blob: ba26cfc70f4f721173e0731b7808e968bbce9a41 [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "code_generator.h"
#ifdef ART_ENABLE_CODEGEN_arm
#include "code_generator_arm_vixl.h"
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
#include "code_generator_arm64.h"
#endif
#ifdef ART_ENABLE_CODEGEN_x86
#include "code_generator_x86.h"
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
#include "code_generator_x86_64.h"
#endif
#ifdef ART_ENABLE_CODEGEN_mips
#include "code_generator_mips.h"
#endif
#ifdef ART_ENABLE_CODEGEN_mips64
#include "code_generator_mips64.h"
#endif
#include "base/bit_utils.h"
#include "base/bit_utils_iterator.h"
#include "bytecode_utils.h"
#include "class_linker.h"
#include "compiled_method.h"
#include "dex/verified_method.h"
#include "driver/compiler_driver.h"
#include "graph_visualizer.h"
#include "intern_table.h"
#include "intrinsics.h"
#include "leb128.h"
#include "mirror/array-inl.h"
#include "mirror/object_array-inl.h"
#include "mirror/object_reference.h"
#include "mirror/reference.h"
#include "mirror/string.h"
#include "parallel_move_resolver.h"
#include "scoped_thread_state_change-inl.h"
#include "ssa_liveness_analysis.h"
#include "thread-current-inl.h"
#include "utils/assembler.h"
namespace art {
// If true, we record the static and direct invokes in the invoke infos.
static constexpr bool kEnableDexLayoutOptimizations = false;
// Return whether a location is consistent with a type.
static bool CheckType(DataType::Type type, Location location) {
if (location.IsFpuRegister()
|| (location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresFpuRegister))) {
return (type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64);
} else if (location.IsRegister() ||
(location.IsUnallocated() && (location.GetPolicy() == Location::kRequiresRegister))) {
return DataType::IsIntegralType(type) || (type == DataType::Type::kReference);
} else if (location.IsRegisterPair()) {
return type == DataType::Type::kInt64;
} else if (location.IsFpuRegisterPair()) {
return type == DataType::Type::kFloat64;
} else if (location.IsStackSlot()) {
return (DataType::IsIntegralType(type) && type != DataType::Type::kInt64)
|| (type == DataType::Type::kFloat32)
|| (type == DataType::Type::kReference);
} else if (location.IsDoubleStackSlot()) {
return (type == DataType::Type::kInt64) || (type == DataType::Type::kFloat64);
} else if (location.IsConstant()) {
if (location.GetConstant()->IsIntConstant()) {
return DataType::IsIntegralType(type) && (type != DataType::Type::kInt64);
} else if (location.GetConstant()->IsNullConstant()) {
return type == DataType::Type::kReference;
} else if (location.GetConstant()->IsLongConstant()) {
return type == DataType::Type::kInt64;
} else if (location.GetConstant()->IsFloatConstant()) {
return type == DataType::Type::kFloat32;
} else {
return location.GetConstant()->IsDoubleConstant()
&& (type == DataType::Type::kFloat64);
}
} else {
return location.IsInvalid() || (location.GetPolicy() == Location::kAny);
}
}
// Check that a location summary is consistent with an instruction.
static bool CheckTypeConsistency(HInstruction* instruction) {
LocationSummary* locations = instruction->GetLocations();
if (locations == nullptr) {
return true;
}
if (locations->Out().IsUnallocated()
&& (locations->Out().GetPolicy() == Location::kSameAsFirstInput)) {
DCHECK(CheckType(instruction->GetType(), locations->InAt(0)))
<< instruction->GetType()
<< " " << locations->InAt(0);
} else {
DCHECK(CheckType(instruction->GetType(), locations->Out()))
<< instruction->GetType()
<< " " << locations->Out();
}
HConstInputsRef inputs = instruction->GetInputs();
for (size_t i = 0; i < inputs.size(); ++i) {
DCHECK(CheckType(inputs[i]->GetType(), locations->InAt(i)))
<< inputs[i]->GetType() << " " << locations->InAt(i);
}
HEnvironment* environment = instruction->GetEnvironment();
for (size_t i = 0; i < instruction->EnvironmentSize(); ++i) {
if (environment->GetInstructionAt(i) != nullptr) {
DataType::Type type = environment->GetInstructionAt(i)->GetType();
DCHECK(CheckType(type, environment->GetLocationAt(i)))
<< type << " " << environment->GetLocationAt(i);
} else {
DCHECK(environment->GetLocationAt(i).IsInvalid())
<< environment->GetLocationAt(i);
}
}
return true;
}
size_t CodeGenerator::GetCacheOffset(uint32_t index) {
return sizeof(GcRoot<mirror::Object>) * index;
}
size_t CodeGenerator::GetCachePointerOffset(uint32_t index) {
PointerSize pointer_size = InstructionSetPointerSize(GetInstructionSet());
return static_cast<size_t>(pointer_size) * index;
}
uint32_t CodeGenerator::GetArrayLengthOffset(HArrayLength* array_length) {
return array_length->IsStringLength()
? mirror::String::CountOffset().Uint32Value()
: mirror::Array::LengthOffset().Uint32Value();
}
uint32_t CodeGenerator::GetArrayDataOffset(HArrayGet* array_get) {
DCHECK(array_get->GetType() == DataType::Type::kUint16 || !array_get->IsStringCharAt());
return array_get->IsStringCharAt()
? mirror::String::ValueOffset().Uint32Value()
: mirror::Array::DataOffset(DataType::Size(array_get->GetType())).Uint32Value();
}
bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const {
DCHECK_EQ((*block_order_)[current_block_index_], current);
return GetNextBlockToEmit() == FirstNonEmptyBlock(next);
}
HBasicBlock* CodeGenerator::GetNextBlockToEmit() const {
for (size_t i = current_block_index_ + 1; i < block_order_->size(); ++i) {
HBasicBlock* block = (*block_order_)[i];
if (!block->IsSingleJump()) {
return block;
}
}
return nullptr;
}
HBasicBlock* CodeGenerator::FirstNonEmptyBlock(HBasicBlock* block) const {
while (block->IsSingleJump()) {
block = block->GetSuccessors()[0];
}
return block;
}
class DisassemblyScope {
public:
DisassemblyScope(HInstruction* instruction, const CodeGenerator& codegen)
: codegen_(codegen), instruction_(instruction), start_offset_(static_cast<size_t>(-1)) {
if (codegen_.GetDisassemblyInformation() != nullptr) {
start_offset_ = codegen_.GetAssembler().CodeSize();
}
}
~DisassemblyScope() {
// We avoid building this data when we know it will not be used.
if (codegen_.GetDisassemblyInformation() != nullptr) {
codegen_.GetDisassemblyInformation()->AddInstructionInterval(
instruction_, start_offset_, codegen_.GetAssembler().CodeSize());
}
}
private:
const CodeGenerator& codegen_;
HInstruction* instruction_;
size_t start_offset_;
};
void CodeGenerator::GenerateSlowPaths() {
size_t code_start = 0;
for (const std::unique_ptr<SlowPathCode>& slow_path_unique_ptr : slow_paths_) {
SlowPathCode* slow_path = slow_path_unique_ptr.get();
current_slow_path_ = slow_path;
if (disasm_info_ != nullptr) {
code_start = GetAssembler()->CodeSize();
}
// Record the dex pc at start of slow path (required for java line number mapping).
