blob: e7a5935980cf27e4de3f5c61b16b7184ada511d3 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "jni_compiler.h"
#include <algorithm>
#include <fstream>
#include <ios>
#include <memory>
#include <vector>
#include "art_method.h"
#include "base/arena_allocator.h"
#include "base/enums.h"
#include "base/logging.h"
#include "base/macros.h"
#include "calling_convention.h"
#include "class_linker.h"
#include "compiled_method.h"
#include "debug/dwarf/debug_frame_opcode_writer.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "entrypoints/quick/quick_entrypoints.h"
#include "jni_env_ext.h"
#include "memory_region.h"
#include "thread.h"
#include "utils.h"
#include "utils/arm/managed_register_arm.h"
#include "utils/arm64/managed_register_arm64.h"
#include "utils/assembler.h"
#include "utils/jni_macro_assembler.h"
#include "utils/managed_register.h"
#include "utils/mips/managed_register_mips.h"
#include "utils/mips64/managed_register_mips64.h"
#include "utils/x86/managed_register_x86.h"
#define __ jni_asm->
namespace art {
using JniOptimizationFlags = Compiler::JniOptimizationFlags;
template <PointerSize kPointerSize>
static void CopyParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
ManagedRuntimeCallingConvention* mr_conv,
JniCallingConvention* jni_conv,
size_t frame_size, size_t out_arg_size);
template <PointerSize kPointerSize>
static void SetNativeParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
JniCallingConvention* jni_conv,
ManagedRegister in_reg);
template <PointerSize kPointerSize>
static std::unique_ptr<JNIMacroAssembler<kPointerSize>> GetMacroAssembler(
ArenaAllocator* arena, InstructionSet isa, const InstructionSetFeatures* features) {
return JNIMacroAssembler<kPointerSize>::Create(arena, isa, features);
}
enum class JniEntrypoint {
kStart,
kEnd
};
template <PointerSize kPointerSize>
static ThreadOffset<kPointerSize> GetJniEntrypointThreadOffset(JniEntrypoint which,
bool reference_return,
bool is_synchronized,
bool is_fast_native) {
if (which == JniEntrypoint::kStart) { // JniMethodStart
ThreadOffset<kPointerSize> jni_start =
is_synchronized
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodStartSynchronized)
: (is_fast_native
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastStart)
: QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodStart));
return jni_start;
} else { // JniMethodEnd
ThreadOffset<kPointerSize> jni_end(-1);
if (reference_return) {
// Pass result.
jni_end = is_synchronized
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndWithReferenceSynchronized)
: (is_fast_native
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastEndWithReference)
: QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndWithReference));
} else {
jni_end = is_synchronized
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEndSynchronized)
: (is_fast_native
? QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodFastEnd)
: QUICK_ENTRYPOINT_OFFSET(kPointerSize, pJniMethodEnd));
}
return jni_end;
}
}
// Generate the JNI bridge for the given method, general contract:
// - Arguments are in the managed runtime format, either on stack or in
// registers, a reference to the method object is supplied as part of this
// convention.
//
template <PointerSize kPointerSize>
static CompiledMethod* ArtJniCompileMethodInternal(CompilerDriver* driver,
uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file,
JniOptimizationFlags optimization_flags) {
const bool is_native = (access_flags & kAccNative) != 0;
CHECK(is_native);
const bool is_static = (access_flags & kAccStatic) != 0;
const bool is_synchronized = (access_flags & kAccSynchronized) != 0;
const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(method_idx));
InstructionSet instruction_set = driver->GetInstructionSet();
const InstructionSetFeatures* instruction_set_features = driver->GetInstructionSetFeatures();
// i.e. if the method was annotated with @FastNative
const bool is_fast_native = (optimization_flags == Compiler::kFastNative);
// i.e. if the method was annotated with @CriticalNative
bool is_critical_native = (optimization_flags == Compiler::kCriticalNative);
VLOG(jni) << "JniCompile: Method :: "
<< dex_file.PrettyMethod(method_idx, /* with signature */ true)
<< " :: access_flags = " << std::hex << access_flags << std::dec;
if (UNLIKELY(is_fast_native)) {
VLOG(jni) << "JniCompile: Fast native method detected :: "
<< dex_file.PrettyMethod(method_idx, /* with signature */ true);
}
if (UNLIKELY(is_critical_native)) {
VLOG(jni) << "JniCompile: Critical native method detected :: "
<< dex_file.PrettyMethod(method_idx, /* with signature */ true);
}
if (kIsDebugBuild) {
// Don't allow both @FastNative and @CriticalNative. They are mutually exclusive.
