blob: 9233eb5bafc55d6710c9cb26979914d1f8ed4d5a [file] [log] [blame]
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "optimizing_compiler.h"
#include <fstream>
#include <memory>
#include <sstream>
#include <stdint.h>
#ifdef ART_ENABLE_CODEGEN_arm64
#include "instruction_simplifier_arm64.h"
#endif
#ifdef ART_ENABLE_CODEGEN_mips
#include "instruction_simplifier_mips.h"
#include "pc_relative_fixups_mips.h"
#endif
#ifdef ART_ENABLE_CODEGEN_x86
#include "pc_relative_fixups_x86.h"
#endif
#if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64)
#include "x86_memory_gen.h"
#endif
#include "art_method-inl.h"
#include "base/arena_allocator.h"
#include "base/arena_containers.h"
#include "base/dumpable.h"
#include "base/macros.h"
#include "base/mutex.h"
#include "base/scoped_arena_allocator.h"
#include "base/timing_logger.h"
#include "bounds_check_elimination.h"
#include "builder.h"
#include "cha_guard_optimization.h"
#include "code_generator.h"
#include "code_sinking.h"
#include "compiled_method.h"
#include "compiler.h"
#include "constant_folding.h"
#include "constructor_fence_redundancy_elimination.h"
#include "dead_code_elimination.h"
#include "debug/elf_debug_writer.h"
#include "debug/method_debug_info.h"
#include "dex/verification_results.h"
#include "dex/verified_method.h"
#include "dex_file_types.h"
#include "driver/compiler_driver-inl.h"
#include "driver/compiler_options.h"
#include "driver/dex_compilation_unit.h"
#include "graph_checker.h"
#include "graph_visualizer.h"
#include "gvn.h"
#include "induction_var_analysis.h"
#include "inliner.h"
#include "instruction_simplifier.h"
#include "instruction_simplifier_arm.h"
#include "intrinsics.h"
#include "jit/debugger_interface.h"
#include "jit/jit.h"
#include "jit/jit_code_cache.h"
#include "jit/jit_logger.h"
#include "jni/quick/jni_compiler.h"
#include "licm.h"
#include "linker/linker_patch.h"
#include "load_store_analysis.h"
#include "load_store_elimination.h"
#include "loop_optimization.h"
#include "nodes.h"
#include "oat_quick_method_header.h"
#include "prepare_for_register_allocation.h"
#include "reference_type_propagation.h"
#include "register_allocator_linear_scan.h"
#include "scheduler.h"
#include "select_generator.h"
#include "sharpening.h"
#include "side_effects_analysis.h"
#include "ssa_builder.h"
#include "ssa_liveness_analysis.h"
#include "ssa_phi_elimination.h"
#include "utils/assembler.h"
#include "verifier/verifier_compiler_binding.h"
namespace art {
static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB;
static constexpr const char* kPassNameSeparator = "$";
/**
* Used by the code generator, to allocate the code in a vector.
*/
class CodeVectorAllocator FINAL : public CodeAllocator {
public:
explicit CodeVectorAllocator(ArenaAllocator* allocator)
: memory_(allocator->Adapter(kArenaAllocCodeBuffer)),
size_(0) {}
virtual uint8_t* Allocate(size_t size) {
size_ = size;
memory_.resize(size);
return &memory_[0];
}
size_t GetSize() const { return size_; }
const ArenaVector<uint8_t>& GetMemory() const { return memory_; }
uint8_t* GetData() { return memory_.data(); }
private:
ArenaVector<uint8_t> memory_;
size_t size_;
DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator);
};
/**
* Filter to apply to the visualizer. Methods whose name contain that filter will
* be dumped.
*/
static constexpr const char kStringFilter[] = "";
class PassScope;
class PassObserver : public ValueObject {
public:
PassObserver(HGraph* graph,
CodeGenerator* codegen,
std::ostream* visualizer_output,
CompilerDriver* compiler_driver,
Mutex& dump_mutex)
: graph_(graph),
cached_method_name_(),
timing_logger_enabled_(compiler_driver->GetDumpPasses()),
timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true),
disasm_info_(graph->GetAllocator()),
visualizer_oss_(),
visualizer_output_(visualizer_output),
visualizer_enabled_(!compiler_driver->GetCompilerOptions().GetDumpCfgFileName().empty()),
visualizer_(&visualizer_oss_, graph, *codegen),
visualizer_dump_mutex_(dump_mutex),
graph_in_bad_state_(false) {
if (timing_logger_enabled_ || visualizer_enabled_) {
if (!IsVerboseMethod(compiler_driver, GetMethodName())) {
timing_logger_enabled_ = visualizer_enabled_ = false;
}
if (visualizer_enabled_) {
visualizer_.PrintHeader(GetMethodName());
codegen->SetDisassemblyInformation(&disasm_info_);
}
}
}
~PassObserver() {
if (timing_logger_enabled_) {
LOG(INFO) << "TIMINGS " << GetMethodName();
LOG(INFO) << Dumpable<TimingLogger>(timing_logger_);
}
DCHECK(visualizer_oss_.str().empty());
}
void DumpDisassembly() REQUIRES(!visualizer_dump_mutex_) {
if (visualizer_enabled_) {
visualizer_.DumpGraphWithDisassembly();
FlushVisualizer();
}
}
void SetGraphInBadState() { graph_in_bad_state_ = true; }
const char* GetMethodName() {
// PrettyMethod() is expensive, so we delay calling it until we actually have to.
if (cached_method_name_.empty()) {
cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx());
}
return cached_method_name_.c_str();
}
private:
void StartPass(const char* pass_name) REQUIRES(!visualizer_dump_mutex_) {
VLOG(compiler) << "Starting pass: " << pass_name;
// Dump graph first, then start timer.