MaybeRecordNativeDebugInfo(slow_path->GetInstruction(), slow_path->GetDexPc(), slow_path);
slow_path->EmitNativeCode(this);
if (disasm_info_ != nullptr) {
disasm_info_->AddSlowPathInterval(slow_path, code_start, GetAssembler()->CodeSize());
}
}
current_slow_path_ = nullptr;
}
void CodeGenerator::Compile(CodeAllocator* allocator) {
// The register allocator already called `InitializeCodeGeneration`,
// where the frame size has been computed.
DCHECK(block_order_ != nullptr);
Initialize();
HGraphVisitor* instruction_visitor = GetInstructionVisitor();
DCHECK_EQ(current_block_index_, 0u);
size_t frame_start = GetAssembler()->CodeSize();
GenerateFrameEntry();
DCHECK_EQ(GetAssembler()->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size_));
if (disasm_info_ != nullptr) {
disasm_info_->SetFrameEntryInterval(frame_start, GetAssembler()->CodeSize());
}
for (size_t e = block_order_->size(); current_block_index_ < e; ++current_block_index_) {
HBasicBlock* block = (*block_order_)[current_block_index_];
// Don't generate code for an empty block. Its predecessors will branch to its successor
// directly. Also, the label of that block will not be emitted, so this helps catch
// errors where we reference that label.
if (block->IsSingleJump()) continue;
Bind(block);
// This ensures that we have correct native line mapping for all native instructions.
// It is necessary to make stepping over a statement work. Otherwise, any initial
// instructions (e.g. moves) would be assumed to be the start of next statement.
MaybeRecordNativeDebugInfo(nullptr /* instruction */, block->GetDexPc());
for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
if (current->HasEnvironment()) {
// Create stackmap for HNativeDebugInfo or any instruction which calls native code.
// Note that we need correct mapping for the native PC of the call instruction,
// so the runtime's stackmap is not sufficient since it is at PC after the call.
MaybeRecordNativeDebugInfo(current, block->GetDexPc());
}
DisassemblyScope disassembly_scope(current, *this);
DCHECK(CheckTypeConsistency(current));
current->Accept(instruction_visitor);
}
}
GenerateSlowPaths();
// Emit catch stack maps at the end of the stack map stream as expected by the
// runtime exception handler.
if (graph_->HasTryCatch()) {
RecordCatchBlockInfo();
}
// Finalize instructions in assember;
Finalize(allocator);
}
void CodeGenerator::Finalize(CodeAllocator* allocator) {
size_t code_size = GetAssembler()->CodeSize();
uint8_t* buffer = allocator->Allocate(code_size);
MemoryRegion code(buffer, code_size);
GetAssembler()->FinalizeInstructions(code);
}
void CodeGenerator::EmitLinkerPatches(
ArenaVector<linker::LinkerPatch>* linker_patches ATTRIBUTE_UNUSED) {
// No linker patches by default.
}
void CodeGenerator::InitializeCodeGeneration(size_t number_of_spill_slots,
size_t maximum_safepoint_spill_size,
size_t number_of_out_slots,
const ArenaVector<HBasicBlock*>& block_order) {
block_order_ = &block_order;
DCHECK(!block_order.empty());
DCHECK(block_order[0] == GetGraph()->GetEntryBlock());
ComputeSpillMask();
first_register_slot_in_slow_path_ = RoundUp(
(number_of_out_slots + number_of_spill_slots) * kVRegSize, GetPreferredSlotsAlignment());
if (number_of_spill_slots == 0
&& !HasAllocatedCalleeSaveRegisters()
&& IsLeafMethod()
&& !RequiresCurrentMethod()) {
DCHECK_EQ(maximum_safepoint_spill_size, 0u);
SetFrameSize(CallPushesPC() ? GetWordSize() : 0);
} else {
SetFrameSize(RoundUp(
first_register_slot_in_slow_path_
+ maximum_safepoint_spill_size
+ (GetGraph()->HasShouldDeoptimizeFlag() ? kShouldDeoptimizeFlagSize : 0)
+ FrameEntrySpillSize(),
kStackAlignment));
}
}
void CodeGenerator::CreateCommonInvokeLocationSummary(
HInvoke* invoke, InvokeDexCallingConventionVisitor* visitor) {
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnMainOnly);
for (size_t i = 0; i < invoke->GetNumberOfArguments(); i++) {
HInstruction* input = invoke->InputAt(i);
locations->SetInAt(i, visitor->GetNextLocation(input->GetType()));
}
locations->SetOut(visitor->GetReturnLocation(invoke->GetType()));
if (invoke->IsInvokeStaticOrDirect()) {
HInvokeStaticOrDirect* call = invoke->AsInvokeStaticOrDirect();
switch (call->GetMethodLoadKind()) {
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
locations->SetInAt(call->GetSpecialInputIndex(), visitor->GetMethodLocation());
break;
case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall:
locations->AddTemp(visitor->GetMethodLocation());
locations->SetInAt(call->GetSpecialInputIndex(), Location::RequiresRegister());
break;
default:
locations->AddTemp(visitor->GetMethodLocation());
break;
}
} else {
locations->AddTemp(visitor->GetMethodLocation());
}
}
void CodeGenerator::GenerateInvokeStaticOrDirectRuntimeCall(
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
MoveConstant(temp, invoke->GetDexMethodIndex());
// The access check is unnecessary but we do not want to introduce
// extra entrypoints for the codegens that do not support some
// invoke type and fall back to the runtime call.
// Initialize to anything to silent compiler warnings.
QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
switch (invoke->GetInvokeType()) {
case kStatic:
entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
break;
case kDirect:
entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
break;
case kSuper:
entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
break;
case kVirtual:
case kInterface:
LOG(FATAL) << "Unexpected invoke type: " << invoke->GetInvokeType();
UNREACHABLE();
}
InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), slow_path);
}
void CodeGenerator::GenerateInvokeUnresolvedRuntimeCall(HInvokeUnresolved* invoke) {
MoveConstant(invoke->GetLocations()->GetTemp(0), invoke->GetDexMethodIndex());
// Initialize to anything to silent compiler warnings.
QuickEntrypointEnum entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
switch (invoke->GetInvokeType()) {
case kStatic:
entrypoint = kQuickInvokeStaticTrampolineWithAccessCheck;
break;
case kDirect:
entrypoint = kQuickInvokeDirectTrampolineWithAccessCheck;
break;
case kVirtual:
entrypoint = kQuickInvokeVirtualTrampolineWithAccessCheck;
break;
case kSuper:
entrypoint = kQuickInvokeSuperTrampolineWithAccessCheck;
break;
case kInterface:
entrypoint = kQuickInvokeInterfaceTrampolineWithAccessCheck;
break;
}
InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
}
void CodeGenerator::GenerateInvokePolymorphicCall(HInvokePolymorphic* invoke) {
MoveConstant(invoke->GetLocations()->GetTemp(0), static_cast<int32_t>(invoke->GetType()));
QuickEntrypointEnum entrypoint = kQuickInvokePolymorphic;
InvokeRuntime(entrypoint, invoke, invoke->GetDexPc(), nullptr);
}
void CodeGenerator::CreateUnresolvedFieldLocationSummary(
HInstruction* field_access,
DataType::Type field_type,
const FieldAccessCallingConvention& calling_convention) {
bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedInstanceFieldSet();
bool is_get = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedStaticFieldGet();
ArenaAllocator* allocator = field_access->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations =
new (allocator) LocationSummary(field_access, LocationSummary::kCallOnMainOnly);
locations->AddTemp(calling_convention.GetFieldIndexLocation());
if (is_instance) {
// Add the `this` object for instance field accesses.
locations->SetInAt(0, calling_convention.GetObjectLocation());
}
// Note that pSetXXStatic/pGetXXStatic always takes/returns an int or int64
// regardless of the the type. Because of that we forced to special case
// the access to floating point values.
if (is_get) {
if (DataType::IsFloatingPointType(field_type)) {
// The return value will be stored in regular registers while register
// allocator expects it in a floating point register.
// Note We don't need to request additional temps because the return
// register(s) are already blocked due the call and they may overlap with
// the input or field index.
// The transfer between the two will be done at codegen level.
locations->SetOut(calling_convention.GetFpuLocation(field_type));
} else {
locations->SetOut(calling_convention.GetReturnLocation(field_type));
}
} else {
size_t set_index = is_instance ? 1 : 0;
if (DataType::IsFloatingPointType(field_type)) {
// The set value comes from a float location while the calling convention
// expects it in a regular register location. Allocate a temp for it and
// make the transfer at codegen.
AddLocationAsTemp(calling_convention.GetSetValueLocation(field_type, is_instance), locations);
locations->SetInAt(set_index, calling_convention.GetFpuLocation(field_type));
} else {
locations->SetInAt(set_index,
calling_convention.GetSetValueLocation(field_type, is_instance));
}
}
}
void CodeGenerator::GenerateUnresolvedFieldAccess(
HInstruction* field_access,
DataType::Type field_type,
uint32_t field_index,
uint32_t dex_pc,
const FieldAccessCallingConvention& calling_convention) {
LocationSummary* locations = field_access->GetLocations();
MoveConstant(locations->GetTemp(0), field_index);
bool is_instance = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedInstanceFieldSet();
bool is_get = field_access->IsUnresolvedInstanceFieldGet()
|| field_access->IsUnresolvedStaticFieldGet();
if (!is_get && DataType::IsFloatingPointType(field_type)) {
// Copy the float value to be set into the calling convention register.
// Note that using directly the temp location is problematic as we don't
// support temp register pairs. To avoid boilerplate conversion code, use
// the location from the calling convention.
MoveLocation(calling_convention.GetSetValueLocation(field_type, is_instance),
locations->InAt(is_instance ? 1 : 0),
(DataType::Is64BitType(field_type) ? DataType::Type::kInt64
: DataType::Type::kInt32));
}
QuickEntrypointEnum entrypoint = kQuickSet8Static; // Initialize to anything to avoid warnings.
switch (field_type) {
case DataType::Type::kBool:
entrypoint = is_instance
? (is_get ? kQuickGetBooleanInstance : kQuickSet8Instance)
: (is_get ? kQuickGetBooleanStatic : kQuickSet8Static);
break;
case DataType::Type::kInt8:
entrypoint = is_instance
? (is_get ? kQuickGetByteInstance : kQuickSet8Instance)
: (is_get ? kQuickGetByteStatic : kQuickSet8Static);
break;
case DataType::Type::kInt16:
entrypoint = is_instance
? (is_get ? kQuickGetShortInstance : kQuickSet16Instance)
: (is_get ? kQuickGetShortStatic : kQuickSet16Static);
break;
case DataType::Type::kUint16:
entrypoint = is_instance
? (is_get ? kQuickGetCharInstance : kQuickSet16Instance)
: (is_get ? kQuickGetCharStatic : kQuickSet16Static);
break;
case DataType::Type::kInt32:
case DataType::Type::kFloat32:
entrypoint = is_instance
? (is_get ? kQuickGet32Instance : kQuickSet32Instance)
: (is_get ? kQuickGet32Static : kQuickSet32Static);
break;
case DataType::Type::kReference:
entrypoint = is_instance
? (is_get ? kQuickGetObjInstance : kQuickSetObjInstance)
: (is_get ? kQuickGetObjStatic : kQuickSetObjStatic);
break;
case DataType::Type::kInt64:
case DataType::Type::kFloat64:
entrypoint = is_instance
? (is_get ? kQuickGet64Instance : kQuickSet64Instance)
: (is_get ? kQuickGet64Static : kQuickSet64Static);
break;
default:
LOG(FATAL) << "Invalid type " << field_type;
}
InvokeRuntime(entrypoint, field_access, dex_pc, nullptr);
if (is_get && DataType::IsFloatingPointType(field_type)) {
MoveLocation(locations->Out(), calling_convention.GetReturnLocation(field_type), field_type);
}
}
void CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(HLoadClass* cls,
Location runtime_type_index_location,
Location runtime_return_location) {
DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
DCHECK_EQ(cls->InputCount(), 1u);
LocationSummary* locations = new (cls->GetBlock()->GetGraph()->GetAllocator()) LocationSummary(
cls, LocationSummary::kCallOnMainOnly);
locations->SetInAt(0, Location::NoLocation());
locations->AddTemp(runtime_type_index_location);
locations->SetOut(runtime_return_location);
}
void CodeGenerator::GenerateLoadClassRuntimeCall(HLoadClass* cls) {
DCHECK_EQ(cls->GetLoadKind(), HLoadClass::LoadKind::kRuntimeCall);
LocationSummary* locations = cls->GetLocations();
MoveConstant(locations->GetTemp(0), cls->GetTypeIndex().index_);
if (cls->NeedsAccessCheck()) {
CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
InvokeRuntime(kQuickInitializeTypeAndVerifyAccess, cls, cls->GetDexPc());
} else if (cls->MustGenerateClinitCheck()) {
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
InvokeRuntime(kQuickInitializeStaticStorage, cls, cls->GetDexPc());
} else {
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
InvokeRuntime(kQuickInitializeType, cls, cls->GetDexPc());
}
}
void CodeGenerator::BlockIfInRegister(Location location, bool is_out) const {
// The DCHECKS below check that a register is not specified twice in
// the summary. The out location can overlap with an input, so we need
// to special case it.
