blob: 5f64bb4f8b52ee3fdc774800be6e7717d40e04e9 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_CLASS_H_
#define ART_RUNTIME_MIRROR_CLASS_H_
#include "gc/heap.h"
#include "modifiers.h"
#include "object.h"
#include "primitive.h"
/*
* A magic value for refOffsets. Ignore the bits and walk the super
* chain when this is the value.
* [This is an unlikely "natural" value, since it would be 30 non-ref instance
* fields followed by 2 ref instance fields.]
*/
#define CLASS_WALK_SUPER 3U
#define CLASS_BITS_PER_WORD (sizeof(uint32_t) * 8)
#define CLASS_OFFSET_ALIGNMENT 4
#define CLASS_HIGH_BIT (1U << (CLASS_BITS_PER_WORD - 1))
/*
* Given an offset, return the bit number which would encode that offset.
* Local use only.
*/
#define _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) \
((unsigned int)(byteOffset) / \
CLASS_OFFSET_ALIGNMENT)
/*
* Is the given offset too large to be encoded?
*/
#define CLASS_CAN_ENCODE_OFFSET(byteOffset) \
(_CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset) < CLASS_BITS_PER_WORD)
/*
* Return a single bit, encoding the offset.
* Undefined if the offset is too large, as defined above.
*/
#define CLASS_BIT_FROM_OFFSET(byteOffset) \
(CLASS_HIGH_BIT >> _CLASS_BIT_NUMBER_FROM_OFFSET(byteOffset))
/*
* Return an offset, given a bit number as returned from CLZ.
*/
#define CLASS_OFFSET_FROM_CLZ(rshift) \
MemberOffset((static_cast<int>(rshift) * CLASS_OFFSET_ALIGNMENT))
namespace art {
struct ClassClassOffsets;
struct ClassOffsets;
class Signature;
class StringPiece;
namespace mirror {
class ArtField;
class ClassLoader;
class DexCache;
class IfTable;
// Type for the InitializedStaticStorage table. Currently the Class
// provides the static storage. However, this might change to an Array
// to improve image sharing, so we use this type to avoid assumptions
// on the current storage.
class MANAGED StaticStorageBase : public Object {
};
// C++ mirror of java.lang.Class
class MANAGED Class : public StaticStorageBase {
public:
// Class Status
//
// kStatusNotReady: If a Class cannot be found in the class table by
// FindClass, it allocates an new one with AllocClass in the
// kStatusNotReady and calls LoadClass. Note if it does find a
// class, it may not be kStatusResolved and it will try to push it
// forward toward kStatusResolved.
//
// kStatusIdx: LoadClass populates with Class with information from
// the DexFile, moving the status to kStatusIdx, indicating that the
// Class value in super_class_ has not been populated. The new Class
// can then be inserted into the classes table.
//
// kStatusLoaded: After taking a lock on Class, the ClassLinker will
// attempt to move a kStatusIdx class forward to kStatusLoaded by
// using ResolveClass to initialize the super_class_ and ensuring the
// interfaces are resolved.
//
// kStatusResolved: Still holding the lock on Class, the ClassLinker
// shows linking is complete and fields of the Class populated by making
// it kStatusResolved. Java allows circularities of the form where a super
// class has a field that is of the type of the sub class. We need to be able
// to fully resolve super classes while resolving types for fields.
//
// kStatusRetryVerificationAtRuntime: The verifier sets a class to
// this state if it encounters a soft failure at compile time. This
// often happens when there are unresolved classes in other dex
// files, and this status marks a class as needing to be verified
// again at runtime.
//
// TODO: Explain the other states
enum Status {
kStatusError = -1,
kStatusNotReady = 0,
kStatusIdx = 1, // Loaded, DEX idx in super_class_type_idx_ and interfaces_type_idx_.
kStatusLoaded = 2, // DEX idx values resolved.
kStatusResolved = 3, // Part of linking.
kStatusVerifying = 4, // In the process of being verified.
kStatusRetryVerificationAtRuntime = 5, // Compile time verification failed, retry at runtime.
kStatusVerifyingAtRuntime = 6, // Retrying verification at runtime.
kStatusVerified = 7, // Logically part of linking; done pre-init.
kStatusInitializing = 8, // Class init in progress.
kStatusInitialized = 9, // Ready to go.