if (UNLIKELY(is_fast_native && is_critical_native)) {
LOG(FATAL) << "JniCompile: Method cannot be both @CriticalNative and @FastNative"
<< dex_file.PrettyMethod(method_idx, /* with_signature */ true);
}
// @CriticalNative - extra checks:
// -- Don't allow virtual criticals
// -- Don't allow synchronized criticals
// -- Don't allow any objects as parameter or return value
if (UNLIKELY(is_critical_native)) {
CHECK(is_static)
<< "@CriticalNative functions cannot be virtual since that would"
<< "require passing a reference parameter (this), which is illegal "
<< dex_file.PrettyMethod(method_idx, /* with_signature */ true);
CHECK(!is_synchronized)
<< "@CriticalNative functions cannot be synchronized since that would"
<< "require passing a (class and/or this) reference parameter, which is illegal "
<< dex_file.PrettyMethod(method_idx, /* with_signature */ true);
for (size_t i = 0; i < strlen(shorty); ++i) {
CHECK_NE(Primitive::kPrimNot, Primitive::GetType(shorty[i]))
<< "@CriticalNative methods' shorty types must not have illegal references "
<< dex_file.PrettyMethod(method_idx, /* with_signature */ true);
}
}
}
ArenaPool pool;
ArenaAllocator arena(&pool);
// Calling conventions used to iterate over parameters to method
std::unique_ptr<JniCallingConvention> main_jni_conv =
JniCallingConvention::Create(&arena,
is_static,
is_synchronized,
is_critical_native,
shorty,
instruction_set);
bool reference_return = main_jni_conv->IsReturnAReference();
std::unique_ptr<ManagedRuntimeCallingConvention> mr_conv(
ManagedRuntimeCallingConvention::Create(
&arena, is_static, is_synchronized, shorty, instruction_set));
// Calling conventions to call into JNI method "end" possibly passing a returned reference, the
// method and the current thread.
const char* jni_end_shorty;
if (reference_return && is_synchronized) {
jni_end_shorty = "ILL";
} else if (reference_return) {
jni_end_shorty = "IL";
} else if (is_synchronized) {
jni_end_shorty = "VL";
} else {
jni_end_shorty = "V";
}
std::unique_ptr<JniCallingConvention> end_jni_conv(
JniCallingConvention::Create(&arena,
is_static,
is_synchronized,
is_critical_native,
jni_end_shorty,
instruction_set));
// Assembler that holds generated instructions
std::unique_ptr<JNIMacroAssembler<kPointerSize>> jni_asm =
GetMacroAssembler<kPointerSize>(&arena, instruction_set, instruction_set_features);
const CompilerOptions& compiler_options = driver->GetCompilerOptions();
jni_asm->cfi().SetEnabled(compiler_options.GenerateAnyDebugInfo());
jni_asm->SetEmitRunTimeChecksInDebugMode(compiler_options.EmitRunTimeChecksInDebugMode());
// Offsets into data structures
// TODO: if cross compiling these offsets are for the host not the target
const Offset functions(OFFSETOF_MEMBER(JNIEnvExt, functions));
const Offset monitor_enter(OFFSETOF_MEMBER(JNINativeInterface, MonitorEnter));
const Offset monitor_exit(OFFSETOF_MEMBER(JNINativeInterface, MonitorExit));
// 1. Build the frame saving all callee saves, Method*, and PC return address.
const size_t frame_size(main_jni_conv->FrameSize()); // Excludes outgoing args.
ArrayRef<const ManagedRegister> callee_save_regs = main_jni_conv->CalleeSaveRegisters();
__ BuildFrame(frame_size, mr_conv->MethodRegister(), callee_save_regs, mr_conv->EntrySpills());
DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size));
if (LIKELY(!is_critical_native)) {
// NOTE: @CriticalNative methods don't have a HandleScope
// because they can't have any reference parameters or return values.
