| /* |
| * Copyright (C) 2014 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "nodes.h" |
| |
| #include "code_generator.h" |
| #include "common_dominator.h" |
| #include "ssa_builder.h" |
| #include "base/bit_vector-inl.h" |
| #include "base/bit_utils.h" |
| #include "base/stl_util.h" |
| #include "intrinsics.h" |
| #include "mirror/class-inl.h" |
| #include "scoped_thread_state_change.h" |
| |
| namespace art { |
| |
| void HGraph::AddBlock(HBasicBlock* block) { |
| block->SetBlockId(blocks_.size()); |
| blocks_.push_back(block); |
| } |
| |
| void HGraph::FindBackEdges(ArenaBitVector* visited) { |
| // "visited" must be empty on entry, it's an output argument for all visited (i.e. live) blocks. |
| DCHECK_EQ(visited->GetHighestBitSet(), -1); |
| |
| // Nodes that we're currently visiting, indexed by block id. |
| ArenaBitVector visiting(arena_, blocks_.size(), false); |
| // Number of successors visited from a given node, indexed by block id. |
| ArenaVector<size_t> successors_visited(blocks_.size(), 0u, arena_->Adapter()); |
| // Stack of nodes that we're currently visiting (same as marked in "visiting" above). |
| ArenaVector<HBasicBlock*> worklist(arena_->Adapter()); |
| constexpr size_t kDefaultWorklistSize = 8; |
| worklist.reserve(kDefaultWorklistSize); |
| visited->SetBit(entry_block_->GetBlockId()); |
| visiting.SetBit(entry_block_->GetBlockId()); |
| worklist.push_back(entry_block_); |
| |
| while (!worklist.empty()) { |
| HBasicBlock* current = worklist.back(); |
| uint32_t current_id = current->GetBlockId(); |
| if (successors_visited[current_id] == current->GetSuccessors().size()) { |
| visiting.ClearBit(current_id); |
| worklist.pop_back(); |
| } else { |
| HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++]; |
| uint32_t successor_id = successor->GetBlockId(); |
| if (visiting.IsBitSet(successor_id)) { |
| DCHECK(ContainsElement(worklist, successor)); |
| successor->AddBackEdge(current); |
| } else if (!visited->IsBitSet(successor_id)) { |
| visited->SetBit(successor_id); |
| visiting.SetBit(successor_id); |
| worklist.push_back(successor); |
| } |
| } |
| } |
| } |
| |
| static void RemoveAsUser(HInstruction* instruction) { |
| for (size_t i = 0; i < instruction->InputCount(); i++) { |
| instruction->RemoveAsUserOfInput(i); |
| } |
| |
| for (HEnvironment* environment = instruction->GetEnvironment(); |
| environment != nullptr; |
| environment = environment->GetParent()) { |
| for (size_t i = 0, e = environment->Size(); i < e; ++i) { |
| if (environment->GetInstructionAt(i) != nullptr) { |
| environment->RemoveAsUserOfInput(i); |
| } |
| } |
| } |
| } |
| |
| void HGraph::RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const { |
| for (size_t i = 0; i < blocks_.size(); ++i) { |
| if (!visited.IsBitSet(i)) { |
| HBasicBlock* block = blocks_[i]; |
| DCHECK(block->GetPhis().IsEmpty()) << "Phis are not inserted at this stage"; |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| RemoveAsUser(it.Current()); |
| } |
| } |
| } |
| } |
| |
| void HGraph::RemoveDeadBlocks(const ArenaBitVector& visited) { |
| for (size_t i = 0; i < blocks_.size(); ++i) { |
| if (!visited.IsBitSet(i)) { |
| HBasicBlock* block = blocks_[i]; |
| // We only need to update the successor, which might be live. |
| for (HBasicBlock* successor : block->GetSuccessors()) { |
| successor->RemovePredecessor(block); |
| } |
| // Remove the block from the list of blocks, so that further analyses |
| // never see it. |
| blocks_[i] = nullptr; |
| } |
| } |
| } |
| |
| void HGraph::BuildDominatorTree() { |
| // (1) Simplify the CFG so that catch blocks have only exceptional incoming |
| // edges. This invariant simplifies building SSA form because Phis cannot |
| // collect both normal- and exceptional-flow values at the same time. |
| SimplifyCatchBlocks(); |
| |
| ArenaBitVector visited(arena_, blocks_.size(), false); |
| |
| // (2) Find the back edges in the graph doing a DFS traversal. |
| FindBackEdges(&visited); |
| |
| // (3) Remove instructions and phis from blocks not visited during |
| // the initial DFS as users from other instructions, so that |
| // users can be safely removed before uses later. |
| RemoveInstructionsAsUsersFromDeadBlocks(visited); |
| |
| // (4) Remove blocks not visited during the initial DFS. |
| // Step (4) requires dead blocks to be removed from the |
| // predecessors list of live blocks. |
| RemoveDeadBlocks(visited); |
| |
| // (5) Simplify the CFG now, so that we don't need to recompute |
| // dominators and the reverse post order. |
| SimplifyCFG(); |
| |
| // (6) Compute the dominance information and the reverse post order. |
| ComputeDominanceInformation(); |
| } |
| |
| void HGraph::ClearDominanceInformation() { |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| it.Current()->ClearDominanceInformation(); |
| } |
| reverse_post_order_.clear(); |
| } |
| |
| void HBasicBlock::ClearDominanceInformation() { |
| dominated_blocks_.clear(); |
| dominator_ = nullptr; |
| } |
| |
| void HGraph::ComputeDominanceInformation() { |
| DCHECK(reverse_post_order_.empty()); |
| reverse_post_order_.reserve(blocks_.size()); |
| reverse_post_order_.push_back(entry_block_); |
| |
| // Number of visits of a given node, indexed by block id. |
| ArenaVector<size_t> visits(blocks_.size(), 0u, arena_->Adapter()); |
| // Number of successors visited from a given node, indexed by block id. |
| ArenaVector<size_t> successors_visited(blocks_.size(), 0u, arena_->Adapter()); |
| // Nodes for which we need to visit successors. |
| ArenaVector<HBasicBlock*> worklist(arena_->Adapter()); |
| constexpr size_t kDefaultWorklistSize = 8; |
| worklist.reserve(kDefaultWorklistSize); |
| worklist.push_back(entry_block_); |
| |
| while (!worklist.empty()) { |
| HBasicBlock* current = worklist.back(); |
| uint32_t current_id = current->GetBlockId(); |
| if (successors_visited[current_id] == current->GetSuccessors().size()) { |
| worklist.pop_back(); |
| } else { |
| HBasicBlock* successor = current->GetSuccessors()[successors_visited[current_id]++]; |
| |
| if (successor->GetDominator() == nullptr) { |
| successor->SetDominator(current); |
| } else { |
| // The CommonDominator can work for multiple blocks as long as the |
| // domination information doesn't change. However, since we're changing |
| // that information here, we can use the finder only for pairs of blocks. |
| successor->SetDominator(CommonDominator::ForPair(successor->GetDominator(), current)); |
| } |
| |
| // Once all the forward edges have been visited, we know the immediate |
| // dominator of the block. We can then start visiting its successors. |
| if (++visits[successor->GetBlockId()] == |
| successor->GetPredecessors().size() - successor->NumberOfBackEdges()) { |
| successor->GetDominator()->AddDominatedBlock(successor); |
| reverse_post_order_.push_back(successor); |
| worklist.push_back(successor); |
| } |
| } |
| } |
| } |
| |
| BuildSsaResult HGraph::TryBuildingSsa(StackHandleScopeCollection* handles) { |
| BuildDominatorTree(); |
| |
| // The SSA builder requires loops to all be natural. Specifically, the dead phi |
| // elimination phase checks the consistency of the graph when doing a post-order |
| // visit for eliminating dead phis: a dead phi can only have loop header phi |
| // users remaining when being visited. |
| BuildSsaResult result = AnalyzeNaturalLoops(); |
| if (result != kBuildSsaSuccess) { |
| return result; |
| } |
| |
| // Precompute per-block try membership before entering the SSA builder, |
| // which needs the information to build catch block phis from values of |
| // locals at throwing instructions inside try blocks. |
| ComputeTryBlockInformation(); |
| |
| // Create the inexact Object reference type and store it in the HGraph. |
| ScopedObjectAccess soa(Thread::Current()); |
| ClassLinker* linker = Runtime::Current()->GetClassLinker(); |
| inexact_object_rti_ = ReferenceTypeInfo::Create( |
| handles->NewHandle(linker->GetClassRoot(ClassLinker::kJavaLangObject)), |
| /* is_exact */ false); |
| |
| // Tranforms graph to SSA form. |
| result = SsaBuilder(this, handles).BuildSsa(); |
| if (result != kBuildSsaSuccess) { |
| return result; |
| } |
| |
| in_ssa_form_ = true; |
| return kBuildSsaSuccess; |
| } |
| |
| HBasicBlock* HGraph::SplitEdge(HBasicBlock* block, HBasicBlock* successor) { |
| HBasicBlock* new_block = new (arena_) HBasicBlock(this, successor->GetDexPc()); |
| AddBlock(new_block); |
| // Use `InsertBetween` to ensure the predecessor index and successor index of |
| // `block` and `successor` are preserved. |
| new_block->InsertBetween(block, successor); |
| return new_block; |
| } |
| |
| void HGraph::SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor) { |
| // Insert a new node between `block` and `successor` to split the |
| // critical edge. |
| HBasicBlock* new_block = SplitEdge(block, successor); |
| new_block->AddInstruction(new (arena_) HGoto(successor->GetDexPc())); |
| if (successor->IsLoopHeader()) { |
| // If we split at a back edge boundary, make the new block the back edge. |
| HLoopInformation* info = successor->GetLoopInformation(); |
| if (info->IsBackEdge(*block)) { |
| info->RemoveBackEdge(block); |
| info->AddBackEdge(new_block); |
| } |
| } |
| } |
| |
| void HGraph::SimplifyLoop(HBasicBlock* header) { |
| HLoopInformation* info = header->GetLoopInformation(); |
| |
| // Make sure the loop has only one pre header. This simplifies SSA building by having |
| // to just look at the pre header to know which locals are initialized at entry of the |
| // loop. |
| size_t number_of_incomings = header->GetPredecessors().size() - info->NumberOfBackEdges(); |
| if (number_of_incomings != 1) { |
| HBasicBlock* pre_header = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| AddBlock(pre_header); |
| pre_header->AddInstruction(new (arena_) HGoto(header->GetDexPc())); |
| |
| for (size_t pred = 0; pred < header->GetPredecessors().size(); ++pred) { |
| HBasicBlock* predecessor = header->GetPredecessors()[pred]; |
| if (!info->IsBackEdge(*predecessor)) { |
| predecessor->ReplaceSuccessor(header, pre_header); |
| pred--; |
| } |
| } |
| pre_header->AddSuccessor(header); |
| } |
| |
| // Make sure the first predecessor of a loop header is the incoming block. |
| if (info->IsBackEdge(*header->GetPredecessors()[0])) { |
| HBasicBlock* to_swap = header->GetPredecessors()[0]; |
| for (size_t pred = 1, e = header->GetPredecessors().size(); pred < e; ++pred) { |
| HBasicBlock* predecessor = header->GetPredecessors()[pred]; |
| if (!info->IsBackEdge(*predecessor)) { |
| header->predecessors_[pred] = to_swap; |
| header->predecessors_[0] = predecessor; |
| break; |