kStatusMax = 10,
};
Status GetStatus() const {
DCHECK_EQ(sizeof(Status), sizeof(uint32_t));
return static_cast<Status>(GetField32(OFFSET_OF_OBJECT_MEMBER(Class, status_), true));
}
void SetStatus(Status new_status, Thread* self) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns true if the class has failed to link.
bool IsErroneous() const {
return GetStatus() == kStatusError;
}
// Returns true if the class has been loaded.
bool IsIdxLoaded() const {
return GetStatus() >= kStatusIdx;
}
// Returns true if the class has been loaded.
bool IsLoaded() const {
return GetStatus() >= kStatusLoaded;
}
// Returns true if the class has been linked.
bool IsResolved() const {
return GetStatus() >= kStatusResolved;
}
// Returns true if the class was compile-time verified.
bool IsCompileTimeVerified() const {
return GetStatus() >= kStatusRetryVerificationAtRuntime;
}
// Returns true if the class has been verified.
bool IsVerified() const {
return GetStatus() >= kStatusVerified;
}
// Returns true if the class is initializing.
bool IsInitializing() const {
return GetStatus() >= kStatusInitializing;
}
// Returns true if the class is initialized.
bool IsInitialized() const {
return GetStatus() == kStatusInitialized;
}
uint32_t GetAccessFlags() const;
void SetAccessFlags(uint32_t new_access_flags) {
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags, false);
}
// Returns true if the class is an interface.
bool IsInterface() const {
return (GetAccessFlags() & kAccInterface) != 0;
}
// Returns true if the class is declared public.
bool IsPublic() const {
return (GetAccessFlags() & kAccPublic) != 0;
}
// Returns true if the class is declared final.
bool IsFinal() const {
return (GetAccessFlags() & kAccFinal) != 0;
}
bool IsFinalizable() const {
return (GetAccessFlags() & kAccClassIsFinalizable) != 0;
}
void SetFinalizable() {
uint32_t flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), false);
SetAccessFlags(flags | kAccClassIsFinalizable);
}
// Returns true if the class is abstract.
bool IsAbstract() const {
return (GetAccessFlags() & kAccAbstract) != 0;
}
// Returns true if the class is an annotation.
bool IsAnnotation() const {
return (GetAccessFlags() & kAccAnnotation) != 0;
}
// Returns true if the class is synthetic.
bool IsSynthetic() const {
return (GetAccessFlags() & kAccSynthetic) != 0;
}
bool IsReferenceClass() const {
return (GetAccessFlags() & kAccClassIsReference) != 0;
}
bool IsWeakReferenceClass() const {
return (GetAccessFlags() & kAccClassIsWeakReference) != 0;
}
bool IsSoftReferenceClass() const {
return (GetAccessFlags() & kAccReferenceFlagsMask) == kAccClassIsReference;
}
bool IsFinalizerReferenceClass() const {
return (GetAccessFlags() & kAccClassIsFinalizerReference) != 0;
}
bool IsPhantomReferenceClass() const {
return (GetAccessFlags() & kAccClassIsPhantomReference) != 0;
}
// Can references of this type be assigned to by things of another type? For non-array types
// this is a matter of whether sub-classes may exist - which they can't if the type is final.
// For array classes, where all the classes are final due to there being no sub-classes, an
// Object[] may be assigned to by a String[] but a String[] may not be assigned to by other
// types as the component is final.
bool CannotBeAssignedFromOtherTypes() const {
if (!IsArrayClass()) {
return IsFinal();
} else {
Class* component = GetComponentType();
if (component->IsPrimitive()) {
return true;
} else {
return component->CannotBeAssignedFromOtherTypes();
}
}
}
String* GetName() const; // Returns the cached name.
void SetName(String* name) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_); // Sets the cached name.
// Computes the name, then sets the cached value.