if (location.IsRegister()) {
DCHECK(is_out || !blocked_core_registers_[location.reg()]);
blocked_core_registers_[location.reg()] = true;
} else if (location.IsFpuRegister()) {
DCHECK(is_out || !blocked_fpu_registers_[location.reg()]);
blocked_fpu_registers_[location.reg()] = true;
} else if (location.IsFpuRegisterPair()) {
DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()]);
blocked_fpu_registers_[location.AsFpuRegisterPairLow<int>()] = true;
DCHECK(is_out || !blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()]);
blocked_fpu_registers_[location.AsFpuRegisterPairHigh<int>()] = true;
} else if (location.IsRegisterPair()) {
DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairLow<int>()]);
blocked_core_registers_[location.AsRegisterPairLow<int>()] = true;
DCHECK(is_out || !blocked_core_registers_[location.AsRegisterPairHigh<int>()]);
blocked_core_registers_[location.AsRegisterPairHigh<int>()] = true;
}
}
void CodeGenerator::AllocateLocations(HInstruction* instruction) {
for (HEnvironment* env = instruction->GetEnvironment(); env != nullptr; env = env->GetParent()) {
env->AllocateLocations();
}
instruction->Accept(GetLocationBuilder());
DCHECK(CheckTypeConsistency(instruction));
LocationSummary* locations = instruction->GetLocations();
if (!instruction->IsSuspendCheckEntry()) {
if (locations != nullptr) {
if (locations->CanCall()) {
MarkNotLeaf();
} else if (locations->Intrinsified() &&
instruction->IsInvokeStaticOrDirect() &&
!instruction->AsInvokeStaticOrDirect()->HasCurrentMethodInput()) {
// A static method call that has been fully intrinsified, and cannot call on the slow
// path or refer to the current method directly, no longer needs current method.
return;
}
}
if (instruction->NeedsCurrentMethod()) {
SetRequiresCurrentMethod();
}
}
}
std::unique_ptr<CodeGenerator> CodeGenerator::Create(HGraph* graph,
InstructionSet instruction_set,
const InstructionSetFeatures& isa_features,
const CompilerOptions& compiler_options,
OptimizingCompilerStats* stats) {
ArenaAllocator* arena = graph->GetAllocator();
switch (instruction_set) {
#ifdef ART_ENABLE_CODEGEN_arm
case kArm:
case kThumb2: {
return std::unique_ptr<CodeGenerator>(
new (arena) arm::CodeGeneratorARMVIXL(graph,
*isa_features.AsArmInstructionSetFeatures(),
compiler_options,
stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
case kArm64: {
return std::unique_ptr<CodeGenerator>(
new (arena) arm64::CodeGeneratorARM64(graph,
*isa_features.AsArm64InstructionSetFeatures(),
compiler_options,
stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_mips
case kMips: {
return std::unique_ptr<CodeGenerator>(
new (arena) mips::CodeGeneratorMIPS(graph,
*isa_features.AsMipsInstructionSetFeatures(),
compiler_options,
stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_mips64
case kMips64: {
return std::unique_ptr<CodeGenerator>(
new (arena) mips64::CodeGeneratorMIPS64(graph,
*isa_features.AsMips64InstructionSetFeatures(),
compiler_options,
stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
case kX86: {
return std::unique_ptr<CodeGenerator>(
new (arena) x86::CodeGeneratorX86(graph,
*isa_features.AsX86InstructionSetFeatures(),
compiler_options,
stats));
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
case kX86_64: {
return std::unique_ptr<CodeGenerator>(
new (arena) x86_64::CodeGeneratorX86_64(graph,
*isa_features.AsX86_64InstructionSetFeatures(),
compiler_options,
stats));
}
#endif
default:
return nullptr;
}
}
void CodeGenerator::ComputeStackMapAndMethodInfoSize(size_t* stack_map_size,
size_t* method_info_size) {
DCHECK(stack_map_size != nullptr);
DCHECK(method_info_size != nullptr);
*stack_map_size = stack_map_stream_.PrepareForFillIn();
*method_info_size = stack_map_stream_.ComputeMethodInfoSize();
}
static void CheckCovers(uint32_t dex_pc,
const HGraph& graph,
const CodeInfo& code_info,
const ArenaVector<HSuspendCheck*>& loop_headers,
ArenaVector<size_t>* covered) {
CodeInfoEncoding encoding = code_info.ExtractEncoding();
for (size_t i = 0; i < loop_headers.size(); ++i) {
if (loop_headers[i]->GetDexPc() == dex_pc) {
if (graph.IsCompilingOsr()) {
DCHECK(code_info.GetOsrStackMapForDexPc(dex_pc, encoding).IsValid());
}
++(*covered)[i];
}
}
}
// Debug helper to ensure loop entries in compiled code are matched by
// dex branch instructions.
static void CheckLoopEntriesCanBeUsedForOsr(const HGraph& graph,
const CodeInfo& code_info,
const DexFile::CodeItem& code_item) {
if (graph.HasTryCatch()) {
// One can write loops through try/catch, which we do not support for OSR anyway.
