| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include <functional> |
| |
| #include "arch/instruction_set.h" |
| #include "base/macros.h" |
| #include "builder.h" |
| #include "code_generator_arm.h" |
| #include "code_generator_arm64.h" |
| #include "code_generator_x86.h" |
| #include "code_generator_x86_64.h" |
| #include "common_compiler_test.h" |
| #include "dex_file.h" |
| #include "dex_instruction.h" |
| #include "nodes.h" |
| #include "optimizing_unit_test.h" |
| #include "prepare_for_register_allocation.h" |
| #include "register_allocator.h" |
| #include "ssa_liveness_analysis.h" |
| #include "utils.h" |
| |
| #include "gtest/gtest.h" |
| |
| namespace art { |
| |
| class InternalCodeAllocator : public CodeAllocator { |
| public: |
| InternalCodeAllocator() : size_(0) { } |
| |
| virtual uint8_t* Allocate(size_t size) { |
| size_ = size; |
| memory_.reset(new uint8_t[size]); |
| return memory_.get(); |
| } |
| |
| size_t GetSize() const { return size_; } |
| uint8_t* GetMemory() const { return memory_.get(); } |
| |
| private: |
| size_t size_; |
| std::unique_ptr<uint8_t[]> memory_; |
| |
| DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator); |
| }; |
| |
| template <typename Expected> |
| static void Run(const InternalCodeAllocator& allocator, |
| const CodeGenerator& codegen, |
| bool has_result, |
| Expected expected) { |
| typedef Expected (*fptr)(); |
| CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize()); |
| fptr f = reinterpret_cast<fptr>(allocator.GetMemory()); |
| if (codegen.GetInstructionSet() == kThumb2) { |
| // For thumb we need the bottom bit set. |
| f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1); |
| } |
| Expected result = f(); |
| if (has_result) { |
| ASSERT_EQ(result, expected); |
| } |
| } |
| |
| template <typename Expected> |
| static void RunCodeBaseline(HGraph* graph, bool has_result, Expected expected) { |
| InternalCodeAllocator allocator; |
| |
| x86::CodeGeneratorX86 codegenX86(graph); |
| // We avoid doing a stack overflow check that requires the runtime being setup, |
| // by making sure the compiler knows the methods we are running are leaf methods. |
| codegenX86.CompileBaseline(&allocator, true); |
| if (kRuntimeISA == kX86) { |
| Run(allocator, codegenX86, has_result, expected); |
| } |
| |
| arm::CodeGeneratorARM codegenARM(graph); |
| codegenARM.CompileBaseline(&allocator, true); |
| if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) { |
| Run(allocator, codegenARM, has_result, expected); |
| } |
| |
| x86_64::CodeGeneratorX86_64 codegenX86_64(graph); |
| codegenX86_64.CompileBaseline(&allocator, true); |
| if (kRuntimeISA == kX86_64) { |
| Run(allocator, codegenX86_64, has_result, expected); |
| } |
| |
| arm64::CodeGeneratorARM64 codegenARM64(graph); |
| codegenARM64.CompileBaseline(&allocator, true); |
| if (kRuntimeISA == kArm64) { |
| Run(allocator, codegenARM64, has_result, expected); |
| } |
| } |
| |
| template <typename Expected> |
| static void RunCodeOptimized(CodeGenerator* codegen, |
| HGraph* graph, |
| std::function<void(HGraph*)> hook_before_codegen, |
| bool has_result, |
| Expected expected) { |
| SsaLivenessAnalysis liveness(*graph, codegen); |
| liveness.Analyze(); |
| |
| RegisterAllocator register_allocator(graph->GetArena(), codegen, liveness); |
| register_allocator.AllocateRegisters(); |
| hook_before_codegen(graph); |
| |
| InternalCodeAllocator allocator; |
| codegen->CompileOptimized(&allocator); |
| Run(allocator, *codegen, has_result, expected); |
| } |
| |
| template <typename Expected> |
| static void RunCodeOptimized(HGraph* graph, |
| std::function<void(HGraph*)> hook_before_codegen, |
| bool has_result, |
| Expected expected) { |
| if (kRuntimeISA == kX86) { |
| x86::CodeGeneratorX86 codegenX86(graph); |
| RunCodeOptimized(&codegenX86, graph, hook_before_codegen, has_result, expected); |
| } else if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) { |
| arm::CodeGeneratorARM codegenARM(graph); |