| } |
| } |
| } |
| |
| // Place the suspend check at the beginning of the header, so that live registers |
| // will be known when allocating registers. Note that code generation can still |
| // generate the suspend check at the back edge, but needs to be careful with |
| // loop phi spill slots (which are not written to at back edge). |
| HInstruction* first_instruction = header->GetFirstInstruction(); |
| if (!first_instruction->IsSuspendCheck()) { |
| HSuspendCheck* check = new (arena_) HSuspendCheck(header->GetDexPc()); |
| header->InsertInstructionBefore(check, first_instruction); |
| first_instruction = check; |
| } |
| info->SetSuspendCheck(first_instruction->AsSuspendCheck()); |
| } |
| |
| static bool CheckIfPredecessorAtIsExceptional(const HBasicBlock& block, size_t pred_idx) { |
| HBasicBlock* predecessor = block.GetPredecessors()[pred_idx]; |
| if (!predecessor->EndsWithTryBoundary()) { |
| // Only edges from HTryBoundary can be exceptional. |
| return false; |
| } |
| HTryBoundary* try_boundary = predecessor->GetLastInstruction()->AsTryBoundary(); |
| if (try_boundary->GetNormalFlowSuccessor() == &block) { |
| // This block is the normal-flow successor of `try_boundary`, but it could |
| // also be one of its exception handlers if catch blocks have not been |
| // simplified yet. Predecessors are unordered, so we will consider the first |
| // occurrence to be the normal edge and a possible second occurrence to be |
| // the exceptional edge. |
| return !block.IsFirstIndexOfPredecessor(predecessor, pred_idx); |
| } else { |
| // This is not the normal-flow successor of `try_boundary`, hence it must be |
| // one of its exception handlers. |
| DCHECK(try_boundary->HasExceptionHandler(block)); |
| return true; |
| } |
| } |
| |
| void HGraph::SimplifyCatchBlocks() { |
| // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators |
| // can be invalidated. We remember the initial size to avoid iterating over the new blocks. |
| for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) { |
| HBasicBlock* catch_block = blocks_[block_id]; |
| if (!catch_block->IsCatchBlock()) { |
| continue; |
| } |
| |
| bool exceptional_predecessors_only = true; |
| for (size_t j = 0; j < catch_block->GetPredecessors().size(); ++j) { |
| if (!CheckIfPredecessorAtIsExceptional(*catch_block, j)) { |
| exceptional_predecessors_only = false; |
| break; |
| } |
| } |
| |
| if (!exceptional_predecessors_only) { |
| // Catch block has normal-flow predecessors and needs to be simplified. |
| // Splitting the block before its first instruction moves all its |
| // instructions into `normal_block` and links the two blocks with a Goto. |
| // Afterwards, incoming normal-flow edges are re-linked to `normal_block`, |
| // leaving `catch_block` with the exceptional edges only. |
| // |
| // Note that catch blocks with normal-flow predecessors cannot begin with |
| // a move-exception instruction, as guaranteed by the verifier. However, |
| // trivially dead predecessors are ignored by the verifier and such code |
| // has not been removed at this stage. We therefore ignore the assumption |
| // and rely on GraphChecker to enforce it after initial DCE is run (b/25492628). |
| HBasicBlock* normal_block = catch_block->SplitCatchBlockAfterMoveException(); |
| if (normal_block == nullptr) { |
| // Catch block is either empty or only contains a move-exception. It must |
| // therefore be dead and will be removed during initial DCE. Do nothing. |
| DCHECK(!catch_block->EndsWithControlFlowInstruction()); |
| } else { |
| // Catch block was split. Re-link normal-flow edges to the new block. |
| for (size_t j = 0; j < catch_block->GetPredecessors().size(); ++j) { |
| if (!CheckIfPredecessorAtIsExceptional(*catch_block, j)) { |
| catch_block->GetPredecessors()[j]->ReplaceSuccessor(catch_block, normal_block); |
| --j; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| void HGraph::ComputeTryBlockInformation() { |
| // Iterate in reverse post order to propagate try membership information from |
| // predecessors to their successors. |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| if (block->IsEntryBlock() || block->IsCatchBlock()) { |
| // Catch blocks after simplification have only exceptional predecessors |
| // and hence are never in tries. |
| continue; |
| } |
| |
| // Infer try membership from the first predecessor. Having simplified loops, |
| // the first predecessor can never be a back edge and therefore it must have |
| // been visited already and had its try membership set. |
| HBasicBlock* first_predecessor = block->GetPredecessors()[0]; |
| DCHECK(!block->IsLoopHeader() || !block->GetLoopInformation()->IsBackEdge(*first_predecessor)); |
| const HTryBoundary* try_entry = first_predecessor->ComputeTryEntryOfSuccessors(); |
| if (try_entry != nullptr && |
| (block->GetTryCatchInformation() == nullptr || |
| try_entry != &block->GetTryCatchInformation()->GetTryEntry())) { |
| // We are either setting try block membership for the first time or it |
| // has changed. |
| block->SetTryCatchInformation(new (arena_) TryCatchInformation(*try_entry)); |
| } |
| } |
| } |
| |
| void HGraph::SimplifyCFG() { |
| // Simplify the CFG for future analysis, and code generation: |
| // (1): Split critical edges. |
| // (2): Simplify loops by having only one preheader. |
| // NOTE: We're appending new blocks inside the loop, so we need to use index because iterators |
| // can be invalidated. We remember the initial size to avoid iterating over the new blocks. |
| for (size_t block_id = 0u, end = blocks_.size(); block_id != end; ++block_id) { |
| HBasicBlock* block = blocks_[block_id]; |
| if (block == nullptr) continue; |
| if (block->GetSuccessors().size() > 1) { |
| // Only split normal-flow edges. We cannot split exceptional edges as they |
| // are synthesized (approximate real control flow), and we do not need to |
| // anyway. Moves that would be inserted there are performed by the runtime. |
| ArrayRef<HBasicBlock* const> normal_successors = block->GetNormalSuccessors(); |
| for (size_t j = 0, e = normal_successors.size(); j < e; ++j) { |
| HBasicBlock* successor = normal_successors[j]; |
| DCHECK(!successor->IsCatchBlock()); |
| if (successor == exit_block_) { |
| // Throw->TryBoundary->Exit. Special case which we do not want to split |
| // because Goto->Exit is not allowed. |
| DCHECK(block->IsSingleTryBoundary()); |
| DCHECK(block->GetSinglePredecessor()->GetLastInstruction()->IsThrow()); |
| } else if (successor->GetPredecessors().size() > 1) { |
| SplitCriticalEdge(block, successor); |
| // SplitCriticalEdge could have invalidated the `normal_successors` |
| // ArrayRef. We must re-acquire it. |
| normal_successors = block->GetNormalSuccessors(); |
| DCHECK_EQ(normal_successors[j]->GetSingleSuccessor(), successor); |
| DCHECK_EQ(e, normal_successors.size()); |
| } |
| } |
| } |
| if (block->IsLoopHeader()) { |
| SimplifyLoop(block); |
| } |
| } |
| } |
| |
| BuildSsaResult HGraph::AnalyzeNaturalLoops() const { |
| // Order does not matter. |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| if (block->IsLoopHeader()) { |
| if (block->IsCatchBlock()) { |
| // TODO: Dealing with exceptional back edges could be tricky because |
| // they only approximate the real control flow. Bail out for now. |
| return kBuildSsaFailThrowCatchLoop; |
| } |
| HLoopInformation* info = block->GetLoopInformation(); |
| if (!info->Populate()) { |
| // Abort if the loop is non natural. We currently bailout in such cases. |
| return kBuildSsaFailNonNaturalLoop; |
| } |
| } |
| } |
| return kBuildSsaSuccess; |
| } |
| |
| void HGraph::InsertConstant(HConstant* constant) { |
| // New constants are inserted before the final control-flow instruction |
| // of the graph, or at its end if called from the graph builder. |
| if (entry_block_->EndsWithControlFlowInstruction()) { |
| entry_block_->InsertInstructionBefore(constant, entry_block_->GetLastInstruction()); |
| } else { |
| entry_block_->AddInstruction(constant); |
| } |
| } |
| |
| HNullConstant* HGraph::GetNullConstant(uint32_t dex_pc) { |
| // For simplicity, don't bother reviving the cached null constant if it is |
| // not null and not in a block. Otherwise, we need to clear the instruction |
| // id and/or any invariants the graph is assuming when adding new instructions. |
| if ((cached_null_constant_ == nullptr) || (cached_null_constant_->GetBlock() == nullptr)) { |
| cached_null_constant_ = new (arena_) HNullConstant(dex_pc); |
| cached_null_constant_->SetReferenceTypeInfo(inexact_object_rti_); |
| InsertConstant(cached_null_constant_); |
| } |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(cached_null_constant_->GetReferenceTypeInfo().IsValid()); |
| } |
| return cached_null_constant_; |
| } |
| |
| HCurrentMethod* HGraph::GetCurrentMethod() { |
| // For simplicity, don't bother reviving the cached current method if it is |
| // not null and not in a block. Otherwise, we need to clear the instruction |
| // id and/or any invariants the graph is assuming when adding new instructions. |
| if ((cached_current_method_ == nullptr) || (cached_current_method_->GetBlock() == nullptr)) { |
| cached_current_method_ = new (arena_) HCurrentMethod( |
| Is64BitInstructionSet(instruction_set_) ? Primitive::kPrimLong : Primitive::kPrimInt, |
| entry_block_->GetDexPc()); |
| if (entry_block_->GetFirstInstruction() == nullptr) { |
| entry_block_->AddInstruction(cached_current_method_); |
| } else { |
| entry_block_->InsertInstructionBefore( |
| cached_current_method_, entry_block_->GetFirstInstruction()); |
| } |
| } |
| return cached_current_method_; |
| } |
| |
| HConstant* HGraph::GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc) { |
| switch (type) { |
| case Primitive::Type::kPrimBoolean: |
| DCHECK(IsUint<1>(value)); |
| FALLTHROUGH_INTENDED; |
| case Primitive::Type::kPrimByte: |
| case Primitive::Type::kPrimChar: |
| case Primitive::Type::kPrimShort: |
| case Primitive::Type::kPrimInt: |
| DCHECK(IsInt(Primitive::ComponentSize(type) * kBitsPerByte, value)); |
| return GetIntConstant(static_cast<int32_t>(value), dex_pc); |
| |
| case Primitive::Type::kPrimLong: |
| return GetLongConstant(value, dex_pc); |
| |
| default: |
| LOG(FATAL) << "Unsupported constant type"; |
| UNREACHABLE(); |
| } |
| } |
| |
| void HGraph::CacheFloatConstant(HFloatConstant* constant) { |
| int32_t value = bit_cast<int32_t, float>(constant->GetValue()); |
| DCHECK(cached_float_constants_.find(value) == cached_float_constants_.end()); |
| cached_float_constants_.Overwrite(value, constant); |
| } |
| |
| void HGraph::CacheDoubleConstant(HDoubleConstant* constant) { |