// 2. Set up the HandleScope
mr_conv->ResetIterator(FrameOffset(frame_size));
main_jni_conv->ResetIterator(FrameOffset(0));
__ StoreImmediateToFrame(main_jni_conv->HandleScopeNumRefsOffset(),
main_jni_conv->ReferenceCount(),
mr_conv->InterproceduralScratchRegister());
__ CopyRawPtrFromThread(main_jni_conv->HandleScopeLinkOffset(),
Thread::TopHandleScopeOffset<kPointerSize>(),
mr_conv->InterproceduralScratchRegister());
__ StoreStackOffsetToThread(Thread::TopHandleScopeOffset<kPointerSize>(),
main_jni_conv->HandleScopeOffset(),
mr_conv->InterproceduralScratchRegister());
// 3. Place incoming reference arguments into handle scope
main_jni_conv->Next(); // Skip JNIEnv*
// 3.5. Create Class argument for static methods out of passed method
if (is_static) {
FrameOffset handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset();
// Check handle scope offset is within frame
CHECK_LT(handle_scope_offset.Uint32Value(), frame_size);
// Note this LoadRef() doesn't need heap unpoisoning since it's from the ArtMethod.
// Note this LoadRef() does not include read barrier. It will be handled below.
//
// scratchRegister = *method[DeclaringClassOffset()];
__ LoadRef(main_jni_conv->InterproceduralScratchRegister(),
mr_conv->MethodRegister(), ArtMethod::DeclaringClassOffset(), false);
__ VerifyObject(main_jni_conv->InterproceduralScratchRegister(), false);
// *handleScopeOffset = scratchRegister
__ StoreRef(handle_scope_offset, main_jni_conv->InterproceduralScratchRegister());
main_jni_conv->Next(); // in handle scope so move to next argument
}
// Place every reference into the handle scope (ignore other parameters).
while (mr_conv->HasNext()) {
CHECK(main_jni_conv->HasNext());
bool ref_param = main_jni_conv->IsCurrentParamAReference();
CHECK(!ref_param || mr_conv->IsCurrentParamAReference());
// References need placing in handle scope and the entry value passing
if (ref_param) {
// Compute handle scope entry, note null is placed in the handle scope but its boxed value
// must be null.
FrameOffset handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset();
// Check handle scope offset is within frame and doesn't run into the saved segment state.
CHECK_LT(handle_scope_offset.Uint32Value(), frame_size);
CHECK_NE(handle_scope_offset.Uint32Value(),
main_jni_conv->SavedLocalReferenceCookieOffset().Uint32Value());
bool input_in_reg = mr_conv->IsCurrentParamInRegister();
bool input_on_stack = mr_conv->IsCurrentParamOnStack();
CHECK(input_in_reg || input_on_stack);
if (input_in_reg) {
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
__ VerifyObject(in_reg, mr_conv->IsCurrentArgPossiblyNull());
__ StoreRef(handle_scope_offset, in_reg);
} else if (input_on_stack) {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
__ VerifyObject(in_off, mr_conv->IsCurrentArgPossiblyNull());
__ CopyRef(handle_scope_offset, in_off,
mr_conv->InterproceduralScratchRegister());
}
}
mr_conv->Next();
main_jni_conv->Next();
}
// 4. Write out the end of the quick frames.
__ StoreStackPointerToThread(Thread::TopOfManagedStackOffset<kPointerSize>());
// NOTE: @CriticalNative does not need to store the stack pointer to the thread
// because garbage collections are disabled within the execution of a
// @CriticalNative method.
// (TODO: We could probably disable it for @FastNative too).
} // if (!is_critical_native)
// 5. Move frame down to allow space for out going args.
const size_t main_out_arg_size = main_jni_conv->OutArgSize();
size_t current_out_arg_size = main_out_arg_size;
__ IncreaseFrameSize(main_out_arg_size);
// Call the read barrier for the declaring class loaded from the method for a static call.
// Skip this for @CriticalNative because we didn't build a HandleScope to begin with.