| RunCodeOptimized(&codegenARM, graph, hook_before_codegen, has_result, expected); |
| } else if (kRuntimeISA == kX86_64) { |
| x86_64::CodeGeneratorX86_64 codegenX86_64(graph); |
| RunCodeOptimized(&codegenX86_64, graph, hook_before_codegen, has_result, expected); |
| } |
| } |
| |
| static void TestCode(const uint16_t* data, bool has_result = false, int32_t expected = 0) { |
| ArenaPool pool; |
| ArenaAllocator arena(&pool); |
| HGraphBuilder builder(&arena); |
| const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data); |
| HGraph* graph = builder.BuildGraph(*item); |
| ASSERT_NE(graph, nullptr); |
| // Remove suspend checks, they cannot be executed in this context. |
| RemoveSuspendChecks(graph); |
| RunCodeBaseline(graph, has_result, expected); |
| } |
| |
| static void TestCodeLong(const uint16_t* data, bool has_result, int64_t expected) { |
| ArenaPool pool; |
| ArenaAllocator arena(&pool); |
| HGraphBuilder builder(&arena, Primitive::kPrimLong); |
| const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data); |
| HGraph* graph = builder.BuildGraph(*item); |
| ASSERT_NE(graph, nullptr); |
| // Remove suspend checks, they cannot be executed in this context. |
| RemoveSuspendChecks(graph); |
| RunCodeBaseline(graph, has_result, expected); |
| } |
| |
| TEST(CodegenTest, ReturnVoid) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID); |
| TestCode(data); |
| } |
| |
| TEST(CodegenTest, CFG1) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST(CodegenTest, CFG2) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x100, |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST(CodegenTest, CFG3) { |
| const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO | 0x200, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO | 0xFF00); |
| |
| TestCode(data1); |
| |
| const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO_16, 3, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO_16, 0xFFFF); |
| |
| TestCode(data2); |
| |
| const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::GOTO_32, 4, 0, |
| Instruction::RETURN_VOID, |
| Instruction::GOTO_32, 0xFFFF, 0xFFFF); |
| |
| TestCode(data3); |
| } |
| |
| TEST(CodegenTest, CFG4) { |
| const uint16_t data[] = ZERO_REGISTER_CODE_ITEM( |
| Instruction::RETURN_VOID, |
| Instruction::GOTO | 0x100, |
| Instruction::GOTO | 0xFE00); |
| |
| TestCode(data); |
| } |
| |
| TEST(CodegenTest, CFG5) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::IF_EQ, 3, |
| Instruction::GOTO | 0x100, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST(CodegenTest, IntConstant) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::RETURN_VOID); |
| |
| TestCode(data); |
| } |
| |
| TEST(CodegenTest, Return1) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::RETURN | 0); |
| |
| TestCode(data, true, 0); |
| } |
| |
| TEST(CodegenTest, Return2) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 0 | 1 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 0); |
| } |
| |
| TEST(CodegenTest, Return3) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 1); |
| } |
| |
| TEST(CodegenTest, ReturnIf1) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::IF_EQ, 3, |
| Instruction::RETURN | 0 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 1); |
| } |
| |
| TEST(CodegenTest, ReturnIf2) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 0 | 0, |
| Instruction::CONST_4 | 1 << 8 | 1 << 12, |
| Instruction::IF_EQ | 0 << 4 | 1 << 8, 3, |
| Instruction::RETURN | 0 << 8, |
| Instruction::RETURN | 1 << 8); |
| |
| TestCode(data, true, 0); |
| } |
| |
| // Exercise bit-wise (one's complement) not-int instruction. |
| #define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ |
| TEST(CodegenTest, TEST_NAME) { \ |
| const int32_t input = INPUT; \ |
| const uint16_t input_lo = Low16Bits(input); \ |
| const uint16_t input_hi = High16Bits(input); \ |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST | 0 << 8, input_lo, input_hi, \ |
| Instruction::NOT_INT | 1 << 8 | 0 << 12 , \ |
| Instruction::RETURN | 1 << 8); \ |