| int64_t value = bit_cast<int64_t, double>(constant->GetValue()); |
| DCHECK(cached_double_constants_.find(value) == cached_double_constants_.end()); |
| cached_double_constants_.Overwrite(value, constant); |
| } |
| |
| void HLoopInformation::Add(HBasicBlock* block) { |
| blocks_.SetBit(block->GetBlockId()); |
| } |
| |
| void HLoopInformation::Remove(HBasicBlock* block) { |
| blocks_.ClearBit(block->GetBlockId()); |
| } |
| |
| void HLoopInformation::PopulateRecursive(HBasicBlock* block) { |
| if (blocks_.IsBitSet(block->GetBlockId())) { |
| return; |
| } |
| |
| blocks_.SetBit(block->GetBlockId()); |
| block->SetInLoop(this); |
| for (HBasicBlock* predecessor : block->GetPredecessors()) { |
| PopulateRecursive(predecessor); |
| } |
| } |
| |
| bool HLoopInformation::Populate() { |
| DCHECK_EQ(blocks_.NumSetBits(), 0u) << "Loop information has already been populated"; |
| for (HBasicBlock* back_edge : GetBackEdges()) { |
| DCHECK(back_edge->GetDominator() != nullptr); |
| if (!header_->Dominates(back_edge)) { |
| // This loop is not natural. Do not bother going further. |
| return false; |
| } |
| |
| // Populate this loop: starting with the back edge, recursively add predecessors |
| // that are not already part of that loop. Set the header as part of the loop |
| // to end the recursion. |
| // This is a recursive implementation of the algorithm described in |
| // "Advanced Compiler Design & Implementation" (Muchnick) p192. |
| blocks_.SetBit(header_->GetBlockId()); |
| PopulateRecursive(back_edge); |
| } |
| return true; |
| } |
| |
| void HLoopInformation::Update() { |
| HGraph* graph = header_->GetGraph(); |
| for (uint32_t id : blocks_.Indexes()) { |
| HBasicBlock* block = graph->GetBlocks()[id]; |
| // Reset loop information of non-header blocks inside the loop, except |
| // members of inner nested loops because those should already have been |
| // updated by their own LoopInformation. |
| if (block->GetLoopInformation() == this && block != header_) { |
| block->SetLoopInformation(nullptr); |
| } |
| } |
| blocks_.ClearAllBits(); |
| |
| if (back_edges_.empty()) { |
| // The loop has been dismantled, delete its suspend check and remove info |
| // from the header. |
| DCHECK(HasSuspendCheck()); |
| header_->RemoveInstruction(suspend_check_); |
| header_->SetLoopInformation(nullptr); |
| header_ = nullptr; |
| suspend_check_ = nullptr; |
| } else { |
| if (kIsDebugBuild) { |
| for (HBasicBlock* back_edge : back_edges_) { |
| DCHECK(header_->Dominates(back_edge)); |
| } |
| } |
| // This loop still has reachable back edges. Repopulate the list of blocks. |
| bool populate_successful = Populate(); |
| DCHECK(populate_successful); |
| } |
| } |
| |
| HBasicBlock* HLoopInformation::GetPreHeader() const { |
| return header_->GetDominator(); |
| } |
| |
| bool HLoopInformation::Contains(const HBasicBlock& block) const { |
| return blocks_.IsBitSet(block.GetBlockId()); |
| } |
| |
| bool HLoopInformation::IsIn(const HLoopInformation& other) const { |
| return other.blocks_.IsBitSet(header_->GetBlockId()); |
| } |
| |
| bool HLoopInformation::IsDefinedOutOfTheLoop(HInstruction* instruction) const { |
| return !blocks_.IsBitSet(instruction->GetBlock()->GetBlockId()); |
| } |
| |
| size_t HLoopInformation::GetLifetimeEnd() const { |
| size_t last_position = 0; |
| for (HBasicBlock* back_edge : GetBackEdges()) { |
| last_position = std::max(back_edge->GetLifetimeEnd(), last_position); |
| } |
| return last_position; |
| } |
| |
| bool HBasicBlock::Dominates(HBasicBlock* other) const { |
| // Walk up the dominator tree from `other`, to find out if `this` |
| // is an ancestor. |
| HBasicBlock* current = other; |
| while (current != nullptr) { |
| if (current == this) { |
| return true; |
| } |
| current = current->GetDominator(); |
| } |
| return false; |
| } |
| |
| static void UpdateInputsUsers(HInstruction* instruction) { |
| for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { |
| instruction->InputAt(i)->AddUseAt(instruction, i); |
| } |
| // Environment should be created later. |
| DCHECK(!instruction->HasEnvironment()); |
| } |
| |
| void HBasicBlock::ReplaceAndRemoveInstructionWith(HInstruction* initial, |
| HInstruction* replacement) { |
| DCHECK(initial->GetBlock() == this); |
| if (initial->IsControlFlow()) { |
| // We can only replace a control flow instruction with another control flow instruction. |
| DCHECK(replacement->IsControlFlow()); |
| DCHECK_EQ(replacement->GetId(), -1); |
| DCHECK_EQ(replacement->GetType(), Primitive::kPrimVoid); |
| DCHECK_EQ(initial->GetBlock(), this); |
| DCHECK_EQ(initial->GetType(), Primitive::kPrimVoid); |
| DCHECK(initial->GetUses().IsEmpty()); |
| DCHECK(initial->GetEnvUses().IsEmpty()); |
| replacement->SetBlock(this); |
| replacement->SetId(GetGraph()->GetNextInstructionId()); |
| instructions_.InsertInstructionBefore(replacement, initial); |
| UpdateInputsUsers(replacement); |
| } else { |
| InsertInstructionBefore(replacement, initial); |
| initial->ReplaceWith(replacement); |
| } |
| RemoveInstruction(initial); |
| } |
| |
| static void Add(HInstructionList* instruction_list, |
| HBasicBlock* block, |
| HInstruction* instruction) { |
| DCHECK(instruction->GetBlock() == nullptr); |
| DCHECK_EQ(instruction->GetId(), -1); |
| instruction->SetBlock(block); |
| instruction->SetId(block->GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instruction_list->AddInstruction(instruction); |
| } |
| |
| void HBasicBlock::AddInstruction(HInstruction* instruction) { |
| Add(&instructions_, this, instruction); |
| } |
| |
| void HBasicBlock::AddPhi(HPhi* phi) { |
| Add(&phis_, this, phi); |
| } |
| |
| void HBasicBlock::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(!cursor->IsPhi()); |
| DCHECK(!instruction->IsPhi()); |
| DCHECK_EQ(instruction->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| DCHECK(!instruction->IsControlFlow()); |
| instruction->SetBlock(this); |
| instruction->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instructions_.InsertInstructionBefore(instruction, cursor); |
| } |
| |
| void HBasicBlock::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(!cursor->IsPhi()); |
| DCHECK(!instruction->IsPhi()); |
| DCHECK_EQ(instruction->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| DCHECK(!instruction->IsControlFlow()); |
| DCHECK(!cursor->IsControlFlow()); |
| instruction->SetBlock(this); |
| instruction->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(instruction); |
| instructions_.InsertInstructionAfter(instruction, cursor); |
| } |
| |
| void HBasicBlock::InsertPhiAfter(HPhi* phi, HPhi* cursor) { |
| DCHECK_EQ(phi->GetId(), -1); |
| DCHECK_NE(cursor->GetId(), -1); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| phi->SetBlock(this); |
| phi->SetId(GetGraph()->GetNextInstructionId()); |
| UpdateInputsUsers(phi); |
| phis_.InsertInstructionAfter(phi, cursor); |
| } |
| |
| static void Remove(HInstructionList* instruction_list, |
| HBasicBlock* block, |
| HInstruction* instruction, |
| bool ensure_safety) { |
| DCHECK_EQ(block, instruction->GetBlock()); |
| instruction->SetBlock(nullptr); |
| instruction_list->RemoveInstruction(instruction); |
| if (ensure_safety) { |
| DCHECK(instruction->GetUses().IsEmpty()); |
| DCHECK(instruction->GetEnvUses().IsEmpty()); |
| RemoveAsUser(instruction); |
| } |
| } |
| |
| void HBasicBlock::RemoveInstruction(HInstruction* instruction, bool ensure_safety) { |
| DCHECK(!instruction->IsPhi()); |
| Remove(&instructions_, this, instruction, ensure_safety); |
| } |
| |
| void HBasicBlock::RemovePhi(HPhi* phi, bool ensure_safety) { |
| Remove(&phis_, this, phi, ensure_safety); |
| } |
| |
| void HBasicBlock::RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety) { |
| if (instruction->IsPhi()) { |
| RemovePhi(instruction->AsPhi(), ensure_safety); |
| } else { |
| RemoveInstruction(instruction, ensure_safety); |
| } |
| } |
| |
| void HEnvironment::CopyFrom(const ArenaVector<HInstruction*>& locals) { |
| for (size_t i = 0; i < locals.size(); i++) { |
| HInstruction* instruction = locals[i]; |
| SetRawEnvAt(i, instruction); |
| if (instruction != nullptr) { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::CopyFrom(HEnvironment* env) { |
| for (size_t i = 0; i < env->Size(); i++) { |
| HInstruction* instruction = env->GetInstructionAt(i); |
| SetRawEnvAt(i, instruction); |
| if (instruction != nullptr) { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::CopyFromWithLoopPhiAdjustment(HEnvironment* env, |
| HBasicBlock* loop_header) { |
| DCHECK(loop_header->IsLoopHeader()); |
| for (size_t i = 0; i < env->Size(); i++) { |
| HInstruction* instruction = env->GetInstructionAt(i); |
| SetRawEnvAt(i, instruction); |
| if (instruction == nullptr) { |
| continue; |
| } |
| if (instruction->IsLoopHeaderPhi() && (instruction->GetBlock() == loop_header)) { |
| // At the end of the loop pre-header, the corresponding value for instruction |
| // is the first input of the phi. |
| HInstruction* initial = instruction->AsPhi()->InputAt(0); |
| DCHECK(initial->GetBlock()->Dominates(loop_header)); |
| SetRawEnvAt(i, initial); |
| initial->AddEnvUseAt(this, i); |
| } else { |
| instruction->AddEnvUseAt(this, i); |
| } |
| } |
| } |
| |
| void HEnvironment::RemoveAsUserOfInput(size_t index) const { |
| const HUserRecord<HEnvironment*>& user_record = vregs_[index]; |
| user_record.GetInstruction()->RemoveEnvironmentUser(user_record.GetUseNode()); |
| } |
| |
| HInstruction::InstructionKind HInstruction::GetKind() const { |
| return GetKindInternal(); |
| } |
| |
| HInstruction* HInstruction::GetNextDisregardingMoves() const { |
| HInstruction* next = GetNext(); |
| while (next != nullptr && next->IsParallelMove()) { |
| next = next->GetNext(); |
| } |
| return next; |
| } |
| |
| HInstruction* HInstruction::GetPreviousDisregardingMoves() const { |
| HInstruction* previous = GetPrevious(); |
| while (previous != nullptr && previous->IsParallelMove()) { |
| previous = previous->GetPrevious(); |
| } |
| return previous; |
| } |
| |
| void HInstructionList::AddInstruction(HInstruction* instruction) { |
| if (first_instruction_ == nullptr) { |
| DCHECK(last_instruction_ == nullptr); |
| first_instruction_ = last_instruction_ = instruction; |
| } else { |
| last_instruction_->next_ = instruction; |
| instruction->previous_ = last_instruction_; |
| last_instruction_ = instruction; |
| } |
| } |
| |
| void HInstructionList::InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(Contains(cursor)); |
| if (cursor == first_instruction_) { |
| cursor->previous_ = instruction; |
| instruction->next_ = cursor; |
| first_instruction_ = instruction; |
| } else { |
| instruction->previous_ = cursor->previous_; |
