blob: 5b72e5a033d4bacc1364236ea18a6b1b6c64b5e7 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ART_RUNTIME_MIRROR_CLASS_INL_H_
#define ART_RUNTIME_MIRROR_CLASS_INL_H_
#include "class.h"
#include "art_field-inl.h"
#include "art_method-inl.h"
#include "class_linker-inl.h"
#include "class_loader.h"
#include "common_throws.h"
#include "dex_cache.h"
#include "dex_file.h"
#include "gc/heap-inl.h"
#include "iftable.h"
#include "object_array-inl.h"
#include "read_barrier-inl.h"
#include "reference-inl.h"
#include "runtime.h"
#include "string.h"
namespace art {
namespace mirror {
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline uint32_t Class::GetObjectSize() {
if (kIsDebugBuild) {
// Use a local variable as (D)CHECK can't handle the space between
// the two template params.
bool is_variable_size = IsVariableSize<kVerifyFlags, kReadBarrierOption>();
CHECK(!is_variable_size) << " class=" << PrettyTypeOf(this);
}
return GetField32(ObjectSizeOffset());
}
inline Class* Class::GetSuperClass() {
// Can only get super class for loaded classes (hack for when runtime is
// initializing)
DCHECK(IsLoaded() || IsErroneous() || !Runtime::Current()->IsStarted()) << IsLoaded();
return GetFieldObject<Class>(OFFSET_OF_OBJECT_MEMBER(Class, super_class_));
}
inline ClassLoader* Class::GetClassLoader() {
return GetFieldObject<ClassLoader>(OFFSET_OF_OBJECT_MEMBER(Class, class_loader_));
}
template<VerifyObjectFlags kVerifyFlags>
inline DexCache* Class::GetDexCache() {
return GetFieldObject<DexCache, kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_));
}
inline ObjectArray<ArtMethod>* Class::GetDirectMethods() {
DCHECK(IsLoaded() || IsErroneous());
return GetFieldObject<ObjectArray<ArtMethod>>(OFFSET_OF_OBJECT_MEMBER(Class, direct_methods_));
}
inline void Class::SetDirectMethods(ObjectArray<ArtMethod>* new_direct_methods)
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
DCHECK(NULL == GetFieldObject<ObjectArray<ArtMethod>>(
OFFSET_OF_OBJECT_MEMBER(Class, direct_methods_)));
DCHECK_NE(0, new_direct_methods->GetLength());
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, direct_methods_), new_direct_methods);
}
inline ArtMethod* Class::GetDirectMethod(int32_t i) {
return GetDirectMethods()->Get(i);
}
inline void Class::SetDirectMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ObjectArray<ArtMethod>* direct_methods =
GetFieldObject<ObjectArray<ArtMethod>>(OFFSET_OF_OBJECT_MEMBER(Class, direct_methods_));
direct_methods->Set<false>(i, f);
}
// Returns the number of static, private, and constructor methods.
inline uint32_t Class::NumDirectMethods() {
return (GetDirectMethods() != NULL) ? GetDirectMethods()->GetLength() : 0;
}
template<VerifyObjectFlags kVerifyFlags>
inline ObjectArray<ArtMethod>* Class::GetVirtualMethods() {
DCHECK(IsLoaded() || IsErroneous());
return GetFieldObject<ObjectArray<ArtMethod>>(OFFSET_OF_OBJECT_MEMBER(Class, virtual_methods_));
}
inline void Class::SetVirtualMethods(ObjectArray<ArtMethod>* new_virtual_methods) {
// TODO: we reassign virtual methods to grow the table for miranda
// methods.. they should really just be assigned once.
