| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "calling_convention_x86.h" |
| |
| #include <android-base/logging.h> |
| |
| #include "handle_scope-inl.h" |
| #include "utils/x86/managed_register_x86.h" |
| |
| namespace art { |
| namespace x86 { |
| |
| static_assert(kX86PointerSize == PointerSize::k32, "Unexpected x86 pointer size"); |
| static_assert(kStackAlignment >= 16u, "IA-32 cdecl requires at least 16 byte stack alignment"); |
| |
| static constexpr ManagedRegister kCalleeSaveRegisters[] = { |
| // Core registers. |
| X86ManagedRegister::FromCpuRegister(EBP), |
| X86ManagedRegister::FromCpuRegister(ESI), |
| X86ManagedRegister::FromCpuRegister(EDI), |
| // No hard float callee saves. |
| }; |
| |
| static constexpr uint32_t CalculateCoreCalleeSpillMask() { |
| // The spilled PC gets a special marker. |
| uint32_t result = 1 << kNumberOfCpuRegisters; |
| for (auto&& r : kCalleeSaveRegisters) { |
| if (r.AsX86().IsCpuRegister()) { |
| result |= (1 << r.AsX86().AsCpuRegister()); |
| } |
| } |
| return result; |
| } |
| |
| static constexpr uint32_t kCoreCalleeSpillMask = CalculateCoreCalleeSpillMask(); |
| static constexpr uint32_t kFpCalleeSpillMask = 0u; |
| |
| // Calling convention |
| |
| ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() { |
| return X86ManagedRegister::FromCpuRegister(ECX); |
| } |
| |
| ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() { |
| return X86ManagedRegister::FromCpuRegister(ECX); |
| } |
| |
| ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const { |
| return ManagedRegister::NoRegister(); // No free regs, so assembler uses push/pop |
| } |
| |
| static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) { |
| if (shorty[0] == 'F' || shorty[0] == 'D') { |
| if (jni) { |
| return X86ManagedRegister::FromX87Register(ST0); |
| } else { |
| return X86ManagedRegister::FromXmmRegister(XMM0); |
| } |
| } else if (shorty[0] == 'J') { |
| return X86ManagedRegister::FromRegisterPair(EAX_EDX); |
| } else if (shorty[0] == 'V') { |
| return ManagedRegister::NoRegister(); |
| } else { |
| return X86ManagedRegister::FromCpuRegister(EAX); |
| } |
| } |
| |
| ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() { |
| return ReturnRegisterForShorty(GetShorty(), false); |
| } |
| |
| ManagedRegister X86JniCallingConvention::ReturnRegister() { |
| return ReturnRegisterForShorty(GetShorty(), true); |
| } |
| |
| ManagedRegister X86JniCallingConvention::IntReturnRegister() { |
| return X86ManagedRegister::FromCpuRegister(EAX); |
| } |
| |
| // Managed runtime calling convention |
| |
| ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() { |
| return X86ManagedRegister::FromCpuRegister(EAX); |
| } |
| |
| bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() { |
| return false; // Everything is passed by stack |
| } |
| |
| bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() { |
| // We assume all parameters are on stack, args coming via registers are spilled as entry_spills. |
| return true; |
| } |
| |
| ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() { |
| ManagedRegister res = ManagedRegister::NoRegister(); |
| if (!IsCurrentParamAFloatOrDouble()) { |
| switch (gpr_arg_count_) { |
| case 0: |
| res = X86ManagedRegister::FromCpuRegister(ECX); |
| break; |
| case 1: |
| res = X86ManagedRegister::FromCpuRegister(EDX); |
| break; |
| case 2: |
| // Don't split a long between the last register and the stack. |
| if (IsCurrentParamALong()) { |
| return ManagedRegister::NoRegister(); |
| } |
| res = X86ManagedRegister::FromCpuRegister(EBX); |
| break; |
| } |
| } else if (itr_float_and_doubles_ < 4) { |
| // First four float parameters are passed via XMM0..XMM3 |
| res = X86ManagedRegister::FromXmmRegister( |
| static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_)); |
| } |
| return res; |
| } |
| |
| ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() { |
| ManagedRegister res = ManagedRegister::NoRegister(); |
| DCHECK(IsCurrentParamALong()); |
| switch (gpr_arg_count_) { |
| case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break; |
| case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break; |
| } |
| return res; |
| } |
| |
| FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() { |
| return FrameOffset(displacement_.Int32Value() + // displacement |
| kFramePointerSize + // Method* |
| (itr_slots_ * kFramePointerSize)); // offset into in args |
| } |
| |
| const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() { |