if (visualizer_enabled_) {
visualizer_.DumpGraph(pass_name, /* is_after_pass */ false, graph_in_bad_state_);
FlushVisualizer();
}
if (timing_logger_enabled_) {
timing_logger_.StartTiming(pass_name);
}
}
void FlushVisualizer() REQUIRES(!visualizer_dump_mutex_) {
MutexLock mu(Thread::Current(), visualizer_dump_mutex_);
*visualizer_output_ << visualizer_oss_.str();
visualizer_output_->flush();
visualizer_oss_.str("");
visualizer_oss_.clear();
}
void EndPass(const char* pass_name) REQUIRES(!visualizer_dump_mutex_) {
// Pause timer first, then dump graph.
if (timing_logger_enabled_) {
timing_logger_.EndTiming();
}
if (visualizer_enabled_) {
visualizer_.DumpGraph(pass_name, /* is_after_pass */ true, graph_in_bad_state_);
FlushVisualizer();
}
// Validate the HGraph if running in debug mode.
if (kIsDebugBuild) {
if (!graph_in_bad_state_) {
GraphChecker checker(graph_);
checker.Run();
if (!checker.IsValid()) {
LOG(FATAL) << "Error after " << pass_name << ": " << Dumpable<GraphChecker>(checker);
}
}
}
}
static bool IsVerboseMethod(CompilerDriver* compiler_driver, const char* method_name) {
// Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an
// empty kStringFilter matching all methods.
if (compiler_driver->GetCompilerOptions().HasVerboseMethods()) {
return compiler_driver->GetCompilerOptions().IsVerboseMethod(method_name);
}
// Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code
// warning when the string is empty.
constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1;
if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) {
return true;
}
return false;
}
HGraph* const graph_;
std::string cached_method_name_;
bool timing_logger_enabled_;
TimingLogger timing_logger_;
DisassemblyInformation disasm_info_;
std::ostringstream visualizer_oss_;
std::ostream* visualizer_output_;
bool visualizer_enabled_;
HGraphVisualizer visualizer_;
Mutex& visualizer_dump_mutex_;
// Flag to be set by the compiler if the pass failed and the graph is not
// expected to validate.
bool graph_in_bad_state_;
friend PassScope;
DISALLOW_COPY_AND_ASSIGN(PassObserver);
};
class PassScope : public ValueObject {
public:
PassScope(const char *pass_name, PassObserver* pass_observer)
: pass_name_(pass_name),
pass_observer_(pass_observer) {
pass_observer_->StartPass(pass_name_);
}
~PassScope() {
pass_observer_->EndPass(pass_name_);
}
private:
const char* const pass_name_;
PassObserver* const pass_observer_;
};
class OptimizingCompiler FINAL : public Compiler {
public:
explicit OptimizingCompiler(CompilerDriver* driver);
~OptimizingCompiler() OVERRIDE;
bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const OVERRIDE;
CompiledMethod* Compile(const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const OVERRIDE;
CompiledMethod* JniCompile(uint32_t access_flags,
uint32_t method_idx,
const DexFile& dex_file,
JniOptimizationFlags optimization_flags) const OVERRIDE {
return ArtQuickJniCompileMethod(GetCompilerDriver(),
access_flags,
method_idx,
dex_file,
optimization_flags);
}
uintptr_t GetEntryPointOf(ArtMethod* method) const OVERRIDE
REQUIRES_SHARED(Locks::mutator_lock_) {
return reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCodePtrSize(
InstructionSetPointerSize(GetCompilerDriver()->GetInstructionSet())));
}
void Init() OVERRIDE;
void UnInit() const OVERRIDE;
bool JitCompile(Thread* self,
jit::JitCodeCache* code_cache,
ArtMethod* method,
bool osr,
jit::JitLogger* jit_logger)
OVERRIDE
REQUIRES_SHARED(Locks::mutator_lock_);
private:
void RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
VariableSizedHandleScope* handles) const;
void RunOptimizations(HOptimization* optimizations[],
size_t length,
PassObserver* pass_observer) const;
private:
// Create a 'CompiledMethod' for an optimized graph.
CompiledMethod* Emit(ArenaAllocator* allocator,
CodeVectorAllocator* code_allocator,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexFile::CodeItem* item) const;
// Try compiling a method and return the code generator used for
// compiling it.
// This method:
// 1) Builds the graph. Returns null if it failed to build it.
// 2) Transforms the graph to SSA. Returns null if it failed.
// 3) Runs optimizations on the graph, including register allocator.
// 4) Generates code with the `code_allocator` provided.
CodeGenerator* TryCompile(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache,
ArtMethod* method,
bool osr,
VariableSizedHandleScope* handles) const;
void MaybeRunInliner(HGraph* graph,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
VariableSizedHandleScope* handles) const;
void RunArchOptimizations(InstructionSet instruction_set,
HGraph* graph,
CodeGenerator* codegen,
PassObserver* pass_observer) const;
std::unique_ptr<OptimizingCompilerStats> compilation_stats_;
std::unique_ptr<std::ostream> visualizer_output_;
mutable Mutex dump_mutex_; // To synchronize visualizer writing.
DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler);
};
static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */
OptimizingCompiler::OptimizingCompiler(CompilerDriver* driver)
: Compiler(driver, kMaximumCompilationTimeBeforeWarning),
dump_mutex_("Visualizer dump lock") {}
void OptimizingCompiler::Init() {
// Enable C1visualizer output. Must be done in Init() because the compiler
// driver is not fully initialized when passed to the compiler's constructor.