DCHECK_NE(0, new_virtual_methods->GetLength());
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, virtual_methods_), new_virtual_methods);
}
inline uint32_t Class::NumVirtualMethods() {
return (GetVirtualMethods() != NULL) ? GetVirtualMethods()->GetLength() : 0;
}
template<VerifyObjectFlags kVerifyFlags>
inline ArtMethod* Class::GetVirtualMethod(uint32_t i) {
DCHECK(IsResolved<kVerifyFlags>() || IsErroneous<kVerifyFlags>())
<< PrettyClass(this) << " status=" << GetStatus();
return GetVirtualMethods()->GetWithoutChecks(i);
}
inline ArtMethod* Class::GetVirtualMethodDuringLinking(uint32_t i) {
DCHECK(IsLoaded() || IsErroneous());
return GetVirtualMethods()->GetWithoutChecks(i);
}
inline void Class::SetVirtualMethod(uint32_t i, ArtMethod* f) // TODO: uint16_t
SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
ObjectArray<ArtMethod>* virtual_methods =
GetFieldObject<ObjectArray<ArtMethod>>(OFFSET_OF_OBJECT_MEMBER(Class, virtual_methods_));
virtual_methods->SetWithoutChecks<false>(i, f);
}
inline ObjectArray<ArtMethod>* Class::GetVTable() {
DCHECK(IsResolved() || IsErroneous());
return GetFieldObject<ObjectArray<ArtMethod>>(OFFSET_OF_OBJECT_MEMBER(Class, vtable_));
}
inline ObjectArray<ArtMethod>* Class::GetVTableDuringLinking() {
DCHECK(IsLoaded() || IsErroneous());
return GetFieldObject<ObjectArray<ArtMethod>>(OFFSET_OF_OBJECT_MEMBER(Class, vtable_));
}
inline void Class::SetVTable(ObjectArray<ArtMethod>* new_vtable) {
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, vtable_), new_vtable);
}
inline ArtMethod* Class::GetEmbeddedImTableEntry(uint32_t i) {
uint32_t offset = EmbeddedImTableOffset().Uint32Value() + i * sizeof(ImTableEntry);
return GetFieldObject<mirror::ArtMethod>(MemberOffset(offset));
}
inline void Class::SetEmbeddedImTableEntry(uint32_t i, ArtMethod* method) {
uint32_t offset = EmbeddedImTableOffset().Uint32Value() + i * sizeof(ImTableEntry);
SetFieldObject<false>(MemberOffset(offset), method);
}
inline bool Class::HasVTable() {
return (GetVTable() != nullptr) || ShouldHaveEmbeddedImtAndVTable();
}
inline int32_t Class::GetVTableLength() {
if (ShouldHaveEmbeddedImtAndVTable()) {
return GetEmbeddedVTableLength();
}
return (GetVTable() != nullptr) ? GetVTable()->GetLength() : 0;
}
inline ArtMethod* Class::GetVTableEntry(uint32_t i) {
if (ShouldHaveEmbeddedImtAndVTable()) {
return GetEmbeddedVTableEntry(i);
}
return (GetVTable() != nullptr) ? GetVTable()->Get(i) : nullptr;
}
inline int32_t Class::GetEmbeddedVTableLength() {
return GetField32(EmbeddedVTableLengthOffset());
}
inline void Class::SetEmbeddedVTableLength(int32_t len) {
SetField32<false>(EmbeddedVTableLengthOffset(), len);
}
inline ArtMethod* Class::GetEmbeddedVTableEntry(uint32_t i) {
uint32_t offset = EmbeddedVTableOffset().Uint32Value() + i * sizeof(VTableEntry);
return GetFieldObject<mirror::ArtMethod>(MemberOffset(offset));
}
inline void Class::SetEmbeddedVTableEntry(uint32_t i, ArtMethod* method) {
uint32_t offset = EmbeddedVTableOffset().Uint32Value() + i * sizeof(VTableEntry);
SetFieldObject<false>(MemberOffset(offset), method);
CHECK(method == GetVTableDuringLinking()->Get(i));
}
inline bool Class::Implements(Class* klass) {
DCHECK(klass != NULL);
DCHECK(klass->IsInterface()) << PrettyClass(this);
// All interfaces implemented directly and by our superclass, and
// recursively all super-interfaces of those interfaces, are listed
// in iftable_, so we can just do a linear scan through that.
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; i++) {
if (iftable->GetInterface(i) == klass) {
return true;
}
}
return false;
}
// Determine whether "this" is assignable from "src", where both of these
// are array classes.
//
// Consider an array class, e.g. Y[][], where Y is a subclass of X.
// Y[][] = Y[][] --> true (identity)
// X[][] = Y[][] --> true (element superclass)
// Y = Y[][] --> false
// Y[] = Y[][] --> false
// Object = Y[][] --> true (everything is an object)
// Object[] = Y[][] --> true
// Object[][] = Y[][] --> true
// Object[][][] = Y[][] --> false (too many []s)
// Serializable = Y[][] --> true (all arrays are Serializable)
// Serializable[] = Y[][] --> true
// Serializable[][] = Y[][] --> false (unless Y is Serializable)
//
// Don't forget about primitive types.
