blob: fee3ea6f8ca3706ae06eb24cffd7d2043e8bf531 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <functional>
#include "arch/instruction_set.h"
#include "base/macros.h"
#include "builder.h"
#include "code_generator_arm.h"
#include "code_generator_arm64.h"
#include "code_generator_x86.h"
#include "code_generator_x86_64.h"
#include "common_compiler_test.h"
#include "dex_file.h"
#include "dex_instruction.h"
#include "nodes.h"
#include "optimizing_unit_test.h"
#include "prepare_for_register_allocation.h"
#include "register_allocator.h"
#include "ssa_liveness_analysis.h"
#include "utils.h"
#include "gtest/gtest.h"
namespace art {
class InternalCodeAllocator : public CodeAllocator {
public:
InternalCodeAllocator() : size_(0) { }
virtual uint8_t* Allocate(size_t size) {
size_ = size;
memory_.reset(new uint8_t[size]);
return memory_.get();
}
size_t GetSize() const { return size_; }
uint8_t* GetMemory() const { return memory_.get(); }
private:
size_t size_;
std::unique_ptr<uint8_t[]> memory_;
DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator);
};
template <typename Expected>
static void Run(const InternalCodeAllocator& allocator,
const CodeGenerator& codegen,
bool has_result,
Expected expected) {
typedef Expected (*fptr)();
CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize());
fptr f = reinterpret_cast<fptr>(allocator.GetMemory());
if (codegen.GetInstructionSet() == kThumb2) {
// For thumb we need the bottom bit set.
f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1);
}
Expected result = f();
if (has_result) {
ASSERT_EQ(result, expected);
}
}
template <typename Expected>
static void RunCodeBaseline(HGraph* graph, bool has_result, Expected expected) {
InternalCodeAllocator allocator;
x86::CodeGeneratorX86 codegenX86(graph);
// We avoid doing a stack overflow check that requires the runtime being setup,
// by making sure the compiler knows the methods we are running are leaf methods.
codegenX86.CompileBaseline(&allocator, true);
if (kRuntimeISA == kX86) {
Run(allocator, codegenX86, has_result, expected);
}
arm::CodeGeneratorARM codegenARM(graph);
codegenARM.CompileBaseline(&allocator, true);
if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) {
Run(allocator, codegenARM, has_result, expected);
}
x86_64::CodeGeneratorX86_64 codegenX86_64(graph);
codegenX86_64.CompileBaseline(&allocator, true);
if (kRuntimeISA == kX86_64) {
Run(allocator, codegenX86_64, has_result, expected);
}
arm64::CodeGeneratorARM64 codegenARM64(graph);
codegenARM64.CompileBaseline(&allocator, true);
if (kRuntimeISA == kArm64) {
Run(allocator, codegenARM64, has_result, expected);
}
}
template <typename Expected>
static void RunCodeOptimized(CodeGenerator* codegen,
HGraph* graph,
std::function<void(HGraph*)> hook_before_codegen,
bool has_result,
Expected expected) {
SsaLivenessAnalysis liveness(*graph, codegen);
liveness.Analyze();
RegisterAllocator register_allocator(graph->GetArena(), codegen, liveness);
register_allocator.AllocateRegisters();
hook_before_codegen(graph);
InternalCodeAllocator allocator;
codegen->CompileOptimized(&allocator);
Run(allocator, *codegen, has_result, expected);
}
template <typename Expected>
static void RunCodeOptimized(HGraph* graph,
std::function<void(HGraph*)> hook_before_codegen,
bool has_result,
Expected expected) {
if (kRuntimeISA == kX86) {
x86::CodeGeneratorX86 codegenX86(graph);
RunCodeOptimized(&codegenX86, graph, hook_before_codegen, has_result, expected);
} else if (kRuntimeISA == kArm || kRuntimeISA == kThumb2) {
arm::CodeGeneratorARM codegenARM(graph);
RunCodeOptimized(&codegenARM, graph, hook_before_codegen, has_result, expected);
} else if (kRuntimeISA == kX86_64) {
x86_64::CodeGeneratorX86_64 codegenX86_64(graph);
RunCodeOptimized(&codegenX86_64, graph, hook_before_codegen, has_result, expected);
}
}
static void TestCode(const uint16_t* data, bool has_result = false, int32_t expected = 0) {
ArenaPool pool;
ArenaAllocator arena(&pool);
HGraphBuilder builder(&arena);
const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data);
HGraph* graph = builder.BuildGraph(*item);
ASSERT_NE(graph, nullptr);
// Remove suspend checks, they cannot be executed in this context.