| \ |
| TestCode(data, true, EXPECTED_OUTPUT); \ |
| } |
| |
| NOT_INT_TEST(ReturnNotIntMinus2, -2, 1) |
| NOT_INT_TEST(ReturnNotIntMinus1, -1, 0) |
| NOT_INT_TEST(ReturnNotInt0, 0, -1) |
| NOT_INT_TEST(ReturnNotInt1, 1, -2) |
| NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1 |
| NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2 |
| NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1 |
| NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31) |
| |
| #undef NOT_INT_TEST |
| |
| // Exercise bit-wise (one's complement) not-long instruction. |
| #define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \ |
| TEST(CodegenTest, TEST_NAME) { \ |
| const int64_t input = INPUT; \ |
| const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \ |
| const uint16_t word1 = High16Bits(Low32Bits(input)); \ |
| const uint16_t word2 = Low16Bits(High32Bits(input)); \ |
| const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \ |
| const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \ |
| Instruction::NOT_LONG | 2 << 8 | 0 << 12, \ |
| Instruction::RETURN_WIDE | 2 << 8); \ |
| \ |
| TestCodeLong(data, true, EXPECTED_OUTPUT); \ |
| } |
| |
| NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1)) |
| NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0)) |
| NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1)) |
| NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2)) |
| |
| NOT_LONG_TEST(ReturnNotLongINT32_MIN, |
| INT64_C(-2147483648), |
| INT64_C(2147483647)) // (2^31) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1, |
| INT64_C(-2147483647), |
| INT64_C(2147483646)) // (2^31) - 2 |
| NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1, |
| INT64_C(2147483646), |
| INT64_C(-2147483647)) // -(2^31) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT32_MAX, |
| INT64_C(2147483647), |
| INT64_C(-2147483648)) // -(2^31) |
| |
| // Note that the C++ compiler won't accept |
| // INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid |
| // int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead. |
| NOT_LONG_TEST(ReturnNotINT64_MIN, |
| INT64_C(-9223372036854775807)-1, |
| INT64_C(9223372036854775807)); // (2^63) - 1 |
| NOT_LONG_TEST(ReturnNotINT64_MINPlus1, |
| INT64_C(-9223372036854775807), |
| INT64_C(9223372036854775806)); // (2^63) - 2 |
| NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1, |
| INT64_C(9223372036854775806), |
| INT64_C(-9223372036854775807)); // -(2^63) - 1 |
| NOT_LONG_TEST(ReturnNotLongINT64_MAX, |
| INT64_C(9223372036854775807), |
| INT64_C(-9223372036854775807)-1); // -(2^63) |
| |
| #undef NOT_LONG_TEST |
| |
| #if defined(__aarch64__) |
| TEST(CodegenTest, DISABLED_IntToLongOfLongToInt) { |
| #else |
| TEST(CodegenTest, IntToLongOfLongToInt) { |
| #endif |
| const int64_t input = INT64_C(4294967296); // 2^32 |
| const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW. |
| const uint16_t word1 = High16Bits(Low32Bits(input)); |
| const uint16_t word2 = Low16Bits(High32Bits(input)); |
| const uint16_t word3 = High16Bits(High32Bits(input)); // MSW. |
| const uint16_t data[] = FIVE_REGISTERS_CODE_ITEM( |
| Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, |
| Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0, |
| Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1 |
| Instruction::LONG_TO_INT | 4 << 8 | 0 << 12, |
| Instruction::INT_TO_LONG | 2 << 8 | 4 << 12, |
| Instruction::RETURN_WIDE | 2 << 8); |
| |
| TestCodeLong(data, true, 1); |
| } |
| |
| TEST(CodegenTest, ReturnAdd1) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::ADD_INT, 1 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST(CodegenTest, ReturnAdd2) { |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 3 << 12 | 0, |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, |
| Instruction::ADD_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST(CodegenTest, ReturnAdd3) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::ADD_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST(CodegenTest, ReturnAdd4) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::ADD_INT_LIT16, 3, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 7); |