// Note that we always have outgoing param space available for at least two params.
if (kUseReadBarrier && is_static && !is_critical_native) {
const bool kReadBarrierFastPath =
(instruction_set != kMips) && (instruction_set != kMips64);
std::unique_ptr<JNIMacroLabel> skip_cold_path_label;
if (kReadBarrierFastPath) {
skip_cold_path_label = __ CreateLabel();
// Fast path for supported targets.
//
// Check if gc_is_marking is set -- if it's not, we don't need
// a read barrier so skip it.
__ LoadFromThread(main_jni_conv->InterproceduralScratchRegister(),
Thread::IsGcMarkingOffset<kPointerSize>(),
Thread::IsGcMarkingSize());
// Jump over the slow path if gc is marking is false.
__ Jump(skip_cold_path_label.get(),
JNIMacroUnaryCondition::kZero,
main_jni_conv->InterproceduralScratchRegister());
}
// Construct slow path for read barrier:
//
// Call into the runtime's ReadBarrierJni and have it fix up
// the object address if it was moved.
ThreadOffset<kPointerSize> read_barrier = QUICK_ENTRYPOINT_OFFSET(kPointerSize,
pReadBarrierJni);
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
main_jni_conv->Next(); // Skip JNIEnv.
FrameOffset class_handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset();
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
// Pass the handle for the class as the first argument.
if (main_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = main_jni_conv->CurrentParamStackOffset();
__ CreateHandleScopeEntry(out_off, class_handle_scope_offset,
mr_conv->InterproceduralScratchRegister(),
false);
} else {
ManagedRegister out_reg = main_jni_conv->CurrentParamRegister();
__ CreateHandleScopeEntry(out_reg, class_handle_scope_offset,
ManagedRegister::NoRegister(), false);
}
main_jni_conv->Next();
// Pass the current thread as the second argument and call.
if (main_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(main_jni_conv->CurrentParamRegister());
__ Call(main_jni_conv->CurrentParamRegister(),
Offset(read_barrier),
main_jni_conv->InterproceduralScratchRegister());
} else {
__ GetCurrentThread(main_jni_conv->CurrentParamStackOffset(),
main_jni_conv->InterproceduralScratchRegister());
__ CallFromThread(read_barrier, main_jni_conv->InterproceduralScratchRegister());
}
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size)); // Reset.
if (kReadBarrierFastPath) {
__ Bind(skip_cold_path_label.get());
}
}
// 6. Call into appropriate JniMethodStart passing Thread* so that transition out of Runnable
// can occur. The result is the saved JNI local state that is restored by the exit call. We
// abuse the JNI calling convention here, that is guaranteed to support passing 2 pointer
// arguments.
FrameOffset locked_object_handle_scope_offset(0xBEEFDEAD);
if (LIKELY(!is_critical_native)) {
// Skip this for @CriticalNative methods. They do not call JniMethodStart.
ThreadOffset<kPointerSize> jni_start(
GetJniEntrypointThreadOffset<kPointerSize>(JniEntrypoint::kStart,
reference_return,
is_synchronized,
is_fast_native).SizeValue());
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
locked_object_handle_scope_offset = FrameOffset(0);
if (is_synchronized) {
// Pass object for locking.
main_jni_conv->Next(); // Skip JNIEnv.
locked_object_handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset();
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
if (main_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = main_jni_conv->CurrentParamStackOffset();
__ CreateHandleScopeEntry(out_off, locked_object_handle_scope_offset,
mr_conv->InterproceduralScratchRegister(), false);
} else {
ManagedRegister out_reg = main_jni_conv->CurrentParamRegister();
__ CreateHandleScopeEntry(out_reg, locked_object_handle_scope_offset,
ManagedRegister::NoRegister(), false);
}
main_jni_conv->Next();
}
if (main_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(main_jni_conv->CurrentParamRegister());
__ Call(main_jni_conv->CurrentParamRegister(),
Offset(jni_start),
main_jni_conv->InterproceduralScratchRegister());
} else {
__ GetCurrentThread(main_jni_conv->CurrentParamStackOffset(),
main_jni_conv->InterproceduralScratchRegister());
__ CallFromThread(jni_start, main_jni_conv->InterproceduralScratchRegister());
}
if (is_synchronized) { // Check for exceptions from monitor enter.
__ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), main_out_arg_size);
}
}
// Store into stack_frame[saved_cookie_offset] the return value of JniMethodStart.
FrameOffset saved_cookie_offset(
FrameOffset(0xDEADBEEFu)); // @CriticalNative - use obviously bad value for debugging
if (LIKELY(!is_critical_native)) {
saved_cookie_offset = main_jni_conv->SavedLocalReferenceCookieOffset();
__ Store(saved_cookie_offset, main_jni_conv->IntReturnRegister(), 4 /* sizeof cookie */);
}
// 7. Iterate over arguments placing values from managed calling convention in
// to the convention required for a native call (shuffling). For references
// place an index/pointer to the reference after checking whether it is
// null (which must be encoded as null).
// Note: we do this prior to materializing the JNIEnv* and static's jclass to
// give as many free registers for the shuffle as possible.
mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size));
uint32_t args_count = 0;
while (mr_conv->HasNext()) {
args_count++;
mr_conv->Next();
}
// Do a backward pass over arguments, so that the generated code will be "mov
// R2, R3; mov R1, R2" instead of "mov R1, R2; mov R2, R3."
// TODO: A reverse iterator to improve readability.
for (uint32_t i = 0; i < args_count; ++i) {
mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size));
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
// Skip the extra JNI parameters for now.
if (LIKELY(!is_critical_native)) {
main_jni_conv->Next(); // Skip JNIEnv*.
if (is_static) {
main_jni_conv->Next(); // Skip Class for now.
}
}
// Skip to the argument we're interested in.
for (uint32_t j = 0; j < args_count - i - 1; ++j) {
mr_conv->Next();
main_jni_conv->Next();
}
CopyParameter(jni_asm.get(), mr_conv.get(), main_jni_conv.get(), frame_size, main_out_arg_size);
}
if (is_static && !is_critical_native) {
// Create argument for Class
mr_conv->ResetIterator(FrameOffset(frame_size + main_out_arg_size));
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
main_jni_conv->Next(); // Skip JNIEnv*
FrameOffset handle_scope_offset = main_jni_conv->CurrentParamHandleScopeEntryOffset();
if (main_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = main_jni_conv->CurrentParamStackOffset();
__ CreateHandleScopeEntry(out_off, handle_scope_offset,
mr_conv->InterproceduralScratchRegister(),
false);
} else {
ManagedRegister out_reg = main_jni_conv->CurrentParamRegister();
__ CreateHandleScopeEntry(out_reg, handle_scope_offset,
ManagedRegister::NoRegister(), false);
}
}
// Set the iterator back to the incoming Method*.
main_jni_conv->ResetIterator(FrameOffset(main_out_arg_size));
if (LIKELY(!is_critical_native)) {
// 8. Create 1st argument, the JNI environment ptr.
// Register that will hold local indirect reference table
if (main_jni_conv->IsCurrentParamInRegister()) {
ManagedRegister jni_env = main_jni_conv->CurrentParamRegister();
DCHECK(!jni_env.Equals(main_jni_conv->InterproceduralScratchRegister()));
__ LoadRawPtrFromThread(jni_env, Thread::JniEnvOffset<kPointerSize>());
} else {
FrameOffset jni_env = main_jni_conv->CurrentParamStackOffset();
__ CopyRawPtrFromThread(jni_env,
Thread::JniEnvOffset<kPointerSize>(),
main_jni_conv->InterproceduralScratchRegister());
}
}
// 9. Plant call to native code associated with method.
MemberOffset jni_entrypoint_offset =
ArtMethod::EntryPointFromJniOffset(InstructionSetPointerSize(instruction_set));
// FIXME: Not sure if MethodStackOffset will work here. What does it even do?