RemoveSuspendChecks(graph);
RunCodeBaseline(graph, has_result, expected);
}
static void TestCodeLong(const uint16_t* data, bool has_result, int64_t expected) {
ArenaPool pool;
ArenaAllocator arena(&pool);
HGraphBuilder builder(&arena, Primitive::kPrimLong);
const DexFile::CodeItem* item = reinterpret_cast<const DexFile::CodeItem*>(data);
HGraph* graph = builder.BuildGraph(*item);
ASSERT_NE(graph, nullptr);
// Remove suspend checks, they cannot be executed in this context.
RemoveSuspendChecks(graph);
RunCodeBaseline(graph, has_result, expected);
}
TEST(CodegenTest, ReturnVoid) {
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID);
TestCode(data);
}
TEST(CodegenTest, CFG1) {
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO | 0x100,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST(CodegenTest, CFG2) {
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO | 0x100,
Instruction::GOTO | 0x100,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST(CodegenTest, CFG3) {
const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO | 0x200,
Instruction::RETURN_VOID,
Instruction::GOTO | 0xFF00);
TestCode(data1);
const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO_16, 3,
Instruction::RETURN_VOID,
Instruction::GOTO_16, 0xFFFF);
TestCode(data2);
const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM(
Instruction::GOTO_32, 4, 0,
Instruction::RETURN_VOID,
Instruction::GOTO_32, 0xFFFF, 0xFFFF);
TestCode(data3);
}
TEST(CodegenTest, CFG4) {
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
Instruction::RETURN_VOID,
Instruction::GOTO | 0x100,
Instruction::GOTO | 0xFE00);
TestCode(data);
}
TEST(CodegenTest, CFG5) {
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::IF_EQ, 3,
Instruction::GOTO | 0x100,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST(CodegenTest, IntConstant) {
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::RETURN_VOID);
TestCode(data);
}
TEST(CodegenTest, Return1) {
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::RETURN | 0);
TestCode(data, true, 0);
}
TEST(CodegenTest, Return2) {
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 0 | 1 << 8,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 0);
}
TEST(CodegenTest, Return3) {
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 1 << 8 | 1 << 12,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 1);
}
TEST(CodegenTest, ReturnIf1) {
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 1 << 8 | 1 << 12,
Instruction::IF_EQ, 3,
Instruction::RETURN | 0 << 8,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 1);
}
TEST(CodegenTest, ReturnIf2) {
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 0 | 0,
Instruction::CONST_4 | 1 << 8 | 1 << 12,
Instruction::IF_EQ | 0 << 4 | 1 << 8, 3,
Instruction::RETURN | 0 << 8,
Instruction::RETURN | 1 << 8);
TestCode(data, true, 0);
}
// Exercise bit-wise (one's complement) not-int instruction.
#define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
TEST(CodegenTest, TEST_NAME) { \
const int32_t input = INPUT; \
const uint16_t input_lo = Low16Bits(input); \
const uint16_t input_hi = High16Bits(input); \
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \
Instruction::CONST | 0 << 8, input_lo, input_hi, \
Instruction::NOT_INT | 1 << 8 | 0 << 12 , \
Instruction::RETURN | 1 << 8); \
\
TestCode(data, true, EXPECTED_OUTPUT); \
}
NOT_INT_TEST(ReturnNotIntMinus2, -2, 1)
NOT_INT_TEST(ReturnNotIntMinus1, -1, 0)
NOT_INT_TEST(ReturnNotInt0, 0, -1)
NOT_INT_TEST(ReturnNotInt1, 1, -2)
NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1
NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2
NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1
NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31)
#undef NOT_INT_TEST
// Exercise bit-wise (one's complement) not-long instruction.