CompilerDriver* driver = GetCompilerDriver();
const std::string cfg_file_name = driver->GetCompilerOptions().GetDumpCfgFileName();
if (!cfg_file_name.empty()) {
std::ios_base::openmode cfg_file_mode =
driver->GetCompilerOptions().GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out;
visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode));
}
if (driver->GetDumpStats()) {
compilation_stats_.reset(new OptimizingCompilerStats());
}
}
void OptimizingCompiler::UnInit() const {
}
OptimizingCompiler::~OptimizingCompiler() {
if (compilation_stats_.get() != nullptr) {
compilation_stats_->Log();
}
}
bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED,
const DexFile& dex_file ATTRIBUTE_UNUSED) const {
return true;
}
static bool IsInstructionSetSupported(InstructionSet instruction_set) {
return instruction_set == InstructionSet::kArm
|| instruction_set == InstructionSet::kArm64
|| instruction_set == InstructionSet::kThumb2
|| instruction_set == InstructionSet::kMips
|| instruction_set == InstructionSet::kMips64
|| instruction_set == InstructionSet::kX86
|| instruction_set == InstructionSet::kX86_64;
}
// Strip pass name suffix to get optimization name.
static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) {
size_t pos = pass_name.find(kPassNameSeparator);
return pos == std::string::npos ? pass_name : pass_name.substr(0, pos);
}
static HOptimization* BuildOptimization(
const std::string& pass_name,
ArenaAllocator* allocator,
HGraph* graph,
OptimizingCompilerStats* stats,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit,
VariableSizedHandleScope* handles,
SideEffectsAnalysis* most_recent_side_effects,
HInductionVarAnalysis* most_recent_induction,
LoadStoreAnalysis* most_recent_lsa) {
std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
if (opt_name == BoundsCheckElimination::kBoundsCheckEliminationPassName) {
CHECK(most_recent_side_effects != nullptr && most_recent_induction != nullptr);
return new (allocator) BoundsCheckElimination(graph,
*most_recent_side_effects,
most_recent_induction);
} else if (opt_name == GVNOptimization::kGlobalValueNumberingPassName) {
CHECK(most_recent_side_effects != nullptr);
return new (allocator) GVNOptimization(graph, *most_recent_side_effects, pass_name.c_str());
} else if (opt_name == HConstantFolding::kConstantFoldingPassName) {
return new (allocator) HConstantFolding(graph, pass_name.c_str());
} else if (opt_name == HDeadCodeElimination::kDeadCodeEliminationPassName) {
return new (allocator) HDeadCodeElimination(graph, stats, pass_name.c_str());
} else if (opt_name == HInliner::kInlinerPassName) {
size_t number_of_dex_registers = dex_compilation_unit.GetCodeItem()->registers_size_;
return new (allocator) HInliner(graph, // outer_graph
graph, // outermost_graph
codegen,
dex_compilation_unit, // outer_compilation_unit
dex_compilation_unit, // outermost_compilation_unit
driver,
handles,
stats,
number_of_dex_registers,
/* total_number_of_instructions */ 0,
/* parent */ nullptr);
} else if (opt_name == HSharpening::kSharpeningPassName) {
return new (allocator) HSharpening(graph, codegen, dex_compilation_unit, driver, handles);
} else if (opt_name == HSelectGenerator::kSelectGeneratorPassName) {
return new (allocator) HSelectGenerator(graph, handles, stats);
} else if (opt_name == HInductionVarAnalysis::kInductionPassName) {
return new (allocator) HInductionVarAnalysis(graph);
} else if (opt_name == InstructionSimplifier::kInstructionSimplifierPassName) {
return new (allocator) InstructionSimplifier(graph, codegen, driver, stats, pass_name.c_str());
} else if (opt_name == IntrinsicsRecognizer::kIntrinsicsRecognizerPassName) {
return new (allocator) IntrinsicsRecognizer(graph, stats);
} else if (opt_name == LICM::kLoopInvariantCodeMotionPassName) {
CHECK(most_recent_side_effects != nullptr);
return new (allocator) LICM(graph, *most_recent_side_effects, stats);
} else if (opt_name == LoadStoreAnalysis::kLoadStoreAnalysisPassName) {
return new (allocator) LoadStoreAnalysis(graph);
} else if (opt_name == LoadStoreElimination::kLoadStoreEliminationPassName) {
CHECK(most_recent_side_effects != nullptr);
CHECK(most_recent_lsa != nullptr);
return new (allocator) LoadStoreElimination(graph,
*most_recent_side_effects,
*most_recent_lsa, stats);
} else if (opt_name == SideEffectsAnalysis::kSideEffectsAnalysisPassName) {
return new (allocator) SideEffectsAnalysis(graph);
} else if (opt_name == HLoopOptimization::kLoopOptimizationPassName) {
return new (allocator) HLoopOptimization(graph, driver, most_recent_induction, stats);
} else if (opt_name == CHAGuardOptimization::kCHAGuardOptimizationPassName) {
return new (allocator) CHAGuardOptimization(graph);
} else if (opt_name == CodeSinking::kCodeSinkingPassName) {
return new (allocator) CodeSinking(graph, stats);
} else if (opt_name == ConstructorFenceRedundancyElimination::kPassName) {
return new (allocator) ConstructorFenceRedundancyElimination(graph, stats);
#ifdef ART_ENABLE_CODEGEN_arm
} else if (opt_name == arm::InstructionSimplifierArm::kInstructionSimplifierArmPassName) {
return new (allocator) arm::InstructionSimplifierArm(graph, stats);
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
} else if (opt_name == arm64::InstructionSimplifierArm64::kInstructionSimplifierArm64PassName) {
return new (allocator) arm64::InstructionSimplifierArm64(graph, stats);
#endif
#ifdef ART_ENABLE_CODEGEN_mips
} else if (opt_name == mips::PcRelativeFixups::kPcRelativeFixupsMipsPassName) {
return new (allocator) mips::PcRelativeFixups(graph, codegen, stats);
} else if (opt_name == mips::InstructionSimplifierMips::kInstructionSimplifierMipsPassName) {
return new (allocator) mips::InstructionSimplifierMips(graph, codegen, stats);
#endif
#ifdef ART_ENABLE_CODEGEN_x86
} else if (opt_name == x86::PcRelativeFixups::kPcRelativeFixupsX86PassName) {
return new (allocator) x86::PcRelativeFixups(graph, codegen, stats);
} else if (opt_name == x86::X86MemoryOperandGeneration::kX86MemoryOperandGenerationPassName) {
return new (allocator) x86::X86MemoryOperandGeneration(graph, codegen, stats);
#endif
}
return nullptr;
}
static ArenaVector<HOptimization*> BuildOptimizations(
const std::vector<std::string>& pass_names,
ArenaAllocator* allocator,
HGraph* graph,
OptimizingCompilerStats* stats,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit,
VariableSizedHandleScope* handles) {
// Few HOptimizations constructors require SideEffectsAnalysis or HInductionVarAnalysis
// instances. This method assumes that each of them expects the nearest instance preceeding it
// in the pass name list.