__ Call(main_jni_conv->MethodStackOffset(),
jni_entrypoint_offset,
// XX: Why not the jni conv scratch register?
mr_conv->InterproceduralScratchRegister());
// 10. Fix differences in result widths.
if (main_jni_conv->RequiresSmallResultTypeExtension()) {
if (main_jni_conv->GetReturnType() == Primitive::kPrimByte ||
main_jni_conv->GetReturnType() == Primitive::kPrimShort) {
__ SignExtend(main_jni_conv->ReturnRegister(),
Primitive::ComponentSize(main_jni_conv->GetReturnType()));
} else if (main_jni_conv->GetReturnType() == Primitive::kPrimBoolean ||
main_jni_conv->GetReturnType() == Primitive::kPrimChar) {
__ ZeroExtend(main_jni_conv->ReturnRegister(),
Primitive::ComponentSize(main_jni_conv->GetReturnType()));
}
}
// 11. Process return value
FrameOffset return_save_location = main_jni_conv->ReturnValueSaveLocation();
if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) {
if (LIKELY(!is_critical_native)) {
// For normal JNI, store the return value on the stack because the call to
// JniMethodEnd will clobber the return value. It will be restored in (13).
if ((instruction_set == kMips || instruction_set == kMips64) &&
main_jni_conv->GetReturnType() == Primitive::kPrimDouble &&
return_save_location.Uint32Value() % 8 != 0) {
// Ensure doubles are 8-byte aligned for MIPS
return_save_location = FrameOffset(return_save_location.Uint32Value()
+ static_cast<size_t>(kMipsPointerSize));
// TODO: refactor this into the JniCallingConvention code
// as a return value alignment requirement.
}
CHECK_LT(return_save_location.Uint32Value(), frame_size + main_out_arg_size);
__ Store(return_save_location,
main_jni_conv->ReturnRegister(),
main_jni_conv->SizeOfReturnValue());
} else {
// For @CriticalNative only,
// move the JNI return register into the managed return register (if they don't match).
ManagedRegister jni_return_reg = main_jni_conv->ReturnRegister();
ManagedRegister mr_return_reg = mr_conv->ReturnRegister();
// Check if the JNI return register matches the managed return register.
// If they differ, only then do we have to do anything about it.
// Otherwise the return value is already in the right place when we return.
if (!jni_return_reg.Equals(mr_return_reg)) {
// This is typically only necessary on ARM32 due to native being softfloat
// while managed is hardfloat.
// -- For example VMOV {r0, r1} -> D0; VMOV r0 -> S0.
__ Move(mr_return_reg, jni_return_reg, main_jni_conv->SizeOfReturnValue());
} else if (jni_return_reg.IsNoRegister() && mr_return_reg.IsNoRegister()) {
// Sanity check: If the return value is passed on the stack for some reason,
// then make sure the size matches.
CHECK_EQ(main_jni_conv->SizeOfReturnValue(), mr_conv->SizeOfReturnValue());
}
}
}
// Increase frame size for out args if needed by the end_jni_conv.
const size_t end_out_arg_size = end_jni_conv->OutArgSize();
if (end_out_arg_size > current_out_arg_size) {
size_t out_arg_size_diff = end_out_arg_size - current_out_arg_size;
current_out_arg_size = end_out_arg_size;
// TODO: This is redundant for @CriticalNative but we need to
// conditionally do __DecreaseFrameSize below.
__ IncreaseFrameSize(out_arg_size_diff);
saved_cookie_offset = FrameOffset(saved_cookie_offset.SizeValue() + out_arg_size_diff);
locked_object_handle_scope_offset =
FrameOffset(locked_object_handle_scope_offset.SizeValue() + out_arg_size_diff);
return_save_location = FrameOffset(return_save_location.SizeValue() + out_arg_size_diff);
}
// thread.
end_jni_conv->ResetIterator(FrameOffset(end_out_arg_size));
if (LIKELY(!is_critical_native)) {
// 12. Call JniMethodEnd
ThreadOffset<kPointerSize> jni_end(
GetJniEntrypointThreadOffset<kPointerSize>(JniEntrypoint::kEnd,
reference_return,
is_synchronized,
is_fast_native).SizeValue());
if (reference_return) {
// Pass result.