return;
}
ArenaVector<HSuspendCheck*> loop_headers(graph.GetAllocator()->Adapter(kArenaAllocMisc));
for (HBasicBlock* block : graph.GetReversePostOrder()) {
if (block->IsLoopHeader()) {
HSuspendCheck* suspend_check = block->GetLoopInformation()->GetSuspendCheck();
if (!suspend_check->GetEnvironment()->IsFromInlinedInvoke()) {
loop_headers.push_back(suspend_check);
}
}
}
ArenaVector<size_t> covered(
loop_headers.size(), 0, graph.GetAllocator()->Adapter(kArenaAllocMisc));
IterationRange<DexInstructionIterator> instructions = code_item.Instructions();
for (auto it = instructions.begin(); it != instructions.end(); ++it) {
const uint32_t dex_pc = it.GetDexPC(instructions.begin());
const Instruction& instruction = *it;
if (instruction.IsBranch()) {
uint32_t target = dex_pc + instruction.GetTargetOffset();
CheckCovers(target, graph, code_info, loop_headers, &covered);
} else if (instruction.IsSwitch()) {
DexSwitchTable table(instruction, dex_pc);
uint16_t num_entries = table.GetNumEntries();
size_t offset = table.GetFirstValueIndex();
// Use a larger loop counter type to avoid overflow issues.
for (size_t i = 0; i < num_entries; ++i) {
// The target of the case.
uint32_t target = dex_pc + table.GetEntryAt(i + offset);
CheckCovers(target, graph, code_info, loop_headers, &covered);
}
}
}
for (size_t i = 0; i < covered.size(); ++i) {
DCHECK_NE(covered[i], 0u) << "Loop in compiled code has no dex branch equivalent";
}
}
void CodeGenerator::BuildStackMaps(MemoryRegion stack_map_region,
MemoryRegion method_info_region,
const DexFile::CodeItem& code_item) {
stack_map_stream_.FillInCodeInfo(stack_map_region);
stack_map_stream_.FillInMethodInfo(method_info_region);
if (kIsDebugBuild) {
CheckLoopEntriesCanBeUsedForOsr(*graph_, CodeInfo(stack_map_region), code_item);
}
}
void CodeGenerator::RecordPcInfo(HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
if (instruction != nullptr) {
// The code generated for some type conversions
// may call the runtime, thus normally requiring a subsequent
// call to this method. However, the method verifier does not
// produce PC information for certain instructions, which are
// considered "atomic" (they cannot join a GC).
// Therefore we do not currently record PC information for such
// instructions. As this may change later, we added this special
// case so that code generators may nevertheless call
// CodeGenerator::RecordPcInfo without triggering an error in
// CodeGenerator::BuildNativeGCMap ("Missing ref for dex pc 0x")
// thereafter.
if (instruction->IsTypeConversion()) {
return;
}
if (instruction->IsRem()) {
DataType::Type type = instruction->AsRem()->GetResultType();
if ((type == DataType::Type::kFloat32) || (type == DataType::Type::kFloat64)) {
return;
}
}
}
uint32_t outer_dex_pc = dex_pc;
uint32_t outer_environment_size = 0;
uint32_t inlining_depth = 0;
if (instruction != nullptr) {
for (HEnvironment* environment = instruction->GetEnvironment();
environment != nullptr;
environment = environment->GetParent()) {
outer_dex_pc = environment->GetDexPc();
outer_environment_size = environment->Size();
if (environment != instruction->GetEnvironment()) {
inlining_depth++;
}
}
}
// Collect PC infos for the mapping table.
uint32_t native_pc = GetAssembler()->CodePosition();
if (instruction == nullptr) {
// For stack overflow checks and native-debug-info entries without dex register
// mapping (i.e. start of basic block or start of slow path).
stack_map_stream_.BeginStackMapEntry(outer_dex_pc, native_pc, 0, 0, 0, 0);
stack_map_stream_.EndStackMapEntry();
return;
}
LocationSummary* locations = instruction->GetLocations();
uint32_t register_mask = locations->GetRegisterMask();
DCHECK_EQ(register_mask & ~locations->GetLiveRegisters()->GetCoreRegisters(), 0u);
if (locations->OnlyCallsOnSlowPath()) {
// In case of slow path, we currently set the location of caller-save registers
// to register (instead of their stack location when pushed before the slow-path
// call). Therefore register_mask contains both callee-save and caller-save
// registers that hold objects. We must remove the spilled caller-save from the
// mask, since they will be overwritten by the callee.
uint32_t spills = GetSlowPathSpills(locations, /* core_registers */ true);
register_mask &= ~spills;
} else {
// The register mask must be a subset of callee-save registers.
DCHECK_EQ(register_mask & core_callee_save_mask_, register_mask);
}
stack_map_stream_.BeginStackMapEntry(outer_dex_pc,
native_pc,
register_mask,
locations->GetStackMask(),
outer_environment_size,
inlining_depth);
HEnvironment* const environment = instruction->GetEnvironment();
EmitEnvironment(environment, slow_path);
// Record invoke info, the common case for the trampoline is super and static invokes. Only
// record these to reduce oat file size.
if (kEnableDexLayoutOptimizations) {
if (environment != nullptr &&
instruction->IsInvoke() &&
instruction->IsInvokeStaticOrDirect()) {
HInvoke* const invoke = instruction->AsInvoke();
stack_map_stream_.AddInvoke(invoke->GetInvokeType(), invoke->GetDexMethodIndex());
}
}
stack_map_stream_.EndStackMapEntry();
HLoopInformation* info = instruction->GetBlock()->GetLoopInformation();
if (instruction->IsSuspendCheck() &&
(info != nullptr) &&
graph_->IsCompilingOsr() &&
(inlining_depth == 0)) {
DCHECK_EQ(info->GetSuspendCheck(), instruction);
// We duplicate the stack map as a marker that this stack map can be an OSR entry.
// Duplicating it avoids having the runtime recognize and skip an OSR stack map.