// Object[] = int[] --> false
//
inline bool Class::IsArrayAssignableFromArray(Class* src) {
DCHECK(IsArrayClass()) << PrettyClass(this);
DCHECK(src->IsArrayClass()) << PrettyClass(src);
return GetComponentType()->IsAssignableFrom(src->GetComponentType());
}
inline bool Class::IsAssignableFromArray(Class* src) {
DCHECK(!IsInterface()) << PrettyClass(this); // handled first in IsAssignableFrom
DCHECK(src->IsArrayClass()) << PrettyClass(src);
if (!IsArrayClass()) {
// If "this" is not also an array, it must be Object.
// src's super should be java_lang_Object, since it is an array.
Class* java_lang_Object = src->GetSuperClass();
DCHECK(java_lang_Object != NULL) << PrettyClass(src);
DCHECK(java_lang_Object->GetSuperClass() == NULL) << PrettyClass(src);
return this == java_lang_Object;
}
return IsArrayAssignableFromArray(src);
}
template <bool throw_on_failure, bool use_referrers_cache>
inline bool Class::ResolvedFieldAccessTest(Class* access_to, ArtField* field,
uint32_t field_idx, DexCache* dex_cache) {
DCHECK_EQ(use_referrers_cache, dex_cache == nullptr);
if (UNLIKELY(!this->CanAccess(access_to))) {
// The referrer class can't access the field's declaring class but may still be able
// to access the field if the FieldId specifies an accessible subclass of the declaring
// class rather than the declaring class itself.
DexCache* referrer_dex_cache = use_referrers_cache ? this->GetDexCache() : dex_cache;
uint32_t class_idx = referrer_dex_cache->GetDexFile()->GetFieldId(field_idx).class_idx_;
// The referenced class has already been resolved with the field, get it from the dex cache.
Class* dex_access_to = referrer_dex_cache->GetResolvedType(class_idx);
DCHECK(dex_access_to != nullptr);
if (UNLIKELY(!this->CanAccess(dex_access_to))) {
if (throw_on_failure) {
ThrowIllegalAccessErrorClass(this, dex_access_to);
}
return false;
}
DCHECK_EQ(this->CanAccessMember(access_to, field->GetAccessFlags()),
this->CanAccessMember(dex_access_to, field->GetAccessFlags()));
}
if (LIKELY(this->CanAccessMember(access_to, field->GetAccessFlags()))) {
return true;
}
if (throw_on_failure) {
ThrowIllegalAccessErrorField(this, field);
}
return false;
}
template <bool throw_on_failure, bool use_referrers_cache, InvokeType throw_invoke_type>
inline bool Class::ResolvedMethodAccessTest(Class* access_to, ArtMethod* method,
uint32_t method_idx, DexCache* dex_cache) {
static_assert(throw_on_failure || throw_invoke_type == kStatic, "Non-default throw invoke type");
DCHECK_EQ(use_referrers_cache, dex_cache == nullptr);
if (UNLIKELY(!this->CanAccess(access_to))) {
// The referrer class can't access the method's declaring class but may still be able
// to access the method if the MethodId specifies an accessible subclass of the declaring
// class rather than the declaring class itself.
DexCache* referrer_dex_cache = use_referrers_cache ? this->GetDexCache() : dex_cache;
uint32_t class_idx = referrer_dex_cache->GetDexFile()->GetMethodId(method_idx).class_idx_;
// The referenced class has already been resolved with the method, get it from the dex cache.
