blob: 974c7acbb2e5c87acb00b328ca4a7b1da2e0bdec [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dex_file.h"
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <zlib.h>
#include <memory>
#include <sstream>
#include <type_traits>
#include "android-base/stringprintf.h"
#include "base/enums.h"
#include "base/logging.h"
#include "base/stl_util.h"
#include "dex_file-inl.h"
#include "leb128.h"
#include "standard_dex_file.h"
#include "utf-inl.h"
#include "utils.h"
namespace art {
using android::base::StringPrintf;
static_assert(sizeof(dex::StringIndex) == sizeof(uint32_t), "StringIndex size is wrong");
static_assert(std::is_trivially_copyable<dex::StringIndex>::value, "StringIndex not trivial");
static_assert(sizeof(dex::TypeIndex) == sizeof(uint16_t), "TypeIndex size is wrong");
static_assert(std::is_trivially_copyable<dex::TypeIndex>::value, "TypeIndex not trivial");
uint32_t DexFile::CalculateChecksum() const {
const uint32_t non_sum = OFFSETOF_MEMBER(DexFile::Header, signature_);
const uint8_t* non_sum_ptr = Begin() + non_sum;
return adler32(adler32(0L, Z_NULL, 0), non_sum_ptr, Size() - non_sum);
}
int DexFile::GetPermissions() const {
CHECK(container_.get() != nullptr);
return container_->GetPermissions();
}
bool DexFile::IsReadOnly() const {
CHECK(container_.get() != nullptr);
return container_->IsReadOnly();
}
bool DexFile::EnableWrite() const {
CHECK(container_.get() != nullptr);
return container_->EnableWrite();
}
bool DexFile::DisableWrite() const {
CHECK(container_.get() != nullptr);
return container_->DisableWrite();
}
DexFile::DexFile(const uint8_t* base,
size_t size,
const std::string& location,
uint32_t location_checksum,
const OatDexFile* oat_dex_file,
DexFileContainer* container)
: begin_(base),
size_(size),
location_(location),
location_checksum_(location_checksum),
header_(reinterpret_cast<const Header*>(base)),
string_ids_(reinterpret_cast<const StringId*>(base + header_->string_ids_off_)),
type_ids_(reinterpret_cast<const TypeId*>(base + header_->type_ids_off_)),
field_ids_(reinterpret_cast<const FieldId*>(base + header_->field_ids_off_)),
method_ids_(reinterpret_cast<const MethodId*>(base + header_->method_ids_off_)),
proto_ids_(reinterpret_cast<const ProtoId*>(base + header_->proto_ids_off_)),
class_defs_(reinterpret_cast<const ClassDef*>(base + header_->class_defs_off_)),
method_handles_(nullptr),
num_method_handles_(0),
call_site_ids_(nullptr),
num_call_site_ids_(0),
oat_dex_file_(oat_dex_file),
container_(container) {
CHECK(begin_ != nullptr) << GetLocation();
CHECK_GT(size_, 0U) << GetLocation();
// Check base (=header) alignment.
// Must be 4-byte aligned to avoid undefined behavior when accessing
// any of the sections via a pointer.
CHECK_ALIGNED(begin_, alignof(Header));
InitializeSectionsFromMapList();
}
DexFile::~DexFile() {
// We don't call DeleteGlobalRef on dex_object_ because we're only called by DestroyJavaVM, and
// that's only called after DetachCurrentThread, which means there's no JNIEnv. We could
// re-attach, but cleaning up these global references is not obviously useful. It's not as if
// the global reference table is otherwise empty!