| instruction->next_ = cursor; |
| cursor->previous_ = instruction; |
| instruction->previous_->next_ = instruction; |
| } |
| } |
| |
| void HInstructionList::InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor) { |
| DCHECK(Contains(cursor)); |
| if (cursor == last_instruction_) { |
| cursor->next_ = instruction; |
| instruction->previous_ = cursor; |
| last_instruction_ = instruction; |
| } else { |
| instruction->next_ = cursor->next_; |
| instruction->previous_ = cursor; |
| cursor->next_ = instruction; |
| instruction->next_->previous_ = instruction; |
| } |
| } |
| |
| void HInstructionList::RemoveInstruction(HInstruction* instruction) { |
| if (instruction->previous_ != nullptr) { |
| instruction->previous_->next_ = instruction->next_; |
| } |
| if (instruction->next_ != nullptr) { |
| instruction->next_->previous_ = instruction->previous_; |
| } |
| if (instruction == first_instruction_) { |
| first_instruction_ = instruction->next_; |
| } |
| if (instruction == last_instruction_) { |
| last_instruction_ = instruction->previous_; |
| } |
| } |
| |
| bool HInstructionList::Contains(HInstruction* instruction) const { |
| for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { |
| if (it.Current() == instruction) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| bool HInstructionList::FoundBefore(const HInstruction* instruction1, |
| const HInstruction* instruction2) const { |
| DCHECK_EQ(instruction1->GetBlock(), instruction2->GetBlock()); |
| for (HInstructionIterator it(*this); !it.Done(); it.Advance()) { |
| if (it.Current() == instruction1) { |
| return true; |
| } |
| if (it.Current() == instruction2) { |
| return false; |
| } |
| } |
| LOG(FATAL) << "Did not find an order between two instructions of the same block."; |
| return true; |
| } |
| |
| bool HInstruction::StrictlyDominates(HInstruction* other_instruction) const { |
| if (other_instruction == this) { |
| // An instruction does not strictly dominate itself. |
| return false; |
| } |
| HBasicBlock* block = GetBlock(); |
| HBasicBlock* other_block = other_instruction->GetBlock(); |
| if (block != other_block) { |
| return GetBlock()->Dominates(other_instruction->GetBlock()); |
| } else { |
| // If both instructions are in the same block, ensure this |
| // instruction comes before `other_instruction`. |
| if (IsPhi()) { |
| if (!other_instruction->IsPhi()) { |
| // Phis appear before non phi-instructions so this instruction |
| // dominates `other_instruction`. |
| return true; |
| } else { |
| // There is no order among phis. |
| LOG(FATAL) << "There is no dominance between phis of a same block."; |
| return false; |
| } |
| } else { |
| // `this` is not a phi. |
| if (other_instruction->IsPhi()) { |
| // Phis appear before non phi-instructions so this instruction |
| // does not dominate `other_instruction`. |
| return false; |
| } else { |
| // Check whether this instruction comes before |
| // `other_instruction` in the instruction list. |
| return block->GetInstructions().FoundBefore(this, other_instruction); |
| } |
| } |
| } |
| } |
| |
| void HInstruction::ReplaceWith(HInstruction* other) { |
| DCHECK(other != nullptr); |
| for (HUseIterator<HInstruction*> it(GetUses()); !it.Done(); it.Advance()) { |
| HUseListNode<HInstruction*>* current = it.Current(); |
| HInstruction* user = current->GetUser(); |
| size_t input_index = current->GetIndex(); |
| user->SetRawInputAt(input_index, other); |
| other->AddUseAt(user, input_index); |
| } |
| |
| for (HUseIterator<HEnvironment*> it(GetEnvUses()); !it.Done(); it.Advance()) { |
| HUseListNode<HEnvironment*>* current = it.Current(); |
| HEnvironment* user = current->GetUser(); |
| size_t input_index = current->GetIndex(); |
| user->SetRawEnvAt(input_index, other); |
| other->AddEnvUseAt(user, input_index); |
| } |
| |
| uses_.Clear(); |
| env_uses_.Clear(); |
| } |
| |
| void HInstruction::ReplaceInput(HInstruction* replacement, size_t index) { |
| RemoveAsUserOfInput(index); |
| SetRawInputAt(index, replacement); |
| replacement->AddUseAt(this, index); |
| } |
| |
| size_t HInstruction::EnvironmentSize() const { |
| return HasEnvironment() ? environment_->Size() : 0; |
| } |
| |
| void HPhi::AddInput(HInstruction* input) { |
| DCHECK(input->GetBlock() != nullptr); |
| inputs_.push_back(HUserRecord<HInstruction*>(input)); |
| input->AddUseAt(this, inputs_.size() - 1); |
| } |
| |
| void HPhi::RemoveInputAt(size_t index) { |
| RemoveAsUserOfInput(index); |
| inputs_.erase(inputs_.begin() + index); |
| for (size_t i = index, e = InputCount(); i < e; ++i) { |
| DCHECK_EQ(InputRecordAt(i).GetUseNode()->GetIndex(), i + 1u); |
| InputRecordAt(i).GetUseNode()->SetIndex(i); |
| } |
| } |
| |
| #define DEFINE_ACCEPT(name, super) \ |
| void H##name::Accept(HGraphVisitor* visitor) { \ |
| visitor->Visit##name(this); \ |
| } |
| |
| FOR_EACH_CONCRETE_INSTRUCTION(DEFINE_ACCEPT) |
| |
| #undef DEFINE_ACCEPT |
| |
| void HGraphVisitor::VisitInsertionOrder() { |
| const ArenaVector<HBasicBlock*>& blocks = graph_->GetBlocks(); |
| for (HBasicBlock* block : blocks) { |
| if (block != nullptr) { |
| VisitBasicBlock(block); |
| } |
| } |
| } |
| |
| void HGraphVisitor::VisitReversePostOrder() { |
| for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) { |
| VisitBasicBlock(it.Current()); |
| } |
| } |
| |
| void HGraphVisitor::VisitBasicBlock(HBasicBlock* block) { |
| for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { |
| it.Current()->Accept(this); |
| } |
| } |
| |
| HConstant* HTypeConversion::TryStaticEvaluation() const { |
| HGraph* graph = GetBlock()->GetGraph(); |
| if (GetInput()->IsIntConstant()) { |
| int32_t value = GetInput()->AsIntConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimLong: |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case Primitive::kPrimFloat: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| case Primitive::kPrimDouble: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsLongConstant()) { |
| int64_t value = GetInput()->AsLongConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimInt: |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case Primitive::kPrimFloat: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| case Primitive::kPrimDouble: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsFloatConstant()) { |
| float value = GetInput()->AsFloatConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimInt: |
| if (std::isnan(value)) |
| return graph->GetIntConstant(0, GetDexPc()); |
| if (value >= kPrimIntMax) |
| return graph->GetIntConstant(kPrimIntMax, GetDexPc()); |
| if (value <= kPrimIntMin) |
| return graph->GetIntConstant(kPrimIntMin, GetDexPc()); |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case Primitive::kPrimLong: |
| if (std::isnan(value)) |
| return graph->GetLongConstant(0, GetDexPc()); |
| if (value >= kPrimLongMax) |
| return graph->GetLongConstant(kPrimLongMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetLongConstant(kPrimLongMin, GetDexPc()); |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case Primitive::kPrimDouble: |
| return graph->GetDoubleConstant(static_cast<double>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } else if (GetInput()->IsDoubleConstant()) { |
| double value = GetInput()->AsDoubleConstant()->GetValue(); |
| switch (GetResultType()) { |
| case Primitive::kPrimInt: |
| if (std::isnan(value)) |
| return graph->GetIntConstant(0, GetDexPc()); |
| if (value >= kPrimIntMax) |
| return graph->GetIntConstant(kPrimIntMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetIntConstant(kPrimIntMin, GetDexPc()); |
| return graph->GetIntConstant(static_cast<int32_t>(value), GetDexPc()); |
| case Primitive::kPrimLong: |
| if (std::isnan(value)) |
| return graph->GetLongConstant(0, GetDexPc()); |
| if (value >= kPrimLongMax) |
| return graph->GetLongConstant(kPrimLongMax, GetDexPc()); |
| if (value <= kPrimLongMin) |
| return graph->GetLongConstant(kPrimLongMin, GetDexPc()); |
| return graph->GetLongConstant(static_cast<int64_t>(value), GetDexPc()); |
| case Primitive::kPrimFloat: |
| return graph->GetFloatConstant(static_cast<float>(value), GetDexPc()); |
| default: |
| return nullptr; |
| } |
| } |
| return nullptr; |
| } |
| |
| HConstant* HUnaryOperation::TryStaticEvaluation() const { |
| if (GetInput()->IsIntConstant()) { |
| return Evaluate(GetInput()->AsIntConstant()); |
| } else if (GetInput()->IsLongConstant()) { |
| return Evaluate(GetInput()->AsLongConstant()); |
| } |
| return nullptr; |
| } |
| |
| HConstant* HBinaryOperation::TryStaticEvaluation() const { |
| if (GetLeft()->IsIntConstant()) { |
| if (GetRight()->IsIntConstant()) { |
| return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsIntConstant()); |
| } else if (GetRight()->IsLongConstant()) { |
| return Evaluate(GetLeft()->AsIntConstant(), GetRight()->AsLongConstant()); |
| } |
| } else if (GetLeft()->IsLongConstant()) { |
| if (GetRight()->IsIntConstant()) { |
| return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsIntConstant()); |
| } else if (GetRight()->IsLongConstant()) { |
| return Evaluate(GetLeft()->AsLongConstant(), GetRight()->AsLongConstant()); |
| } |
| } else if (GetLeft()->IsNullConstant() && GetRight()->IsNullConstant()) { |
| return Evaluate(GetLeft()->AsNullConstant(), GetRight()->AsNullConstant()); |
| } |
| return nullptr; |
| } |
| |
| HConstant* HBinaryOperation::GetConstantRight() const { |
| if (GetRight()->IsConstant()) { |
| return GetRight()->AsConstant(); |
| } else if (IsCommutative() && GetLeft()->IsConstant()) { |
| return GetLeft()->AsConstant(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| // If `GetConstantRight()` returns one of the input, this returns the other |
| // one. Otherwise it returns null. |
| HInstruction* HBinaryOperation::GetLeastConstantLeft() const { |
| HInstruction* most_constant_right = GetConstantRight(); |
| if (most_constant_right == nullptr) { |
| return nullptr; |
| } else if (most_constant_right == GetLeft()) { |
| return GetRight(); |
| } else { |
| return GetLeft(); |
| } |
| } |
| |
| bool HCondition::IsBeforeWhenDisregardMoves(HInstruction* instruction) const { |
| return this == instruction->GetPreviousDisregardingMoves(); |
| } |
| |
| bool HInstruction::Equals(HInstruction* other) const { |
| if (!InstructionTypeEquals(other)) return false; |
| DCHECK_EQ(GetKind(), other->GetKind()); |
| if (!InstructionDataEquals(other)) return false; |
| if (GetType() != other->GetType()) return false; |
| if (InputCount() != other->InputCount()) return false; |
| |
| for (size_t i = 0, e = InputCount(); i < e; ++i) { |
| if (InputAt(i) != other->InputAt(i)) return false; |
| } |