Class* dex_access_to = referrer_dex_cache->GetResolvedType(class_idx);
DCHECK(dex_access_to != nullptr);
if (UNLIKELY(!this->CanAccess(dex_access_to))) {
if (throw_on_failure) {
ThrowIllegalAccessErrorClassForMethodDispatch(this, dex_access_to,
method, throw_invoke_type);
}
return false;
}
DCHECK_EQ(this->CanAccessMember(access_to, method->GetAccessFlags()),
this->CanAccessMember(dex_access_to, method->GetAccessFlags()));
}
if (LIKELY(this->CanAccessMember(access_to, method->GetAccessFlags()))) {
return true;
}
if (throw_on_failure) {
ThrowIllegalAccessErrorMethod(this, method);
}
return false;
}
inline bool Class::CanAccessResolvedField(Class* access_to, ArtField* field,
DexCache* dex_cache, uint32_t field_idx) {
return ResolvedFieldAccessTest<false, false>(access_to, field, field_idx, dex_cache);
}
inline bool Class::CheckResolvedFieldAccess(Class* access_to, ArtField* field,
uint32_t field_idx) {
return ResolvedFieldAccessTest<true, true>(access_to, field, field_idx, nullptr);
}
inline bool Class::CanAccessResolvedMethod(Class* access_to, ArtMethod* method,
DexCache* dex_cache, uint32_t method_idx) {
return ResolvedMethodAccessTest<false, false, kStatic>(access_to, method, method_idx, dex_cache);
}
template <InvokeType throw_invoke_type>
inline bool Class::CheckResolvedMethodAccess(Class* access_to, ArtMethod* method,
uint32_t method_idx) {
return ResolvedMethodAccessTest<true, true, throw_invoke_type>(access_to, method, method_idx,
nullptr);
}
inline bool Class::IsSubClass(Class* klass) {
DCHECK(!IsInterface()) << PrettyClass(this);
DCHECK(!IsArrayClass()) << PrettyClass(this);
Class* current = this;
do {
if (current == klass) {
return true;
}
current = current->GetSuperClass();
} while (current != NULL);
return false;
}
inline ArtMethod* Class::FindVirtualMethodForInterface(ArtMethod* method) {
Class* declaring_class = method->GetDeclaringClass();
DCHECK(declaring_class != NULL) << PrettyClass(this);
DCHECK(declaring_class->IsInterface()) << PrettyMethod(method);
// TODO cache to improve lookup speed
int32_t iftable_count = GetIfTableCount();
IfTable* iftable = GetIfTable();
for (int32_t i = 0; i < iftable_count; i++) {
if (iftable->GetInterface(i) == declaring_class) {
return iftable->GetMethodArray(i)->Get(method->GetMethodIndex());
}
}
return NULL;
}
inline ArtMethod* Class::FindVirtualMethodForVirtual(ArtMethod* method) {
DCHECK(!method->GetDeclaringClass()->IsInterface() || method->IsMiranda());
// The argument method may from a super class.
// Use the index to a potentially overridden one for this instance's class.
return GetVTableEntry(method->GetMethodIndex());
}
inline ArtMethod* Class::FindVirtualMethodForSuper(ArtMethod* method) {
DCHECK(!method->GetDeclaringClass()->IsInterface());
return GetSuperClass()->GetVTableEntry(method->GetMethodIndex());
}
inline ArtMethod* Class::FindVirtualMethodForVirtualOrInterface(ArtMethod* method) {
if (method->IsDirect()) {
return method;
}
if (method->GetDeclaringClass()->IsInterface() && !method->IsMiranda()) {
return FindVirtualMethodForInterface(method);
}
return FindVirtualMethodForVirtual(method);
}
inline IfTable* Class::GetIfTable() {
return GetFieldObject<IfTable>(OFFSET_OF_OBJECT_MEMBER(Class, iftable_));
}
inline int32_t Class::GetIfTableCount() {
IfTable* iftable = GetIfTable();
if (iftable == NULL) {
return 0;
}
return iftable->Count();
}
inline void Class::SetIfTable(IfTable* new_iftable) {
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, iftable_), new_iftable);
}
inline ArtField* Class::GetIFields() {
DCHECK(IsLoaded() || IsErroneous());
return GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_));
}
inline MemberOffset Class::GetFirstReferenceInstanceFieldOffset() {
Class* super_class = GetSuperClass();
return (super_class != nullptr)
? MemberOffset(RoundUp(super_class->GetObjectSize(),
sizeof(mirror::HeapReference<mirror::Object>)))
: ClassOffset();
}
inline MemberOffset Class::GetFirstReferenceStaticFieldOffset() {
DCHECK(IsResolved());
uint32_t base = sizeof(mirror::Class); // Static fields come after the class.
if (ShouldHaveEmbeddedImtAndVTable()) {
// Static fields come after the embedded tables.