SetNativeParameter(jni_asm.get(), end_jni_conv.get(), end_jni_conv->ReturnRegister());
end_jni_conv->Next();
}
// Pass saved local reference state.
if (end_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = end_jni_conv->CurrentParamStackOffset();
__ Copy(out_off, saved_cookie_offset, end_jni_conv->InterproceduralScratchRegister(), 4);
} else {
ManagedRegister out_reg = end_jni_conv->CurrentParamRegister();
__ Load(out_reg, saved_cookie_offset, 4);
}
end_jni_conv->Next();
if (is_synchronized) {
// Pass object for unlocking.
if (end_jni_conv->IsCurrentParamOnStack()) {
FrameOffset out_off = end_jni_conv->CurrentParamStackOffset();
__ CreateHandleScopeEntry(out_off, locked_object_handle_scope_offset,
end_jni_conv->InterproceduralScratchRegister(),
false);
} else {
ManagedRegister out_reg = end_jni_conv->CurrentParamRegister();
__ CreateHandleScopeEntry(out_reg, locked_object_handle_scope_offset,
ManagedRegister::NoRegister(), false);
}
end_jni_conv->Next();
}
if (end_jni_conv->IsCurrentParamInRegister()) {
__ GetCurrentThread(end_jni_conv->CurrentParamRegister());
__ Call(end_jni_conv->CurrentParamRegister(),
Offset(jni_end),
end_jni_conv->InterproceduralScratchRegister());
} else {
__ GetCurrentThread(end_jni_conv->CurrentParamStackOffset(),
end_jni_conv->InterproceduralScratchRegister());
__ CallFromThread(jni_end, end_jni_conv->InterproceduralScratchRegister());
}
// 13. Reload return value
if (main_jni_conv->SizeOfReturnValue() != 0 && !reference_return) {
__ Load(mr_conv->ReturnRegister(), return_save_location, mr_conv->SizeOfReturnValue());
// NIT: If it's @CriticalNative then we actually only need to do this IF
// the calling convention's native return register doesn't match the managed convention's
// return register.
}
} // if (!is_critical_native)
// 14. Move frame up now we're done with the out arg space.
__ DecreaseFrameSize(current_out_arg_size);
// 15. Process pending exceptions from JNI call or monitor exit.
__ ExceptionPoll(main_jni_conv->InterproceduralScratchRegister(), 0 /* stack_adjust */);
// 16. Remove activation - need to restore callee save registers since the GC may have changed
// them.
DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size));
// We expect the compiled method to possibly be suspended during its
// execution, except in the case of a CriticalNative method.
bool may_suspend = !is_critical_native;
__ RemoveFrame(frame_size, callee_save_regs, may_suspend);
DCHECK_EQ(jni_asm->cfi().GetCurrentCFAOffset(), static_cast<int>(frame_size));
// 17. Finalize code generation
__ FinalizeCode();
size_t cs = __ CodeSize();
std::vector<uint8_t> managed_code(cs);
MemoryRegion code(&managed_code[0], managed_code.size());
__ FinalizeInstructions(code);
return CompiledMethod::SwapAllocCompiledMethod(driver,
instruction_set,
ArrayRef<const uint8_t>(managed_code),
frame_size,
main_jni_conv->CoreSpillMask(),
main_jni_conv->FpSpillMask(),
/* method_info */ ArrayRef<const uint8_t>(),
/* vmap_table */ ArrayRef<const uint8_t>(),
ArrayRef<const uint8_t>(*jni_asm->cfi().data()),
ArrayRef<const linker::LinkerPatch>());
}
// Copy a single parameter from the managed to the JNI calling convention.
template <PointerSize kPointerSize>
static void CopyParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
ManagedRuntimeCallingConvention* mr_conv,
JniCallingConvention* jni_conv,
size_t frame_size,
size_t out_arg_size) {
bool input_in_reg = mr_conv->IsCurrentParamInRegister();
bool output_in_reg = jni_conv->IsCurrentParamInRegister();
FrameOffset handle_scope_offset(0);
bool null_allowed = false;
bool ref_param = jni_conv->IsCurrentParamAReference();
CHECK(!ref_param || mr_conv->IsCurrentParamAReference());
// input may be in register, on stack or both - but not none!