| DCHECK_EQ(ComputeHashCode(), other->ComputeHashCode()); |
| return true; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs) { |
| #define DECLARE_CASE(type, super) case HInstruction::k##type: os << #type; break; |
| switch (rhs) { |
| FOR_EACH_INSTRUCTION(DECLARE_CASE) |
| default: |
| os << "Unknown instruction kind " << static_cast<int>(rhs); |
| break; |
| } |
| #undef DECLARE_CASE |
| return os; |
| } |
| |
| void HInstruction::MoveBefore(HInstruction* cursor) { |
| next_->previous_ = previous_; |
| if (previous_ != nullptr) { |
| previous_->next_ = next_; |
| } |
| if (block_->instructions_.first_instruction_ == this) { |
| block_->instructions_.first_instruction_ = next_; |
| } |
| DCHECK_NE(block_->instructions_.last_instruction_, this); |
| |
| previous_ = cursor->previous_; |
| if (previous_ != nullptr) { |
| previous_->next_ = this; |
| } |
| next_ = cursor; |
| cursor->previous_ = this; |
| block_ = cursor->block_; |
| |
| if (block_->instructions_.first_instruction_ == cursor) { |
| block_->instructions_.first_instruction_ = this; |
| } |
| } |
| |
| void HInstruction::MoveBeforeFirstUserAndOutOfLoops() { |
| DCHECK(!CanThrow()); |
| DCHECK(!HasSideEffects()); |
| DCHECK(!HasEnvironmentUses()); |
| DCHECK(HasNonEnvironmentUses()); |
| DCHECK(!IsPhi()); // Makes no sense for Phi. |
| DCHECK_EQ(InputCount(), 0u); |
| |
| // Find the target block. |
| HUseIterator<HInstruction*> uses_it(GetUses()); |
| HBasicBlock* target_block = uses_it.Current()->GetUser()->GetBlock(); |
| uses_it.Advance(); |
| while (!uses_it.Done() && uses_it.Current()->GetUser()->GetBlock() == target_block) { |
| uses_it.Advance(); |
| } |
| if (!uses_it.Done()) { |
| // This instruction has uses in two or more blocks. Find the common dominator. |
| CommonDominator finder(target_block); |
| for (; !uses_it.Done(); uses_it.Advance()) { |
| finder.Update(uses_it.Current()->GetUser()->GetBlock()); |
| } |
| target_block = finder.Get(); |
| DCHECK(target_block != nullptr); |
| } |
| // Move to the first dominator not in a loop. |
| while (target_block->IsInLoop()) { |
| target_block = target_block->GetDominator(); |
| DCHECK(target_block != nullptr); |
| } |
| |
| // Find insertion position. |
| HInstruction* insert_pos = nullptr; |
| for (HUseIterator<HInstruction*> uses_it2(GetUses()); !uses_it2.Done(); uses_it2.Advance()) { |
| if (uses_it2.Current()->GetUser()->GetBlock() == target_block && |
| (insert_pos == nullptr || uses_it2.Current()->GetUser()->StrictlyDominates(insert_pos))) { |
| insert_pos = uses_it2.Current()->GetUser(); |
| } |
| } |
| if (insert_pos == nullptr) { |
| // No user in `target_block`, insert before the control flow instruction. |
| insert_pos = target_block->GetLastInstruction(); |
| DCHECK(insert_pos->IsControlFlow()); |
| // Avoid splitting HCondition from HIf to prevent unnecessary materialization. |
| if (insert_pos->IsIf()) { |
| HInstruction* if_input = insert_pos->AsIf()->InputAt(0); |
| if (if_input == insert_pos->GetPrevious()) { |
| insert_pos = if_input; |
| } |
| } |
| } |
| MoveBefore(insert_pos); |
| } |
| |
| HBasicBlock* HBasicBlock::SplitBefore(HInstruction* cursor) { |
| DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented."; |
| DCHECK_EQ(cursor->GetBlock(), this); |
| |
| HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), |
| cursor->GetDexPc()); |
| new_block->instructions_.first_instruction_ = cursor; |
| new_block->instructions_.last_instruction_ = instructions_.last_instruction_; |
| instructions_.last_instruction_ = cursor->previous_; |
| if (cursor->previous_ == nullptr) { |
| instructions_.first_instruction_ = nullptr; |
| } else { |
| cursor->previous_->next_ = nullptr; |
| cursor->previous_ = nullptr; |
| } |
| |
| new_block->instructions_.SetBlockOfInstructions(new_block); |
| AddInstruction(new (GetGraph()->GetArena()) HGoto(new_block->GetDexPc())); |
| |
| for (HBasicBlock* successor : GetSuccessors()) { |
| new_block->successors_.push_back(successor); |
| successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block; |
| } |
| successors_.clear(); |
| AddSuccessor(new_block); |
| |
| GetGraph()->AddBlock(new_block); |
| return new_block; |
| } |
| |
| HBasicBlock* HBasicBlock::CreateImmediateDominator() { |
| DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented."; |
| DCHECK(!IsCatchBlock()) << "Support for updating try/catch information not implemented."; |
| |
| HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc()); |
| |
| for (HBasicBlock* predecessor : GetPredecessors()) { |
| new_block->predecessors_.push_back(predecessor); |
| predecessor->successors_[predecessor->GetSuccessorIndexOf(this)] = new_block; |
| } |
| predecessors_.clear(); |
| AddPredecessor(new_block); |
| |
| GetGraph()->AddBlock(new_block); |
| return new_block; |
| } |
| |
| HBasicBlock* HBasicBlock::SplitCatchBlockAfterMoveException() { |
| DCHECK(!graph_->IsInSsaForm()) << "Support for SSA form not implemented."; |
| DCHECK(IsCatchBlock()) << "This method is intended for catch blocks only."; |
| |
| HInstruction* first_insn = GetFirstInstruction(); |
| HInstruction* split_before = nullptr; |
| |
| if (first_insn != nullptr && first_insn->IsLoadException()) { |
| // Catch block starts with a LoadException. Split the block after |
| // the StoreLocal and ClearException which must come after the load. |
| DCHECK(first_insn->GetNext()->IsStoreLocal()); |
| DCHECK(first_insn->GetNext()->GetNext()->IsClearException()); |
| split_before = first_insn->GetNext()->GetNext()->GetNext(); |
| } else { |
| // Catch block does not load the exception. Split at the beginning |
| // to create an empty catch block. |
| split_before = first_insn; |
| } |
| |
| if (split_before == nullptr) { |
| // Catch block has no instructions after the split point (must be dead). |
| // Do not split it but rather signal error by returning nullptr. |
| return nullptr; |
| } else { |
| return SplitBefore(split_before); |
| } |
| } |
| |
| HBasicBlock* HBasicBlock::SplitAfter(HInstruction* cursor) { |
| DCHECK(!cursor->IsControlFlow()); |
| DCHECK_NE(instructions_.last_instruction_, cursor); |
| DCHECK_EQ(cursor->GetBlock(), this); |
| |
| HBasicBlock* new_block = new (GetGraph()->GetArena()) HBasicBlock(GetGraph(), GetDexPc()); |
| new_block->instructions_.first_instruction_ = cursor->GetNext(); |
| new_block->instructions_.last_instruction_ = instructions_.last_instruction_; |
| cursor->next_->previous_ = nullptr; |
| cursor->next_ = nullptr; |
| instructions_.last_instruction_ = cursor; |
| |
| new_block->instructions_.SetBlockOfInstructions(new_block); |
| for (HBasicBlock* successor : GetSuccessors()) { |
| new_block->successors_.push_back(successor); |
| successor->predecessors_[successor->GetPredecessorIndexOf(this)] = new_block; |
| } |
| successors_.clear(); |
| |
| for (HBasicBlock* dominated : GetDominatedBlocks()) { |
| dominated->dominator_ = new_block; |
| new_block->dominated_blocks_.push_back(dominated); |
| } |
| dominated_blocks_.clear(); |
| return new_block; |
| } |
| |
| const HTryBoundary* HBasicBlock::ComputeTryEntryOfSuccessors() const { |
| if (EndsWithTryBoundary()) { |
| HTryBoundary* try_boundary = GetLastInstruction()->AsTryBoundary(); |
| if (try_boundary->IsEntry()) { |
| DCHECK(!IsTryBlock()); |
| return try_boundary; |
| } else { |
| DCHECK(IsTryBlock()); |
| DCHECK(try_catch_information_->GetTryEntry().HasSameExceptionHandlersAs(*try_boundary)); |
| return nullptr; |
| } |
| } else if (IsTryBlock()) { |
| return &try_catch_information_->GetTryEntry(); |
| } else { |
| return nullptr; |
| } |
| } |
| |
| bool HBasicBlock::HasThrowingInstructions() const { |
| for (HInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) { |
| if (it.Current()->CanThrow()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool HasOnlyOneInstruction(const HBasicBlock& block) { |
| return block.GetPhis().IsEmpty() |
| && !block.GetInstructions().IsEmpty() |
| && block.GetFirstInstruction() == block.GetLastInstruction(); |
| } |
| |
| bool HBasicBlock::IsSingleGoto() const { |
| return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsGoto(); |
| } |
| |
| bool HBasicBlock::IsSingleTryBoundary() const { |
| return HasOnlyOneInstruction(*this) && GetLastInstruction()->IsTryBoundary(); |
| } |
| |
| bool HBasicBlock::EndsWithControlFlowInstruction() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsControlFlow(); |
| } |
| |
| bool HBasicBlock::EndsWithIf() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsIf(); |
| } |
| |
| bool HBasicBlock::EndsWithTryBoundary() const { |
| return !GetInstructions().IsEmpty() && GetLastInstruction()->IsTryBoundary(); |
| } |
| |
| bool HBasicBlock::HasSinglePhi() const { |
| return !GetPhis().IsEmpty() && GetFirstPhi()->GetNext() == nullptr; |
| } |
| |
| ArrayRef<HBasicBlock* const> HBasicBlock::GetNormalSuccessors() const { |
| if (EndsWithTryBoundary()) { |
| // The normal-flow successor of HTryBoundary is always stored at index zero. |
| DCHECK_EQ(successors_[0], GetLastInstruction()->AsTryBoundary()->GetNormalFlowSuccessor()); |
| return ArrayRef<HBasicBlock* const>(successors_).SubArray(0u, 1u); |
| } else { |
| // All successors of blocks not ending with TryBoundary are normal. |
| return ArrayRef<HBasicBlock* const>(successors_); |
| } |
| } |
| |
| ArrayRef<HBasicBlock* const> HBasicBlock::GetExceptionalSuccessors() const { |
| if (EndsWithTryBoundary()) { |
| return GetLastInstruction()->AsTryBoundary()->GetExceptionHandlers(); |
| } else { |
| // Blocks not ending with TryBoundary do not have exceptional successors. |
| return ArrayRef<HBasicBlock* const>(); |
| } |
| } |
| |
| bool HTryBoundary::HasSameExceptionHandlersAs(const HTryBoundary& other) const { |
| ArrayRef<HBasicBlock* const> handlers1 = GetExceptionHandlers(); |
| ArrayRef<HBasicBlock* const> handlers2 = other.GetExceptionHandlers(); |
| |
| size_t length = handlers1.size(); |
| if (length != handlers2.size()) { |
| return false; |
| } |
| |
| // Exception handlers need to be stored in the same order. |
| for (size_t i = 0; i < length; ++i) { |
| if (handlers1[i] != handlers2[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| size_t HInstructionList::CountSize() const { |
| size_t size = 0; |
| HInstruction* current = first_instruction_; |
| for (; current != nullptr; current = current->GetNext()) { |
| size++; |
| } |
| return size; |
| } |
| |
| void HInstructionList::SetBlockOfInstructions(HBasicBlock* block) const { |
| for (HInstruction* current = first_instruction_; |
| current != nullptr; |
| current = current->GetNext()) { |
| current->SetBlock(block); |
| } |
| } |
| |
| void HInstructionList::AddAfter(HInstruction* cursor, const HInstructionList& instruction_list) { |