String* ComputeName() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsProxyClass() const {
// Read access flags without using getter as whether something is a proxy can be check in
// any loaded state
// TODO: switch to a check if the super class is java.lang.reflect.Proxy?
uint32_t access_flags = GetField32(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), false);
return (access_flags & kAccClassIsProxy) != 0;
}
Primitive::Type GetPrimitiveType() const {
DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t));
return static_cast<Primitive::Type>(
GetField32(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_), false));
}
void SetPrimitiveType(Primitive::Type new_type) {
DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t));
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_), new_type, false);
}
// Returns true if the class is a primitive type.
bool IsPrimitive() const {
return GetPrimitiveType() != Primitive::kPrimNot;
}
bool IsPrimitiveBoolean() const {
return GetPrimitiveType() == Primitive::kPrimBoolean;
}
bool IsPrimitiveByte() const {
return GetPrimitiveType() == Primitive::kPrimByte;
}
bool IsPrimitiveChar() const {
return GetPrimitiveType() == Primitive::kPrimChar;
}
bool IsPrimitiveShort() const {
return GetPrimitiveType() == Primitive::kPrimShort;
}
bool IsPrimitiveInt() const {
return GetPrimitiveType() == Primitive::kPrimInt;
}
bool IsPrimitiveLong() const {
return GetPrimitiveType() == Primitive::kPrimLong;
}
bool IsPrimitiveFloat() const {
return GetPrimitiveType() == Primitive::kPrimFloat;
}
bool IsPrimitiveDouble() const {
return GetPrimitiveType() == Primitive::kPrimDouble;
}
bool IsPrimitiveVoid() const {
return GetPrimitiveType() == Primitive::kPrimVoid;
}
bool IsPrimitiveArray() const {
return IsArrayClass() && GetComponentType()->IsPrimitive();
}
// Depth of class from java.lang.Object
size_t Depth() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
size_t depth = 0;
for (Class* klass = this; klass->GetSuperClass() != NULL; klass = klass->GetSuperClass()) {
depth++;
}
return depth;
}
bool IsArrayClass() const {
return GetComponentType() != NULL;
}
bool IsClassClass() const;
bool IsStringClass() const;
bool IsThrowableClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsArtFieldClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsArtMethodClass() const;
static MemberOffset ComponentTypeOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, component_type_);
}
Class* GetComponentType() const {
return GetFieldObject<Class*>(ComponentTypeOffset(), false);
}
void SetComponentType(Class* new_component_type) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(GetComponentType() == NULL);
DCHECK(new_component_type != NULL);
SetFieldObject(ComponentTypeOffset(), new_component_type, false);
}
size_t GetComponentSize() const {
return Primitive::ComponentSize(GetComponentType()->GetPrimitiveType());
}
bool IsObjectClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return !IsPrimitive() && GetSuperClass() == NULL;
}
bool IsInstantiable() const {
return (!IsPrimitive() && !IsInterface() && !IsAbstract()) || ((IsAbstract()) && IsArrayClass());
}
bool IsObjectArrayClass() const {
return GetComponentType() != NULL && !GetComponentType()->IsPrimitive();
}
// Creates a raw object instance but does not invoke the default constructor.
template <bool kIsInstrumented>
ALWAYS_INLINE Object* Alloc(Thread* self, gc::AllocatorType allocator_type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Object* AllocObject(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
Object* AllocNonMovableObject(Thread* self)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsVariableSize() const {
// Classes and arrays vary in size, and so the object_size_ field cannot
// be used to get their instance size
return IsClassClass() || IsArrayClass();
}
size_t SizeOf() const {
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), false);
}
size_t GetClassSize() const {
DCHECK_EQ(sizeof(size_t), sizeof(uint32_t));
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, class_size_), false);
}
void SetClassSize(size_t new_class_size)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
size_t GetObjectSize() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetObjectSize(size_t new_object_size) {
DCHECK(!IsVariableSize());
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
return SetField32(OFFSET_OF_OBJECT_MEMBER(Class, object_size_), new_object_size, false);
}
// Returns true if this class is in the same packages as that class.
bool IsInSamePackage(const Class* that) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static bool IsInSamePackage(const StringPiece& descriptor1, const StringPiece& descriptor2);
// Returns true if this class can access that class.
bool CanAccess(Class* that) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return that->IsPublic() || this->IsInSamePackage(that);
}
// Can this class access a member in the provided class with the provided member access flags?