base = mirror::Class::ComputeClassSize(true, GetEmbeddedVTableLength(),
0, 0, 0, 0, 0);
}
return MemberOffset(base);
}
inline MemberOffset Class::GetFirstReferenceStaticFieldOffsetDuringLinking() {
DCHECK(IsLoaded());
uint32_t base = sizeof(mirror::Class); // Static fields come after the class.
if (ShouldHaveEmbeddedImtAndVTable()) {
// Static fields come after the embedded tables.
base = mirror::Class::ComputeClassSize(true, GetVTableDuringLinking()->GetLength(),
0, 0, 0, 0, 0);
}
return MemberOffset(base);
}
inline void Class::SetIFields(ArtField* new_ifields) {
DCHECK(GetIFieldsUnchecked() == nullptr);
return SetFieldPtr<false>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_), new_ifields);
}
inline void Class::SetIFieldsUnchecked(ArtField* new_ifields) {
SetFieldPtr<false, true, kVerifyNone>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_), new_ifields);
}
inline ArtField* Class::GetSFieldsUnchecked() {
return GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_));
}
inline ArtField* Class::GetIFieldsUnchecked() {
return GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, ifields_));
}
inline ArtField* Class::GetSFields() {
DCHECK(IsLoaded() || IsErroneous()) << GetStatus();
return GetSFieldsUnchecked();
}
inline void Class::SetSFields(ArtField* new_sfields) {
DCHECK((IsRetired() && new_sfields == nullptr) ||
GetFieldPtr<ArtField*>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_)) == nullptr);
SetFieldPtr<false>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_), new_sfields);
}
inline void Class::SetSFieldsUnchecked(ArtField* new_sfields) {
SetFieldPtr<false, true, kVerifyNone>(OFFSET_OF_OBJECT_MEMBER(Class, sfields_), new_sfields);
}
inline ArtField* Class::GetStaticField(uint32_t i) {
DCHECK_LT(i, NumStaticFields());
return &GetSFields()[i];
}
inline ArtField* Class::GetInstanceField(uint32_t i) {
DCHECK_LT(i, NumInstanceFields());
return &GetIFields()[i];
}
template<VerifyObjectFlags kVerifyFlags>
inline uint32_t Class::GetReferenceInstanceOffsets() {
DCHECK(IsResolved<kVerifyFlags>() || IsErroneous<kVerifyFlags>());
return GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_));
}
inline void Class::SetClinitThreadId(pid_t new_clinit_thread_id) {
if (Runtime::Current()->IsActiveTransaction()) {
SetField32<true>(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), new_clinit_thread_id);
} else {
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, clinit_thread_id_), new_clinit_thread_id);
}
}
inline void Class::SetVerifyErrorClass(Class* klass) {
CHECK(klass != NULL) << PrettyClass(this);
if (Runtime::Current()->IsActiveTransaction()) {
SetFieldObject<true>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_), klass);
} else {
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, verify_error_class_), klass);
}
}
template<VerifyObjectFlags kVerifyFlags>
inline uint32_t Class::GetAccessFlags() {
// Check class is loaded/retired or this is java.lang.String that has a
// circularity issue during loading the names of its members
DCHECK(IsIdxLoaded<kVerifyFlags>() || IsRetired<kVerifyFlags>() ||
IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() ||
this == String::GetJavaLangString() ||
this == ArtMethod::GetJavaLangReflectArtMethod())
<< "IsIdxLoaded=" << IsIdxLoaded<kVerifyFlags>()
<< " IsRetired=" << IsRetired<kVerifyFlags>()
<< " IsErroneous=" <<
IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>()
<< " IsString=" << (this == String::GetJavaLangString())
<< " IsArtMethod=" << (this == ArtMethod::GetJavaLangReflectArtMethod())
<< " descriptor=" << PrettyDescriptor(this);
return GetField32<kVerifyFlags>(AccessFlagsOffset());
}
inline String* Class::GetName() {
return GetFieldObject<String>(OFFSET_OF_OBJECT_MEMBER(Class, name_));
}
inline void Class::SetName(String* name) {
if (Runtime::Current()->IsActiveTransaction()) {
SetFieldObject<true>(OFFSET_OF_OBJECT_MEMBER(Class, name_), name);
