blob: ad58e3820dafc0182f52fdce17a646dbc22ce275 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "calling_convention_x86.h"
#include <android-base/logging.h>
#include "handle_scope-inl.h"
#include "utils/x86/managed_register_x86.h"
namespace art {
namespace x86 {
static_assert(kX86PointerSize == PointerSize::k32, "Unexpected x86 pointer size");
static_assert(kStackAlignment >= 16u, "IA-32 cdecl requires at least 16 byte stack alignment");
static constexpr ManagedRegister kCalleeSaveRegisters[] = {
// Core registers.
X86ManagedRegister::FromCpuRegister(EBP),
X86ManagedRegister::FromCpuRegister(ESI),
X86ManagedRegister::FromCpuRegister(EDI),
// No hard float callee saves.
};
static constexpr uint32_t CalculateCoreCalleeSpillMask() {
// The spilled PC gets a special marker.
uint32_t result = 1 << kNumberOfCpuRegisters;
for (auto&& r : kCalleeSaveRegisters) {
if (r.AsX86().IsCpuRegister()) {
result |= (1 << r.AsX86().AsCpuRegister());
}
}
return result;
}
static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask();
static constexpr uint32_t kFpCalleeSpillMask = 0u;
// Calling convention
ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() {
return X86ManagedRegister::FromCpuRegister(ECX);
}
ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() {
return X86ManagedRegister::FromCpuRegister(ECX);
}
ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const {
return ManagedRegister::NoRegister(); // No free regs, so assembler uses push/pop
}
static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) {
if (shorty[0] == 'F' || shorty[0] == 'D') {
if (jni) {
return X86ManagedRegister::FromX87Register(ST0);
} else {
return X86ManagedRegister::FromXmmRegister(XMM0);
}
} else if (shorty[0] == 'J') {
return X86ManagedRegister::FromRegisterPair(EAX_EDX);
} else if (shorty[0] == 'V') {
return ManagedRegister::NoRegister();
} else {
return X86ManagedRegister::FromCpuRegister(EAX);
}
}
ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty(), false);
}
ManagedRegister X86JniCallingConvention::ReturnRegister() {
return ReturnRegisterForShorty(GetShorty(), true);
}
ManagedRegister X86JniCallingConvention::IntReturnRegister() {
return X86ManagedRegister::FromCpuRegister(EAX);
}
// Managed runtime calling convention
ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() {
return X86ManagedRegister::FromCpuRegister(EAX);
}
bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() {
return false; // Everything is passed by stack
}
bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() {
// We assume all parameters are on stack, args coming via registers are spilled as entry_spills.
return true;
}
ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() {
ManagedRegister res = ManagedRegister::NoRegister();
if (!IsCurrentParamAFloatOrDouble()) {
switch (gpr_arg_count_) {
case 0:
res = X86ManagedRegister::FromCpuRegister(ECX);
break;
case 1:
res = X86ManagedRegister::FromCpuRegister(EDX);
break;
case 2:
// Don't split a long between the last register and the stack.
if (IsCurrentParamALong()) {
return ManagedRegister::NoRegister();
}
res = X86ManagedRegister::FromCpuRegister(EBX);
break;
}
} else if (itr_float_and_doubles_ < 4) {
// First four float parameters are passed via XMM0..XMM3
res = X86ManagedRegister::FromXmmRegister(
static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_));
}
return res;
}
ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() {
ManagedRegister res = ManagedRegister::NoRegister();
DCHECK(IsCurrentParamALong());
switch (gpr_arg_count_) {
case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break;
case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break;
}
return res;
}
FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() {
return FrameOffset(displacement_.Int32Value() + // displacement
kFramePointerSize + // Method*
(itr_slots_ * kFramePointerSize)); // offset into in args
}
const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() {
// We spill the argument registers on X86 to free them up for scratch use, we then assume
// all arguments are on the stack.