// Note that access to the class isn't checked in case the declaring class is protected and the
// method has been exposed by a public sub-class
bool CanAccessMember(Class* access_to, uint32_t member_flags) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// Classes can access all of their own members
if (this == access_to) {
return true;
}
// Public members are trivially accessible
if (member_flags & kAccPublic) {
return true;
}
// Private members are trivially not accessible
if (member_flags & kAccPrivate) {
return false;
}
// Check for protected access from a sub-class, which may or may not be in the same package.
if (member_flags & kAccProtected) {
if (this->IsSubClass(access_to)) {
return true;
}
}
// Allow protected access from other classes in the same package.
return this->IsInSamePackage(access_to);
}
bool IsSubClass(const Class* klass) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Can src be assigned to this class? For example, String can be assigned to Object (by an
// upcast), however, an Object cannot be assigned to a String as a potentially exception throwing
// downcast would be necessary. Similarly for interfaces, a class that implements (or an interface
// that extends) another can be assigned to its parent, but not vice-versa. All Classes may assign
// to themselves. Classes for primitive types may not assign to each other.
inline bool IsAssignableFrom(const Class* src) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(src != NULL);
if (this == src) {
// Can always assign to things of the same type.
return true;
} else if (IsObjectClass()) {
// Can assign any reference to java.lang.Object.
return !src->IsPrimitive();
} else if (IsInterface()) {
return src->Implements(this);
} else if (src->IsArrayClass()) {
return IsAssignableFromArray(src);
} else {
return !src->IsInterface() && src->IsSubClass(this);
}
}
Class* GetSuperClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetSuperClass(Class *new_super_class) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
// super class is assigned once, except during class linker initialization
Class* old_super_class = GetFieldObject<Class*>(
OFFSET_OF_OBJECT_MEMBER(Class, super_class_), false);
DCHECK(old_super_class == NULL || old_super_class == new_super_class);
DCHECK(new_super_class != NULL);
SetFieldObject(OFFSET_OF_OBJECT_MEMBER(Class, super_class_), new_super_class, false);
}
bool HasSuperClass() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
return GetSuperClass() != NULL;
}
static MemberOffset SuperClassOffset() {
return MemberOffset(OFFSETOF_MEMBER(Class, super_class_));
}
ClassLoader* GetClassLoader() const;
void SetClassLoader(ClassLoader* new_cl) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset DexCacheOffset() {
return MemberOffset(OFFSETOF_MEMBER(Class, dex_cache_));
}
enum {
kDumpClassFullDetail = 1,
kDumpClassClassLoader = (1 << 1),
kDumpClassInitialized = (1 << 2),
};
void DumpClass(std::ostream& os, int flags) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
DexCache* GetDexCache() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDexCache(DexCache* new_dex_cache) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetDirectMethods() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDirectMethods(ObjectArray<ArtMethod>* new_direct_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetDirectMethod(int32_t i) const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetDirectMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of static, private, and constructor methods.
size_t NumDirectMethods() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetVirtualMethods() const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVirtualMethods(ObjectArray<ArtMethod>* new_virtual_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of non-inherited virtual methods.
size_t NumVirtualMethods() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetVirtualMethod(uint32_t i) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* GetVirtualMethodDuringLinking(uint32_t i) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetVirtualMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ObjectArray<ArtMethod>* GetVTable() const;
ObjectArray<ArtMethod>* GetVTableDuringLinking() const;
void SetVTable(ObjectArray<ArtMethod>* new_vtable)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset VTableOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, vtable_);
}
ObjectArray<ArtMethod>* GetImTable() const;
void SetImTable(ObjectArray<ArtMethod>* new_imtable)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
static MemberOffset ImTableOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, imtable_);
}
// Given a method implemented by this class but potentially from a super class, return the
// specific implementation method for this class.
ArtMethod* FindVirtualMethodForVirtual(ArtMethod* method) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Given a method implemented by this class' super class, return the specific implementation
// method for this class.
ArtMethod* FindVirtualMethodForSuper(ArtMethod* method) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Given a method implemented by this class, but potentially from a
// super class or interface, return the specific implementation
// method for this class.
ArtMethod* FindVirtualMethodForInterface(ArtMethod* method) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) ALWAYS_INLINE;
ArtMethod* FindVirtualMethodForVirtualOrInterface(ArtMethod* method) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindInterfaceMethod(const StringPiece& name, const Signature& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindInterfaceMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const StringPiece& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const StringPiece& name, const Signature& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const StringPiece& name, const StringPiece& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const StringPiece& name, const Signature& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDirectMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const StringPiece& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const StringPiece& name, const Signature& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindDeclaredVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const StringPiece& name, const StringPiece& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const StringPiece& name, const Signature& signature) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindVirtualMethod(const DexCache* dex_cache, uint32_t dex_method_idx) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtMethod* FindClassInitializer() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
int32_t GetIfTableCount() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
IfTable* GetIfTable() const;
void SetIfTable(IfTable* new_iftable) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Get instance fields of the class (See also GetSFields).