} else {
SetFieldObject<false>(OFFSET_OF_OBJECT_MEMBER(Class, name_), name);
}
}
template<VerifyObjectFlags kVerifyFlags>
inline Primitive::Type Class::GetPrimitiveType() {
DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t));
int32_t v32 = GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_));
Primitive::Type type = static_cast<Primitive::Type>(v32 & 0xFFFF);
DCHECK_EQ(static_cast<size_t>(v32 >> 16), Primitive::ComponentSizeShift(type));
return type;
}
template<VerifyObjectFlags kVerifyFlags>
inline size_t Class::GetPrimitiveTypeSizeShift() {
DCHECK_EQ(sizeof(Primitive::Type), sizeof(int32_t));
int32_t v32 = GetField32<kVerifyFlags>(OFFSET_OF_OBJECT_MEMBER(Class, primitive_type_));
size_t size_shift = static_cast<Primitive::Type>(v32 >> 16);
DCHECK_EQ(size_shift, Primitive::ComponentSizeShift(static_cast<Primitive::Type>(v32 & 0xFFFF)));
return size_shift;
}
inline void Class::CheckObjectAlloc() {
DCHECK(!IsArrayClass())
<< PrettyClass(this)
<< "A array shouldn't be allocated through this "
<< "as it requires a pre-fence visitor that sets the class size.";
DCHECK(!IsClassClass())
<< PrettyClass(this)
<< "A class object shouldn't be allocated through this "
<< "as it requires a pre-fence visitor that sets the class size.";
DCHECK(IsInstantiable()) << PrettyClass(this);
// TODO: decide whether we want this check. It currently fails during bootstrap.
// DCHECK(!Runtime::Current()->IsStarted() || IsInitializing()) << PrettyClass(this);
DCHECK_GE(this->object_size_, sizeof(Object));
}
template<bool kIsInstrumented, bool kCheckAddFinalizer>
inline Object* Class::Alloc(Thread* self, gc::AllocatorType allocator_type) {
CheckObjectAlloc();
gc::Heap* heap = Runtime::Current()->GetHeap();
const bool add_finalizer = kCheckAddFinalizer && IsFinalizable();
if (!kCheckAddFinalizer) {
DCHECK(!IsFinalizable());
}
mirror::Object* obj =
heap->AllocObjectWithAllocator<kIsInstrumented, false>(self, this, this->object_size_,
allocator_type, VoidFunctor());
if (add_finalizer && LIKELY(obj != nullptr)) {
heap->AddFinalizerReference(self, &obj);
if (UNLIKELY(self->IsExceptionPending())) {
// Failed to allocate finalizer reference, it means that the whole allocation failed.
obj = nullptr;
}
}
return obj;
}
inline Object* Class::AllocObject(Thread* self) {
return Alloc<true>(self, Runtime::Current()->GetHeap()->GetCurrentAllocator());
}
inline Object* Class::AllocNonMovableObject(Thread* self) {
return Alloc<true>(self, Runtime::Current()->GetHeap()->GetCurrentNonMovingAllocator());
}
inline uint32_t Class::ComputeClassSize(bool has_embedded_tables,
uint32_t num_vtable_entries,
uint32_t num_8bit_static_fields,
uint32_t num_16bit_static_fields,
uint32_t num_32bit_static_fields,
uint32_t num_64bit_static_fields,
uint32_t num_ref_static_fields) {
// Space used by java.lang.Class and its instance fields.
uint32_t size = sizeof(Class);
// Space used by embedded tables.
if (has_embedded_tables) {
uint32_t embedded_imt_size = kImtSize * sizeof(ImTableEntry);
uint32_t embedded_vtable_size = num_vtable_entries * sizeof(VTableEntry);
size += embedded_imt_size +
sizeof(int32_t) /* vtable len */ +
embedded_vtable_size;
}
// Space used by reference statics.
size += num_ref_static_fields * sizeof(HeapReference<Object>);
if (!IsAligned<8>(size) && num_64bit_static_fields > 0) {
uint32_t gap = 8 - (size & 0x7);
size += gap; // will be padded
// Shuffle 4-byte fields forward.
while (gap >= sizeof(uint32_t) && num_32bit_static_fields != 0) {
--num_32bit_static_fields;
gap -= sizeof(uint32_t);
}
// Shuffle 2-byte fields forward.
while (gap >= sizeof(uint16_t) && num_16bit_static_fields != 0) {
--num_16bit_static_fields;
gap -= sizeof(uint16_t);
}
// Shuffle byte fields forward.
while (gap >= sizeof(uint8_t) && num_8bit_static_fields != 0) {
--num_8bit_static_fields;
gap -= sizeof(uint8_t);
}
}
// Guaranteed to be at least 4 byte aligned. No need for further alignments.