#define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
TEST(CodegenTest, TEST_NAME) { \
const int64_t input = INPUT; \
const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \
const uint16_t word1 = High16Bits(Low32Bits(input)); \
const uint16_t word2 = Low16Bits(High32Bits(input)); \
const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \
const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( \
Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \
Instruction::NOT_LONG | 2 << 8 | 0 << 12, \
Instruction::RETURN_WIDE | 2 << 8); \
\
TestCodeLong(data, true, EXPECTED_OUTPUT); \
}
NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1))
NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0))
NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1))
NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2))
NOT_LONG_TEST(ReturnNotLongINT32_MIN,
INT64_C(-2147483648),
INT64_C(2147483647)) // (2^31) - 1
NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1,
INT64_C(-2147483647),
INT64_C(2147483646)) // (2^31) - 2
NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1,
INT64_C(2147483646),
INT64_C(-2147483647)) // -(2^31) - 1
NOT_LONG_TEST(ReturnNotLongINT32_MAX,
INT64_C(2147483647),
INT64_C(-2147483648)) // -(2^31)
// Note that the C++ compiler won't accept
// INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid
// int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead.
NOT_LONG_TEST(ReturnNotINT64_MIN,
INT64_C(-9223372036854775807)-1,
INT64_C(9223372036854775807)); // (2^63) - 1
NOT_LONG_TEST(ReturnNotINT64_MINPlus1,
INT64_C(-9223372036854775807),
INT64_C(9223372036854775806)); // (2^63) - 2
NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1,
INT64_C(9223372036854775806),
INT64_C(-9223372036854775807)); // -(2^63) - 1
NOT_LONG_TEST(ReturnNotLongINT64_MAX,
INT64_C(9223372036854775807),
INT64_C(-9223372036854775807)-1); // -(2^63)
#undef NOT_LONG_TEST
#if defined(__aarch64__)
TEST(CodegenTest, DISABLED_IntToLongOfLongToInt) {
#else
TEST(CodegenTest, IntToLongOfLongToInt) {
#endif
const int64_t input = INT64_C(4294967296); // 2^32
const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW.
const uint16_t word1 = High16Bits(Low32Bits(input));
const uint16_t word2 = Low16Bits(High32Bits(input));
const uint16_t word3 = High16Bits(High32Bits(input)); // MSW.
const uint16_t data[] = FIVE_REGISTERS_CODE_ITEM(
Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,
Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0,
Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1
Instruction::LONG_TO_INT | 4 << 8 | 0 << 12,
Instruction::INT_TO_LONG | 2 << 8 | 4 << 12,
Instruction::RETURN_WIDE | 2 << 8);
TestCodeLong(data, true, 1);
}
TEST(CodegenTest, ReturnAdd1) {
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 3 << 12 | 0,
Instruction::CONST_4 | 4 << 12 | 1 << 8,
Instruction::ADD_INT, 1 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST(CodegenTest, ReturnAdd2) {
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 3 << 12 | 0,
Instruction::CONST_4 | 4 << 12 | 1 << 8,
Instruction::ADD_INT_2ADDR | 1 << 12,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST(CodegenTest, ReturnAdd3) {
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::ADD_INT_LIT8, 3 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST(CodegenTest, ReturnAdd4) {
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::ADD_INT_LIT16, 3,
Instruction::RETURN);
TestCode(data, true, 7);
}
TEST(CodegenTest, NonMaterializedCondition) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = new (&allocator) HGraph(&allocator);
HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
graph->AddBlock(entry);
graph->SetEntryBlock(entry);
entry->AddInstruction(new (&allocator) HGoto());
HBasicBlock* first_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(first_block);
entry->AddSuccessor(first_block);
HIntConstant* constant0 = new (&allocator) HIntConstant(0);