ObjectArray<ArtField>* GetIFields() const;
void SetIFields(ObjectArray<ArtField>* new_ifields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
size_t NumInstanceFields() const SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* GetInstanceField(uint32_t i) const // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void SetInstanceField(uint32_t i, ArtField* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Returns the number of instance fields containing reference types.
size_t NumReferenceInstanceFields() const {
DCHECK(IsResolved() || IsErroneous());
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), false);
}
size_t NumReferenceInstanceFieldsDuringLinking() const {
DCHECK(IsLoaded() || IsErroneous());
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), false);
}
void SetNumReferenceInstanceFields(size_t new_num) {
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_instance_fields_), new_num, false);
}
uint32_t GetReferenceInstanceOffsets() const {
DCHECK(IsResolved() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_), false);
}
void SetReferenceInstanceOffsets(uint32_t new_reference_offsets)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Beginning of static field data
static MemberOffset FieldsOffset() {
return OFFSET_OF_OBJECT_MEMBER(Class, fields_);
}
// Returns the number of static fields containing reference types.
size_t NumReferenceStaticFields() const {
DCHECK(IsResolved() || IsErroneous());
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), false);
}
size_t NumReferenceStaticFieldsDuringLinking() const {
DCHECK(IsLoaded() || IsErroneous());
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), false);
}
void SetNumReferenceStaticFields(size_t new_num) {
DCHECK_EQ(sizeof(size_t), sizeof(int32_t));
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, num_reference_static_fields_), new_num, false);
}
// Gets the static fields of the class.
ObjectArray<ArtField>* GetSFields() const;
void SetSFields(ObjectArray<ArtField>* new_sfields) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
size_t NumStaticFields() const;
ArtField* GetStaticField(uint32_t i) const; // TODO: uint16_t
void SetStaticField(uint32_t i, ArtField* f); // TODO: uint16_t
uint32_t GetReferenceStaticOffsets() const {
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, reference_static_offsets_), false);
}
void SetReferenceStaticOffsets(uint32_t new_reference_offsets);
// Find a static or instance field using the JLS resolution order
ArtField* FindField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given instance field in this class or a superclass.
ArtField* FindInstanceField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given instance field in this class or a superclass, only searches classes that
// have the same dex cache.
ArtField* FindInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredInstanceField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredInstanceField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given static field in this class or a superclass.
ArtField* FindStaticField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// Finds the given static field in this class or superclass, only searches classes that
// have the same dex cache.
ArtField* FindStaticField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredStaticField(const StringPiece& name, const StringPiece& type)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
ArtField* FindDeclaredStaticField(const DexCache* dex_cache, uint32_t dex_field_idx)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
pid_t GetClinitThreadId() const {
DCHECK(IsIdxLoaded() || IsErroneous());
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), false);
}
void SetClinitThreadId(pid_t new_clinit_thread_id) {
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), new_clinit_thread_id, false);
}
Class* GetVerifyErrorClass() const {
// DCHECK(IsErroneous());
return GetFieldObject<Class*>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_), false);
}
uint16_t GetDexClassDefIndex() const {
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_), false);
}
void SetDexClassDefIndex(uint16_t class_def_idx) {
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_class_def_idx_), class_def_idx, false);
}
uint16_t GetDexTypeIndex() const {
return GetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_), false);
}
void SetDexTypeIndex(uint16_t type_idx) {
SetField32(OFFSET_OF_OBJECT_MEMBER(Class, dex_type_idx_), type_idx, false);
}
static Class* GetJavaLangClass() {
DCHECK(java_lang_Class_ != NULL);
return java_lang_Class_;
}
// Can't call this SetClass or else gets called instead of Object::SetClass in places.
static void SetClassClass(Class* java_lang_Class);
static void ResetClass();
// When class is verified, set the kAccPreverified flag on each method.
void SetPreverifiedFlagOnAllMethods() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
private:
void SetVerifyErrorClass(Class* klass) SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool Implements(const Class* klass) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsArrayAssignableFromArray(const Class* klass) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
bool IsAssignableFromArray(const Class* klass) const
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
void CheckObjectAlloc() SHARED_LOCKS_REQUIRED(Locks::mutator_lock_);
// defining class loader, or NULL for the "bootstrap" system loader
ClassLoader* class_loader_;
// For array classes, the component class object for instanceof/checkcast
// (for String[][][], this will be String[][]). NULL for non-array classes.