| // We spill the argument registers on X86 to free them up for scratch use, we then assume |
| // all arguments are on the stack. |
| if (entry_spills_.size() == 0) { |
| ResetIterator(FrameOffset(0)); |
| while (HasNext()) { |
| ManagedRegister in_reg = CurrentParamRegister(); |
| bool is_long = IsCurrentParamALong(); |
| if (!in_reg.IsNoRegister()) { |
| int32_t size = IsParamADouble(itr_args_) ? 8 : 4; |
| int32_t spill_offset = CurrentParamStackOffset().Uint32Value(); |
| ManagedRegisterSpill spill(in_reg, size, spill_offset); |
| entry_spills_.push_back(spill); |
| if (is_long) { |
| // special case, as we need a second register here. |
| in_reg = CurrentParamHighLongRegister(); |
| DCHECK(!in_reg.IsNoRegister()); |
| // We have to spill the second half of the long. |
| ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4); |
| entry_spills_.push_back(spill2); |
| } |
| |
| // Keep track of the number of GPRs allocated. |
| if (!IsCurrentParamAFloatOrDouble()) { |
| if (is_long) { |
| // Long was allocated in 2 registers. |
| gpr_arg_count_ += 2; |
| } else { |
| gpr_arg_count_++; |
| } |
| } |
| } else if (is_long) { |
| // We need to skip the unused last register, which is empty. |
| // If we are already out of registers, this is harmless. |
| gpr_arg_count_ += 2; |
| } |
| Next(); |
| } |
| } |
| return entry_spills_; |
| } |
| |
| // JNI calling convention |
| |
| X86JniCallingConvention::X86JniCallingConvention(bool is_static, |
| bool is_synchronized, |
| bool is_critical_native, |
| const char* shorty) |
| : JniCallingConvention(is_static, |
| is_synchronized, |
| is_critical_native, |
| shorty, |
| kX86PointerSize) { |
| } |
| |
| uint32_t X86JniCallingConvention::CoreSpillMask() const { |
| return kCoreCalleeSpillMask; |
| } |
| |
| uint32_t X86JniCallingConvention::FpSpillMask() const { |
| return kFpCalleeSpillMask; |
| } |
| |
| size_t X86JniCallingConvention::FrameSize() { |
| // Method*, PC return address and callee save area size, local reference segment state |
| const size_t method_ptr_size = static_cast<size_t>(kX86PointerSize); |
| const size_t pc_return_addr_size = kFramePointerSize; |
| const size_t callee_save_area_size = CalleeSaveRegisters().size() * kFramePointerSize; |
| size_t frame_data_size = method_ptr_size + pc_return_addr_size + callee_save_area_size; |
| |
| if (LIKELY(HasLocalReferenceSegmentState())) { // local ref. segment state |
| // Local reference segment state is sometimes excluded. |
| frame_data_size += kFramePointerSize; |
| } |
| |
| // References plus link_ (pointer) and number_of_references_ (uint32_t) for HandleScope header |
| const size_t handle_scope_size = HandleScope::SizeOf(kX86PointerSize, ReferenceCount()); |
| |
| size_t total_size = frame_data_size; |
| if (LIKELY(HasHandleScope())) { |
| // HandleScope is sometimes excluded. |
| total_size += handle_scope_size; // handle scope size |
| } |
| |
| // Plus return value spill area size |
| total_size += SizeOfReturnValue(); |
| |
| return RoundUp(total_size, kStackAlignment); |
| // TODO: Same thing as x64 except using different pointer size. Refactor? |
| } |
| |
| size_t X86JniCallingConvention::OutArgSize() { |
| return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment); |
| } |
| |
| ArrayRef<const ManagedRegister> X86JniCallingConvention::CalleeSaveRegisters() const { |
| return ArrayRef<const ManagedRegister>(kCalleeSaveRegisters); |
| } |
| |
| bool X86JniCallingConvention::IsCurrentParamInRegister() { |
| return false; // Everything is passed by stack. |
| } |
| |
| bool X86JniCallingConvention::IsCurrentParamOnStack() { |
| return true; // Everything is passed by stack. |
| } |
| |
| ManagedRegister X86JniCallingConvention::CurrentParamRegister() { |
| LOG(FATAL) << "Should not reach here"; |
| return ManagedRegister::NoRegister(); |
| } |
| |
| FrameOffset X86JniCallingConvention::CurrentParamStackOffset() { |
| return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize)); |
| } |
| |
| size_t X86JniCallingConvention::NumberOfOutgoingStackArgs() { |
| size_t static_args = HasSelfClass() ? 1 : 0; // count jclass |
| // regular argument parameters and this |
| size_t param_args = NumArgs() + NumLongOrDoubleArgs(); |
| // count JNIEnv* and return pc (pushed after Method*) |
| size_t internal_args = 1 /* return pc */ + (HasJniEnv() ? 1 : 0 /* jni env */); |
| // No register args. |
| size_t total_args = static_args + param_args + internal_args; |
| return total_args; |
| } |
| |
| } // namespace x86 |
| } // namespace art |