SideEffectsAnalysis* most_recent_side_effects = nullptr;
HInductionVarAnalysis* most_recent_induction = nullptr;
LoadStoreAnalysis* most_recent_lsa = nullptr;
ArenaVector<HOptimization*> ret(allocator->Adapter());
for (const std::string& pass_name : pass_names) {
HOptimization* opt = BuildOptimization(
pass_name,
allocator,
graph,
stats,
codegen,
driver,
dex_compilation_unit,
handles,
most_recent_side_effects,
most_recent_induction,
most_recent_lsa);
CHECK(opt != nullptr) << "Couldn't build optimization: \"" << pass_name << "\"";
ret.push_back(opt);
std::string opt_name = ConvertPassNameToOptimizationName(pass_name);
if (opt_name == SideEffectsAnalysis::kSideEffectsAnalysisPassName) {
most_recent_side_effects = down_cast<SideEffectsAnalysis*>(opt);
} else if (opt_name == HInductionVarAnalysis::kInductionPassName) {
most_recent_induction = down_cast<HInductionVarAnalysis*>(opt);
} else if (opt_name == LoadStoreAnalysis::kLoadStoreAnalysisPassName) {
most_recent_lsa = down_cast<LoadStoreAnalysis*>(opt);
}
}
return ret;
}
void OptimizingCompiler::RunOptimizations(HOptimization* optimizations[],
size_t length,
PassObserver* pass_observer) const {
for (size_t i = 0; i < length; ++i) {
PassScope scope(optimizations[i]->GetPassName(), pass_observer);
optimizations[i]->Run();
}
}
void OptimizingCompiler::MaybeRunInliner(HGraph* graph,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
VariableSizedHandleScope* handles) const {
OptimizingCompilerStats* stats = compilation_stats_.get();
const CompilerOptions& compiler_options = driver->GetCompilerOptions();
bool should_inline = (compiler_options.GetInlineMaxCodeUnits() > 0);
if (!should_inline) {
return;
}
size_t number_of_dex_registers = dex_compilation_unit.GetCodeItem()->registers_size_;
HInliner* inliner = new (graph->GetAllocator()) HInliner(
graph, // outer_graph
graph, // outermost_graph
codegen,
dex_compilation_unit, // outer_compilation_unit
dex_compilation_unit, // outermost_compilation_unit
driver,
handles,
stats,
number_of_dex_registers,
/* total_number_of_instructions */ 0,
/* parent */ nullptr);
HOptimization* optimizations[] = { inliner };
RunOptimizations(optimizations, arraysize(optimizations), pass_observer);
}
void OptimizingCompiler::RunArchOptimizations(InstructionSet instruction_set,
HGraph* graph,
CodeGenerator* codegen,
PassObserver* pass_observer) const {
UNUSED(codegen); // To avoid compilation error when compiling for svelte
OptimizingCompilerStats* stats = compilation_stats_.get();
ArenaAllocator* allocator = graph->GetAllocator();
switch (instruction_set) {
#if defined(ART_ENABLE_CODEGEN_arm)
case InstructionSet::kThumb2:
case InstructionSet::kArm: {
arm::InstructionSimplifierArm* simplifier =
new (allocator) arm::InstructionSimplifierArm(graph, stats);
SideEffectsAnalysis* side_effects = new (allocator) SideEffectsAnalysis(graph);
GVNOptimization* gvn =
new (allocator) GVNOptimization(graph, *side_effects, "GVN$after_arch");
HInstructionScheduling* scheduling =
new (allocator) HInstructionScheduling(graph, instruction_set, codegen);
HOptimization* arm_optimizations[] = {
simplifier,
side_effects,
gvn,
scheduling,
};
RunOptimizations(arm_optimizations, arraysize(arm_optimizations), pass_observer);
break;
}
#endif
#ifdef ART_ENABLE_CODEGEN_arm64
case InstructionSet::kArm64: {
arm64::InstructionSimplifierArm64* simplifier =
new (allocator) arm64::InstructionSimplifierArm64(graph, stats);
SideEffectsAnalysis* side_effects = new (allocator) SideEffectsAnalysis(graph);
GVNOptimization* gvn =
new (allocator) GVNOptimization(graph, *side_effects, "GVN$after_arch");
HInstructionScheduling* scheduling =
new (allocator) HInstructionScheduling(graph, instruction_set);
HOptimization* arm64_optimizations[] = {
simplifier,
side_effects,
gvn,
scheduling,
};
RunOptimizations(arm64_optimizations, arraysize(arm64_optimizations), pass_observer);
break;
}
#endif
#ifdef ART_ENABLE_CODEGEN_mips
case InstructionSet::kMips: {
mips::InstructionSimplifierMips* simplifier =
new (allocator) mips::InstructionSimplifierMips(graph, codegen, stats);
SideEffectsAnalysis* side_effects = new (allocator) SideEffectsAnalysis(graph);
GVNOptimization* gvn =
new (allocator) GVNOptimization(graph, *side_effects, "GVN$after_arch");
mips::PcRelativeFixups* pc_relative_fixups =
new (allocator) mips::PcRelativeFixups(graph, codegen, stats);
HOptimization* mips_optimizations[] = {
simplifier,
side_effects,
gvn,
pc_relative_fixups,
};
RunOptimizations(mips_optimizations, arraysize(mips_optimizations), pass_observer);
break;
}
#endif
#ifdef ART_ENABLE_CODEGEN_mips64
case InstructionSet::kMips64: {
SideEffectsAnalysis* side_effects = new (allocator) SideEffectsAnalysis(graph);
GVNOptimization* gvn =
new (allocator) GVNOptimization(graph, *side_effects, "GVN$after_arch");
HOptimization* mips64_optimizations[] = {
side_effects,
gvn,
};
RunOptimizations(mips64_optimizations, arraysize(mips64_optimizations), pass_observer);
break;
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86
case InstructionSet::kX86: {
SideEffectsAnalysis* side_effects = new (allocator) SideEffectsAnalysis(graph);
GVNOptimization* gvn =
new (allocator) GVNOptimization(graph, *side_effects, "GVN$after_arch");
x86::PcRelativeFixups* pc_relative_fixups =
new (allocator) x86::PcRelativeFixups(graph, codegen, stats);
x86::X86MemoryOperandGeneration* memory_gen =
new (allocator) x86::X86MemoryOperandGeneration(graph, codegen, stats);
HOptimization* x86_optimizations[] = {
side_effects,
gvn,
pc_relative_fixups,
memory_gen
};
RunOptimizations(x86_optimizations, arraysize(x86_optimizations), pass_observer);
break;
}
#endif
#ifdef ART_ENABLE_CODEGEN_x86_64
case InstructionSet::kX86_64: {
SideEffectsAnalysis* side_effects = new (allocator) SideEffectsAnalysis(graph);
GVNOptimization* gvn =
new (allocator) GVNOptimization(graph, *side_effects, "GVN$after_arch");
x86::X86MemoryOperandGeneration* memory_gen =
new (allocator) x86::X86MemoryOperandGeneration(graph, codegen, stats);
HOptimization* x86_64_optimizations[] = {
side_effects,
gvn,
memory_gen
};
RunOptimizations(x86_64_optimizations, arraysize(x86_64_optimizations), pass_observer);
break;
}
#endif
default:
break;
}
}
NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects.
