; idx < storage_size_; idx++) { |
| storage_[idx] = 0; |
| } |
| } |
| |
| int BitVector::GetHighestBitSet() const { |
| unsigned int max = storage_size_; |
| for (int idx = max - 1; idx >= 0; idx--) { |
| // If not 0, we have more work: check the bits. |
| uint32_t value = storage_[idx]; |
| |
| if (value != 0) { |
| // Shift right for the counting. |
| value /= 2; |
| |
| int cnt = 0; |
| |
| // Count the bits. |
| while (value > 0) { |
| value /= 2; |
| cnt++; |
| } |
| |
| // Return cnt + how many storage units still remain * the number of bits per unit. |
| int res = cnt + (idx * (sizeof(*storage_) * 8)); |
| return res; |
| } |
| } |
| |
| // All zero, therefore return -1. |
| return -1; |
| } |
| |
| void BitVector::Copy(const BitVector *src) { |
| // Get highest bit set, we only need to copy till then. |
| int highest_bit = src->GetHighestBitSet(); |
| |
| // If nothing is set, clear everything. |
| if (highest_bit == -1) { |
| ClearAllBits(); |
| return; |
| } |
| |
| // Set upper bit to ensure right size before copy. |
| SetBit(highest_bit); |
| |
| // Now set until highest bit's storage. |
| uint32_t size = 1 + (highest_bit / (sizeof(*storage_) * 8)); |
| memcpy(storage_, src->GetRawStorage(), sizeof(*storage_) * size); |
| |
| // Set upper bits to 0. |
| uint32_t left = storage_size_ - size; |
| |
| if (left > 0) { |
| memset(storage_ + size, 0, sizeof(*storage_) * left); |
| } |
| } |
| |
| } // namespace art |