entry->AddInstruction(constant0);
HIntConstant* constant1 = new (&allocator) HIntConstant(1);
entry->AddInstruction(constant1);
HEqual* equal = new (&allocator) HEqual(constant0, constant0);
first_block->AddInstruction(equal);
first_block->AddInstruction(new (&allocator) HIf(equal));
HBasicBlock* then = new (&allocator) HBasicBlock(graph);
HBasicBlock* else_ = new (&allocator) HBasicBlock(graph);
HBasicBlock* exit = new (&allocator) HBasicBlock(graph);
graph->AddBlock(then);
graph->AddBlock(else_);
graph->AddBlock(exit);
first_block->AddSuccessor(then);
first_block->AddSuccessor(else_);
then->AddSuccessor(exit);
else_->AddSuccessor(exit);
exit->AddInstruction(new (&allocator) HExit());
then->AddInstruction(new (&allocator) HReturn(constant0));
else_->AddInstruction(new (&allocator) HReturn(constant1));
ASSERT_TRUE(equal->NeedsMaterialization());
graph->BuildDominatorTree();
PrepareForRegisterAllocation(graph).Run();
ASSERT_FALSE(equal->NeedsMaterialization());
auto hook_before_codegen = [](HGraph* graph_in) {
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0);
HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
block->InsertInstructionBefore(move, block->GetLastInstruction());
};
RunCodeOptimized(graph, hook_before_codegen, true, 0);
}
#define MUL_TEST(TYPE, TEST_NAME) \
TEST(CodegenTest, Return ## TEST_NAME) { \
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \
Instruction::CONST_4 | 3 << 12 | 0, \
Instruction::CONST_4 | 4 << 12 | 1 << 8, \
Instruction::MUL_ ## TYPE, 1 << 8 | 0, \
Instruction::RETURN); \
\
TestCode(data, true, 12); \
} \
\
TEST(CodegenTest, Return ## TEST_NAME ## 2addr) { \
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \
Instruction::CONST_4 | 3 << 12 | 0, \
Instruction::CONST_4 | 4 << 12 | 1 << 8, \
Instruction::MUL_ ## TYPE ## _2ADDR | 1 << 12, \
Instruction::RETURN); \
\
TestCode(data, true, 12); \
}
#if !defined(__aarch64__)
MUL_TEST(INT, MulInt);
MUL_TEST(LONG, MulLong);
#endif
TEST(CodegenTest, ReturnMulIntLit8) {
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::MUL_INT_LIT8, 3 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 12);
}
TEST(CodegenTest, ReturnMulIntLit16) {
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::MUL_INT_LIT16, 3,
Instruction::RETURN);
TestCode(data, true, 12);
}
TEST(CodegenTest, MaterializedCondition1) {
// Check that condition are materialized correctly. A materialized condition
// should yield `1` if it evaluated to true, and `0` otherwise.
// We force the materialization of comparisons for different combinations of
// inputs and check the results.
int lhs[] = {1, 2, -1, 2, 0xabc};
int rhs[] = {2, 1, 2, -1, 0xabc};
for (size_t i = 0; i < arraysize(lhs); i++) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = new (&allocator) HGraph(&allocator);
HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(entry_block);
graph->SetEntryBlock(entry_block);
entry_block->AddInstruction(new (&allocator) HGoto());
HBasicBlock* code_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(code_block);
HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(exit_block);
exit_block->AddInstruction(new (&allocator) HExit());
entry_block->AddSuccessor(code_block);
code_block->AddSuccessor(exit_block);
graph->SetExitBlock(exit_block);
HIntConstant cst_lhs(lhs[i]);
code_block->AddInstruction(&cst_lhs);
HIntConstant cst_rhs(rhs[i]);
code_block->AddInstruction(&cst_rhs);
HLessThan cmp_lt(&cst_lhs, &cst_rhs);
code_block->AddInstruction(&cmp_lt);
HReturn ret(&cmp_lt);
code_block->AddInstruction(&ret);
auto hook_before_codegen = [](HGraph* graph_in) {
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0);
HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
block->InsertInstructionBefore(move, block->GetLastInstruction());
};
RunCodeOptimized(graph, hook_before_codegen, true, lhs[i] < rhs[i]);
}
}
TEST(CodegenTest, MaterializedCondition2) {
// Check that HIf correctly interprets a materialized condition.