Class* component_type_;
// DexCache of resolved constant pool entries (will be NULL for classes generated by the
// runtime such as arrays and primitive classes).
DexCache* dex_cache_;
// static, private, and <init> methods
ObjectArray<ArtMethod>* direct_methods_;
// instance fields
//
// These describe the layout of the contents of an Object.
// Note that only the fields directly declared by this class are
// listed in ifields; fields declared by a superclass are listed in
// the superclass's Class.ifields.
//
// All instance fields that refer to objects are guaranteed to be at
// the beginning of the field list. num_reference_instance_fields_
// specifies the number of reference fields.
ObjectArray<ArtField>* ifields_;
// The interface table (iftable_) contains pairs of a interface class and an array of the
// interface methods. There is one pair per interface supported by this class. That means one
// pair for each interface we support directly, indirectly via superclass, or indirectly via a
// superinterface. This will be null if neither we nor our superclass implement any interfaces.
//
// Why we need this: given "class Foo implements Face", declare "Face faceObj = new Foo()".
// Invoke faceObj.blah(), where "blah" is part of the Face interface. We can't easily use a
// single vtable.
//
// For every interface a concrete class implements, we create an array of the concrete vtable_
// methods for the methods in the interface.
IfTable* iftable_;
// Interface method table (imt), for quick "invoke-interface".
ObjectArray<ArtMethod>* imtable_;
// descriptor for the class such as "java.lang.Class" or "[C". Lazily initialized by ComputeName
String* name_;
// Static fields
ObjectArray<ArtField>* sfields_;
// The superclass, or NULL if this is java.lang.Object, an interface or primitive type.
Class* super_class_;
// If class verify fails, we must return same error on subsequent tries.
Class* verify_error_class_;
// Virtual methods defined in this class; invoked through vtable.
ObjectArray<ArtMethod>* virtual_methods_;
// Virtual method table (vtable), for use by "invoke-virtual". The vtable from the superclass is
// copied in, and virtual methods from our class either replace those from the super or are
// appended. For abstract classes, methods may be created in the vtable that aren't in
// virtual_ methods_ for miranda methods.
ObjectArray<ArtMethod>* vtable_;
// Access flags; low 16 bits are defined by VM spec.
uint32_t access_flags_;
// Total size of the Class instance; used when allocating storage on gc heap.
// See also object_size_.
size_t class_size_;
// Tid used to check for recursive <clinit> invocation.
pid_t clinit_thread_id_;
// ClassDef index in dex file, -1 if no class definition such as an array.
// TODO: really 16bits
int32_t dex_class_def_idx_;
// Type index in dex file.
// TODO: really 16bits
int32_t dex_type_idx_;
// Number of instance fields that are object refs.
size_t num_reference_instance_fields_;
// Number of static fields that are object refs,
size_t num_reference_static_fields_;
// Total object size; used when allocating storage on gc heap.
// (For interfaces and abstract classes this will be zero.)
// See also class_size_.
size_t object_size_;
// Primitive type value, or Primitive::kPrimNot (0); set for generated primitive classes.
Primitive::Type primitive_type_;
// Bitmap of offsets of ifields.
uint32_t reference_instance_offsets_;
// Bitmap of offsets of sfields.
uint32_t reference_static_offsets_;
// State of class initialization.
Status status_;
// TODO: ?
// initiating class loader list
// NOTE: for classes with low serialNumber, these are unused, and the
// values are kept in a table in gDvm.
// InitiatingLoaderList initiating_loader_list_;
// Location of first static field.
uint32_t fields_[0];
// java.lang.Class
static Class* java_lang_Class_;
friend struct art::ClassOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(Class);
};
std::ostream& operator<<(std::ostream& os, const Class::Status& rhs);
class MANAGED ClassClass : public Class {
private:
int32_t pad_;
int64_t serialVersionUID_;
friend struct art::ClassClassOffsets; // for verifying offset information
DISALLOW_IMPLICIT_CONSTRUCTORS(ClassClass);
};
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_CLASS_H_