if (entry_spills_.size() == 0) {
ResetIterator(FrameOffset(0));
while (HasNext()) {
ManagedRegister in_reg = CurrentParamRegister();
bool is_long = IsCurrentParamALong();
if (!in_reg.IsNoRegister()) {
int32_t size = IsParamADouble(itr_args_) ? 8 : 4;
int32_t spill_offset = CurrentParamStackOffset().Uint32Value();
ManagedRegisterSpill spill(in_reg, size, spill_offset);
entry_spills_.push_back(spill);
if (is_long) {
// special case, as we need a second register here.
in_reg = CurrentParamHighLongRegister();
DCHECK(!in_reg.IsNoRegister());
// We have to spill the second half of the long.
ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4);
entry_spills_.push_back(spill2);
}
// Keep track of the number of GPRs allocated.
if (!IsCurrentParamAFloatOrDouble()) {
if (is_long) {
// Long was allocated in 2 registers.
gpr_arg_count_ += 2;
} else {
gpr_arg_count_++;
}
}
} else if (is_long) {
// We need to skip the unused last register, which is empty.
// If we are already out of registers, this is harmless.
gpr_arg_count_ += 2;
}
Next();
}
}
return entry_spills_;
}
// JNI calling convention
X86JniCallingConvention::X86JniCallingConvention(bool is_static,
bool is_synchronized,
bool is_critical_native,
const char* shorty)
: JniCallingConvention(is_static,
is_synchronized,
is_critical_native,
shorty,
kX86PointerSize) {
}
uint32_t X86JniCallingConvention::CoreSpillMask() const {
return kCoreCalleeSpillMask;
}
uint32_t X86JniCallingConvention::FpSpillMask() const {
return kFpCalleeSpillMask;
}
size_t X86JniCallingConvention::FrameSize() {
// Method*, PC return address and callee save area size, local reference segment state
const size_t method_ptr_size = static_cast<size_t>(kX86PointerSize);
const size_t pc_return_addr_size = kFramePointerSize;
const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize;
size_t frame_data_size = method_ptr_size + pc_return_addr_size + callee_save_area_size;
if (LIKELY(HasLocalReferenceSegmentState())) { // local ref. segment state
// Local reference segment state is sometimes excluded.
frame_data_size += kFramePointerSize;
}
// References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header
const size_t handle_scope_size = HandleScope::SizeOf(kX86PointerSize, ReferenceCount());
size_t total_size = frame_data_size;
if (LIKELY(HasHandleScope())) {
// HandleScope is sometimes excluded.
total_size += handle_scope_size; // handle scope size
}
// Plus return value spill area size
total_size += SizeOfReturnValue();
return RoundUp(total_size, kStackAlignment);
// TODO: Same thing as x64 except using different pointer size. Refactor?
}
size_t X86JniCallingConvention::OutArgSize() {
return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment);
}
ArrayRef<const ManagedRegister> X86JniCallingConvention::CalleeSaveRegisters() const {
return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters);
}
bool X86JniCallingConvention::IsCurrentParamInRegister() {
return false; // Everything is passed by stack.
}
bool X86JniCallingConvention::IsCurrentParamOnStack() {
return true; // Everything is passed by stack.
}
ManagedRegister X86JniCallingConvention::CurrentParamRegister() {
LOG(FATAL) << "Should not reach here";
return ManagedRegister::NoRegister();
}
FrameOffset X86JniCallingConvention::CurrentParamStackOffset() {
return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize));
}
size_t X86JniCallingConvention::NumberOfOutgoingStackArgs() {
size_t static_args = HasSelfClass() ? 1 : 0; // count jclass
// regular argument parameters and this
size_t param_args = NumArgs() + NumLongOrDoubleArgs();
// count JNIEnv* and return pc (pushed after Method*)
size_t internal_args = 1 /* return pc */ + (HasJniEnv() ? 1 : 0 /* jni env */);
// No register args.
size_t total_args = static_args + param_args + internal_args;
return total_args;
}
} // namespace x86
} // namespace art