static void AllocateRegisters(HGraph* graph,
CodeGenerator* codegen,
PassObserver* pass_observer,
RegisterAllocator::Strategy strategy,
OptimizingCompilerStats* stats) {
{
PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName,
pass_observer);
PrepareForRegisterAllocation(graph, stats).Run();
}
// Use local allocator shared by SSA liveness analysis and register allocator.
// (Register allocator creates new objects in the liveness data.)
ScopedArenaAllocator local_allocator(graph->GetArenaStack());
SsaLivenessAnalysis liveness(graph, codegen, &local_allocator);
{
PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer);
liveness.Analyze();
}
{
PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer);
std::unique_ptr<RegisterAllocator> register_allocator =
RegisterAllocator::Create(&local_allocator, codegen, liveness, strategy);
register_allocator->AllocateRegisters();
}
}
void OptimizingCompiler::RunOptimizations(HGraph* graph,
CodeGenerator* codegen,
CompilerDriver* driver,
const DexCompilationUnit& dex_compilation_unit,
PassObserver* pass_observer,
VariableSizedHandleScope* handles) const {
OptimizingCompilerStats* stats = compilation_stats_.get();
ArenaAllocator* allocator = graph->GetAllocator();
if (driver->GetCompilerOptions().GetPassesToRun() != nullptr) {
ArenaVector<HOptimization*> optimizations = BuildOptimizations(
*driver->GetCompilerOptions().GetPassesToRun(),
allocator,
graph,
stats,
codegen,
driver,
dex_compilation_unit,
handles);
RunOptimizations(&optimizations[0], optimizations.size(), pass_observer);
return;
}
HDeadCodeElimination* dce1 = new (allocator) HDeadCodeElimination(
graph, stats, "dead_code_elimination$initial");
HDeadCodeElimination* dce2 = new (allocator) HDeadCodeElimination(
graph, stats, "dead_code_elimination$after_inlining");
HDeadCodeElimination* dce3 = new (allocator) HDeadCodeElimination(
graph, stats, "dead_code_elimination$final");
HConstantFolding* fold1 = new (allocator) HConstantFolding(graph, "constant_folding");
InstructionSimplifier* simplify1 = new (allocator) InstructionSimplifier(
graph, codegen, driver, stats);
HSelectGenerator* select_generator = new (allocator) HSelectGenerator(graph, handles, stats);
HConstantFolding* fold2 = new (allocator) HConstantFolding(
graph, "constant_folding$after_inlining");
HConstantFolding* fold3 = new (allocator) HConstantFolding(graph, "constant_folding$after_bce");
SideEffectsAnalysis* side_effects1 = new (allocator) SideEffectsAnalysis(
graph, "side_effects$before_gvn");
SideEffectsAnalysis* side_effects2 = new (allocator) SideEffectsAnalysis(
graph, "side_effects$before_lse");
GVNOptimization* gvn = new (allocator) GVNOptimization(graph, *side_effects1);
LICM* licm = new (allocator) LICM(graph, *side_effects1, stats);
HInductionVarAnalysis* induction = new (allocator) HInductionVarAnalysis(graph);
BoundsCheckElimination* bce =
new (allocator) BoundsCheckElimination(graph, *side_effects1, induction);
HLoopOptimization* loop = new (allocator) HLoopOptimization(graph, driver, induction, stats);
LoadStoreAnalysis* lsa = new (allocator) LoadStoreAnalysis(graph);
LoadStoreElimination* lse =
new (allocator) LoadStoreElimination(graph, *side_effects2, *lsa, stats);
HSharpening* sharpening = new (allocator) HSharpening(
graph, codegen, dex_compilation_unit, driver, handles);
InstructionSimplifier* simplify2 = new (allocator) InstructionSimplifier(
graph, codegen, driver, stats, "instruction_simplifier$after_inlining");
InstructionSimplifier* simplify3 = new (allocator) InstructionSimplifier(
graph, codegen, driver, stats, "instruction_simplifier$after_bce");
InstructionSimplifier* simplify4 = new (allocator) InstructionSimplifier(
graph, codegen, driver, stats, "instruction_simplifier$before_codegen");
IntrinsicsRecognizer* intrinsics = new (allocator) IntrinsicsRecognizer(graph, stats);
CHAGuardOptimization* cha_guard = new (allocator) CHAGuardOptimization(graph);
CodeSinking* code_sinking = new (allocator) CodeSinking(graph, stats);
ConstructorFenceRedundancyElimination* cfre =
new (allocator) ConstructorFenceRedundancyElimination(graph, stats);
HOptimization* optimizations1[] = {
intrinsics,
sharpening,
fold1,
simplify1,
dce1,
};
RunOptimizations(optimizations1, arraysize(optimizations1), pass_observer);
MaybeRunInliner(graph, codegen, driver, dex_compilation_unit, pass_observer, handles);
HOptimization* optimizations2[] = {
// SelectGenerator depends on the InstructionSimplifier removing
// redundant suspend checks to recognize empty blocks.