}
bool DexFile::Init(std::string* error_msg) {
if (!CheckMagicAndVersion(error_msg)) {
return false;
}
return true;
}
bool DexFile::CheckMagicAndVersion(std::string* error_msg) const {
if (!IsMagicValid()) {
std::ostringstream oss;
oss << "Unrecognized magic number in " << GetLocation() << ":"
<< " " << header_->magic_[0]
<< " " << header_->magic_[1]
<< " " << header_->magic_[2]
<< " " << header_->magic_[3];
*error_msg = oss.str();
return false;
}
if (!IsVersionValid()) {
std::ostringstream oss;
oss << "Unrecognized version number in " << GetLocation() << ":"
<< " " << header_->magic_[4]
<< " " << header_->magic_[5]
<< " " << header_->magic_[6]
<< " " << header_->magic_[7];
*error_msg = oss.str();
return false;
}
return true;
}
void DexFile::InitializeSectionsFromMapList() {
const MapList* map_list = reinterpret_cast<const MapList*>(begin_ + header_->map_off_);
if (header_->map_off_ == 0 || header_->map_off_ > size_) {
// Bad offset. The dex file verifier runs after this method and will reject the file.
return;
}
const size_t count = map_list->size_;
size_t map_limit = header_->map_off_ + count * sizeof(MapItem);
if (header_->map_off_ >= map_limit || map_limit > size_) {
// Overflow or out out of bounds. The dex file verifier runs after
// this method and will reject the file as it is malformed.
return;
}
for (size_t i = 0; i < count; ++i) {
const MapItem& map_item = map_list->list_[i];
if (map_item.type_ == kDexTypeMethodHandleItem) {
method_handles_ = reinterpret_cast<const MethodHandleItem*>(begin_ + map_item.offset_);
num_method_handles_ = map_item.size_;
} else if (map_item.type_ == kDexTypeCallSiteIdItem) {
call_site_ids_ = reinterpret_cast<const CallSiteIdItem*>(begin_ + map_item.offset_);
num_call_site_ids_ = map_item.size_;
}
}
}
uint32_t DexFile::Header::GetVersion() const {
const char* version = reinterpret_cast<const char*>(&magic_[kDexMagicSize]);
return atoi(version);
}
const DexFile::ClassDef* DexFile::FindClassDef(dex::TypeIndex type_idx) const {
size_t num_class_defs = NumClassDefs();
// Fast path for rare no class defs case.
if (num_class_defs == 0) {
return nullptr;
}
for (size_t i = 0; i < num_class_defs; ++i) {
const ClassDef& class_def = GetClassDef(i);
if (class_def.class_idx_ == type_idx) {
return &class_def;
}
}
return nullptr;
}
uint32_t DexFile::FindCodeItemOffset(const DexFile::ClassDef& class_def,
uint32_t method_idx) const {
const uint8_t* class_data = GetClassData(class_def);
CHECK(class_data != nullptr);
ClassDataItemIterator it(*this, class_data);
it.SkipAllFields();
while (it.HasNextDirectMethod()) {
if (it.GetMemberIndex() == method_idx) {
return it.GetMethodCodeItemOffset();
}
it.Next();
}
while (it.HasNextVirtualMethod()) {
if (it.GetMemberIndex() == method_idx) {
return it.GetMethodCodeItemOffset();
}
it.Next();
}
LOG(FATAL) << "Unable to find method " << method_idx;
UNREACHABLE();
}
uint32_t DexFile::GetCodeItemSize(const DexFile::CodeItem& code_item) {
uintptr_t code_item_start = reinterpret_cast<uintptr_t>(&code_item);
uint32_t insns_size = code_item.insns_size_in_code_units_;
uint32_t tries_size = code_item.tries_size_;
const uint8_t* handler_data = GetCatchHandlerData(code_item, 0);
if (tries_size == 0 || handler_data == nullptr) {
uintptr_t insns_end = reinterpret_cast<uintptr_t>(&code_item.insns_[insns_size]);
return insns_end - code_item_start;
} else {
// Get the start of the handler data.
uint32_t handlers_size = DecodeUnsignedLeb128(&handler_data);
// Manually read each handler.