// We force the materialization of comparisons for different combinations of
// inputs. An HIf takes the materialized combination as input and returns a
// value that we verify.
int lhs[] = {1, 2, -1, 2, 0xabc};
int rhs[] = {2, 1, 2, -1, 0xabc};
for (size_t i = 0; i < arraysize(lhs); i++) {
ArenaPool pool;
ArenaAllocator allocator(&pool);
HGraph* graph = new (&allocator) HGraph(&allocator);
HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(entry_block);
graph->SetEntryBlock(entry_block);
entry_block->AddInstruction(new (&allocator) HGoto());
HBasicBlock* if_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(if_block);
HBasicBlock* if_true_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(if_true_block);
HBasicBlock* if_false_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(if_false_block);
HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
graph->AddBlock(exit_block);
exit_block->AddInstruction(new (&allocator) HExit());
graph->SetEntryBlock(entry_block);
entry_block->AddSuccessor(if_block);
if_block->AddSuccessor(if_true_block);
if_block->AddSuccessor(if_false_block);
if_true_block->AddSuccessor(exit_block);
if_false_block->AddSuccessor(exit_block);
graph->SetExitBlock(exit_block);
HIntConstant cst_lhs(lhs[i]);
if_block->AddInstruction(&cst_lhs);
HIntConstant cst_rhs(rhs[i]);
if_block->AddInstruction(&cst_rhs);
HLessThan cmp_lt(&cst_lhs, &cst_rhs);
if_block->AddInstruction(&cmp_lt);
// We insert a temporary to separate the HIf from the HLessThan and force
// the materialization of the condition.
HTemporary force_materialization(0);
if_block->AddInstruction(&force_materialization);
HIf if_lt(&cmp_lt);
if_block->AddInstruction(&if_lt);
HIntConstant cst_lt(1);
if_true_block->AddInstruction(&cst_lt);
HReturn ret_lt(&cst_lt);
if_true_block->AddInstruction(&ret_lt);
HIntConstant cst_ge(0);
if_false_block->AddInstruction(&cst_ge);
HReturn ret_ge(&cst_ge);
if_false_block->AddInstruction(&ret_ge);
auto hook_before_codegen = [](HGraph* graph_in) {
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors().Get(0);
HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
block->InsertInstructionBefore(move, block->GetLastInstruction());
};
RunCodeOptimized(graph, hook_before_codegen, true, lhs[i] < rhs[i]);
}
}
#if defined(__aarch64__)
TEST(CodegenTest, DISABLED_ReturnDivIntLit8) {
#else
TEST(CodegenTest, ReturnDivIntLit8) {
#endif
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0 << 8,
Instruction::DIV_INT_LIT8, 3 << 8 | 0,
Instruction::RETURN);
TestCode(data, true, 1);
}
#if defined(__aarch64__)
TEST(CodegenTest, DISABLED_ReturnDivInt2Addr) {
#else
TEST(CodegenTest, ReturnDivInt2Addr) {
#endif
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
Instruction::CONST_4 | 4 << 12 | 0,
Instruction::CONST_4 | 2 << 12 | 1 << 8,
Instruction::DIV_INT_2ADDR | 1 << 12,
Instruction::RETURN);
TestCode(data, true, 2);
}
} // namespace art