| DCHECK(Contains(cursor)); |
| if (!instruction_list.IsEmpty()) { |
| if (cursor == last_instruction_) { |
| last_instruction_ = instruction_list.last_instruction_; |
| } else { |
| cursor->next_->previous_ = instruction_list.last_instruction_; |
| } |
| instruction_list.last_instruction_->next_ = cursor->next_; |
| cursor->next_ = instruction_list.first_instruction_; |
| instruction_list.first_instruction_->previous_ = cursor; |
| } |
| } |
| |
| void HInstructionList::Add(const HInstructionList& instruction_list) { |
| if (IsEmpty()) { |
| first_instruction_ = instruction_list.first_instruction_; |
| last_instruction_ = instruction_list.last_instruction_; |
| } else { |
| AddAfter(last_instruction_, instruction_list); |
| } |
| } |
| |
| // Should be called on instructions in a dead block in post order. This method |
| // assumes `insn` has been removed from all users with the exception of catch |
| // phis because of missing exceptional edges in the graph. It removes the |
| // instruction from catch phi uses, together with inputs of other catch phis in |
| // the catch block at the same index, as these must be dead too. |
| static void RemoveUsesOfDeadInstruction(HInstruction* insn) { |
| DCHECK(!insn->HasEnvironmentUses()); |
| while (insn->HasNonEnvironmentUses()) { |
| HUseListNode<HInstruction*>* use = insn->GetUses().GetFirst(); |
| size_t use_index = use->GetIndex(); |
| HBasicBlock* user_block = use->GetUser()->GetBlock(); |
| DCHECK(use->GetUser()->IsPhi() && user_block->IsCatchBlock()); |
| for (HInstructionIterator phi_it(user_block->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| phi_it.Current()->AsPhi()->RemoveInputAt(use_index); |
| } |
| } |
| } |
| |
| void HBasicBlock::DisconnectAndDelete() { |
| // Dominators must be removed after all the blocks they dominate. This way |
| // a loop header is removed last, a requirement for correct loop information |
| // iteration. |
| DCHECK(dominated_blocks_.empty()); |
| |
| // (1) Remove the block from all loops it is included in. |
| for (HLoopInformationOutwardIterator it(*this); !it.Done(); it.Advance()) { |
| HLoopInformation* loop_info = it.Current(); |
| loop_info->Remove(this); |
| if (loop_info->IsBackEdge(*this)) { |
| // If this was the last back edge of the loop, we deliberately leave the |
| // loop in an inconsistent state and will fail SSAChecker unless the |
| // entire loop is removed during the pass. |
| loop_info->RemoveBackEdge(this); |
| } |
| } |
| |
| // (2) Disconnect the block from its predecessors and update their |
| // control-flow instructions. |
| for (HBasicBlock* predecessor : predecessors_) { |
| HInstruction* last_instruction = predecessor->GetLastInstruction(); |
| if (last_instruction->IsTryBoundary() && !IsCatchBlock()) { |
| // This block is the only normal-flow successor of the TryBoundary which |
| // makes `predecessor` dead. Since DCE removes blocks in post order, |
| // exception handlers of this TryBoundary were already visited and any |
| // remaining handlers therefore must be live. We remove `predecessor` from |
| // their list of predecessors. |
| DCHECK_EQ(last_instruction->AsTryBoundary()->GetNormalFlowSuccessor(), this); |
| while (predecessor->GetSuccessors().size() > 1) { |
| HBasicBlock* handler = predecessor->GetSuccessors()[1]; |
| DCHECK(handler->IsCatchBlock()); |
| predecessor->RemoveSuccessor(handler); |
| handler->RemovePredecessor(predecessor); |
| } |
| } |
| |
| predecessor->RemoveSuccessor(this); |
| uint32_t num_pred_successors = predecessor->GetSuccessors().size(); |
| if (num_pred_successors == 1u) { |
| // If we have one successor after removing one, then we must have |
| // had an HIf, HPackedSwitch or HTryBoundary, as they have more than one |
| // successor. Replace those with a HGoto. |
| DCHECK(last_instruction->IsIf() || |
| last_instruction->IsPackedSwitch() || |
| (last_instruction->IsTryBoundary() && IsCatchBlock())); |
| predecessor->RemoveInstruction(last_instruction); |
| predecessor->AddInstruction(new (graph_->GetArena()) HGoto(last_instruction->GetDexPc())); |
| } else if (num_pred_successors == 0u) { |
| // The predecessor has no remaining successors and therefore must be dead. |
| // We deliberately leave it without a control-flow instruction so that the |
| // SSAChecker fails unless it is not removed during the pass too. |
| predecessor->RemoveInstruction(last_instruction); |
| } else { |
| // There are multiple successors left. The removed block might be a successor |
| // of a PackedSwitch which will be completely removed (perhaps replaced with |
| // a Goto), or we are deleting a catch block from a TryBoundary. In either |
| // case, leave `last_instruction` as is for now. |
| DCHECK(last_instruction->IsPackedSwitch() || |
| (last_instruction->IsTryBoundary() && IsCatchBlock())); |
| } |
| } |
| predecessors_.clear(); |
| |
| // (3) Disconnect the block from its successors and update their phis. |
| for (HBasicBlock* successor : successors_) { |
| // Delete this block from the list of predecessors. |
| size_t this_index = successor->GetPredecessorIndexOf(this); |
| successor->predecessors_.erase(successor->predecessors_.begin() + this_index); |
| |
| // Check that `successor` has other predecessors, otherwise `this` is the |
| // dominator of `successor` which violates the order DCHECKed at the top. |
| DCHECK(!successor->predecessors_.empty()); |
| |
| // Remove this block's entries in the successor's phis. Skip exceptional |
| // successors because catch phi inputs do not correspond to predecessor |
| // blocks but throwing instructions. Their inputs will be updated in step (4). |
| if (!successor->IsCatchBlock()) { |
| if (successor->predecessors_.size() == 1u) { |
| // The successor has just one predecessor left. Replace phis with the only |
| // remaining input. |
| for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| HPhi* phi = phi_it.Current()->AsPhi(); |
| phi->ReplaceWith(phi->InputAt(1 - this_index)); |
| successor->RemovePhi(phi); |
| } |
| } else { |
| for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { |
| phi_it.Current()->AsPhi()->RemoveInputAt(this_index); |
| } |
| } |
| } |
| } |
| successors_.clear(); |
| |
| // (4) Remove instructions and phis. Instructions should have no remaining uses |
| // except in catch phis. If an instruction is used by a catch phi at `index`, |
| // remove `index`-th input of all phis in the catch block since they are |
| // guaranteed dead. Note that we may miss dead inputs this way but the |
| // graph will always remain consistent. |
| for (HBackwardInstructionIterator it(GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* insn = it.Current(); |
| RemoveUsesOfDeadInstruction(insn); |
| RemoveInstruction(insn); |
| } |
| for (HInstructionIterator it(GetPhis()); !it.Done(); it.Advance()) { |
| HPhi* insn = it.Current()->AsPhi(); |
| RemoveUsesOfDeadInstruction(insn); |
| RemovePhi(insn); |
| } |
| |
| // Disconnect from the dominator. |
| dominator_->RemoveDominatedBlock(this); |
| SetDominator(nullptr); |
| |
| // Delete from the graph, update reverse post order. |
| graph_->DeleteDeadEmptyBlock(this); |
| SetGraph(nullptr); |
| } |
| |
| void HBasicBlock::MergeWith(HBasicBlock* other) { |
| DCHECK_EQ(GetGraph(), other->GetGraph()); |
| DCHECK(ContainsElement(dominated_blocks_, other)); |
| DCHECK_EQ(GetSingleSuccessor(), other); |
| DCHECK_EQ(other->GetSinglePredecessor(), this); |
| DCHECK(other->GetPhis().IsEmpty()); |
| |
| // Move instructions from `other` to `this`. |
| DCHECK(EndsWithControlFlowInstruction()); |
| RemoveInstruction(GetLastInstruction()); |
| instructions_.Add(other->GetInstructions()); |
| other->instructions_.SetBlockOfInstructions(this); |
| other->instructions_.Clear(); |
| |
| // Remove `other` from the loops it is included in. |
| for (HLoopInformationOutwardIterator it(*other); !it.Done(); it.Advance()) { |
| HLoopInformation* loop_info = it.Current(); |
| loop_info->Remove(other); |
| if (loop_info->IsBackEdge(*other)) { |
| loop_info->ReplaceBackEdge(other, this); |
| } |
| } |
| |
| // Update links to the successors of `other`. |
| successors_.clear(); |
| while (!other->successors_.empty()) { |
| HBasicBlock* successor = other->GetSuccessors()[0]; |
| successor->ReplacePredecessor(other, this); |
| } |
| |
| // Update the dominator tree. |
| RemoveDominatedBlock(other); |
| for (HBasicBlock* dominated : other->GetDominatedBlocks()) { |
| dominated_blocks_.push_back(dominated); |
| dominated->SetDominator(this); |
| } |
| other->dominated_blocks_.clear(); |
| other->dominator_ = nullptr; |
| |
| // Clear the list of predecessors of `other` in preparation of deleting it. |
| other->predecessors_.clear(); |
| |
| // Delete `other` from the graph. The function updates reverse post order. |
| graph_->DeleteDeadEmptyBlock(other); |
| other->SetGraph(nullptr); |
| } |
| |
| void HBasicBlock::MergeWithInlined(HBasicBlock* other) { |
| DCHECK_NE(GetGraph(), other->GetGraph()); |
| DCHECK(GetDominatedBlocks().empty()); |
| DCHECK(GetSuccessors().empty()); |
| DCHECK(!EndsWithControlFlowInstruction()); |
| DCHECK(other->GetSinglePredecessor()->IsEntryBlock()); |
| DCHECK(other->GetPhis().IsEmpty()); |
| DCHECK(!other->IsInLoop()); |
| |
| // Move instructions from `other` to `this`. |
| instructions_.Add(other->GetInstructions()); |
| other->instructions_.SetBlockOfInstructions(this); |
| |
| // Update links to the successors of `other`. |
| successors_.clear(); |
| while (!other->successors_.empty()) { |
| HBasicBlock* successor = other->GetSuccessors()[0]; |
| successor->ReplacePredecessor(other, this); |
| } |
| |
| // Update the dominator tree. |
| for (HBasicBlock* dominated : other->GetDominatedBlocks()) { |
| dominated_blocks_.push_back(dominated); |
| dominated->SetDominator(this); |
| } |
| other->dominated_blocks_.clear(); |
| other->dominator_ = nullptr; |
| other->graph_ = nullptr; |
| } |
| |
| void HBasicBlock::ReplaceWith(HBasicBlock* other) { |
| while (!GetPredecessors().empty()) { |
| HBasicBlock* predecessor = GetPredecessors()[0]; |
| predecessor->ReplaceSuccessor(this, other); |
| } |
| while (!GetSuccessors().empty()) { |
| HBasicBlock* successor = GetSuccessors()[0]; |
| successor->ReplacePredecessor(this, other); |
| } |
| for (HBasicBlock* dominated : GetDominatedBlocks()) { |
| other->AddDominatedBlock(dominated); |
| } |
| GetDominator()->ReplaceDominatedBlock(this, other); |
| other->SetDominator(GetDominator()); |
| dominator_ = nullptr; |
| graph_ = nullptr; |
| } |
| |
| // Create space in `blocks` for adding `number_of_new_blocks` entries |