for (uint32_t i = 0; i < handlers_size; ++i) {
int32_t uleb128_count = DecodeSignedLeb128(&handler_data) * 2;
if (uleb128_count <= 0) {
uleb128_count = -uleb128_count + 1;
}
for (int32_t j = 0; j < uleb128_count; ++j) {
DecodeUnsignedLeb128(&handler_data);
}
}
return reinterpret_cast<uintptr_t>(handler_data) - code_item_start;
}
}
const DexFile::FieldId* DexFile::FindFieldId(const DexFile::TypeId& declaring_klass,
const DexFile::StringId& name,
const DexFile::TypeId& type) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const dex::TypeIndex class_idx = GetIndexForTypeId(declaring_klass);
const dex::StringIndex name_idx = GetIndexForStringId(name);
const dex::TypeIndex type_idx = GetIndexForTypeId(type);
int32_t lo = 0;
int32_t hi = NumFieldIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::FieldId& field = GetFieldId(mid);
if (class_idx > field.class_idx_) {
lo = mid + 1;
} else if (class_idx < field.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > field.name_idx_) {
lo = mid + 1;
} else if (name_idx < field.name_idx_) {
hi = mid - 1;
} else {
if (type_idx > field.type_idx_) {
lo = mid + 1;
} else if (type_idx < field.type_idx_) {
hi = mid - 1;
} else {
return &field;
}
}
}
}
return nullptr;
}
const DexFile::MethodId* DexFile::FindMethodId(const DexFile::TypeId& declaring_klass,
const DexFile::StringId& name,
const DexFile::ProtoId& signature) const {
// Binary search MethodIds knowing that they are sorted by class_idx, name_idx then proto_idx
const dex::TypeIndex class_idx = GetIndexForTypeId(declaring_klass);
const dex::StringIndex name_idx = GetIndexForStringId(name);
const uint16_t proto_idx = GetIndexForProtoId(signature);
int32_t lo = 0;
int32_t hi = NumMethodIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::MethodId& method = GetMethodId(mid);
if (class_idx > method.class_idx_) {
lo = mid + 1;
} else if (class_idx < method.class_idx_) {
hi = mid - 1;
} else {
if (name_idx > method.name_idx_) {
lo = mid + 1;
} else if (name_idx < method.name_idx_) {
hi = mid - 1;
} else {
if (proto_idx > method.proto_idx_) {
lo = mid + 1;
} else if (proto_idx < method.proto_idx_) {
hi = mid - 1;
} else {
return &method;
}
}
}
}
return nullptr;
}
const DexFile::StringId* DexFile::FindStringId(const char* string) const {
int32_t lo = 0;
int32_t hi = NumStringIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::StringId& str_id = GetStringId(dex::StringIndex(mid));
const char* str = GetStringData(str_id);
int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &str_id;
}
}
return nullptr;
}
const DexFile::TypeId* DexFile::FindTypeId(const char* string) const {
int32_t lo = 0;
int32_t hi = NumTypeIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const TypeId& type_id = GetTypeId(dex::TypeIndex(mid));
const DexFile::StringId& str_id = GetStringId(type_id.descriptor_idx_);
const char* str = GetStringData(str_id);
int compare = CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues(string, str);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &type_id;
}
}
return nullptr;
}
const DexFile::StringId* DexFile::FindStringId(const uint16_t* string, size_t length) const {
int32_t lo = 0;
int32_t hi = NumStringIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::StringId& str_id = GetStringId(dex::StringIndex(mid));
const char* str = GetStringData(str_id);
int compare = CompareModifiedUtf8ToUtf16AsCodePointValues(str, string, length);
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &str_id;
}
}
return nullptr;
}
const DexFile::TypeId* DexFile::FindTypeId(dex::StringIndex string_idx) const {