DCHECK(info->IsIrreducible());
stack_map_stream_.BeginStackMapEntry(
dex_pc, native_pc, register_mask, locations->GetStackMask(), outer_environment_size, 0);
EmitEnvironment(instruction->GetEnvironment(), slow_path);
stack_map_stream_.EndStackMapEntry();
if (kIsDebugBuild) {
for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
HInstruction* in_environment = environment->GetInstructionAt(i);
if (in_environment != nullptr) {
DCHECK(in_environment->IsPhi() || in_environment->IsConstant());
Location location = environment->GetLocationAt(i);
DCHECK(location.IsStackSlot() ||
location.IsDoubleStackSlot() ||
location.IsConstant() ||
location.IsInvalid());
if (location.IsStackSlot() || location.IsDoubleStackSlot()) {
DCHECK_LT(location.GetStackIndex(), static_cast<int32_t>(GetFrameSize()));
}
}
}
}
} else if (kIsDebugBuild) {
// Ensure stack maps are unique, by checking that the native pc in the stack map
// last emitted is different than the native pc of the stack map just emitted.
size_t number_of_stack_maps = stack_map_stream_.GetNumberOfStackMaps();
if (number_of_stack_maps > 1) {
DCHECK_NE(stack_map_stream_.GetStackMap(number_of_stack_maps - 1).native_pc_code_offset,
stack_map_stream_.GetStackMap(number_of_stack_maps - 2).native_pc_code_offset);
}
}
}
bool CodeGenerator::HasStackMapAtCurrentPc() {
uint32_t pc = GetAssembler()->CodeSize();
size_t count = stack_map_stream_.GetNumberOfStackMaps();
if (count == 0) {
return false;
}
CodeOffset native_pc_offset = stack_map_stream_.GetStackMap(count - 1).native_pc_code_offset;
return (native_pc_offset.Uint32Value(GetInstructionSet()) == pc);
}
void CodeGenerator::MaybeRecordNativeDebugInfo(HInstruction* instruction,
uint32_t dex_pc,
SlowPathCode* slow_path) {
if (GetCompilerOptions().GetNativeDebuggable() && dex_pc != kNoDexPc) {
if (HasStackMapAtCurrentPc()) {
// Ensure that we do not collide with the stack map of the previous instruction.
GenerateNop();
}
RecordPcInfo(instruction, dex_pc, slow_path);
}
}
void CodeGenerator::RecordCatchBlockInfo() {
ArenaAllocator* arena = graph_->GetAllocator();
for (HBasicBlock* block : *block_order_) {
if (!block->IsCatchBlock()) {
continue;
}
uint32_t dex_pc = block->GetDexPc();
uint32_t num_vregs = graph_->GetNumberOfVRegs();
uint32_t inlining_depth = 0; // Inlining of catch blocks is not supported at the moment.
uint32_t native_pc = GetAddressOf(block);
uint32_t register_mask = 0; // Not used.
// The stack mask is not used, so we leave it empty.
ArenaBitVector* stack_mask =
ArenaBitVector::Create(arena, 0, /* expandable */ true, kArenaAllocCodeGenerator);
stack_map_stream_.BeginStackMapEntry(dex_pc,
native_pc,
register_mask,
stack_mask,
num_vregs,
inlining_depth);
HInstruction* current_phi = block->GetFirstPhi();
for (size_t vreg = 0; vreg < num_vregs; ++vreg) {
while (current_phi != nullptr && current_phi->AsPhi()->GetRegNumber() < vreg) {
HInstruction* next_phi = current_phi->GetNext();
DCHECK(next_phi == nullptr ||
current_phi->AsPhi()->GetRegNumber() <= next_phi->AsPhi()->GetRegNumber())
<< "Phis need to be sorted by vreg number to keep this a linear-time loop.";
current_phi = next_phi;
}
if (current_phi == nullptr || current_phi->AsPhi()->GetRegNumber() != vreg) {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
} else {
Location location = current_phi->GetLiveInterval()->ToLocation();
switch (location.GetKind()) {
case Location::kStackSlot: {
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
break;
}
case Location::kDoubleStackSlot: {
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
++vreg;
DCHECK_LT(vreg, num_vregs);
break;
}
default: {
// All catch phis must be allocated to a stack slot.
LOG(FATAL) << "Unexpected kind " << location.GetKind();
UNREACHABLE();
}
}
}
}
stack_map_stream_.EndStackMapEntry();
}
}
void CodeGenerator::EmitEnvironment(HEnvironment* environment, SlowPathCode* slow_path) {
if (environment == nullptr) return;
if (environment->GetParent() != nullptr) {
// We emit the parent environment first.
EmitEnvironment(environment->GetParent(), slow_path);
stack_map_stream_.BeginInlineInfoEntry(environment->GetMethod(),
environment->GetDexPc(),
environment->Size(),
&graph_->GetDexFile());
}
// Walk over the environment, and record the location of dex registers.
for (size_t i = 0, environment_size = environment->Size(); i < environment_size; ++i) {
HInstruction* current = environment->GetInstructionAt(i);
if (current == nullptr) {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
continue;
}
Location location = environment->GetLocationAt(i);
switch (location.GetKind()) {
case Location::kConstant: {
DCHECK_EQ(current, location.GetConstant());
if (current->IsLongConstant()) {
int64_t value = current->AsLongConstant()->GetValue();
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kConstant, Low32Bits(value));
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kConstant, High32Bits(value));
++i;
DCHECK_LT(i, environment_size);
} else if (current->IsDoubleConstant()) {
int64_t value = bit_cast<int64_t, double>(current->AsDoubleConstant()->GetValue());
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kConstant, Low32Bits(value));
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kConstant, High32Bits(value));
++i;
DCHECK_LT(i, environment_size);
} else if (current->IsIntConstant()) {
int32_t value = current->AsIntConstant()->GetValue();
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
} else if (current->IsNullConstant()) {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, 0);
} else {
DCHECK(current->IsFloatConstant()) << current->DebugName();
int32_t value = bit_cast<int32_t, float>(current->AsFloatConstant()->GetValue());
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kConstant, value);
}
break;
}
case Location::kStackSlot: {
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
break;
}
case Location::kDoubleStackSlot: {
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, location.GetStackIndex());
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, location.GetHighStackIndex(kVRegSize));
++i;
DCHECK_LT(i, environment_size);
break;
}
case Location::kRegister : {
int id = location.reg();
if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(id)) {
uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(id);
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
if (current->GetType() == DataType::Type::kInt64) {
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
++i;
DCHECK_LT(i, environment_size);
}
} else {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, id);
if (current->GetType() == DataType::Type::kInt64) {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegisterHigh, id);
++i;
DCHECK_LT(i, environment_size);
}
}
break;
}
case Location::kFpuRegister : {
int id = location.reg();
if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(id)) {
uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(id);
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
if (current->GetType() == DataType::Type::kFloat64) {