| // starting at location `at`. Blocks after `at` are moved accordingly. |
| static void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks, |
| size_t number_of_new_blocks, |
| size_t after) { |
| DCHECK_LT(after, blocks->size()); |
| size_t old_size = blocks->size(); |
| size_t new_size = old_size + number_of_new_blocks; |
| blocks->resize(new_size); |
| std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end()); |
| } |
| |
| void HGraph::DeleteDeadEmptyBlock(HBasicBlock* block) { |
| DCHECK_EQ(block->GetGraph(), this); |
| DCHECK(block->GetSuccessors().empty()); |
| DCHECK(block->GetPredecessors().empty()); |
| DCHECK(block->GetDominatedBlocks().empty()); |
| DCHECK(block->GetDominator() == nullptr); |
| DCHECK(block->GetInstructions().IsEmpty()); |
| DCHECK(block->GetPhis().IsEmpty()); |
| |
| if (block->IsExitBlock()) { |
| exit_block_ = nullptr; |
| } |
| |
| RemoveElement(reverse_post_order_, block); |
| blocks_[block->GetBlockId()] = nullptr; |
| } |
| |
| HInstruction* HGraph::InlineInto(HGraph* outer_graph, HInvoke* invoke) { |
| DCHECK(HasExitBlock()) << "Unimplemented scenario"; |
| // Update the environments in this graph to have the invoke's environment |
| // as parent. |
| { |
| HReversePostOrderIterator it(*this); |
| it.Advance(); // Skip the entry block, we do not need to update the entry's suspend check. |
| for (; !it.Done(); it.Advance()) { |
| HBasicBlock* block = it.Current(); |
| for (HInstructionIterator instr_it(block->GetInstructions()); |
| !instr_it.Done(); |
| instr_it.Advance()) { |
| HInstruction* current = instr_it.Current(); |
| if (current->NeedsEnvironment()) { |
| current->GetEnvironment()->SetAndCopyParentChain( |
| outer_graph->GetArena(), invoke->GetEnvironment()); |
| } |
| } |
| } |
| } |
| outer_graph->UpdateMaximumNumberOfOutVRegs(GetMaximumNumberOfOutVRegs()); |
| if (HasBoundsChecks()) { |
| outer_graph->SetHasBoundsChecks(true); |
| } |
| |
| HInstruction* return_value = nullptr; |
| if (GetBlocks().size() == 3) { |
| // Simple case of an entry block, a body block, and an exit block. |
| // Put the body block's instruction into `invoke`'s block. |
| HBasicBlock* body = GetBlocks()[1]; |
| DCHECK(GetBlocks()[0]->IsEntryBlock()); |
| DCHECK(GetBlocks()[2]->IsExitBlock()); |
| DCHECK(!body->IsExitBlock()); |
| HInstruction* last = body->GetLastInstruction(); |
| |
| invoke->GetBlock()->instructions_.AddAfter(invoke, body->GetInstructions()); |
| body->GetInstructions().SetBlockOfInstructions(invoke->GetBlock()); |
| |
| // Replace the invoke with the return value of the inlined graph. |
| if (last->IsReturn()) { |
| return_value = last->InputAt(0); |
| } else { |
| DCHECK(last->IsReturnVoid()); |
| } |
| |
| invoke->GetBlock()->RemoveInstruction(last); |
| } else { |
| // Need to inline multiple blocks. We split `invoke`'s block |
| // into two blocks, merge the first block of the inlined graph into |
| // the first half, and replace the exit block of the inlined graph |
| // with the second half. |
| ArenaAllocator* allocator = outer_graph->GetArena(); |
| HBasicBlock* at = invoke->GetBlock(); |
| HBasicBlock* to = at->SplitAfter(invoke); |
| |
| HBasicBlock* first = entry_block_->GetSuccessors()[0]; |
| DCHECK(!first->IsInLoop()); |
| at->MergeWithInlined(first); |
| exit_block_->ReplaceWith(to); |
| |
| // Update all predecessors of the exit block (now the `to` block) |
| // to not `HReturn` but `HGoto` instead. |
| bool returns_void = to->GetPredecessors()[0]->GetLastInstruction()->IsReturnVoid(); |
| if (to->GetPredecessors().size() == 1) { |
| HBasicBlock* predecessor = to->GetPredecessors()[0]; |
| HInstruction* last = predecessor->GetLastInstruction(); |
| if (!returns_void) { |
| return_value = last->InputAt(0); |
| } |
| predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc())); |
| predecessor->RemoveInstruction(last); |
| } else { |
| if (!returns_void) { |
| // There will be multiple returns. |
| return_value = new (allocator) HPhi( |
| allocator, kNoRegNumber, 0, HPhi::ToPhiType(invoke->GetType()), to->GetDexPc()); |
| to->AddPhi(return_value->AsPhi()); |
| } |
| for (HBasicBlock* predecessor : to->GetPredecessors()) { |
| HInstruction* last = predecessor->GetLastInstruction(); |
| if (!returns_void) { |
| return_value->AsPhi()->AddInput(last->InputAt(0)); |
| } |
| predecessor->AddInstruction(new (allocator) HGoto(last->GetDexPc())); |
| predecessor->RemoveInstruction(last); |
| } |
| } |
| |
| // Update the meta information surrounding blocks: |
| // (1) the graph they are now in, |
| // (2) the reverse post order of that graph, |
| // (3) the potential loop information they are now in, |
| // (4) try block membership. |
| // Note that we do not need to update catch phi inputs because they |
| // correspond to the register file of the outer method which the inlinee |
| // cannot modify. |
| |
| // We don't add the entry block, the exit block, and the first block, which |
| // has been merged with `at`. |
| static constexpr int kNumberOfSkippedBlocksInCallee = 3; |
| |
| // We add the `to` block. |
| static constexpr int kNumberOfNewBlocksInCaller = 1; |
| size_t blocks_added = (reverse_post_order_.size() - kNumberOfSkippedBlocksInCallee) |
| + kNumberOfNewBlocksInCaller; |
| |
| // Find the location of `at` in the outer graph's reverse post order. The new |
| // blocks will be added after it. |
| size_t index_of_at = IndexOfElement(outer_graph->reverse_post_order_, at); |
| MakeRoomFor(&outer_graph->reverse_post_order_, blocks_added, index_of_at); |
| |
| HLoopInformation* loop_info = at->GetLoopInformation(); |
| // Copy TryCatchInformation if `at` is a try block, not if it is a catch block. |
| TryCatchInformation* try_catch_info = at->IsTryBlock() ? at->GetTryCatchInformation() : nullptr; |
| |
| // Do a reverse post order of the blocks in the callee and do (1), (2), (3) |
| // and (4) to the blocks that apply. |
| for (HReversePostOrderIterator it(*this); !it.Done(); it.Advance()) { |
| HBasicBlock* current = it.Current(); |
| if (current != exit_block_ && current != entry_block_ && current != first) { |
| DCHECK(!current->IsInLoop()); |
| DCHECK(current->GetTryCatchInformation() == nullptr); |
| DCHECK(current->GetGraph() == this); |
| current->SetGraph(outer_graph); |
| outer_graph->AddBlock(current); |
| outer_graph->reverse_post_order_[++index_of_at] = current; |
| if (loop_info != nullptr) { |
| current->SetLoopInformation(loop_info); |
| for (HLoopInformationOutwardIterator loop_it(*at); !loop_it.Done(); loop_it.Advance()) { |
| loop_it.Current()->Add(current); |
| } |
| } |
| current->SetTryCatchInformation(try_catch_info); |
| } |
| } |
| |
| // Do (1), (2), (3) and (4) to `to`. |
| to->SetGraph(outer_graph); |
| outer_graph->AddBlock(to); |
| outer_graph->reverse_post_order_[++index_of_at] = to; |
| if (loop_info != nullptr) { |
| to->SetLoopInformation(loop_info); |
| for (HLoopInformationOutwardIterator loop_it(*at); !loop_it.Done(); loop_it.Advance()) { |
| loop_it.Current()->Add(to); |
| } |
| if (loop_info->IsBackEdge(*at)) { |
| // Only `to` can become a back edge, as the inlined blocks |
| // are predecessors of `to`. |
| loop_info->ReplaceBackEdge(at, to); |
| } |
| } |
| to->SetTryCatchInformation(try_catch_info); |
| } |
| |
| // Update the next instruction id of the outer graph, so that instructions |
| // added later get bigger ids than those in the inner graph. |
| outer_graph->SetCurrentInstructionId(GetNextInstructionId()); |
| |
| // Walk over the entry block and: |
| // - Move constants from the entry block to the outer_graph's entry block, |
| // - Replace HParameterValue instructions with their real value. |
| // - Remove suspend checks, that hold an environment. |
| // We must do this after the other blocks have been inlined, otherwise ids of |
| // constants could overlap with the inner graph. |
| size_t parameter_index = 0; |
| for (HInstructionIterator it(entry_block_->GetInstructions()); !it.Done(); it.Advance()) { |
| HInstruction* current = it.Current(); |
| HInstruction* replacement = nullptr; |
| if (current->IsNullConstant()) { |
| replacement = outer_graph->GetNullConstant(current->GetDexPc()); |
| } else if (current->IsIntConstant()) { |
| replacement = outer_graph->GetIntConstant( |
| current->AsIntConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsLongConstant()) { |
| replacement = outer_graph->GetLongConstant( |
| current->AsLongConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsFloatConstant()) { |
| replacement = outer_graph->GetFloatConstant( |
| current->AsFloatConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsDoubleConstant()) { |
| replacement = outer_graph->GetDoubleConstant( |
| current->AsDoubleConstant()->GetValue(), current->GetDexPc()); |
| } else if (current->IsParameterValue()) { |
| if (kIsDebugBuild |
| && invoke->IsInvokeStaticOrDirect() |
| && invoke->AsInvokeStaticOrDirect()->IsStaticWithExplicitClinitCheck()) { |
| // Ensure we do not use the last input of `invoke`, as it |
| // contains a clinit check which is not an actual argument. |
| size_t last_input_index = invoke->InputCount() - 1; |
| DCHECK(parameter_index != last_input_index); |
| } |
| replacement = invoke->InputAt(parameter_index++); |
| } else if (current->IsCurrentMethod()) { |
| replacement = outer_graph->GetCurrentMethod(); |
| } else { |
| DCHECK(current->IsGoto() || current->IsSuspendCheck()); |
| entry_block_->RemoveInstruction(current); |
| } |
| if (replacement != nullptr) { |
| current->ReplaceWith(replacement); |
| // If the current is the return value then we need to update the latter. |
| if (current == return_value) { |
| DCHECK_EQ(entry_block_, return_value->GetBlock()); |
| return_value = replacement; |
| } |
| } |
| } |
| |
| if (return_value != nullptr) { |
| invoke->ReplaceWith(return_value); |
| } |
| |
| // Finally remove the invoke from the caller. |
| invoke->GetBlock()->RemoveInstruction(invoke); |
| |
| return return_value; |
| } |
| |
| /* |
| * Loop will be transformed to: |
| * old_pre_header |
| * | |
| * if_block |
| * / \ |
| * true_block false_block |
| * \ / |
| * new_pre_header |
| * | |
| * header |
| */ |
| void HGraph::TransformLoopHeaderForBCE(HBasicBlock* header) { |
| DCHECK(header->IsLoopHeader()); |
| HBasicBlock* old_pre_header = header->GetDominator(); |
| |
| // Need extra block to avoid critical edge. |
| HBasicBlock* if_block = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* true_block = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* false_block = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| HBasicBlock* new_pre_header = new (arena_) HBasicBlock(this, header->GetDexPc()); |
| AddBlock(if_block); |
| AddBlock(true_block); |