int32_t lo = 0;
int32_t hi = NumTypeIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const TypeId& type_id = GetTypeId(dex::TypeIndex(mid));
if (string_idx > type_id.descriptor_idx_) {
lo = mid + 1;
} else if (string_idx < type_id.descriptor_idx_) {
hi = mid - 1;
} else {
return &type_id;
}
}
return nullptr;
}
const DexFile::ProtoId* DexFile::FindProtoId(dex::TypeIndex return_type_idx,
const dex::TypeIndex* signature_type_idxs,
uint32_t signature_length) const {
int32_t lo = 0;
int32_t hi = NumProtoIds() - 1;
while (hi >= lo) {
int32_t mid = (hi + lo) / 2;
const DexFile::ProtoId& proto = GetProtoId(mid);
int compare = return_type_idx.index_ - proto.return_type_idx_.index_;
if (compare == 0) {
DexFileParameterIterator it(*this, proto);
size_t i = 0;
while (it.HasNext() && i < signature_length && compare == 0) {
compare = signature_type_idxs[i].index_ - it.GetTypeIdx().index_;
it.Next();
i++;
}
if (compare == 0) {
if (it.HasNext()) {
compare = -1;
} else if (i < signature_length) {
compare = 1;
}
}
}
if (compare > 0) {
lo = mid + 1;
} else if (compare < 0) {
hi = mid - 1;
} else {
return &proto;
}
}
return nullptr;
}
// Given a signature place the type ids into the given vector
bool DexFile::CreateTypeList(const StringPiece& signature,
dex::TypeIndex* return_type_idx,
std::vector<dex::TypeIndex>* param_type_idxs) const {
if (signature[0] != '(') {
return false;
}
size_t offset = 1;
size_t end = signature.size();
bool process_return = false;
while (offset < end) {
size_t start_offset = offset;
char c = signature[offset];
offset++;
if (c == ')') {
process_return = true;
continue;
}
while (c == '[') { // process array prefix
if (offset >= end) { // expect some descriptor following [
return false;
}
c = signature[offset];
offset++;
}
if (c == 'L') { // process type descriptors
do {
if (offset >= end) { // unexpected early termination of descriptor
return false;
}
c = signature[offset];
offset++;
} while (c != ';');
}
// TODO: avoid creating a std::string just to get a 0-terminated char array
std::string descriptor(signature.data() + start_offset, offset - start_offset);
const DexFile::TypeId* type_id = FindTypeId(descriptor.c_str());
if (type_id == nullptr) {
return false;
}
dex::TypeIndex type_idx = GetIndexForTypeId(*type_id);
if (!process_return) {
param_type_idxs->push_back(type_idx);
} else {
*return_type_idx = type_idx;
return offset == end; // return true if the signature had reached a sensible end
}
}
return false; // failed to correctly parse return type
}
const Signature DexFile::CreateSignature(const StringPiece& signature) const {
dex::TypeIndex return_type_idx;
std::vector<dex::TypeIndex> param_type_indices;
bool success = CreateTypeList(signature, &return_type_idx, &param_type_indices);
if (!success) {
return Signature::NoSignature();
}
const ProtoId* proto_id = FindProtoId(return_type_idx, param_type_indices);
if (proto_id == nullptr) {
return Signature::NoSignature();
}
return Signature(this, *proto_id);
}
int32_t DexFile::FindTryItem(const CodeItem &code_item, uint32_t address) {
// Note: Signed type is important for max and min.
int32_t min = 0;
int32_t max = code_item.tries_size_ - 1;
while (min <= max) {
int32_t mid = min + ((max - min) / 2);
const art::DexFile::TryItem* ti = GetTryItems(code_item, mid);
uint32_t start = ti->start_addr_;
uint32_t end = start + ti->insn_count_;
if (address < start) {
max = mid - 1;
} else if (address >= end) {
min = mid + 1;
} else { // We have a winner!
return mid;
}
}
// No match.