// Space used for primitive static fields.
size += (num_8bit_static_fields * sizeof(uint8_t)) +
(num_16bit_static_fields * sizeof(uint16_t)) +
(num_32bit_static_fields * sizeof(uint32_t)) +
(num_64bit_static_fields * sizeof(uint64_t));
return size;
}
template <bool kVisitClass, typename Visitor>
inline void Class::VisitReferences(mirror::Class* klass, const Visitor& visitor) {
VisitInstanceFieldsReferences<kVisitClass>(klass, visitor);
// Right after a class is allocated, but not yet loaded
// (kStatusNotReady, see ClassLinkder::LoadClass()), GC may find it
// and scan it. IsTemp() may call Class::GetAccessFlags() but may
// fail in the DCHECK in Class::GetAccessFlags() because the class
// status is kStatusNotReady. To avoid it, rely on IsResolved()
// only. This is fine because a temp class never goes into the
// kStatusResolved state.
if (IsResolved()) {
// Temp classes don't ever populate imt/vtable or static fields and they are not even
// allocated with the right size for those. Also, unresolved classes don't have fields
// linked yet.
VisitStaticFieldsReferences<kVisitClass>(this, visitor);
if (ShouldHaveEmbeddedImtAndVTable()) {
VisitEmbeddedImtAndVTable(visitor);
}
}
}
template<typename Visitor>
inline void Class::VisitEmbeddedImtAndVTable(const Visitor& visitor) {
uint32_t pos = sizeof(mirror::Class);
size_t count = kImtSize;
for (size_t i = 0; i < count; ++i) {
MemberOffset offset = MemberOffset(pos);
visitor(this, offset, true);
pos += sizeof(ImTableEntry);
}
// Skip vtable length.
pos += sizeof(int32_t);
count = GetEmbeddedVTableLength();
for (size_t i = 0; i < count; ++i) {
MemberOffset offset = MemberOffset(pos);
visitor(this, offset, true);
pos += sizeof(VTableEntry);
}
}
template<ReadBarrierOption kReadBarrierOption>
inline bool Class::IsArtMethodClass() const {
return this == ArtMethod::GetJavaLangReflectArtMethod<kReadBarrierOption>();
}
template<ReadBarrierOption kReadBarrierOption>
inline bool Class::IsReferenceClass() const {
return this == Reference::GetJavaLangRefReference<kReadBarrierOption>();
}
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
inline bool Class::IsClassClass() {
Class* java_lang_Class = GetClass<kVerifyFlags, kReadBarrierOption>()->
template GetClass<kVerifyFlags, kReadBarrierOption>();
return this == java_lang_Class;
}
inline const DexFile& Class::GetDexFile() {
return *GetDexCache()->GetDexFile();
}
inline bool Class::DescriptorEquals(const char* match) {
if (IsArrayClass()) {
return match[0] == '[' && GetComponentType()->DescriptorEquals(match + 1);
} else if (IsPrimitive()) {
return strcmp(Primitive::Descriptor(GetPrimitiveType()), match) == 0;
} else if (IsProxyClass()) {
return Runtime::Current()->GetClassLinker()->GetDescriptorForProxy(this) == match;
} else {
const DexFile& dex_file = GetDexFile();
const DexFile::TypeId& type_id = dex_file.GetTypeId(GetClassDef()->class_idx_);
return strcmp(dex_file.GetTypeDescriptor(type_id), match) == 0;
}
}
inline void Class::AssertInitializedOrInitializingInThread(Thread* self) {
if (kIsDebugBuild && !IsInitialized()) {
CHECK(IsInitializing()) << PrettyClass(this) << " is not initializing: " << GetStatus();
CHECK_EQ(GetClinitThreadId(), self->GetTid()) << PrettyClass(this)
<< " is initializing in a different thread";
}
}
inline ObjectArray<Class>* Class::GetInterfaces() {
CHECK(IsProxyClass());
// First static field.