select_generator,
fold2, // TODO: if we don't inline we can also skip fold2.
simplify2,
dce2,
side_effects1,
gvn,
licm,
induction,
bce,
loop,
fold3, // evaluates code generated by dynamic bce
simplify3,
side_effects2,
lsa,
lse,
cha_guard,
dce3,
code_sinking,
// The codegen has a few assumptions that only the instruction simplifier
// can satisfy. For example, the code generator does not expect to see a
// HTypeConversion from a type to the same type.
simplify4,
cfre, // Eliminate constructor fences after code sinking to avoid
// complicated sinking logic to split a fence with many inputs.
};
RunOptimizations(optimizations2, arraysize(optimizations2), pass_observer);
RunArchOptimizations(driver->GetInstructionSet(), graph, codegen, pass_observer);
}
static ArenaVector<linker::LinkerPatch> EmitAndSortLinkerPatches(CodeGenerator* codegen) {
ArenaVector<linker::LinkerPatch> linker_patches(codegen->GetGraph()->GetAllocator()->Adapter());
codegen->EmitLinkerPatches(&linker_patches);
// Sort patches by literal offset. Required for .oat_patches encoding.
std::sort(linker_patches.begin(), linker_patches.end(),
[](const linker::LinkerPatch& lhs, const linker::LinkerPatch& rhs) {
return lhs.LiteralOffset() < rhs.LiteralOffset();
});
return linker_patches;
}
CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* allocator,
CodeVectorAllocator* code_allocator,
CodeGenerator* codegen,
CompilerDriver* compiler_driver,
const DexFile::CodeItem* code_item) const {
ArenaVector<linker::LinkerPatch> linker_patches = EmitAndSortLinkerPatches(codegen);
ArenaVector<uint8_t> stack_map(allocator->Adapter(kArenaAllocStackMaps));
ArenaVector<uint8_t> method_info(allocator->Adapter(kArenaAllocStackMaps));
size_t stack_map_size = 0;
size_t method_info_size = 0;
codegen->ComputeStackMapAndMethodInfoSize(&stack_map_size, &method_info_size);
stack_map.resize(stack_map_size);
method_info.resize(method_info_size);
codegen->BuildStackMaps(MemoryRegion(stack_map.data(), stack_map.size()),
MemoryRegion(method_info.data(), method_info.size()),
*code_item);
CompiledMethod* compiled_method = CompiledMethod::SwapAllocCompiledMethod(
compiler_driver,
codegen->GetInstructionSet(),
ArrayRef<const uint8_t>(code_allocator->GetMemory()),
// Follow Quick's behavior and set the frame size to zero if it is
// considered "empty" (see the definition of
// art::CodeGenerator::HasEmptyFrame).
codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(),
codegen->GetCoreSpillMask(),
codegen->GetFpuSpillMask(),
ArrayRef<const uint8_t>(method_info),
ArrayRef<const uint8_t>(stack_map),
ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data()),
ArrayRef<const linker::LinkerPatch>(linker_patches));
return compiled_method;
}
CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* allocator,
ArenaStack* arena_stack,
CodeVectorAllocator* code_allocator,
const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> class_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache,
ArtMethod* method,
bool osr,
VariableSizedHandleScope* handles) const {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kAttemptCompilation);
CompilerDriver* compiler_driver = GetCompilerDriver();
InstructionSet instruction_set = compiler_driver->GetInstructionSet();
// Always use the Thumb-2 assembler: some runtime functionality
// (like implicit stack overflow checks) assume Thumb-2.
DCHECK_NE(instruction_set, InstructionSet::kArm);
// Do not attempt to compile on architectures we do not support.
if (!IsInstructionSetSupported(instruction_set)) {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledUnsupportedIsa);
return nullptr;
}
if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledPathological);
return nullptr;
}
// Implementation of the space filter: do not compile a code item whose size in
// code units is bigger than 128.
static constexpr size_t kSpaceFilterOptimizingThreshold = 128;
const CompilerOptions& compiler_options = compiler_driver->GetCompilerOptions();
if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace)
&& (code_item->insns_size_in_code_units_ > kSpaceFilterOptimizingThreshold)) {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledSpaceFilter);
return nullptr;
}
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
DexCompilationUnit dex_compilation_unit(
class_loader,
class_linker,
dex_file,
code_item,
class_def_idx,
method_idx,
access_flags,
/* verified_method */ nullptr,
dex_cache);
HGraph* graph = new (allocator) HGraph(
allocator,
arena_stack,
dex_file,
method_idx,
compiler_driver->GetInstructionSet(),
kInvalidInvokeType,
compiler_driver->GetCompilerOptions().GetDebuggable(),
osr);
const uint8_t* interpreter_metadata = nullptr;
if (method == nullptr) {
ScopedObjectAccess soa(Thread::Current());
method = compiler_driver->ResolveMethod(
soa, dex_cache, class_loader, &dex_compilation_unit, method_idx, invoke_type);
}
// For AOT compilation, we may not get a method, for example if its class is erroneous.
// JIT should always have a method.
DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr);
if (method != nullptr) {
graph->SetArtMethod(method);
ScopedObjectAccess soa(Thread::Current());
interpreter_metadata = method->GetQuickenedInfo(class_linker->GetImagePointerSize());
}
std::unique_ptr<CodeGenerator> codegen(
CodeGenerator::Create(graph,
instruction_set,
*compiler_driver->GetInstructionSetFeatures(),
compiler_driver->GetCompilerOptions(),
compilation_stats_.get()));
if (codegen.get() == nullptr) {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledNoCodegen);
return nullptr;
}
codegen->GetAssembler()->cfi().SetEnabled(
compiler_driver->GetCompilerOptions().GenerateAnyDebugInfo());
PassObserver pass_observer(graph,
codegen.get(),
visualizer_output_.get(),
compiler_driver,
dump_mutex_);
{
VLOG(compiler) << "Building " << pass_observer.GetMethodName();
PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer);
HGraphBuilder builder(graph,
&dex_compilation_unit,
&dex_compilation_unit,
compiler_driver,
codegen.get(),
compilation_stats_.get(),
interpreter_metadata,
handles);
GraphAnalysisResult result = builder.BuildGraph();
if (result != kAnalysisSuccess) {
switch (result) {
case kAnalysisSkipped: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledSkipped);
}
break;
case kAnalysisInvalidBytecode: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledInvalidBytecode);
}
break;
case kAnalysisFailThrowCatchLoop: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledThrowCatchLoop);
}
break;
case kAnalysisFailAmbiguousArrayOp: {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kNotCompiledAmbiguousArrayOp);
}
break;
case kAnalysisSuccess:
UNREACHABLE();
}
pass_observer.SetGraphInBadState();
return nullptr;
}
}
RunOptimizations(graph,
codegen.get(),
compiler_driver,
dex_compilation_unit,
&pass_observer,
handles);
RegisterAllocator::Strategy regalloc_strategy =
compiler_options.GetRegisterAllocationStrategy();
AllocateRegisters(graph,
codegen.get(),
&pass_observer,
regalloc_strategy,
compilation_stats_.get());
codegen->Compile(code_allocator);
pass_observer.DumpDisassembly();
return codegen.release();
}
CompiledMethod* OptimizingCompiler::Compile(const DexFile::CodeItem* code_item,
uint32_t access_flags,
InvokeType invoke_type,
uint16_t class_def_idx,
uint32_t method_idx,
Handle<mirror::ClassLoader> jclass_loader,
const DexFile& dex_file,
Handle<mirror::DexCache> dex_cache) const {
CompilerDriver* compiler_driver = GetCompilerDriver();
CompiledMethod* method = nullptr;
DCHECK(Runtime::Current()->IsAotCompiler());
const VerifiedMethod* verified_method = compiler_driver->GetVerifiedMethod(&dex_file, method_idx);
DCHECK(!verified_method->HasRuntimeThrow());
if (compiler_driver->IsMethodVerifiedWithoutFailures(method_idx, class_def_idx, dex_file) ||
verifier::CanCompilerHandleVerificationFailure(
verified_method->GetEncounteredVerificationFailures())) {
ArenaAllocator allocator(Runtime::Current()->GetArenaPool());
ArenaStack arena_stack(Runtime::Current()->GetArenaPool());
CodeVectorAllocator code_allocator(&allocator);
std::unique_ptr<CodeGenerator> codegen;
{
ScopedObjectAccess soa(Thread::Current());
VariableSizedHandleScope handles(soa.Self());
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(soa.Self(), kNative);
codegen.reset(
TryCompile(&allocator,
&arena_stack,
&code_allocator,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
jclass_loader,
dex_file,
dex_cache,
nullptr,
/* osr */ false,
&handles));
}
if (codegen.get() != nullptr) {
MaybeRecordStat(compilation_stats_.get(),
MethodCompilationStat::kCompiled);
method = Emit(&allocator, &code_allocator, codegen.get(), compiler_driver, code_item);
if (kArenaAllocatorCountAllocations) {
codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
MemStats mem_stats(allocator.GetMemStats());
MemStats peak_stats(arena_stack.GetPeakStats());
LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
<< dex_file.PrettyMethod(method_idx)
<< "\n" << Dumpable<MemStats>(mem_stats)
<< "\n" << Dumpable<MemStats>(peak_stats);
}
}
}
} else {
MethodCompilationStat method_stat;
if (compiler_driver->GetCompilerOptions().VerifyAtRuntime()) {
method_stat = MethodCompilationStat::kNotCompiledVerifyAtRuntime;
} else {
method_stat = MethodCompilationStat::kNotCompiledVerificationError;
}
MaybeRecordStat(compilation_stats_.get(), method_stat);
}
if (kIsDebugBuild &&
IsCompilingWithCoreImage() &&
IsInstructionSetSupported(compiler_driver->GetInstructionSet())) {
// For testing purposes, we put a special marker on method names
// that should be compiled with this compiler (when the
// instruction set is supported). This makes sure we're not
// regressing.
std::string method_name = dex_file.PrettyMethod(method_idx);
bool shouldCompile = method_name.find("$opt$") != std::string::npos;
DCHECK((method != nullptr) || !shouldCompile) << "Didn't compile " << method_name;
}
return method;
}
Compiler* CreateOptimizingCompiler(CompilerDriver* driver) {
return new OptimizingCompiler(driver);
}
bool IsCompilingWithCoreImage() {
const std::string& image = Runtime::Current()->GetImageLocation();
return CompilerDriver::IsCoreImageFilename(image);
}
bool EncodeArtMethodInInlineInfo(ArtMethod* method ATTRIBUTE_UNUSED) {
// Note: the runtime is null only for unit testing.
return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler();
}
bool CanEncodeInlinedMethodInStackMap(const DexFile& caller_dex_file, ArtMethod* callee) {
if (!Runtime::Current()->IsAotCompiler()) {
// JIT can always encode methods in stack maps.
return true;
}
if (IsSameDexFile(caller_dex_file, *callee->GetDexFile())) {
return true;
}
// TODO(ngeoffray): Support more AOT cases for inlining:
// - methods in multidex
// - methods in boot image for on-device non-PIC compilation.