return -1;
}
int32_t DexFile::FindCatchHandlerOffset(const CodeItem &code_item, uint32_t address) {
int32_t try_item = FindTryItem(code_item, address);
if (try_item == -1) {
return -1;
} else {
return DexFile::GetTryItems(code_item, try_item)->handler_off_;
}
}
bool DexFile::LineNumForPcCb(void* raw_context, const PositionInfo& entry) {
LineNumFromPcContext* context = reinterpret_cast<LineNumFromPcContext*>(raw_context);
// We know that this callback will be called in
// ascending address order, so keep going until we find
// a match or we've just gone past it.
if (entry.address_ > context->address_) {
// The line number from the previous positions callback
// wil be the final result.
return true;
} else {
context->line_num_ = entry.line_;
return entry.address_ == context->address_;
}
}
// Read a signed integer. "zwidth" is the zero-based byte count.
int32_t DexFile::ReadSignedInt(const uint8_t* ptr, int zwidth) {
int32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint32_t)val >> 8) | (((int32_t)*ptr++) << 24);
}
val >>= (3 - zwidth) * 8;
return val;
}
// Read an unsigned integer. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
uint32_t DexFile::ReadUnsignedInt(const uint8_t* ptr, int zwidth, bool fill_on_right) {
uint32_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint32_t)*ptr++) << 24);
}
if (!fill_on_right) {
val >>= (3 - zwidth) * 8;
}
return val;
}
// Read a signed long. "zwidth" is the zero-based byte count.
int64_t DexFile::ReadSignedLong(const uint8_t* ptr, int zwidth) {
int64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = ((uint64_t)val >> 8) | (((int64_t)*ptr++) << 56);
}
val >>= (7 - zwidth) * 8;
return val;
}
// Read an unsigned long. "zwidth" is the zero-based byte count,
// "fill_on_right" indicates which side we want to zero-fill from.
uint64_t DexFile::ReadUnsignedLong(const uint8_t* ptr, int zwidth, bool fill_on_right) {
uint64_t val = 0;
for (int i = zwidth; i >= 0; --i) {
val = (val >> 8) | (((uint64_t)*ptr++) << 56);
}
if (!fill_on_right) {
val >>= (7 - zwidth) * 8;
}
return val;
}
std::string DexFile::PrettyMethod(uint32_t method_idx, bool with_signature) const {
if (method_idx >= NumMethodIds()) {
return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
}
const DexFile::MethodId& method_id = GetMethodId(method_idx);
std::string result;
const DexFile::ProtoId* proto_id = with_signature ? &GetProtoId(method_id.proto_idx_) : nullptr;
if (with_signature) {
AppendPrettyDescriptor(StringByTypeIdx(proto_id->return_type_idx_), &result);
result += ' ';
}
AppendPrettyDescriptor(GetMethodDeclaringClassDescriptor(method_id), &result);
result += '.';
result += GetMethodName(method_id);
if (with_signature) {
result += '(';
const DexFile::TypeList* params = GetProtoParameters(*proto_id);
if (params != nullptr) {
const char* separator = "";
for (uint32_t i = 0u, size = params->Size(); i != size; ++i) {
result += separator;
separator = ", ";
AppendPrettyDescriptor(StringByTypeIdx(params->GetTypeItem(i).type_idx_), &result);
}
}
result += ')';
}
return result;
}
std::string DexFile::PrettyField(uint32_t field_idx, bool with_type) const {
if (field_idx >= NumFieldIds()) {
return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
}
const DexFile::FieldId& field_id = GetFieldId(field_idx);
std::string result;
if (with_type) {
result += GetFieldTypeDescriptor(field_id);
result += ' ';
}
AppendPrettyDescriptor(GetFieldDeclaringClassDescriptor(field_id), &result);
result += '.';
result += GetFieldName(field_id);
return result;
}
std::string DexFile::PrettyType(dex::TypeIndex type_idx) const {
if (type_idx.index_ >= NumTypeIds()) {
return StringPrintf("<<invalid-type-idx-%d>>", type_idx.index_);
}
const DexFile::TypeId& type_id = GetTypeId(type_idx);
return PrettyDescriptor(GetTypeDescriptor(type_id));
}
// Checks that visibility is as expected. Includes special behavior for M and
// before to allow runtime and build visibility when expecting runtime.