| AddBlock(false_block); |
| AddBlock(new_pre_header); |
| |
| header->ReplacePredecessor(old_pre_header, new_pre_header); |
| old_pre_header->successors_.clear(); |
| old_pre_header->dominated_blocks_.clear(); |
| |
| old_pre_header->AddSuccessor(if_block); |
| if_block->AddSuccessor(true_block); // True successor |
| if_block->AddSuccessor(false_block); // False successor |
| true_block->AddSuccessor(new_pre_header); |
| false_block->AddSuccessor(new_pre_header); |
| |
| old_pre_header->dominated_blocks_.push_back(if_block); |
| if_block->SetDominator(old_pre_header); |
| if_block->dominated_blocks_.push_back(true_block); |
| true_block->SetDominator(if_block); |
| if_block->dominated_blocks_.push_back(false_block); |
| false_block->SetDominator(if_block); |
| if_block->dominated_blocks_.push_back(new_pre_header); |
| new_pre_header->SetDominator(if_block); |
| new_pre_header->dominated_blocks_.push_back(header); |
| header->SetDominator(new_pre_header); |
| |
| // Fix reverse post order. |
| size_t index_of_header = IndexOfElement(reverse_post_order_, header); |
| MakeRoomFor(&reverse_post_order_, 4, index_of_header - 1); |
| reverse_post_order_[index_of_header++] = if_block; |
| reverse_post_order_[index_of_header++] = true_block; |
| reverse_post_order_[index_of_header++] = false_block; |
| reverse_post_order_[index_of_header++] = new_pre_header; |
| |
| // Fix loop information. |
| HLoopInformation* loop_info = old_pre_header->GetLoopInformation(); |
| if (loop_info != nullptr) { |
| if_block->SetLoopInformation(loop_info); |
| true_block->SetLoopInformation(loop_info); |
| false_block->SetLoopInformation(loop_info); |
| new_pre_header->SetLoopInformation(loop_info); |
| // Add blocks to all enveloping loops. |
| for (HLoopInformationOutwardIterator loop_it(*old_pre_header); |
| !loop_it.Done(); |
| loop_it.Advance()) { |
| loop_it.Current()->Add(if_block); |
| loop_it.Current()->Add(true_block); |
| loop_it.Current()->Add(false_block); |
| loop_it.Current()->Add(new_pre_header); |
| } |
| } |
| |
| // Fix try/catch information. |
| TryCatchInformation* try_catch_info = old_pre_header->IsTryBlock() |
| ? old_pre_header->GetTryCatchInformation() |
| : nullptr; |
| if_block->SetTryCatchInformation(try_catch_info); |
| true_block->SetTryCatchInformation(try_catch_info); |
| false_block->SetTryCatchInformation(try_catch_info); |
| new_pre_header->SetTryCatchInformation(try_catch_info); |
| } |
| |
| void HInstruction::SetReferenceTypeInfo(ReferenceTypeInfo rti) { |
| if (kIsDebugBuild) { |
| DCHECK_EQ(GetType(), Primitive::kPrimNot); |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(rti.IsValid()) << "Invalid RTI for " << DebugName(); |
| if (IsBoundType()) { |
| // Having the test here spares us from making the method virtual just for |
| // the sake of a DCHECK. |
| ReferenceTypeInfo upper_bound_rti = AsBoundType()->GetUpperBound(); |
| DCHECK(upper_bound_rti.IsSupertypeOf(rti)) |
| << " upper_bound_rti: " << upper_bound_rti |
| << " rti: " << rti; |
| DCHECK(!upper_bound_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes() || rti.IsExact()); |
| } |
| } |
| reference_type_info_ = rti; |
| } |
| |
| ReferenceTypeInfo::ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {} |
| |
| ReferenceTypeInfo::ReferenceTypeInfo(TypeHandle type_handle, bool is_exact) |
| : type_handle_(type_handle), is_exact_(is_exact) { |
| if (kIsDebugBuild) { |
| ScopedObjectAccess soa(Thread::Current()); |
| DCHECK(IsValidHandle(type_handle)); |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs) { |
| ScopedObjectAccess soa(Thread::Current()); |
| os << "[" |
| << " is_valid=" << rhs.IsValid() |
| << " type=" << (!rhs.IsValid() ? "?" : PrettyClass(rhs.GetTypeHandle().Get())) |
| << " is_exact=" << rhs.IsExact() |
| << " ]"; |
| return os; |
| } |
| |
| bool HInstruction::HasAnyEnvironmentUseBefore(HInstruction* other) { |
| // For now, assume that instructions in different blocks may use the |
| // environment. |
| // TODO: Use the control flow to decide if this is true. |
| if (GetBlock() != other->GetBlock()) { |
| return true; |
| } |
| |
| // We know that we are in the same block. Walk from 'this' to 'other', |
| // checking to see if there is any instruction with an environment. |
| HInstruction* current = this; |
| for (; current != other && current != nullptr; current = current->GetNext()) { |
| // This is a conservative check, as the instruction result may not be in |
| // the referenced environment. |
| if (current->HasEnvironment()) { |
| return true; |
| } |
| } |
| |
| // We should have been called with 'this' before 'other' in the block. |
| // Just confirm this. |
| DCHECK(current != nullptr); |
| return false; |
| } |
| |
| void HInvoke::SetIntrinsic(Intrinsics intrinsic, |
| IntrinsicNeedsEnvironmentOrCache needs_env_or_cache, |
| IntrinsicSideEffects side_effects, |
| IntrinsicExceptions exceptions) { |
| intrinsic_ = intrinsic; |
| IntrinsicOptimizations opt(this); |
| if (needs_env_or_cache == kNoEnvironmentOrCache) { |
| opt.SetDoesNotNeedDexCache(); |
| opt.SetDoesNotNeedEnvironment(); |
| } |
| // Adjust method's side effects from intrinsic table. |
| switch (side_effects) { |
| case kNoSideEffects: SetSideEffects(SideEffects::None()); break; |
| case kReadSideEffects: SetSideEffects(SideEffects::AllReads()); break; |
| case kWriteSideEffects: SetSideEffects(SideEffects::AllWrites()); break; |
| case kAllSideEffects: SetSideEffects(SideEffects::AllExceptGCDependency()); break; |
| } |
| // Adjust method's exception status from intrinsic table. |
| switch (exceptions) { |
| case kNoThrow: SetCanThrow(false); break; |
| case kCanThrow: SetCanThrow(true); break; |
| } |
| } |
| |
| bool HInvoke::NeedsEnvironment() const { |
| if (!IsIntrinsic()) { |
| return true; |
| } |
| IntrinsicOptimizations opt(*this); |
| return !opt.GetDoesNotNeedEnvironment(); |
| } |
| |
| bool HInvokeStaticOrDirect::NeedsDexCacheOfDeclaringClass() const { |
| if (GetMethodLoadKind() != MethodLoadKind::kDexCacheViaMethod) { |
| return false; |
| } |
| if (!IsIntrinsic()) { |
| return true; |
| } |
| IntrinsicOptimizations opt(*this); |
| return !opt.GetDoesNotNeedDexCache(); |
| } |
| |
| void HInvokeStaticOrDirect::InsertInputAt(size_t index, HInstruction* input) { |
| inputs_.insert(inputs_.begin() + index, HUserRecord<HInstruction*>(input)); |
| input->AddUseAt(this, index); |
| // Update indexes in use nodes of inputs that have been pushed further back by the insert(). |
| for (size_t i = index + 1u, size = inputs_.size(); i != size; ++i) { |
| DCHECK_EQ(InputRecordAt(i).GetUseNode()->GetIndex(), i - 1u); |
| InputRecordAt(i).GetUseNode()->SetIndex(i); |
| } |
| } |
| |
| void HInvokeStaticOrDirect::RemoveInputAt(size_t index) { |
| RemoveAsUserOfInput(index); |
| inputs_.erase(inputs_.begin() + index); |
| // Update indexes in use nodes of inputs that have been pulled forward by the erase(). |
| for (size_t i = index, e = InputCount(); i < e; ++i) { |
| DCHECK_EQ(InputRecordAt(i).GetUseNode()->GetIndex(), i + 1u); |
| InputRecordAt(i).GetUseNode()->SetIndex(i); |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs) { |
| switch (rhs) { |
| case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: |
| return os << "string_init"; |
| case HInvokeStaticOrDirect::MethodLoadKind::kRecursive: |
| return os << "recursive"; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress: |
| return os << "direct"; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup: |
| return os << "direct_fixup"; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: |
| return os << "dex_cache_pc_relative"; |
| case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: |
| return os << "dex_cache_via_method"; |
| default: |
| LOG(FATAL) << "Unknown MethodLoadKind: " << static_cast<int>(rhs); |
| UNREACHABLE(); |
| } |
| } |
| |
| std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs) { |
| switch (rhs) { |
| case HInvokeStaticOrDirect::ClinitCheckRequirement::kExplicit: |
| return os << "explicit"; |
| case HInvokeStaticOrDirect::ClinitCheckRequirement::kImplicit: |
| return os << "implicit"; |
| case HInvokeStaticOrDirect::ClinitCheckRequirement::kNone: |
| return os << "none"; |
| default: |
| LOG(FATAL) << "Unknown ClinitCheckRequirement: " << static_cast<int>(rhs); |
| UNREACHABLE(); |
| } |
| } |
| |
| void HInstruction::RemoveEnvironmentUsers() { |
| for (HUseIterator<HEnvironment*> use_it(GetEnvUses()); !use_it.Done(); use_it.Advance()) { |
| HUseListNode<HEnvironment*>* user_node = use_it.Current(); |
| HEnvironment* user = user_node->GetUser(); |
| user->SetRawEnvAt(user_node->GetIndex(), nullptr); |
| } |
| env_uses_.Clear(); |
| } |
| |
| // Returns an instruction with the opposite boolean value from 'cond'. |
| HInstruction* HGraph::InsertOppositeCondition(HInstruction* cond, HInstruction* cursor) { |
| ArenaAllocator* allocator = GetArena(); |
| |
| if (cond->IsCondition() && |
| !Primitive::IsFloatingPointType(cond->InputAt(0)->GetType())) { |
| // Can't reverse floating point conditions. We have to use HBooleanNot in that case. |
| HInstruction* lhs = cond->InputAt(0); |
| HInstruction* rhs = cond->InputAt(1); |
| HInstruction* replacement = nullptr; |
| switch (cond->AsCondition()->GetOppositeCondition()) { // get *opposite* |
| case kCondEQ: replacement = new (allocator) HEqual(lhs, rhs); break; |
| case kCondNE: replacement = new (allocator) HNotEqual(lhs, rhs); break; |
| case kCondLT: replacement = new (allocator) HLessThan(lhs, rhs); break; |
| case kCondLE: replacement = new (allocator) HLessThanOrEqual(lhs, rhs); break; |
| case kCondGT: replacement = new (allocator) HGreaterThan(lhs, rhs); break; |
| case kCondGE: replacement = new (allocator) HGreaterThanOrEqual(lhs, rhs); break; |
| case kCondB: replacement = new (allocator) HBelow(lhs, rhs); break; |
| case kCondBE: replacement = new (allocator) HBelowOrEqual(lhs, rhs); break; |
| case kCondA: replacement = new (allocator) HAbove(lhs, rhs); break; |
| case kCondAE: replacement = new (allocator) HAboveOrEqual(lhs, rhs); break; |
| default: |
| LOG(FATAL) << "Unexpected condition"; |
| UNREACHABLE(); |
| } |
| cursor->GetBlock()->InsertInstructionBefore(replacement, cursor); |
| return replacement; |
| } else if (cond->IsIntConstant()) { |
| HIntConstant* int_const = cond->AsIntConstant(); |
| if (int_const->IsZero()) { |
| return GetIntConstant(1); |
| } else { |
| DCHECK(int_const->IsOne()); |
| return GetIntConstant(0); |
| } |
| } else { |
| HInstruction* replacement = new (allocator) HBooleanNot(cond); |
| cursor->GetBlock()->InsertInstructionBefore(replacement, cursor); |
| return replacement; |
| } |
| } |
| |
| } // namespace art |