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInStack, offset + kVRegSize);
++i;
DCHECK_LT(i, environment_size);
}
} else {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, id);
if (current->GetType() == DataType::Type::kFloat64) {
stack_map_stream_.AddDexRegisterEntry(
DexRegisterLocation::Kind::kInFpuRegisterHigh, id);
++i;
DCHECK_LT(i, environment_size);
}
}
break;
}
case Location::kFpuRegisterPair : {
int low = location.low();
int high = location.high();
if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(low)) {
uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(low);
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
} else {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, low);
}
if (slow_path != nullptr && slow_path->IsFpuRegisterSaved(high)) {
uint32_t offset = slow_path->GetStackOffsetOfFpuRegister(high);
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
++i;
} else {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInFpuRegister, high);
++i;
}
DCHECK_LT(i, environment_size);
break;
}
case Location::kRegisterPair : {
int low = location.low();
int high = location.high();
if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(low)) {
uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(low);
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
} else {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, low);
}
if (slow_path != nullptr && slow_path->IsCoreRegisterSaved(high)) {
uint32_t offset = slow_path->GetStackOffsetOfCoreRegister(high);
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInStack, offset);
} else {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kInRegister, high);
}
++i;
DCHECK_LT(i, environment_size);
break;
}
case Location::kInvalid: {
stack_map_stream_.AddDexRegisterEntry(DexRegisterLocation::Kind::kNone, 0);
break;
}
default:
LOG(FATAL) << "Unexpected kind " << location.GetKind();
}
}
if (environment->GetParent() != nullptr) {
stack_map_stream_.EndInlineInfoEntry();
}
}
bool CodeGenerator::CanMoveNullCheckToUser(HNullCheck* null_check) {
HInstruction* first_next_not_move = null_check->GetNextDisregardingMoves();
return (first_next_not_move != nullptr)
&& first_next_not_move->CanDoImplicitNullCheckOn(null_check->InputAt(0));
}
void CodeGenerator::MaybeRecordImplicitNullCheck(HInstruction* instr) {
if (!compiler_options_.GetImplicitNullChecks()) {
return;
}
// If we are from a static path don't record the pc as we can't throw NPE.
// NB: having the checks here makes the code much less verbose in the arch
// specific code generators.
if (instr->IsStaticFieldSet() || instr->IsStaticFieldGet()) {
return;
}
if (!instr->CanDoImplicitNullCheckOn(instr->InputAt(0))) {
return;
}
// Find the first previous instruction which is not a move.
HInstruction* first_prev_not_move = instr->GetPreviousDisregardingMoves();
// If the instruction is a null check it means that `instr` is the first user
// and needs to record the pc.
if (first_prev_not_move != nullptr && first_prev_not_move->IsNullCheck()) {
HNullCheck* null_check = first_prev_not_move->AsNullCheck();
// TODO: The parallel moves modify the environment. Their changes need to be
// reverted otherwise the stack maps at the throw point will not be correct.
RecordPcInfo(null_check, null_check->GetDexPc());
}
}
LocationSummary* CodeGenerator::CreateThrowingSlowPathLocations(HInstruction* instruction,
RegisterSet caller_saves) {
// Note: Using kNoCall allows the method to be treated as leaf (and eliminate the
// HSuspendCheck from entry block). However, it will still get a valid stack frame
// because the HNullCheck needs an environment.
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
// When throwing from a try block, we may need to retrieve dalvik registers from
// physical registers and we also need to set up stack mask for GC. This is
// implicitly achieved by passing kCallOnSlowPath to the LocationSummary.
bool can_throw_into_catch_block = instruction->CanThrowIntoCatchBlock();
if (can_throw_into_catch_block) {
call_kind = LocationSummary::kCallOnSlowPath;
}
LocationSummary* locations =
new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
if (can_throw_into_catch_block && compiler_options_.GetImplicitNullChecks()) {
locations->SetCustomSlowPathCallerSaves(caller_saves); // Default: no caller-save registers.
}
DCHECK(!instruction->HasUses());
return locations;
}
void CodeGenerator::GenerateNullCheck(HNullCheck* instruction) {
if (compiler_options_.GetImplicitNullChecks()) {
MaybeRecordStat(stats_, kImplicitNullCheckGenerated);
GenerateImplicitNullCheck(instruction);
} else {
MaybeRecordStat(stats_, kExplicitNullCheckGenerated);
GenerateExplicitNullCheck(instruction);
}
}
void CodeGenerator::ClearSpillSlotsFromLoopPhisInStackMap(HSuspendCheck* suspend_check) const {
LocationSummary* locations = suspend_check->GetLocations();
HBasicBlock* block = suspend_check->GetBlock();
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == suspend_check);
DCHECK(block->IsLoopHeader());
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HInstruction* current = it.Current();
LiveInterval* interval = current->GetLiveInterval();
// We only need to clear bits of loop phis containing objects and allocated in register.
// Loop phis allocated on stack already have the object in the stack.
if (current->GetType() == DataType::Type::kReference
&& interval->HasRegister()
&& interval->HasSpillSlot()) {
locations->ClearStackBit(interval->GetSpillSlot() / kVRegSize);
}
}
}
void CodeGenerator::EmitParallelMoves(Location from1,
Location to1,
DataType::Type type1,
Location from2,
Location to2,
DataType::Type type2) {
HParallelMove parallel_move(GetGraph()->GetAllocator());
parallel_move.AddMove(from1, to1, type1, nullptr);
parallel_move.AddMove(from2, to2, type2, nullptr);
GetMoveResolver()->EmitNativeCode(&parallel_move);
}
void CodeGenerator::ValidateInvokeRuntime(QuickEntrypointEnum entrypoint,
HInstruction* instruction,
SlowPathCode* slow_path) {
// Ensure that the call kind indication given to the register allocator is
// coherent with the runtime call generated.
if (slow_path == nullptr) {
DCHECK(instruction->GetLocations()->WillCall())
<< "instruction->DebugName()=" << instruction->DebugName();
} else {
DCHECK(instruction->GetLocations()->CallsOnSlowPath() || slow_path->IsFatal())
<< "instruction->DebugName()=" << instruction->DebugName()
<< " slow_path->GetDescription()=" << slow_path->GetDescription();
}
// Check that the GC side effect is set when required.
// TODO: Reverse EntrypointCanTriggerGC
if (EntrypointCanTriggerGC(entrypoint)) {
if (slow_path == nullptr) {
DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()))
<< "instruction->DebugName()=" << instruction->DebugName()
<< " instruction->GetSideEffects().ToString()="
<< instruction->GetSideEffects().ToString();
} else {
DCHECK(instruction->GetSideEffects().Includes(SideEffects::CanTriggerGC()) ||
// When (non-Baker) read barriers are enabled, some instructions
// use a slow path to emit a read barrier, which does not trigger
// GC.