std::ostream& operator<<(std::ostream& os, const DexFile& dex_file) {
os << StringPrintf("[DexFile: %s dex-checksum=%08x location-checksum=%08x %p-%p]",
dex_file.GetLocation().c_str(),
dex_file.GetHeader().checksum_, dex_file.GetLocationChecksum(),
dex_file.Begin(), dex_file.Begin() + dex_file.Size());
return os;
}
std::string Signature::ToString() const {
if (dex_file_ == nullptr) {
CHECK(proto_id_ == nullptr);
return "<no signature>";
}
const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_);
std::string result;
if (params == nullptr) {
result += "()";
} else {
result += "(";
for (uint32_t i = 0; i < params->Size(); ++i) {
result += dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_);
}
result += ")";
}
result += dex_file_->StringByTypeIdx(proto_id_->return_type_idx_);
return result;
}
uint32_t Signature::GetNumberOfParameters() const {
const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_);
return (params != nullptr) ? params->Size() : 0;
}
bool Signature::IsVoid() const {
const char* return_type = dex_file_->GetReturnTypeDescriptor(*proto_id_);
return strcmp(return_type, "V") == 0;
}
bool Signature::operator==(const StringPiece& rhs) const {
if (dex_file_ == nullptr) {
return false;
}
StringPiece tail(rhs);
if (!tail.starts_with("(")) {
return false; // Invalid signature
}
tail.remove_prefix(1); // "(";
const DexFile::TypeList* params = dex_file_->GetProtoParameters(*proto_id_);
if (params != nullptr) {
for (uint32_t i = 0; i < params->Size(); ++i) {
StringPiece param(dex_file_->StringByTypeIdx(params->GetTypeItem(i).type_idx_));
if (!tail.starts_with(param)) {
return false;
}
tail.remove_prefix(param.length());
}
}
if (!tail.starts_with(")")) {
return false;
}
tail.remove_prefix(1); // ")";
return tail == dex_file_->StringByTypeIdx(proto_id_->return_type_idx_);
}
std::ostream& operator<<(std::ostream& os, const Signature& sig) {
return os << sig.ToString();
}
// Decodes the header section from the class data bytes.
void ClassDataItemIterator::ReadClassDataHeader() {
CHECK(ptr_pos_ != nullptr);
header_.static_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.instance_fields_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.direct_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
header_.virtual_methods_size_ = DecodeUnsignedLeb128(&ptr_pos_);
}
void ClassDataItemIterator::ReadClassDataField() {
field_.field_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
field_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
// The user of the iterator is responsible for checking if there
// are unordered or duplicate indexes.
}
void ClassDataItemIterator::ReadClassDataMethod() {
method_.method_idx_delta_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.access_flags_ = DecodeUnsignedLeb128(&ptr_pos_);
method_.code_off_ = DecodeUnsignedLeb128(&ptr_pos_);
if (last_idx_ != 0 && method_.method_idx_delta_ == 0) {
LOG(WARNING) << "Duplicate method in " << dex_file_.GetLocation();
}
}
EncodedArrayValueIterator::EncodedArrayValueIterator(const DexFile& dex_file,
const uint8_t* array_data)
: dex_file_(dex_file),
array_size_(),
pos_(-1),
ptr_(array_data),
type_(kByte) {
array_size_ = (ptr_ != nullptr) ? DecodeUnsignedLeb128(&ptr_) : 0;
if (array_size_ > 0) {
Next();
}
}
void EncodedArrayValueIterator::Next() {
pos_++;
if (pos_ >= array_size_) {
return;
}
uint8_t value_type = *ptr_++;
uint8_t value_arg = value_type >> kEncodedValueArgShift;