| } |
| |
| TEST(CodegenTest, NonMaterializedCondition) { |
| ArenaPool pool; |
| ArenaAllocator allocator(&pool); |
| |
| HGraph* graph = new (&allocator) HGraph(&allocator); |
| HBasicBlock* entry = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(entry); |
| graph->SetEntryBlock(entry); |
| entry->AddInstruction(new (&allocator) HGoto()); |
| |
| HBasicBlock* first_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(first_block); |
| entry->AddSuccessor(first_block); |
| HIntConstant* constant0 = new (&allocator) HIntConstant(0); |
| entry->AddInstruction(constant0); |
| HIntConstant* constant1 = new (&allocator) HIntConstant(1); |
| entry->AddInstruction(constant1); |
| HEqual* equal = new (&allocator) HEqual(constant0, constant0); |
| first_block->AddInstruction(equal); |
| first_block->AddInstruction(new (&allocator) HIf(equal)); |
| |
| HBasicBlock* then = new (&allocator) HBasicBlock(graph); |
| HBasicBlock* else_ = new (&allocator) HBasicBlock(graph); |
| HBasicBlock* exit = new (&allocator) HBasicBlock(graph); |
| |
| graph->AddBlock(then); |
| graph->AddBlock(else_); |
| graph->AddBlock(exit); |
| first_block->AddSuccessor(then); |
| first_block->AddSuccessor(else_); |
| then->AddSuccessor(exit); |
| else_->AddSuccessor(exit); |
| |
| exit->AddInstruction(new (&allocator) HExit()); |
| then->AddInstruction(new (&allocator) HReturn(constant0)); |
| else_->AddInstruction(new (&allocator) HReturn(constant1)); |
| |
| ASSERT_TRUE(equal->NeedsMaterialization()); |
| graph->BuildDominatorTree(); |
| PrepareForRegisterAllocation(graph).Run(); |
| ASSERT_FALSE(equal->NeedsMaterialization()); |
| |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0); |
| HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| |
| RunCodeOptimized(graph, hook_before_codegen, true, 0); |
| } |
| |
| #define MUL_TEST(TYPE, TEST_NAME) \ |
| TEST(CodegenTest, Return ## TEST_NAME) { \ |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST_4 | 3 << 12 | 0, \ |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, \ |
| Instruction::MUL_ ## TYPE, 1 << 8 | 0, \ |
| Instruction::RETURN); \ |
| \ |
| TestCode(data, true, 12); \ |
| } \ |
| \ |
| TEST(CodegenTest, Return ## TEST_NAME ## 2addr) { \ |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \ |
| Instruction::CONST_4 | 3 << 12 | 0, \ |
| Instruction::CONST_4 | 4 << 12 | 1 << 8, \ |
| Instruction::MUL_ ## TYPE ## _2ADDR | 1 << 12, \ |
| Instruction::RETURN); \ |
| \ |
| TestCode(data, true, 12); \ |
| } |
| |
| #if !defined(__aarch64__) |
| MUL_TEST(INT, MulInt); |
| MUL_TEST(LONG, MulLong); |
| #endif |
| |
| TEST(CodegenTest, ReturnMulIntLit8) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::MUL_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 12); |
| } |
| |
| TEST(CodegenTest, ReturnMulIntLit16) { |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::MUL_INT_LIT16, 3, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 12); |
| } |
| |
| TEST(CodegenTest, MaterializedCondition1) { |
| // Check that condition are materialized correctly. A materialized condition |
| // should yield `1` if it evaluated to true, and `0` otherwise. |
| // We force the materialization of comparisons for different combinations of |
| // inputs and check the results. |
| |
| int lhs[] = {1, 2, -1, 2, 0xabc}; |
| int rhs[] = {2, 1, 2, -1, 0xabc}; |
| |
| for (size_t i = 0; i < arraysize(lhs); i++) { |
| ArenaPool pool; |
| ArenaAllocator allocator(&pool); |
| HGraph* graph = new (&allocator) HGraph(&allocator); |
| |
| HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (&allocator) HGoto()); |
| HBasicBlock* code_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(code_block); |
| HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| exit_block->AddInstruction(new (&allocator) HExit()); |
| |
| entry_block->AddSuccessor(code_block); |