(kEmitCompilerReadBarrier &&
!kUseBakerReadBarrier &&
(instruction->IsInstanceFieldGet() ||
instruction->IsStaticFieldGet() ||
instruction->IsArrayGet() ||
instruction->IsLoadClass() ||
instruction->IsLoadString() ||
instruction->IsInstanceOf() ||
instruction->IsCheckCast() ||
(instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()))))
<< "instruction->DebugName()=" << instruction->DebugName()
<< " instruction->GetSideEffects().ToString()="
<< instruction->GetSideEffects().ToString()
<< " slow_path->GetDescription()=" << slow_path->GetDescription();
}
} else {
// The GC side effect is not required for the instruction. But the instruction might still have
// it, for example if it calls other entrypoints requiring it.
}
// Check the coherency of leaf information.
DCHECK(instruction->IsSuspendCheck()
|| ((slow_path != nullptr) && slow_path->IsFatal())
|| instruction->GetLocations()->CanCall()
|| !IsLeafMethod())
<< instruction->DebugName() << ((slow_path != nullptr) ? slow_path->GetDescription() : "");
}
void CodeGenerator::ValidateInvokeRuntimeWithoutRecordingPcInfo(HInstruction* instruction,
SlowPathCode* slow_path) {
DCHECK(instruction->GetLocations()->OnlyCallsOnSlowPath())
<< "instruction->DebugName()=" << instruction->DebugName()
<< " slow_path->GetDescription()=" << slow_path->GetDescription();
// Only the Baker read barrier marking slow path used by certains
// instructions is expected to invoke the runtime without recording
// PC-related information.
DCHECK(kUseBakerReadBarrier);
DCHECK(instruction->IsInstanceFieldGet() ||
instruction->IsStaticFieldGet() ||
instruction->IsArrayGet() ||
instruction->IsArraySet() ||
instruction->IsLoadClass() ||
instruction->IsLoadString() ||
instruction->IsInstanceOf() ||
instruction->IsCheckCast() ||
(instruction->IsInvokeVirtual() && instruction->GetLocations()->Intrinsified()) ||
(instruction->IsInvokeStaticOrDirect() && instruction->GetLocations()->Intrinsified()))
<< "instruction->DebugName()=" << instruction->DebugName()
<< " slow_path->GetDescription()=" << slow_path->GetDescription();
}
void SlowPathCode::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
for (uint32_t i : LowToHighBits(core_spills)) {
// If the register holds an object, update the stack mask.
if (locations->RegisterContainsObject(i)) {
locations->SetStackBit(stack_offset / kVRegSize);
}
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_core_stack_offsets_[i] = stack_offset;
stack_offset += codegen->SaveCoreRegister(stack_offset, i);
}
const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
for (uint32_t i : LowToHighBits(fp_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
saved_fpu_stack_offsets_[i] = stack_offset;
stack_offset += codegen->SaveFloatingPointRegister(stack_offset, i);
}
}
void SlowPathCode::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ true);
for (uint32_t i : LowToHighBits(core_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
stack_offset += codegen->RestoreCoreRegister(stack_offset, i);
}
const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers */ false);
for (uint32_t i : LowToHighBits(fp_spills)) {
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
stack_offset += codegen->RestoreFloatingPointRegister(stack_offset, i);
}
}
void CodeGenerator::CreateSystemArrayCopyLocationSummary(HInvoke* invoke) {
// Check to see if we have known failures that will cause us to have to bail out
// to the runtime, and just generate the runtime call directly.
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
// The positions must be non-negative.
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
// We will have to fail anyways.
return;
}
// The length must be >= 0.
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
if (length != nullptr) {
int32_t len = length->GetValue();
if (len < 0) {
// Just call as normal.
return;
}
}
SystemArrayCopyOptimizations optimizations(invoke);
if (optimizations.GetDestinationIsSource()) {
if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
// We only support backward copying if source and destination are the same.
return;
}
}
if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
// We currently don't intrinsify primitive copying.
return;
}
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetAllocator();
LocationSummary* locations = new (allocator) LocationSummary(invoke,
LocationSummary::kCallOnSlowPath,
kIntrinsified);
// arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
locations->SetInAt(0, Location::RequiresRegister());
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
locations->SetInAt(2, Location::RequiresRegister());
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
locations->AddTemp(Location::RequiresRegister());
}
void CodeGenerator::EmitJitRoots(uint8_t* code,
Handle<mirror::ObjectArray<mirror::Object>> roots,
const uint8_t* roots_data) {
DCHECK_EQ(static_cast<size_t>(roots->GetLength()), GetNumberOfJitRoots());
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
size_t index = 0;
for (auto& entry : jit_string_roots_) {
// Update the `roots` with the string, and replace the address temporarily
// stored to the index in the table.
uint64_t address = entry.second;
roots->Set(index, reinterpret_cast<StackReference<mirror::String>*>(address)->AsMirrorPtr());
DCHECK(roots->Get(index) != nullptr);
entry.second = index;
// Ensure the string is strongly interned. This is a requirement on how the JIT
// handles strings. b/32995596
class_linker->GetInternTable()->InternStrong(
reinterpret_cast<mirror::String*>(roots->Get(index)));
++index;
}
for (auto& entry : jit_class_roots_) {
// Update the `roots` with the class, and replace the address temporarily
// stored to the index in the table.
uint64_t address = entry.second;
roots->Set(index, reinterpret_cast<StackReference<mirror::Class>*>(address)->AsMirrorPtr());
DCHECK(roots->Get(index) != nullptr);
entry.second = index;
++index;
}
EmitJitRootPatches(code, roots_data);
}
QuickEntrypointEnum CodeGenerator::GetArrayAllocationEntrypoint(Handle<mirror::Class> array_klass) {
ScopedObjectAccess soa(Thread::Current());
if (array_klass == nullptr) {
// This can only happen for non-primitive arrays, as primitive arrays can always
// be resolved.
return kQuickAllocArrayResolved32;
}
switch (array_klass->GetComponentSize()) {
case 1: return kQuickAllocArrayResolved8;
case 2: return kQuickAllocArrayResolved16;
case 4: return kQuickAllocArrayResolved32;
case 8: return kQuickAllocArrayResolved64;
}
LOG(FATAL) << "Unreachable";
return kQuickAllocArrayResolved;
}
} // namespace art