return false;
}
bool OptimizingCompiler::JitCompile(Thread* self,
jit::JitCodeCache* code_cache,
ArtMethod* method,
bool osr,
jit::JitLogger* jit_logger) {
StackHandleScope<3> hs(self);
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(
method->GetDeclaringClass()->GetClassLoader()));
Handle<mirror::DexCache> dex_cache(hs.NewHandle(method->GetDexCache()));
DCHECK(method->IsCompilable());
const DexFile* dex_file = method->GetDexFile();
const uint16_t class_def_idx = method->GetClassDefIndex();
const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset());
const uint32_t method_idx = method->GetDexMethodIndex();
const uint32_t access_flags = method->GetAccessFlags();
const InvokeType invoke_type = method->GetInvokeType();
ArenaAllocator allocator(Runtime::Current()->GetJitArenaPool());
ArenaStack arena_stack(Runtime::Current()->GetJitArenaPool());
CodeVectorAllocator code_allocator(&allocator);
VariableSizedHandleScope handles(self);
std::unique_ptr<CodeGenerator> codegen;
{
// Go to native so that we don't block GC during compilation.
ScopedThreadSuspension sts(self, kNative);
codegen.reset(
TryCompile(&allocator,
&arena_stack,
&code_allocator,
code_item,
access_flags,
invoke_type,
class_def_idx,
method_idx,
class_loader,
*dex_file,
dex_cache,
method,
osr,
&handles));
if (codegen.get() == nullptr) {
return false;
}
}
size_t stack_map_size = 0;
size_t method_info_size = 0;
codegen->ComputeStackMapAndMethodInfoSize(&stack_map_size, &method_info_size);
size_t number_of_roots = codegen->GetNumberOfJitRoots();
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
// We allocate an object array to ensure the JIT roots that we will collect in EmitJitRoots
// will be visible by the GC between EmitLiterals and CommitCode. Once CommitCode is
// executed, this array is not needed.
Handle<mirror::ObjectArray<mirror::Object>> roots(
hs.NewHandle(mirror::ObjectArray<mirror::Object>::Alloc(
self, class_linker->GetClassRoot(ClassLinker::kObjectArrayClass), number_of_roots)));
if (roots == nullptr) {
// Out of memory, just clear the exception to avoid any Java exception uncaught problems.
DCHECK(self->IsExceptionPending());
self->ClearException();
return false;
}
uint8_t* stack_map_data = nullptr;
uint8_t* method_info_data = nullptr;
uint8_t* roots_data = nullptr;
uint32_t data_size = code_cache->ReserveData(self,
stack_map_size,
method_info_size,
number_of_roots,
method,
&stack_map_data,
&method_info_data,
&roots_data);
if (stack_map_data == nullptr || roots_data == nullptr) {
return false;
}
MaybeRecordStat(compilation_stats_.get(), MethodCompilationStat::kCompiled);
codegen->BuildStackMaps(MemoryRegion(stack_map_data, stack_map_size),
MemoryRegion(method_info_data, method_info_size),
*code_item);
codegen->EmitJitRoots(code_allocator.GetData(), roots, roots_data);
const void* code = code_cache->CommitCode(
self,
method,
stack_map_data,
method_info_data,
roots_data,
codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(),
codegen->GetCoreSpillMask(),
codegen->GetFpuSpillMask(),
code_allocator.GetMemory().data(),
code_allocator.GetSize(),
data_size,
osr,
roots,
codegen->GetGraph()->HasShouldDeoptimizeFlag(),
codegen->GetGraph()->GetCHASingleImplementationList());
if (code == nullptr) {
code_cache->ClearData(self, stack_map_data, roots_data);
return false;
}
const CompilerOptions& compiler_options = GetCompilerDriver()->GetCompilerOptions();
if (compiler_options.GetGenerateDebugInfo()) {
const auto* method_header = reinterpret_cast<const OatQuickMethodHeader*>(code);
const uintptr_t code_address = reinterpret_cast<uintptr_t>(method_header->GetCode());
debug::MethodDebugInfo info = {};
DCHECK(info.trampoline_name.empty());
info.dex_file = dex_file;
info.class_def_index = class_def_idx;
info.dex_method_index = method_idx;
info.access_flags = access_flags;
info.code_item = code_item;
info.isa = codegen->GetInstructionSet();
info.deduped = false;
info.is_native_debuggable = compiler_options.GetNativeDebuggable();
info.is_optimized = true;
info.is_code_address_text_relative = false;
info.code_address = code_address;
info.code_size = code_allocator.GetSize();
info.frame_size_in_bytes = method_header->GetFrameSizeInBytes();
info.code_info = stack_map_size == 0 ? nullptr : stack_map_data;
info.cfi = ArrayRef<const uint8_t>(*codegen->GetAssembler()->cfi().data());
std::vector<uint8_t> elf_file = debug::WriteDebugElfFileForMethods(
GetCompilerDriver()->GetInstructionSet(),
GetCompilerDriver()->GetInstructionSetFeatures(),
ArrayRef<const debug::MethodDebugInfo>(&info, 1));
CreateJITCodeEntryForAddress(code_address, std::move(elf_file));
}
Runtime::Current()->GetJit()->AddMemoryUsage(method, allocator.BytesUsed());
if (jit_logger != nullptr) {
jit_logger->WriteLog(code, code_allocator.GetSize(), method);
}
if (kArenaAllocatorCountAllocations) {
codegen.reset(); // Release codegen's ScopedArenaAllocator for memory accounting.
size_t total_allocated = allocator.BytesAllocated() + arena_stack.PeakBytesAllocated();
if (total_allocated > kArenaAllocatorMemoryReportThreshold) {
MemStats mem_stats(allocator.GetMemStats());
MemStats peak_stats(arena_stack.GetPeakStats());
LOG(INFO) << "Used " << total_allocated << " bytes of arena memory for compiling "
<< dex_file->PrettyMethod(method_idx)
<< "\n" << Dumpable<MemStats>(mem_stats)
<< "\n" << Dumpable<MemStats>(peak_stats);
}
}
return true;
}
} // namespace art