size_t width = value_arg + 1; // assume and correct later
type_ = static_cast<ValueType>(value_type & kEncodedValueTypeMask);
switch (type_) {
case kBoolean:
jval_.i = (value_arg != 0) ? 1 : 0;
width = 0;
break;
case kByte:
jval_.i = DexFile::ReadSignedInt(ptr_, value_arg);
CHECK(IsInt<8>(jval_.i));
break;
case kShort:
jval_.i = DexFile::ReadSignedInt(ptr_, value_arg);
CHECK(IsInt<16>(jval_.i));
break;
case kChar:
jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, false);
CHECK(IsUint<16>(jval_.i));
break;
case kInt:
jval_.i = DexFile::ReadSignedInt(ptr_, value_arg);
break;
case kLong:
jval_.j = DexFile::ReadSignedLong(ptr_, value_arg);
break;
case kFloat:
jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, true);
break;
case kDouble:
jval_.j = DexFile::ReadUnsignedLong(ptr_, value_arg, true);
break;
case kString:
case kType:
case kMethodType:
case kMethodHandle:
jval_.i = DexFile::ReadUnsignedInt(ptr_, value_arg, false);
break;
case kField:
case kMethod:
case kEnum:
case kArray:
case kAnnotation:
UNIMPLEMENTED(FATAL) << ": type " << type_;
UNREACHABLE();
case kNull:
jval_.l = nullptr;
width = 0;
break;
default:
LOG(FATAL) << "Unreached";
UNREACHABLE();
}
ptr_ += width;
}
CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item, uint32_t address) {
handler_.address_ = -1;
int32_t offset = -1;
// Short-circuit the overwhelmingly common cases.
switch (code_item.tries_size_) {
case 0:
break;
case 1: {
const DexFile::TryItem* tries = DexFile::GetTryItems(code_item, 0);
uint32_t start = tries->start_addr_;
if (address >= start) {
uint32_t end = start + tries->insn_count_;
if (address < end) {
offset = tries->handler_off_;
}
}
break;
}
default:
offset = DexFile::FindCatchHandlerOffset(code_item, address);
}
Init(code_item, offset);
}
CatchHandlerIterator::CatchHandlerIterator(const DexFile::CodeItem& code_item,
const DexFile::TryItem& try_item) {
handler_.address_ = -1;
Init(code_item, try_item.handler_off_);
}
void CatchHandlerIterator::Init(const DexFile::CodeItem& code_item,
int32_t offset) {
if (offset >= 0) {
Init(DexFile::GetCatchHandlerData(code_item, offset));
} else {
// Not found, initialize as empty
current_data_ = nullptr;
remaining_count_ = -1;
catch_all_ = false;
DCHECK(!HasNext());
}
}
void CatchHandlerIterator::Init(const uint8_t* handler_data) {
current_data_ = handler_data;
remaining_count_ = DecodeSignedLeb128(&current_data_);
// If remaining_count_ is non-positive, then it is the negative of
// the number of catch types, and the catches are followed by a
// catch-all handler.
if (remaining_count_ <= 0) {
catch_all_ = true;
remaining_count_ = -remaining_count_;
} else {
catch_all_ = false;
}
Next();
}
void CatchHandlerIterator::Next() {
if (remaining_count_ > 0) {
handler_.type_idx_ = dex::TypeIndex(DecodeUnsignedLeb128(&current_data_));
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
remaining_count_--;
return;
}
if (catch_all_) {
handler_.type_idx_ = dex::TypeIndex(DexFile::kDexNoIndex16);
handler_.address_ = DecodeUnsignedLeb128(&current_data_);
catch_all_ = false;
return;
}
// no more handler
remaining_count_ = -1;
}
namespace dex {
std::ostream& operator<<(std::ostream& os, const StringIndex& index) {
os << "StringIndex[" << index.index_ << "]";
return os;
}
std::ostream& operator<<(std::ostream& os, const TypeIndex& index) {
os << "TypeIndex[" << index.index_ << "]";
return os;
}
} // namespace dex
} // namespace art