CHECK(input_in_reg || mr_conv->IsCurrentParamOnStack());
if (output_in_reg) { // output shouldn't straddle registers and stack
CHECK(!jni_conv->IsCurrentParamOnStack());
} else {
CHECK(jni_conv->IsCurrentParamOnStack());
}
// References need placing in handle scope and the entry address passing.
if (ref_param) {
null_allowed = mr_conv->IsCurrentArgPossiblyNull();
// Compute handle scope offset. Note null is placed in the handle scope but the jobject
// passed to the native code must be null (not a pointer into the handle scope
// as with regular references).
handle_scope_offset = jni_conv->CurrentParamHandleScopeEntryOffset();
// Check handle scope offset is within frame.
CHECK_LT(handle_scope_offset.Uint32Value(), (frame_size + out_arg_size));
}
if (input_in_reg && output_in_reg) {
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
ManagedRegister out_reg = jni_conv->CurrentParamRegister();
if (ref_param) {
__ CreateHandleScopeEntry(out_reg, handle_scope_offset, in_reg, null_allowed);
} else {
if (!mr_conv->IsCurrentParamOnStack()) {
// regular non-straddling move
__ Move(out_reg, in_reg, mr_conv->CurrentParamSize());
} else {
UNIMPLEMENTED(FATAL); // we currently don't expect to see this case
}
}
} else if (!input_in_reg && !output_in_reg) {
FrameOffset out_off = jni_conv->CurrentParamStackOffset();
if (ref_param) {
__ CreateHandleScopeEntry(out_off, handle_scope_offset, mr_conv->InterproceduralScratchRegister(),
null_allowed);
} else {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
__ Copy(out_off, in_off, mr_conv->InterproceduralScratchRegister(), param_size);
}
} else if (!input_in_reg && output_in_reg) {
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
ManagedRegister out_reg = jni_conv->CurrentParamRegister();
// Check that incoming stack arguments are above the current stack frame.
CHECK_GT(in_off.Uint32Value(), frame_size);
if (ref_param) {
__ CreateHandleScopeEntry(out_reg, handle_scope_offset, ManagedRegister::NoRegister(), null_allowed);
} else {
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
__ Load(out_reg, in_off, param_size);
}
} else {
CHECK(input_in_reg && !output_in_reg);
ManagedRegister in_reg = mr_conv->CurrentParamRegister();
FrameOffset out_off = jni_conv->CurrentParamStackOffset();
// Check outgoing argument is within frame
CHECK_LT(out_off.Uint32Value(), frame_size);
if (ref_param) {
// TODO: recycle value in in_reg rather than reload from handle scope
__ CreateHandleScopeEntry(out_off, handle_scope_offset, mr_conv->InterproceduralScratchRegister(),
null_allowed);
} else {
size_t param_size = mr_conv->CurrentParamSize();
CHECK_EQ(param_size, jni_conv->CurrentParamSize());
if (!mr_conv->IsCurrentParamOnStack()) {
// regular non-straddling store
__ Store(out_off, in_reg, param_size);
} else {
// store where input straddles registers and stack
CHECK_EQ(param_size, 8u);
FrameOffset in_off = mr_conv->CurrentParamStackOffset();
__ StoreSpanning(out_off, in_reg, in_off, mr_conv->InterproceduralScratchRegister());
}
}
}
}
template <PointerSize kPointerSize>
static void SetNativeParameter(JNIMacroAssembler<kPointerSize>* jni_asm,
JniCallingConvention* jni_conv,
ManagedRegister in_reg) {
if (jni_conv->IsCurrentParamOnStack()) {
FrameOffset dest = jni_conv->CurrentParamStackOffset();
__ StoreRawPtr(dest, in_reg);
} else {
if (!jni_conv->CurrentParamRegister().Equals(in_reg)) {
__ Move(jni_conv->CurrentParamRegister(), in_reg, jni_conv->CurrentParamSize());
}
}
}
CompiledMethod* ArtQuickJniCompileMethod(CompilerDriver* compiler,
uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file,
Compiler::JniOptimizationFlags optimization_flags) {
if (Is64BitInstructionSet(compiler->GetInstructionSet())) {
return ArtJniCompileMethodInternal<PointerSize::k64>(
compiler, access_flags, method_idx, dex_file, optimization_flags);
} else {
return ArtJniCompileMethodInternal<PointerSize::k32>(
compiler, access_flags, method_idx, dex_file, optimization_flags);
}
}
} // namespace art