| code_block->AddSuccessor(exit_block); |
| graph->SetExitBlock(exit_block); |
| |
| HIntConstant cst_lhs(lhs[i]); |
| code_block->AddInstruction(&cst_lhs); |
| HIntConstant cst_rhs(rhs[i]); |
| code_block->AddInstruction(&cst_rhs); |
| HLessThan cmp_lt(&cst_lhs, &cst_rhs); |
| code_block->AddInstruction(&cmp_lt); |
| HReturn ret(&cmp_lt); |
| code_block->AddInstruction(&ret); |
| |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0); |
| HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| |
| RunCodeOptimized(graph, hook_before_codegen, true, lhs[i] < rhs[i]); |
| } |
| } |
| |
| TEST(CodegenTest, MaterializedCondition2) { |
| // Check that HIf correctly interprets a materialized condition. |
| // We force the materialization of comparisons for different combinations of |
| // inputs. An HIf takes the materialized combination as input and returns a |
| // value that we verify. |
| |
| int lhs[] = {1, 2, -1, 2, 0xabc}; |
| int rhs[] = {2, 1, 2, -1, 0xabc}; |
| |
| |
| for (size_t i = 0; i < arraysize(lhs); i++) { |
| ArenaPool pool; |
| ArenaAllocator allocator(&pool); |
| HGraph* graph = new (&allocator) HGraph(&allocator); |
| |
| HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(entry_block); |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddInstruction(new (&allocator) HGoto()); |
| |
| HBasicBlock* if_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(if_block); |
| HBasicBlock* if_true_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(if_true_block); |
| HBasicBlock* if_false_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(if_false_block); |
| HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph); |
| graph->AddBlock(exit_block); |
| exit_block->AddInstruction(new (&allocator) HExit()); |
| |
| graph->SetEntryBlock(entry_block); |
| entry_block->AddSuccessor(if_block); |
| if_block->AddSuccessor(if_true_block); |
| if_block->AddSuccessor(if_false_block); |
| if_true_block->AddSuccessor(exit_block); |
| if_false_block->AddSuccessor(exit_block); |
| graph->SetExitBlock(exit_block); |
| |
| HIntConstant cst_lhs(lhs[i]); |
| if_block->AddInstruction(&cst_lhs); |
| HIntConstant cst_rhs(rhs[i]); |
| if_block->AddInstruction(&cst_rhs); |
| HLessThan cmp_lt(&cst_lhs, &cst_rhs); |
| if_block->AddInstruction(&cmp_lt); |
| // We insert a temporary to separate the HIf from the HLessThan and force |
| // the materialization of the condition. |
| HTemporary force_materialization(0); |
| if_block->AddInstruction(&force_materialization); |
| HIf if_lt(&cmp_lt); |
| if_block->AddInstruction(&if_lt); |
| |
| HIntConstant cst_lt(1); |
| if_true_block->AddInstruction(&cst_lt); |
| HReturn ret_lt(&cst_lt); |
| if_true_block->AddInstruction(&ret_lt); |
| HIntConstant cst_ge(0); |
| if_false_block->AddInstruction(&cst_ge); |
| HReturn ret_ge(&cst_ge); |
| if_false_block->AddInstruction(&ret_ge); |
| |
| auto hook_before_codegen = [](HGraph* graph_in) { |
| HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0); |
| HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena()); |
| block->InsertInstructionBefore(move, block->GetLastInstruction()); |
| }; |
| |
| RunCodeOptimized(graph, hook_before_codegen, true, lhs[i] < rhs[i]); |
| } |
| } |
| |
| #if defined(__aarch64__) |
| TEST(CodegenTest, DISABLED_ReturnDivIntLit8) { |
| #else |
| TEST(CodegenTest, ReturnDivIntLit8) { |
| #endif |
| const uint16_t data[] = ONE_REGISTER_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0 << 8, |
| Instruction::DIV_INT_LIT8, 3 << 8 | 0, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 1); |
| } |
| |
| #if defined(__aarch64__) |
| TEST(CodegenTest, DISABLED_ReturnDivInt2Addr) { |
| #else |
| TEST(CodegenTest, ReturnDivInt2Addr) { |
| #endif |
| const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( |
| Instruction::CONST_4 | 4 << 12 | 0, |
| Instruction::CONST_4 | 2 << 12 | 1 << 8, |
| Instruction::DIV_INT_2ADDR | 1 << 12, |
| Instruction::RETURN); |
| |
| TestCode(data, true, 2); |
| } |
| |
| } // namespace art |