auto* field = GetStaticField(0);
DCHECK_STREQ(field->GetName(), "interfaces");
MemberOffset field_offset = field->GetOffset();
return GetFieldObject<ObjectArray<Class>>(field_offset);
}
inline ObjectArray<ObjectArray<Class>>* Class::GetThrows() {
CHECK(IsProxyClass());
// Second static field.
auto* field = GetStaticField(1);
DCHECK_STREQ(field->GetName(), "throws");
MemberOffset field_offset = field->GetOffset();
return GetFieldObject<ObjectArray<ObjectArray<Class>>>(field_offset);
}
inline MemberOffset Class::GetDisableIntrinsicFlagOffset() {
CHECK(IsReferenceClass());
// First static field
auto* field = GetStaticField(0);
DCHECK_STREQ(field->GetName(), "disableIntrinsic");
return field->GetOffset();
}
inline MemberOffset Class::GetSlowPathFlagOffset() {
CHECK(IsReferenceClass());
// Second static field
auto* field = GetStaticField(1);
DCHECK_STREQ(field->GetName(), "slowPathEnabled");
return field->GetOffset();
}
inline bool Class::GetSlowPathEnabled() {
return GetFieldBoolean(GetSlowPathFlagOffset());
}
inline void Class::SetSlowPath(bool enabled) {
SetFieldBoolean<false>(GetSlowPathFlagOffset(), enabled);
}
inline void Class::InitializeClassVisitor::operator()(
mirror::Object* obj, size_t usable_size) const {
DCHECK_LE(class_size_, usable_size);
// Avoid AsClass as object is not yet in live bitmap or allocation stack.
mirror::Class* klass = down_cast<mirror::Class*>(obj);
// DCHECK(klass->IsClass());
klass->SetClassSize(class_size_);
klass->SetPrimitiveType(Primitive::kPrimNot); // Default to not being primitive.
klass->SetDexClassDefIndex(DexFile::kDexNoIndex16); // Default to no valid class def index.
klass->SetDexTypeIndex(DexFile::kDexNoIndex16); // Default to no valid type index.
}
inline void Class::SetAccessFlags(uint32_t new_access_flags) {
// Called inside a transaction when setting pre-verified flag during boot image compilation.
if (Runtime::Current()->IsActiveTransaction()) {
SetField32<true>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags);
} else {
SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, access_flags_), new_access_flags);
}
}
inline uint32_t Class::NumDirectInterfaces() {
if (IsPrimitive()) {
return 0;
} else if (IsArrayClass()) {
return 2;
} else if (IsProxyClass()) {
mirror::ObjectArray<mirror::Class>* interfaces = GetInterfaces();
return interfaces != nullptr ? interfaces->GetLength() : 0;
} else {
const DexFile::TypeList* interfaces = GetInterfaceTypeList();
if (interfaces == nullptr) {
return 0;
} else {
return interfaces->Size();
}
}
}
inline void Class::SetDexCacheStrings(ObjectArray<String>* new_dex_cache_strings) {
SetFieldObject<false>(DexCacheStringsOffset(), new_dex_cache_strings);
}
inline ObjectArray<String>* Class::GetDexCacheStrings() {
return GetFieldObject<ObjectArray<String>>(DexCacheStringsOffset());
}
template<class Visitor>
void mirror::Class::VisitFieldRoots(Visitor& visitor) {
ArtField* const sfields = GetSFieldsUnchecked();
for (size_t i = 0, count = NumStaticFields(); i < count; ++i) {
if (kIsDebugBuild && GetStatus() != kStatusRetired) {
CHECK_EQ(sfields[i].GetDeclaringClass(), this);
}
visitor.VisitRoot(sfields[i].DeclaringClassRoot().AddressWithoutBarrier());
}
ArtField* const ifields = GetIFieldsUnchecked();
for (size_t i = 0, count = NumInstanceFields(); i < count; ++i) {
if (kIsDebugBuild && GetStatus() != kStatusRetired) {
CHECK_EQ(ifields[i].GetDeclaringClass(), this);
}
visitor.VisitRoot(ifields[i].DeclaringClassRoot().AddressWithoutBarrier());
}
}
} // namespace mirror
} // namespace art
#endif // ART_RUNTIME_MIRROR_CLASS_INL_H_